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ABSTRACT: In cells, actin and tubulin polymerization is regulated by nucleation factors,
which promote the nucleation and subsequent growth of protein filaments in a controlled
manner. Mimicking this natural mechanism to control the supramolecular polymerization of
macromolecular monomers by artificially created nucleation factors remains a largely unmet
challenge. Biological nucleation factors act as molecular scaffolds to boost the local
concentrations of protein monomers and facilitate the required conformational changes to
accelerate the nucleation and subsequent polymerization. An accelerated assembly of synthetic
poly(L-glutamic acid) into amyloid fibrils catalyzed by cationic silica nanoparticle clusters
(NPCs) as artificial nucleation factors is demonstrated here and modeled as supramolecular
polymerization with a surface-induced heterogeneous nucleation pathway. Kinetic studies of
fibril growth coupled with mechanistic analysis demonstrate that the artificial nucleators
predictably accelerate the supramolecular polymerization process by orders of magnitude (e.g.,
shortening the assembly time by more than 10 times) when compared to the uncatalyzed
reaction, under otherwise identical conditions. Amyloid-like fibrillation was supported by a
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variety of standard characterization methods. Nucleation followed a Michaelis—Menten-like scheme for the cationic silica NPCs,

while the corresponding anionic or neutral nanoparticles had no effect on fibrillation. This approach shows the effectiveness of

charge—charge interactions and surface functionalities in facilitating the conformational change of macromolecular monomers and
controlling the rates of nucleation for fibril growth. Molecular design approaches like these inspire the development of novel

materials via biomimetic supramolecular polymerizations.

B INTRODUCTION

Much progress has been made in nucleating, activating, and
accelerating the cooperative assembly of synthetic organic
molecules into supramolecular polymers.' "> This progress
takes advantage of the in-depth understanding of rate-limiting,

30-35
process

that modulate monomer solubility to facilitate the assembly.
In contrast, supramolecular assembly of proteins into large so
filamentous polymers in water is ubiquitous in cells and strictly s1

the assistance of an organic solvent in the assembly 47
or requires environmental stimuli or reactions 48

49

supramolecular “nucleation” processes and noncovalent regulates(g_l:;g a variety of protein complexes called nucleation s2
bonding interactions among supramolecular reagents 13-17 factors. For example, formins and the actin-related s3
Even so, regulating the assembly of synthetic macromolecular Pro?em—Z/ 3 (Arp2/3) c<?mplex can acFelerate .actm Polymer—. 3t
subunits into supramolecular polymer structures remains ization by locally promoting the forgrén;txon of oligomeric nuclei ss
challenging, This is due to the complexity in synthesizing required for actin filament growth.”””” In the absence of these s6
artificial nucleators that have sizes comparable to those of nucleation factors, both nucleation and polymerization proceed s7
macromolecular monomers and that can interact with these very slowly. These protein nucleators can be regarded as a class ss

of macromolecular machines which take advantage of their so

subunits in an effective way to catalyze polymerizations. This
task is even more difficult in aqueous media, as supramolecular
monomers and nucleators compete with water in forming
hydrogen-bonded complexes. In addition, the large dielectric
constant of water renders the electrostatic field effect a
relatively short-ranged interaction. A majority of current
approaches for the assembly of synthetic macromolecular
monomers carried out in aqueous solutions are either
slow'®™* (e.g, due to the kinetic barriers or required
conformational changes) or rely on the amphiphilic design of
the macromolecular monomers.”*~*” The latter usually needs
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sophisticated, multidomain structures to concentrate protein 6o
subunits and catalyze nucleation. Interestingly, a variety of 61
foreign particles and interfaces have also been reported to 62
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promote the nucleation and growth of f-amyloid fibrils via the
supramolecular assembly of misfolded proteins or their
fragments.‘m_43 The nucleator-like effect of these particles,
albeit limited, may be facilitated by high local concentrations of
proteins adsorbed on the particle surface, rapid clustering in
confined spaces, and/or favorable changes in the protein
structure induced by interactions with the particle sur-
face."”~* In the early evolution of protein-based nucleator
factors, their ability to concentrate protein subunits and
catalyze nucleation was also likely to be primitive and
improved via natural selection. By mimicking the fundamental
principles of biological supramolecular polymerization, syn-
thetic nucleation factors may be developed from nano-
particular or macromolecular platforms by an iterative process
of design, analysis, and refinement.

During the discovery of protein nucleators, kinetic modeling
has played a major part in elucidating their mechanism in
regulating protein polymerization.'”'#****=* More recently,
the extensive kinetic studies on the reaction processes
underlying the formation of disease-related amyloid fibrils
from proteins and soluble peptides have yielded a unified
modeling framework accountin§ for the intrinsic catalytic
nature of protein aggregation.”’4 % Almost every fundamen-
tal process (e.g, nucleation, propagation, and secondary
processes) is likely to exhibit an enzyme-like saturation effect
and may be approximately described by a Michaelis—Menten-
like rate law.”" This is an important conceptual breakthrough,
as in the present study, and many complex processes involved
in the protein and peptide assembly may now be analyzed by
an intuitive modeling framework with fewer parameters.

Inspired by this recent development, we envisioned that the
nucleator-like effect of particles may also be found in the
assembly of certain synthetic polypeptides without a specific
sequence, and more importantly the process may be described
by a similar minimalist kinetic framework. Synthetic poly-
peptides prepared from precision synthesis, for example, by
controlled ring-opening polymerization of amino acid N-
carboxyanhydride (NCA), have been widely used as protein
mimics, and their applications in biomaterial and biomedical
areas have steadily increased over the years.”” >* Numerous
polypeptide-containing macromolecules with controlled com-
positions and architectures have been synthesized for
predictable conformational structures and tunable interactions
in solution and in assemblies."®*>™>* As these polypeptides
have major potential in biology-related applications, it is
noteworthy to learn how a simple nanoparticle (NP) surface
may provide some primitive regulation for polypeptide
assembly in aqueous solution. It is worth identifying the
minimal requirements for designing a primitive artificial
nucleator for these macromolecular subunits in aqueous
solution and develop a kinetic model that accounts for every
fundamental process of regulated assembly with minimal
number of parameters. This effort is necessary to approach
new pathways toward the spatial and temporal regulation of
assembly of synthetic polypeptides or other “foldable”
macromolecules.

Herein, we first introduce a kinetic model that considers
particle-induced heterogeneous nucleation as a two-step
Langmuir/Michaelis—Menten-like process and demonstrate
how a nucleator-like behavior may provide the kinetic control
over the assembly of polypeptides in aqueous solution. We
then validate this model by analyzing the aggregation behavior
of poly(L-glutamic acid)s (PLGs) accelerated by cationic silica

nanoparticle clusters (NPCs), comprising multiple NPs. Using
synthetic homopolypeptides eliminates the sequence-specific
complexities of previous studies on proteins or f-sheet-forming
peptides. The cationic NPCs accelerate the assembly of ionic
PLGs by providing a localized heterogeneous nucleation
pathway, a process which is predictable using the proposed
kinetic model. The strategy is particularly suitable for the
kinetic pathway in which the refolding process required for
oligomerization is the rate-limiting step of nucleation. Multiple
control experiments were performed to support our proposed
mechanism. Additionally, we will discuss some additional
considerations on how to design more sophisticated synthetic
nucleators.

B MATERIALS AND METHODS

Materials. Amino acids were purchased from Chem-Impex
International Inc. (Wood Dale, IL, USA). Deuterated solvents were
purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury,
MA, USA). Anhydrous dichloromethane (DCM) was stored over 3 A
molecular sieves in a freezer. Sodium acetate buffer, (3-aminopropyl)-
triethoxysilane (APTES), hydrochloric acid (HCI), sodium hydroxide
(NaOH), trifluoroacetic acid (TFA), and dimethylformamide (DMF)
were purchased from Sigma-Aldrich (Milwaukee, WI, USA).
Thioflavin T (ThT) and potassium bromide were obtained from
Acros Organics (New Jersey, USA). Silicon dioxide nanopowder was
purchased from US Research Nanomaterials, Inc. (Houston, TX,
USA). 0.2 yum nylon or PTFE syringe filters were purchased from GE
Healthcare (Chicago, IL, USA). 96-well half-area, clear bottom, and
nonbinding microplates and microplate sealing tapes were purchased
from Corning Inc. (Corning, NY, USA).

Instrumentation. Nuclear magnetic resonance spectra were
recorded on a DMX 500 MHz spectrometer (Bruker Corporation,
Billerica, MA, USA) for polymer characterization. Tandem gel
permeation chromatography (GPC) experiments of poly(e-benzylox-
ycarbonyl-L-lysine) (PZLL) polymers were performed on a system
equipped with an isocratic pump (model 1100, Agilent Technology,
Santa Clara, CA, USA), a DAWN HELEOS 18-angle laser light
scattering detector [also known as multi-angle laser light scattering
(MALLS) detector, Wyatt Technology, Santa Barbara, CA, USA], and
an Optilab rEX refractive index detector (Wyatt Technology, Santa
Barbara, CA, USA). The detection wavelength of HELEOS was set at
658 nm. Separations were performed using serially connected size
exclusion columns (100, 500, 103, and 10* A Phenogel columns, S
um, 300 X 7.8 mm, Phenomenex, Torrance, CA, USA) at 60 °C using
DMEF containing 0.1 M LiBr as the mobile phase. The MALLS
detector was calibrated using pure toluene, with no need for external
polymer standards, and can be used for the determination of the
absolute molecular weights (MWs) of polymers. GPC data of poly(y-
benzyl-L-glutamate) (PBLG) polymers were collected via an instru-
ment equipped with an isocratic pump (1260 Infinity II, Agilent,
Santa Clara, CA, USA), a multi-angle static light scattering (MALS)
detector with the detection wavelength at 658 nm (DAWN HELEOS-
I, Wyatt Technology, Santa Barbara, CA, USA), and a differential
refractometer detector (Optilab T-rEX, Wyatt Technology, Santa
Barbara, CA, USA). Separations were performed by serially connected
size exclusion columns (three PLgel MIXED-B columns, 10 ym, 7.5 X
300 mm, Agilent, Santa Clara, CA, USA), which were maintained at
40 °C using DMF containing 0.1 M LiBr as the mobile phase at a flow
rate of 0.7 mL/min. The MALS detector was calibrated using pure
toluene and then was used for the determination of the absolute
MWs. All sample solutions were filtered by a 0.45 ym PTFE filter
before injection. The MW of polypeptides were determined based on
the dn/dc value of each sample calculated offline by using the internal
calibration system processed by the software ASTRA 7 (version
7.1.3.15, Wyatt Technology, Santa Barbara, CA, USA). Fourier
transform infrared (FTIR) spectra were obtained using a PerkinElmer
100 serial FTIR spectrophotometer (PerkinElmer, Santa Clara, CA,
USA) which was calibrated with a polystyrene film.
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Dynamic light scattering (DLS) studies of SiO,—NH, NPCs were
carried out on an ALV compact goniometer system with a 90°
detector (CGS-3MD) (Germany), which consists of a 22 mW He—
Ne laser (emitting vertically polarized light with a wavelength of 632.8
nm). SiO,—NH, NPCs were dispersed in 15 mM sodium acetate
buffer with pH 4.0 for characterizations. The zeta potential of Si0,—
NH, NPCs was measured using the laser Doppler velocimetry
method in a ZetaPlus zeta potential analyzer (Brookhaven Instru-
ments Corporation, Holtsville, NY, USA). Zeta potentials were
measured in a 4 mL polystyrene cuvette, with at least three replicates
for each sample, and analyzed by using the Smoluchowski equation.
Circular dichroism (CD) spectra were measured by a Chirascan V100
spectropolarimeter (Applied Photophysics, Leatherhead, Surrey, UK)
and a quartz cuvette with either 1 or 3 mm path length. Temperature
was controlled by a Peltier holder. Attenuated total reflection infrared
spectroscopy (FTIR—ATR) was carried out using a Nicolet Magna
560 spectrometer equipped with a diamond ATR element (Thermo
Fisher Sci., Waltham, MA, USA). The ATR spectra of the freeze-dried
samples were obtained with 4 cm™ resolution and 64 co-averages.
UV—vis spectra were measured using a Nanodrop 2000 spectrometer
(Thermo Fisher Sci., Waltham, MA, USA) with a path length of 1
mm. Morphologies of the amyloid assemblies were characterized by a
Tecnai T12 G2 Spirit BioTWIN (Thermo Fisher Sci., Waltham, MA,
USA) transmission electron microscope (TEM) operating at an
accelerating voltage of 80 kV. Sample solutions were deposited on
TEM grids, blotted by a filter paper, and allowed to dry under
ambient conditions. The carbon-coated copper grids (carbon film 200
mesh copper, Ted Pella Inc., Redding, CA, USA) were pretreated with
plasma for 15 s (Harrick Plasma PDC-32G, Harrick Plasma, Ithaca,
NY, USA) before loading samples. The morphologies of the amyloid
structure and NPCs were also characterized with a FEI Nova
NanoSEM 450 (Thermo Fisher Sci, Waltham, MA, USA) field
emission scanning electron microscope with an accelerating voltage of
1 kV. Amyloid assembly samples were deposited on TEM grids and
then coated with another layer of platinum before imaging. The
cationic NPC sample was deposited on TEM grids without coating
before imaging. Wide-field fluorescence microscopy experiments were
performed on an Andor confocal microscope (Oxford Instrument
Andor, Belfast, Northern Ireland). The excitation wavelength was
chosen at 488 nm and the detection wavelength at 509 nm. Before the
experiments, the supramolecular assemblies were stained with ThT.
ThT-based fluorescence assays were performed using a FlexStation 3
microplate reader (Molecular Devices, San Jose, CA, USA). The pH
values of all the solutions were measured by an Orion 8103BNUWP
ROSS Ultra pH electrode (Thermo Fisher Sci., Waltham, MA, USA)
and adjusted to the targeted values.

Synthesis of PLG Polymers. PBLG was synthesized by NCA
polymerization using hexylamine as the initiator using previously
reported methods.’”*® GPC characterization indicated a well-defined
polypeptide structure (PBLGgy, M, = 11.0 kDa, D = 1.0S; PBLGgs, M,
=19.2 kDa, D = 1.05). To deprotect PBLG to obtain PLG, PBLG (80
mg, 0.36 mmol benzyl groups) was dissolved in DCM at room
temperature, into which fresh iodotrimethylsilane (312 uL, 2.19
mmol) was added through a syringe under nitrogen protection. The
solution was stirred at room temperature for 24 h. After precipitation
by the addition of ether (40 mL), NaHCOj saturated solution (4 mL)
was added to dissolve the solid residue. The byproduct benzyl iodide
was removed by extraction with ether (3 X 3 mL). The product PLG
was purified by dialysis (MWCO = 1 kDa) for 48 h, followed by
Iyophilization.

Synthesis of Poly(t-lysine) Polymers. Poly(e-carboxybenzyl-L-
lysine) (PZLL) was synthesized by NCA polymerization usin
hexylamine as the initiator using previously reported methods.””
GPC characterization indicated a well-defined polypeptide structure
(PZLL,gs, M, = 78.0 kDa, D = 1.20). For the deprotection of PZLL,
PZLL (70 mg, 0.27 mmol benzyl groups) was dissolved in TFA at 0
°C in an ice bath, into which the HOAc solution of HBr (33 wt %,
234 uL, 1.33 mmol) was added through a syringe. The solution was
stirred at 0 °C for 2 h. After the removal of solvent by precipitation in
ether (40 mL), HCI solution (0.1 M, 2 mL) and DI water (2 mL)

were added to dissolve the solid residue. The byproduct benzyl
bromide was removed by extraction with ether (3 X 3 mL). The
product poly(L-lysine) (PLL) was purified by dialysis (MWCO = 1
kDa) for 48 h, followed by lyophilization.

Synthesis of Cationic Silica NPCs. Cationic NPCs were
synthesized by the surface modification of bare silica NPs with
APTES by modified established methods.’"** Silica NP powder (d ~
20 nm, 100 mg) was dispersed in a mixture of DI water (90 mL) and
methanol (100 mL) in a round-bottom flask by sonicating for 0.5 h
with an ice bag, into which the mixture of ammonium hydroxide
(28%, 15 mL) and methanol (20 mL) was added. The resulting

273

dispersion was functionalized by adding APTES (15 mL in 30 mL of 274

methanol) dropwise with stirring. The mixture was allowed to stir and
reflux at 70 °C for 4 h. The product NPs were purified by
centrifugation and redispersion for two times in isopropanol, followed
by two times in S mM HCI The product cationic silica NPCs was
vacuum-dried for 12 h at room temperature. From DLS, it is observed
that the dispersion of cationic silica NPCs has an average
hydrodynamic diameter of 130 nm (Figure SSc,d), which is a suitable
size for equilibrium binding studies with PLG by the centrifugation
assay. The clustered structure of cationic silica NPCs increases the
surface area-to-volume ratio for maximized binding capacity.

Binding Isotherms of PLGs on NPCs. The dissociation
equilibrium constant (Kp) and the binding capacity of PLGg, to
NPCs at 25, 45, and 75 °C were measured by UV—vis-based
centrifugation assay. Briefly, stock solutions of PLGs, sodium salt
(0.53 mM) and NPC (2 mg/mL) were prepared in filtered 15 mM
sodium acetate buffer. If necessary, the stock solutions were adjusted
with filtered 1 M HCI to achieve a final pH of 4.0. NPCs were
sonicated until they were evenly dispersed in solution. Working
solutions consisting of 0—73.8 uM of PLG;, and 0.4 mg/mL of NPCs
were prepared in Eppendorf PCR tubes on ice by combining
appropriate volumes of the stock solutions and diluting with 15 mM
sodium acetate, pH 4.0. After incubation in a water bath at a set
temperature for 10 min, the NPCs and bound PLGg, were removed
by centrifugation. Free PLG concentrations were quantified by UV
absorbance at 209 nm. Bound PLG concentrations were determined
by subtracting the free PLG concentrations from the total
concentrations. Each analyte solution was prepared at least in
triplicate. K, and the binding capacity were determined by fitting the
experimental data with the Langmuir binding isotherm model with a
single type of independent sites. Studies on the binding of PLL,ys to
PAA—AuNPs was carried out in a similar way.

Assembly Kinetics of PLGs Monitored by Ex Situ ThT
Fluorescence Assays. The solutions were prepared by combining
appropriate volumes of the PLGs, and NPC stock solutions and
diluting with 15 mM sodium acetate, pH 4.0, in low-binding
Eppendorf tubes on ice. Each condition was prepared at least in
triplicate. 60 uM ThT stock solution in 1S mM sodium acetate, pH
4.0, was filtered prior to use. To initiate the amyloid assembly, PLG
solutions were incubated in water bath at 45 or 75 °C. 15 uL of the
reaction aliquot was removed at intervals and immediately combined
with 75 uL of 60 uM ThT in a Corning 3881 96-well half-area, clear
bottom, and nonbinding microplate. ThT emission spectra were
obtained using a FlexStation 3 plate reader at 25 °C with excitation at
440 nm. The linear relationship between the ThT fluorescence
intensity and the mass concentration of PLGs, amyloid fibrils was
validated by carrying out a series of control experiments (see the
Materials and Methods section). Fluorescence intensities at 485 nm
were used to obtain the time progress kinetic profile.

Kinetic Data Processing. The calibration experiments show an
excellent linear correlation between the ThT fluorescence and the
mass concentration of PLGgy, amyloid fibrils. To calculate the fraction
aggregated at a given time, fluorescence intensities at 485 nm for each
sampling point in a kinetic trace were normalized by the final
fluorescence intensity at equilibrium. All the kinetic profiles in Figures
4,7, and S8 are from the average of three independent experiments,
showing a good reproducibility of the measurements.

Kinetic Modeling. The differential rate equations were solved
numerically using odelSs or ode4S in MATLAB. The rate constants
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Figure 1. Schematic illustration of the kinetic model for supramolecular assembly of synthetic polypeptides regulated by the NP surface. (a) In the
absence of particle-based nucleators, the amyloid-like fibrillation of polypeptides in solution follows a classic nucleation—elongation pathway. In
addition to the spontaneous primary nucleation, a secondary nucleation process may occur on the surface of the existing fibrils to initiate the
growth of new fibrils. (b) In the presence of particle-based nucleators, the primary nucleation may occur through a heterogeneous nucleation
pathway facilitated by the particle surface, where the nuclei formation is promoted by the interaction between the polypeptide monomers and the

particle surface.

333 were obtained by minimizing the sum of squared error between the
334 simulated results and the experimental data. See the Supporting
335 Information for sample scripts written in MATLAB.

336  Monitoring the Refolding of PLGs and PLLs in the
337 Assembly Process by CD Spectroscopy. Time-dependent CD
338 spectra of PLG solutions in the absence or presence of various types
339 of NPs were collected at intervals of 10 min, scanning from 200 to
340 250 nm with 1 nm of wavelength step. Solutions were prepared in a
341 similar way as mentioned in ThT fluorescence assays. The solution
342 was sealed in a quartz cuvette with 1 mm path length and incubated in
343 a Peltier holder set to a specific temperature. Background signals were
344 subtracted using an appropriate buffer solution. Studies on PLLs were
345 carried out in a similar way.

346 Supramolecular Assembly Kinetics of PLGs Monitored by in
347 Situ ThT Fluorescence Assays. PLG sodium salt (4 mg/mL, 0.53
348 mM), NPCs (2 mg/mL), and ThT (500 uM) stock solutions were
349 prepared in filtered (0.22 ym Nylon syringe filter) 1S mM sodium
350 acetate. The pH of stock solutions was tuned to 4.0 using 1 M HCL
351 The reaction solutions were prepared by combining appropriate
352 volumes of the stock solutions and diluting with 15 mM sodium
353 acetate, pH 4.0, in low-binding Eppendorf tubes on ice. Each reaction
354 solution also contained 50 uM of ThT as the in situ fluorescent probe.
355 The samples were pipetted into multiple wells of a Corning 3881
356 microplate, 100 uL per well. Each kinetic group was prepared and
357 measured at least in triplicate. The microplates were sealed by
358 Corning 6575 optical adhesive tapes, and the supramolecular
359 polymerization was initiated by placing the microplate at 45 °C in a
360 FlexStation 3 plate reader. The ThT fluorescence was recorded every
361 7 min using the bottom reading mode with 440 nm excitation, 485
362 nm emission, and 455 nm cutoff filters. The plate reader shook the
363 microplates for 20 s prior to each measurement.

173

3

3s+ I RESULTS AND DISCUSSION

365 Kinetic Model of Particle-Regulated Amyloid Assembly

366 We consider a kinetic model for amyloid fibrillation of
367 polypeptides in the presence and absence of particle-based
368 artificial nucleators (Figure 1). In the absence of nucleators,
369 the assembly of proteins and peptides into amyloid fibrils was
370 usually modeled as a two-stage, nucleated polymerization
371 process (Figure 1a) by considering a homogeneous nucleation
372 pathway, in which fibril growth follows the spontaneous

formation of primary nucleus, as well as a secondary pathway, 373
for example, a secondary nucleation process in which the 374
surface of existing fibrils initiates growth of new fibrils or a 375
fragmentation process of the fibrils which increase the number 376
of growing chains.**** We focus on the secondary nucleation 377
process here as it is more relevant for the assembly of synthetic 378
polypeptides without vigorous stirring,"* and the mathematics 379
can be readily extended to fragmentation or other processes. 380
The time progress of monomer (m) conversion from the 3s1
dispersed to aggregated state can then be followed by solving 382

the following two kinetic equations for principal moments 383
dpP(t)
—= = km(t)" + km(t)"M(t
B0 = k(0 + k(0 M(0) -
dm(t)
= k,m(t)P(t
i ,m(t)P(t) @) e

where P(t), M(t), and m(t) are the concentrations of 3s6
supramolecular polymers, polymerized monomers, and mono- 387
mers in solution, at time t, respectively. k, is the rate constant 3ss
for the formation of the primary nucleus, k, is the fibril 389
elongation rate constant, k, is the secondary nucleus formation 39
rate constant, and n. and n, denote the nucleus sizes of the 391
primary and secondary nucleation processes. 392

We note that although a nucleus is usually conceived as an 393
aggregate, it is not necessarily the case for macromolecular 394
monomers such as polypeptides. Nucleation is indeed used to 395
identify the rate-limiting step in the formation of fibrils, and in 396
some cases, a nucleus can even be “monomeric” if the refolding 397
process of polypeptides rather than the oligomerization is rate- 398
limiting. This refolding here refers to the conformational 399
change of a monomer to an assembly-competent structure that 400
is less stable than the original conformation but progressively 4o1
more stable when assembled into larger aggregates.”> The 402
phenomenon was first discovered in polyglutamine assembly 403
and thought to also exist in other amyloid fibrillations.”® The 404
concept is particularly relevant to particle-based nucleation, as 405
a suitable particle surface may interact with polypeptides in 406
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Figure 2. Simulations with the particle-regulated amyloid fibrillation model. (a—c) Plots of the fraction aggregated vs time for test cases with k, = 4
M5 ky =400 M*s7!, and k, = 40 M™' 57" at selected values of mg and I'y. (d—f) Plots of the fraction aggregated vs time for test cases with k,
=1M7?2s k=100 M2 57", and k, = 160 M™" s7" at selected values of m, and Iy Fraction aggregated was calculated using the numerical

solutions of eqs 4—6. n. = 3, n, = 2, kg= 157", and Kp = 1 uM.

such a way that the assembly-competent structure may
subsequently be facilitated following the reversible binding of
solution monomers on the surface, that is, similar to a two-
step, Michaelis—Menten-like process commonly found in
enzymatic reactions (the “enzyme” being a surface site).

Therefore, for particle-catalyzed amyloid fibrillation, the
simplest possible mechanism may follow the principle of the
Langmuir/Michaelis—Menten model, which is often used to
explain how surfaces that bind reactants can activate them in
some way for catalyzing reactions (Figure 1b). As there is no
bond-breaking or bond-forming reactions in the amyloid
fibrillation, the most plausible mechanism by which binding to
a surface increases the rate of nucleation process is that surface
interaction helps to pull the conformation of polypeptides
(either helices or coils) into a structure resembling that in the
nucleus (a “strain” mechanism), such as forming turns or chain
reversals that can stack into antiparallel S-sheets. Suppose S is
such a surface site that catalyzes the nucleation, the binding of
a monomer (m) to the surface causes a conformational change
that “activates” m, making it more “nucleus’-like; we can
consider the reaction in two steps

k¢
m+S=mS — m*S
Ky

Step 1 is the reversible adsorption of m to the surface to
reach an activated state of m-S. We use the Langmuir model for
this step, where Ky, is the dissociation equilibrium constant.
Step 2 involves the conversion of the bound monomer to a
nucleus-like conformation and assembly-ready, so that another
incoming monomer may stack onto it and enter the
propagation process. The second step involves crossing an

energy barrier, which occurs with the rate constant k. The
overall rate r of the production of nuclei on the surface is given
by eq 3.

keIy

r=kl = ——
1o 1+ Kp/m

()

where Iy is the concentration of the total binding sites, and 8 is
the fraction of surface that is covered by bound monomers.
Adding this particle-induced heterogeneous nucleation
pathway into the existing model (eqs 1 and 2), and considering
that the nuclei formed on the particle surface likely remain
bound rather than being released into the solution, the kinetic

equations for the principal moments then become
dp(t) " n
— 3 M
" k,m(£)"™ + k,m(t)">M(t) @
dr'(t) kT
dt 1 + Kp/m(t) (%)
dm(t)
= km(t)(P(t) + P'(t
1 — k()P + P () ©

where P’(t) is concentration of fibrils initiated from the particle
surface, and I" is the concentration of binding sites on NPs,
which are considered nonrecoverable once a fibril grows from
it. I has an initial value of 'y and decreases with time in the
reaction. In the unlikely case that the binding sites can be fully
recovered after the formation of nuclei (e.g, mature nuclei
dissociate instantly from the site—a truly enzyme-like
behavior), I' would remain unchanged from its initial value,
and this would lead to a very fast nucleation process that is
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rarely observed in artificial systems. As the binding affinity and
the concentration of total binding sites can be experimentally
determined from the binding isotherm, the fitting parameters
in a typical kinetic analysis are the rate constants k,k,, k,, and
ke It is a standard practice to determine the numerical
solutions of these kinetic equations. When there are no
catalytic particles in solution, eqs 4—6 reduce to eqs 1 and 2.

If the heterogeneous nucleation process does require
multiple monomers on the surface (n’) to form a nucleus,
then the Hill equation can replace the Langmuir equation to
account for the process, and the rate of the nucleation process
on particles is given by eq 7 as

’ kf *
nm+S=2m, S —>m S
KD

dr'(t) k.

dt 1+ (Kp/m(t))" 7)

In practice, unless n' is a large number (e.g, >3) and
cooperative binding of a monomer on the particle surface is
clearly evidenced in the experiments, the Langmuir equation is
usually sufficient for calculating the occupancy of binding sites
in the differential equations of the rate laws.

Simulations with the Particle-Regulated Amyloid Assembly
Model

Figure 2 shows an example of the kinetics of assembly
behavior at various initial concentrations of monomers (1m,), in
the absence (Figure 2a,d) or presence (Figure 2b,cef) of
particle-based nucleators, predicted by eqs 4—6. n. and n, were
chosen to be 3 and 2, respectively, which are common values
found in amyloid-like fibrillation. Without particles, the
spontaneous formation of nuclei is the rate-limiting process
in the initial stage (Figure 2a). Once some nuclei form and
grow into fibrils, the secondary process starts to take control,
and the rate of fibrillation accelerates. The rate of polymer-
ization in the very early stage shows a clear power law
dependence on my,. It is also obvious that, in the absence of the
P'(t) term, the rate constants are contained in the form of
product of k.k, and k,k, in eqs 4 and 6. Therefore, kinetic
analysis on the data in the absence of particles provides
information as to the size of the nuclei for the primary and
secondary processes and k.,k, and k,k, only. In the presence of
particles, the formation of nuclei is now catalyzed by the
particle surface, that is, a heterogeneous primary nucleation
pathway, and individual rate constants can now be
deconvoluted in eqs 4—6. The characteristic of particle-
catalyzed polymerization is that the rate of polymerization in
the initial stage loses dependence on m, and becomes
approximately proportional to the concentration of particle
nucleators (Figure 2b,c). As the binding isotherm between the
monomer and particles can be easily measured experimentally,
global analysis on a series of kinetic data from varying
monomer and particle concentrations can determine the
individual rate constants and lower limit of k; with a good
fidelity (see the Supporting Information for a MATLAB script
on solving eqs 4—6 numerically).

The kinetic profiles in the presence of regulated particles are
sensitive to the individual rate constants. Figure 2d—f shows
the kinetic profiles simulated with k, that is 4 times larger than
that in Figure 2a—c, while k, and k, are 4 times smaller. As
both k,k, and k,k, remain the same, the kinetic profiles in the
absence of particles (Figure 2d) are identical to that of Figure

2a. In the presence of catalytic particles, however, the kinetic sis
profiles in Figure 2e,f are distinct from those of Figure 2b,c, si6
respectively, as the fibril growth from the particle-regulated s17
heterogeneous pathway is in control. Therefore, even with s18
limited data sets, k,, k,, and k, can be determined with good s19
accuracy (see an example of MATLAB script in the Supporting s20
Information). On the other hand, determining K, directly s21
from the kinetic profiles is possible but would require data s22
collected from various m, in the presence of particles, 523
especially from the concentration range that is comparable to 524
Kp. For the monomers with the modest to strong binding s25
affinity to particles (e.g,, Kp in the range of 4M), it may not s26
always be practical. Additionally, k; cannot be determined s27
without knowing the Iy first (k; and I” appear as products in s28
the rate equations). Therefore, in practice, measuring Ky, and s29
I'y is a prerequisite for applying the model to analyze the s30
particle-regulated assembly kinetics of synthetic polypeptides. 331
Next, we show the use of this model in designing and analyzing s32
the particle-regulated fibrillation of PLGs in aqueous solution. 533

Amyloid-like Assembly of PLGs 534

PLGs and other ionic homopeptides have predictable s3s
conformational structures, and their interactions can be s36
modulated in solution.'® The aggregation behaviors of PLGs 37
in aqueous solution are nucleation-controlled processes and 538
show interesting structures at different hierarchical levels, from s39
nanosized amyloid fibrils and their twisted, bowtie-like bundles s40
to micron-sized, spherulitic assemblies.”” Additionally, block or s41
random copolymers of PLGs can readily be synthesized to tune s4
their interactions in aqueous solution. Therefore, we chose 543
PLGs as our supramolecular monomers to test the model for s44
the regulated assembly of synthetic polypeptides. PLGs with s4s
low polydispersity (P < 1.1) were synthesized by the s46
controlled ring-opening polymerization of amino acid NCA s47
(see the Materials and Methods section and Figures S1 2 for s4s
the synthesis and characterization).””" Figure S3 shows the s49
conformations of PLGg, (DP ~ 50) at different pHs, as sso
examined by CD. At pH 4, PLGy, is dispersed as a-helices in a ss1
freshly made solution (15 mM sodium acetate buffer), but ss2
slowly associated into amyloid fibrils that further aggregate into ss3
twisted ribbons at temperatures above 30 °C (Figure 3a,b), ss4£3
and eventually into spherulitic assemblies after incubation for sss
over 40 h (Figure 3c), similar to previous reports.”” The f- 536
sheet structure in mature PLGs fibrils was confirmed by the ss7
FTIR analysis (Figure S4a), and the superstructure of the large sss
spherulitic aggregates can be visualized by fluorescence ss9
microscopy (Figure 3d) after staining the sample with ThT, seo
a fluorescent probe which shows a large fluorescence s61
enhancement upon binding to the cross-B-amyloid fibrils.”” s62
The formation of spherulitic amyloid superstructures (size s63
distribution shown in Figure $4b) from PLG fibrils is similar to ses
the formation of spherulites by the amyloid fibrils of bovine s6s
insulin, the mechanism of which was previously discussed.”**’

Upon introduction of cationic silica NPCs into the solution, s67
anionic PLGs bind to the particle surface, reducing the ses
repulsive interactions between PLGs and increasing the s69
likelihood of refolding and stacking of local PLGs to form s70
amyloid-like fibrils. Cationic NPCs were prepared by surface s71
modification of silica NPs (~20 nm in diameter) with APTES, s72
following established methods (see the Materials and Methods 573
section and Figure SS for the synthesis and character- s74
izations).”” The silica NPCs are composed of multiple NPs 575
of 20 nm in diameter, have an average size of 130 nm as s76
measured by DLS (Figure SSc—g), and have a zeta potential of 577

@
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Figure 3. Hierarchically organized structures assembled from PLGs,
in aqueous solution ([PLGs,] = 0.13 mM) at 45 °C. TEM images of
fibrils and fibril bundles formed in solution after incubation for (a) 10
and (b) 20 h. (c) SEM image of large spherite superstructures formed
from further bundling of fibrils in solution after incubation for 40 h.
(d) Fluorescence microscopy image of the superstructure in (c) after
staining with 50 yM of ThT.

578 +34.4 mV in 15 mM sodium acetate at pH 4.0. The use of
579 NPCs formed by small NPs increases the surface area-to-
580 volume ratio”' and makes it easy to separate NPCs by
ss1 centrifugation. The binding isotherms between the NPCs and
s82 PLGy in the solution were carefully measured at different
583 temperatures and fitted by the Langmuir equation (Figures 4
ss4 and S6). The Kp value of PLGg, to the surface of cationic
s8s NPCs was 1.3 uM at 45 °C and 2.6 uM at 75 °C. 7,, the
ss6 binding capacity, was found to be 81 ymol/g NPC at 45 °C
s¢7 and 141 pumol/g NPC at 75 °C. Clearly, PLGs can bind tightly
ss8 to cationic NPCs through electrostatic interactions, and
589 increasing the temperature only modestly reduced the binding
so0 affinity. Introduction of NPCs into the solution of PLGs

drastically accelerated the assembly process at 45 and at 75 °C. s91
The morphologies of the resulting supramolecular structures at 592
different hierarchical levels (Figure S7) are similar to those in 593
Figure 3, although the spherulitic assemblies tend to further so4
aggregate into networks, as evidenced in the fluorescence sos

microscopy images. 596
Kinetics of the Polypeptide Assembly and Fitting of so7
Assembly Kinetics with the Model 598

The assembly of PLGs in the absence and presence of NPCs s99
by ThT fluorescence, which can be used to quantify amyloid 600
fibrils formed in the solution at a given time interval, is a 601
common method to track the growth of amyloid-like 602
aggregates from polypeptides. ThT can quickly bind to an 603
amyloid-like structure in solution, and the fluorescence of 604
bound ThT varies linearly with the mass concentration of 60s
fibrils, as demonstrated by many groups®*’* as well as our own 606
experiments (Figure S8). We used an “ex situ” ThT 607
fluorescence measurement instead of an “in situ” method 6os
which has ThT present in the solution for continuous 609
monitoring of the assembly process. This is to minimize the 610
interference of ThT on the nucleation process, as ThT has a 611
positive charge and may act as a molecular cofactor. 612

Figure Sa,b shows the assembly kinetics of PLGygj into fibrils 613 fs
at pH 4 and at 45 or 75 °C at different initial concentrations of 614
PLGg,. As in previous studies, the PLG assembly occurred in 615
two distinct stages, with a slow nucleation step followed by a 616
faster fibril growth. Increasing the concentration of PLG s17
reduced the time required to enter the growth stage, suggesting 618
that the spontaneous formation of nuclei in solution requires 619
the interaction of a few PLG chains. Thus, a higher 620
concentration of PLG increases the likelihood of formation 621
of oligomeric nuclei. Figure S9 shows the global fit of kinetic 622
profiles at each temperature by solving the differential rate 623
equations (eqs 1 and 2) numerically. n. and n, were 624
determined to be 3 and 2 at both temperatures. We note 625
that these values are related to the effective portion of the 626
nucleating aggregate that participates in the conformational 627
conversion rather than the overall size of the nucleating 628
aggregates. The slow nucleation is presumably due to the 629
repulsive interactions of charged PLG monomers and the 630
activation barrier in unfolding the a-helical PLGs to permit 631
stable stacking into the S-sheet structure. k,k, and k,k, were 632
determined to be 57 + 6 and 6280 + 380 M™% s™% at 45 °C and 633
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Figure 4. Adsorption of PLGg, on cationic NPCs. Adsorption isotherms of PLG, on cationic NPCs at (a) 45 and (b) 75 °C. The NPC
concentration was kept constant (at 0.4 mg/mL) with the increase of the PLG, concentration from 0 to 75 yM. The data (black squares) were fit
with the Langmuir adsorption model (red lines) to obtain the binding affinity and binding capacity of PLGs, on cationic NPCs.
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absence and presence of cationic NPCs with the kinetic model. Assembly

kinetics of PLGs, (0.2—0.27 mM) at 45 (a) and 75 °C (b), PLGs, (0.2—0.27 mM) in the presence of 0.1 mg/mL cationic NPCs (I'y = 8.1 M) at
45 (c) and 75 °C (d), and PLGg, (0.13 mM) regulated by increasing concentrations of NPC (I'y = 0.8, 2.4, 8.1, and 24.3 uM, respectively) (e) and
fit with the kinetic model (eqs 4—6) by sharing the same kinetic rate constants for all the kinetic profiles collected at the same temperature (Table

1). (f) Plot of the half-assembly time, t,,,, against [NPC] in (e); the
replicate experiments.

dashed line is provided for visual guidance. Data are representative of three

634 39 + 8 and 837 + 85 M s7% at 75 °C, respectively. As we
635 mentioned earlier, it is their product rather than individual rate
636 constants which can be determined in the absence of NPCs.

637 In marked contrast, the introduction of even small amounts
638 of cationic NPCs (0.1 mg/ mL) eliminated the slow lag phase
630 (Figure Sc,d), drastically reducing the time required to
640 complete the assembly process. When catalyzed by NPCs,
641 the time progress of amyloid formation became independent of
642 initial PLG concentrations. Varying the NPC concentration
643 efficiently regulated the apparent kinetic rates (Figure Se),
644 demonstrating the effectiveness of NPCs as a primitive
645 nucleation factor. The halflife of polymerization time, t,,
646 (time taken to reach 50% of the equilibrium fibril mass)
647 reduced more than 10-fold from 5.3 to 0.3 h at 45 °C, when
648 [NPC] increased from 0.01 to 0.3 mg/mL (Figure 5f).
649 Negatively charged NPs, such as poly(acrylic acid)-coated gold
650 NPs (PAA—AuNPs)” (see the Supporting Information for the
6s1 synthesis, Figure S10a), and neutral NPs, such as poly(IN,N-
652 dimethylacrylamide)-coated gold NPs (PDMA—AuNPs) (see
653 the Supporting Information for the synthesis, Figure S10b),

did not accelerate the PLG assembly, as confirmed in our
control experiments (Figure S11).

The nucleator-like effect of cationic NPCs and accelerated
PLG assembly is clearly evidenced. The accumulation of PLGg,
onto particle surface facilitated the rapid nucleation and
growth of amyloid fibrils. The insensitivity of the kinetic
profiles to the PLG concentration indicates a low reaction
order with respect to monomers, in contrast to multiple
monomers (n. = 3) required in primary nucleation in the
absence of NPCs, similar to what was predicted by our model.
The strong dependence of polymerization rates on [NPC]
suggests that the particle surface acts like a one-time-use
catalyst for PLG nucleation. Presumably, the attractive
electrostatic interactions between the NPCs and PLGs
facilitate the conformational change of helical chains to
structures resembling the nucleus, permitting the incoming
PLGs to further stack on them to form a stable f-sheet
structure. We applied the kinetic model described in the
previous section to analyze the data quantitatively.

The simple kinetic model (Figure 1 and eqs 4—6) can fit all
the kinetic profiles collected (both in the absence and presence
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of NPCs) at a given temperature simultaneously, without any
fudge factors. The colored lines in Figure Sa—e show the
calculated kinetic curves from solving eqs 4—6 numerically,
where the rate constants are shared by all curves at a given
temperature (Table 1). The experimentally measured values of

Table 1. Rate Constants Obtained from the Global Analysis
of PLG Assembly Kinetics from Figure 5

kM5 ke MTsT) (M) k(5T
45 °C 21+03 15+1 480 + 35 >0.9
75 °C 48 +08 64+ 04 134 + 20 >0.2

Kp and I’y at each temperature were directly used in the
equation. k; was determined to have a value in the order of 0.9
s' at 45 °C and 0.2 5" at 75 °C. This provides a sense on the
rearrangement time required for surface-bound PLGs to form
pseudonuclei, on which incoming PLGs can stack and form a
f-sheet structure. The model successfully describes the
concentration dependence of the kinetic curves on m, in the
absence of NPCs and the catalytic behavior of NPC nucleators
under varying m, and NPC concentrations.

Critical Role of the Refolding Process Facilitated by
Particle—Polypeptide Interaction

To confirm that the NPC surface can instantaneously
provide a heterogeneous nucleation pathway, we monitored
the early stage of assembly process by CD. Figure 6 compares
the time-dependent CD spectra of PLGy in the absence and
presence of NPCs. At time 0, PLGs showed a strong negative
signal at 222 and 208 nm, which are the characteristic peaks of
a-helix. Signals from the f-sheet PLG amyloid fibrils are much
weaker, with a minimum at 216 nm, and easily obscured in the
aggregates.74 Without NPCs, the CD signals remained to be
the same for the first few hours (Figure 6¢c), due to the slow
nucleation stage. In contrast, the signals started to diminish as
soon as NPCs were added (Figure 6c), suggesting that the
refolding of the bound PLGs into the pseudonucleus and the
formation of f-sheet amyloid fibrils occurred rapidly on the
particle surface. A similar study on PLGgs gave an identical
result (Figure S12).

Additional control experiments were carried out to elucidate
the requirements in designing particle-based nucleation factors.
First, binding between the polypeptides and particles is a
prerequisite, but it is not sufficient. As an example, PLG

assembly at pH 4 occurs extremely slow at room temperature
(25 °C), beyond our detection window (48 h). PLG binds
tightly to cationic NPCs at room temperature (Figure S13),
but the NPCs alone cannot accelerate the assembly process at
this temperature, and the CD signals showed no change in the
presence of NPCs (Figure S14). Only at elevated temper-
atures, the particle-bound PLGs can overcome the activation
energy required for nucleus formation. Second, the particle
may not further accelerate the fibrillation if the spontaneous
primary nucleation process is not the rate-limiting process, for
example, being extremely fast in the experimental conditions or
through “monomeric nuclei” (n. ~ 1). To investigate this, we
tested the amyloid fibrillation of PLL in the presence of anionic
NPs such as PAA—AuNPs. Long-chain PLLs (DP > 200),
which are thought to form a series of turns and chain reversals
in basic solution at elevated temperatures,” required relatively
low activation energy to organize into long fibrils of antiparallel
f-sheets (Figure S15a,b) in the aggregation process. Figure 7
compares the time progress of CD signals of PLL,ys with and
without anionic PAA—AuNPs. The strong binding affinity of
PLL on PAA—AuNPs was obvious based on their equilibrium-
binding isotherm (Figure S15c). However, PAA—AuNPs did
not accelerate the supramolecular assembly of PLL,gs. The
kinetics were nearly identical, whether the particles were
present or absent (Figure 7c). This is because the nucleation
process for long PLL does not require an oligomerization step,
as a helical PLL chain with sufficient length consists of a
“broken-rod” structure that turns into a f-sheet relatively
easily. In other words, PLL can assemble rapidly at elevated
temperatures, with no significant lag phase from the nucleation
step. In this case, particles cannot facilitate any rate
acceleration.

Combining all these results, it appears to us that the
formation of surface-induced nuclei in the polypeptide
assembly process may consist of at least two steps: the binding
of polypeptide chains to the particle surface and a subsequent
conformational change of the adsorbed polypeptide to form a
nucleus for fibril growth. While it is a surface-facilitated
phenomenon, the rate equation shows some similarity with a
Michaelis—Menten-like equation, which is well established to
describe the catalytic reactions of many enzymes or enzyme-
like systems. Once the fibrils form on the particle surface, they
can also serve as secondary nucleation sites, as in the case of
solution kinetics. The combined effect leads to the accelerated
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Figure 6. Comparison of the early assembly kinetics and conformational change of PLGs at 45 °C in the absence and presence of cationic NPCs,
as monitored by CD spectroscopy. Time progress of CD signals from the PLGs solution (0.11 mM) in the absence (a) and in the presence (b) of
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755 assembly of polypeptides into amyloid fibrils, which can further
756 bundle together or form a cross-linked network or super-
757 structures afterward, as the nucleation of new fibrils on the
758 existing ones generates attached arrays or webs of fibrils. Thus,
759 particles can catalyze a heterogeneous primary nucleation
760 pathway that is much faster than the corresponding steps in
761 solution.

762 Other Molecular Factors Affecting the Assembly

763 We also note that nucleators are not the only molecular
764 factors that may affect the assembly of synthetic polypeptides
765 in aqueous solution. Specific ions or molecules may also act as
766 rate regulators to accelerate or decelerate the kinetic process by

complexing with the polypeptide chain and making its 767
conformational structure more favorable or less favorable for 763
assembly. We have mentioned the reason why we avoided the 769
use of in situ fluorescence experiments for the kinetic study: 770
dispersed ThT molecules or their micelles in the solution may 771
bind to PLGs or fibrils and affect the kinetics.”®”’ Figure 8 7721
shows the kinetic profiles of the PLG assembly without or with 773
NPCs at 45 °C, from in situ ThT fluorescence measurements. 774
Using an automated microplate reader, the continuous 775
development of kinetic profiles was collected with superior 776
quality and reproducibility. However, the presence of ThT in 777
the solution changed the apparent reaction order of primary 778
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nucleation with respect to the PLG concentrations (n, ~ 2)
(Figure S16). Nevertheless, the general trend of kinetic profiles
under particle regulation still agreed with the predictions of our
model (e.g, the simulated profiles in Figure 2). The full
description of the kinetic behavior under the coexistence of a
potential secondary molecular cofactor requires the consid-
eration of its binding equilibrium with polypeptides at different
conformational states, which were discussed as “p (parameter)
molecules” by Oosawa in his classic book on supramolecular
polymerization of proteins. The refinement of the kinetic
model to reflect the potential influence of additional molecular
cofactors is the subject of future study.

Potential Limitations of Particle-Based Regulators

In the end, we discuss the potential limitations of current
particle-based regulators and make suggestions on what need
to be overcome to develop more sophisticated synthetic
nucleators. First, like an enzyme, a true nucleation factor
should be able to release the mature nuclei and regenerate the
active sites to continue the catalytic process. For this purpose,
there should be an optimal binding affinity for catalytic
effectiveness in nucleators. If monomers bind to the nucleators
too weakly, the reaction is slow because there is little “reactant”
on the surface. When a monomer binds the nucleator too
strongly, the reaction is also slow because the “product”
(nucleus) is slow to leave the surface, occupying the sites
where new monomers could bind. The best nucleators should
bind neither too weakly nor too strongly. However, it is
difficult to design particle-based regulators to have relatively
high affinity for the transition state of the reaction that also do
not bind monomers too weakly or nuclei too tightly. In this
context, a macromolecule-based regulator, with the size,
architecture, and binding affinity similar to the biological
nucleators such as Arp2/3 and formins, may be a promising
candidate, as the conformational change of complex macro-
molecules may be used to engineering dynamic binding
properties desired for a more sophisticated nucleation factor.
Second, for the purpose of quantitative analysis and predicting
the regulated kinetics, the binding affinity and maximal binding
sites on particles need to be measured accurately. This may be
challenging in some cases, when the binding isotherm deviates
from the Langmuir isotherm (e.g, a cooperative binding). In
the model-based analysis, any inaccuracy in determining the
binding sites would directly propagate into the value of rate
constants. Third, a question that remains to be answered is
related to the surface diffusion of bound monomers on the
particle surface, which is thought to accelerate the rate of
nucleation, either by the increased local molarity of monomers
or by the enhanced prospect of clustering in a confined space.
In a preliminary test, a variation of the current model was
found to account for the kinetic data at 45 °C, even better by
considering a fast segregation of bound monomers on a
particle surface (see the Supporting Information, eqs S3—S9).
Figure S17 and Table S1 show the calculated kinetic curves
and kinetic rate constants from solving these differential
equations numerically, where the rate constants are shared by
all curves. The improvement in the fit quality, however, is not
sufficient to reach a firm conclusion, considering that new
parameters were added into the equations.

B CONCLUSIONS

We proposed a simple kinetic model to describe the particle-
accelerated self-assembly of synthetic polypeptides in aqueous
solution and demonstrated an effective strategy to achieve such

a behavior, in which cationic nucleators accelerated the
nucleation and subsequent growth of anionic PLGs. The
cationic particles serve to locally concentrate the PLG
monomers on the surface and facilitate their conformational
change required for stacking into amyloid-like fibrils. The
primary heterogeneous nucleation pathway follows a Lang-
muir/Michaelis—Menten-type scheme. While we exclusively
focused on homopolymers in this study, the preliminary result
from the random copolymers of synthetic polypeptides (e.g,,
by including a second type of amino acids that have
hydrophobic side chains) suggests that the abovementioned
mechanism is equally applicable. The findings provide an
exciting example and a theoretical framework of how artificial
nucleators may be designed and refined further, based on
macromolecular interactions and affinities. These efforts

841
842

855

should offer an important insight into the rational design of ss6

next-generation artificial nucleators with higher complexity and
greater regulatory control of supramolecular assembly in
aqueous solutions.
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