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Data centers provide good environments for distributed
computing as they are easily accessible and may have low-
latency communication between nodes [1]; often, however,
performance is limited by network bandwidth. These network
bottlenecks drive the need for alternative communication re-
sources to improve performance of large-scale applications.
SmartNICs [2]-[4] have been introduced to perform the same
tasks of standard NICs, but contain additional resources to
allow for network function optimization with additional hard-
ware. Adoption of SmartNICs continues to increase as a means
to accelerate network functions and offload packet processing
tasks away from CPU resources [5]-[13].

Intel’s Configurable Network Protocol Accelerator (COPA)
[14], [15] was developed as a SmartNIC with configurable
FPGA resources. COPA supports use of the open-source
software library, OpenFabric interface (OFI) libfabric [16],
for platform-agnostic development and as a standard for net-
working and acceleration invocation. The COPA framework
provides two options to reconfigurable accelerators, inline and
lookaside, both of which are directly accessible from the
libfabric API. COPA uses a unique architecture to enable
high speed remote direct memory access (RDMA) between
nodes at 100Gb/S line rate. So far, however, there has been
no published work demonstrating or evaluating COPA with
respect to a distributed application; that is our goal here.

As a candidate application we have selected Multi-Party
Computation (MPC), which would greatly benefit from the
features available through the COPA framework. MPC is the
cryptographic process of performing calculations on confi-
dential data between multiple data holders while maintaining
a level of confidentiality, integrity, and assurance of one’s
own private data. This form of joint computation is especially
important for industries such as healthcare and finance, as user
data is typically under protection through laws and regulations.
FPGA accelerated Multi-Party Computation continues to be a
progressive research topic [17]-[29] as significant performance
improvements can be obtained from hardware acceleration.

We argue that combining the COPA tool-set with state-of-
the-art MPC algorithms can reduce the communication bottle-
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Fig. 1. Throughput comparison between base MPC accelerator and MPC with
malicious security running at 275 MHz with varying batch sizes of multiply
operations.
neck for a high performance computation inside a datacenter
environment. We show that utilizing the COPA system enables
a method of performing low-level MPC operations with min-
imal CPU interaction, while enabling improved performance
compared to traditional CPU and NIC implementations.

In our implementation, each party maintains ownership of
a single FPGA connected to a host system using the COPA
framework for communication between party members. Ac-
celeration is performed through the use of unique commands
sent from each host system directly to the FPGA lookaside
accelerator through a dedicated queue. The command format
allows for batch operations on a stream of data from a specified
source and saves local results back to host memory while
preparing the network data for transfer to each party member.

Using a single accelerator and batching multiplication oper-
ations over a stream of source data, the accelerator results are
similar to past implementations saturating a traditional 10Gb/s
link [28], [29]. Examining the throughput of large batches
of multiplication operations, Figure 1 shows that a single
accelerator needs a 17.5Gb/s connection, while the inclusion
of additional hashed data values for malicious security requires
larger than a 26.3Gb/s connection to avoid saturation. For
COPA, these results show that we can run up to 6 parallel MPC
accelerators before saturating the network. We compare our
hardware implementation results against a traditional datacen-
ter CPU and 10Gb/s network and show the potential for a 2x-
10x improvement in MPC operations performed with minimal
additional FPGA resources.
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