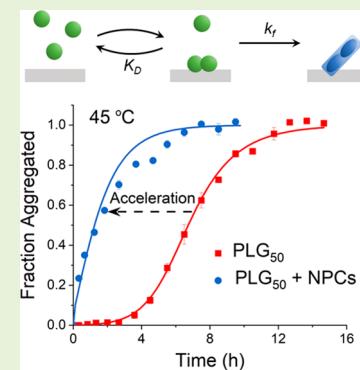


Modeling and Designing Particle-Regulated Amyloid-like Assembly of Synthetic Polypeptides in Aqueous Solution

Tianjian Yang, Kyle Benson, Hailin Fu, Tianrui Xue, Ziyuan Song, Hanyi Duan, Hongwei Xia, Ankara Kalluri, Jie He, Jianjun Cheng,* Challa V. Kumar,* and Yao Lin*

Cite This: <https://doi.org/10.1021/acs.biomac.1c01230>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: In cells, actin and tubulin polymerization is regulated by nucleation factors, which promote the nucleation and subsequent growth of protein filaments in a controlled manner. Mimicking this natural mechanism to control the supramolecular polymerization of macromolecular monomers by artificially created nucleation factors remains a largely unmet challenge. Biological nucleation factors act as molecular scaffolds to boost the local concentrations of protein monomers and facilitate the required conformational changes to accelerate the nucleation and subsequent polymerization. An accelerated assembly of synthetic poly(L-glutamic acid) into amyloid fibrils catalyzed by cationic silica nanoparticle clusters (NPCs) as artificial nucleation factors is demonstrated here and modeled as supramolecular polymerization with a surface-induced heterogeneous nucleation pathway. Kinetic studies of fibril growth coupled with mechanistic analysis demonstrate that the artificial nucleators predictably accelerate the supramolecular polymerization process by orders of magnitude (e.g., shortening the assembly time by more than 10 times) when compared to the uncatalyzed reaction, under otherwise identical conditions. Amyloid-like fibrillation was supported by a variety of standard characterization methods. Nucleation followed a Michaelis–Menten-like scheme for the cationic silica NPCs, while the corresponding anionic or neutral nanoparticles had no effect on fibrillation. This approach shows the effectiveness of charge–charge interactions and surface functionalities in facilitating the conformational change of macromolecular monomers and controlling the rates of nucleation for fibril growth. Molecular design approaches like these inspire the development of novel materials via biomimetic supramolecular polymerizations.

INTRODUCTION

Much progress has been made in nucleating, activating, and accelerating the cooperative assembly of synthetic organic molecules into supramolecular polymers.^{1–12} This progress takes advantage of the in-depth understanding of rate-limiting, supramolecular “nucleation” processes and noncovalent bonding interactions among supramolecular reagents.^{13–17} Even so, regulating the assembly of synthetic macromolecular subunits into supramolecular polymer structures remains challenging. This is due to the complexity in synthesizing artificial nucleators that have sizes comparable to those of macromolecular monomers and that can interact with these subunits in an effective way to catalyze polymerizations. This task is even more difficult in aqueous media, as supramolecular monomers and nucleators compete with water in forming hydrogen-bonded complexes. In addition, the large dielectric constant of water renders the electrostatic field effect a relatively short-ranged interaction. A majority of current approaches for the assembly of synthetic macromolecular monomers carried out in aqueous solutions are either slow^{18–22} (e.g., due to the kinetic barriers or required conformational changes) or rely on the amphiphilic design of the macromolecular monomers.^{23–29} The latter usually needs

the assistance of an organic solvent in the assembly process^{30–35} or requires environmental stimuli or reactions⁴⁸ that modulate monomer solubility to facilitate the assembly.⁴⁹

In contrast, supramolecular assembly of proteins into large filamentous polymers in water is ubiquitous in cells and strictly regulated by a variety of protein complexes called nucleation factors.^{36–38} For example, formins and the actin-related protein-2/3 (Arp2/3) complex can accelerate actin polymerization by locally promoting the formation of oligomeric nuclei required for actin filament growth.^{36,39} In the absence of these nucleation factors, both nucleation and polymerization proceed very slowly. These protein nucleators can be regarded as a class of macromolecular machines which take advantage of their sophisticated, multidomain structures to concentrate protein subunits and catalyze nucleation. Interestingly, a variety of foreign particles and interfaces have also been reported to

Received: September 17, 2021

Revised: December 7, 2021

63 promote the nucleation and growth of β -amyloid fibrils via the
64 supramolecular assembly of misfolded proteins or their
65 fragments.^{40–43} The nucleator-like effect of these particles,
66 albeit limited, may be facilitated by high local concentrations of
67 proteins adsorbed on the particle surface, rapid clustering in
68 confined spaces, and/or favorable changes in the protein
69 structure induced by interactions with the particle sur-
70 face.^{40,43–45} In the early evolution of protein-based nucleator
71 factors, their ability to concentrate protein subunits and
72 catalyze nucleation was also likely to be primitive and
73 improved via natural selection. By mimicking the fundamental
74 principles of biological supramolecular polymerization, syn-
75 thetic nucleation factors may be developed from nano-
76 particular or macromolecular platforms by an iterative process
77 of design, analysis, and refinement.

78 During the discovery of protein nucleators, kinetic modeling
79 has played a major part in elucidating their mechanism in
80 regulating protein polymerization.^{13,14,36,46–48} More recently,
81 the extensive kinetic studies on the reaction processes
82 underlying the formation of disease-related amyloid fibrils
83 from proteins and soluble peptides have yielded a unified
84 modeling framework accounting for the intrinsic catalytic
85 nature of protein aggregation.^{17,48–50} Almost every fundamen-
86 tal process (e.g., nucleation, propagation, and secondary
87 processes) is likely to exhibit an enzyme-like saturation effect
88 and may be approximately described by a Michaelis–Menten-
89 like rate law.⁵¹ This is an important conceptual breakthrough,
90 as in the present study, and many complex processes involved
91 in the protein and peptide assembly may now be analyzed by
92 an intuitive modeling framework with fewer parameters.

93 Inspired by this recent development, we envisioned that the
94 nucleator-like effect of particles may also be found in the
95 assembly of certain synthetic polypeptides without a specific
96 sequence, and more importantly the process may be described
97 by a similar minimalist kinetic framework. Synthetic poly-
98 peptides prepared from precision synthesis, for example, by
99 controlled ring-opening polymerization of amino acid N-
100 carboxyanhydride (NCA), have been widely used as protein
101 mimics, and their applications in biomaterial and biomedical
102 areas have steadily increased over the years.^{52–54} Numerous
103 polypeptide-containing macromolecules with controlled com-
104 positions and architectures have been synthesized for
105 predictable conformational structures and tunable interactions
106 in solution and in assemblies.^{18,55–58} As these polypeptides
107 have major potential in biology-related applications, it is
108 noteworthy to learn how a simple nanoparticle (NP) surface
109 may provide some primitive regulation for polypeptide
110 assembly in aqueous solution. It is worth identifying the
111 minimal requirements for designing a primitive artificial
112 nucleator for these macromolecular subunits in aqueous
113 solution and develop a kinetic model that accounts for every
114 fundamental process of regulated assembly with minimal
115 number of parameters. This effort is necessary to approach
116 new pathways toward the spatial and temporal regulation of
117 assembly of synthetic polypeptides or other “foldable”
118 macromolecules.

119 Herein, we first introduce a kinetic model that considers
120 particle-induced heterogeneous nucleation as a two-step
121 Langmuir/Michaelis–Menten-like process and demonstrate
122 how a nucleator-like behavior may provide the kinetic control
123 over the assembly of polypeptides in aqueous solution. We
124 then validate this model by analyzing the aggregation behavior
125 of poly(L-glutamic acid)s (PLGs) accelerated by cationic silica

nanoparticle clusters (NPCs), comprising multiple NPs. Using 126 synthetic homopolypeptides eliminates the sequence-specific 127 complexities of previous studies on proteins or β -sheet-forming 128 peptides. The cationic NPCs accelerate the assembly of ionic 129 PLGs by providing a localized heterogeneous nucleation 130 pathway, a process which is predictable using the proposed 131 kinetic model. The strategy is particularly suitable for the 132 kinetic pathway in which the refolding process required for 133 oligomerization is the rate-limiting step of nucleation. Multiple 134 control experiments were performed to support our proposed 135 mechanism. Additionally, we will discuss some additional 136 considerations on how to design more sophisticated synthetic 137 nucleators. 138

MATERIALS AND METHODS

139

Materials. Amino acids were purchased from Chem-Impex 140 International Inc. (Wood Dale, IL, USA). Deuterated solvents were 141 purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury, 142 MA, USA). Anhydrous dichloromethane (DCM) was stored over 3 Å 143 molecular sieves in a freezer. Sodium acetate buffer, (3-aminopropyl)- 144 triethoxysilane (APTES), hydrochloric acid (HCl), sodium hydroxide 145 (NaOH), trifluoroacetic acid (TFA), and dimethylformamide (DMF) 146 were purchased from Sigma-Aldrich (Milwaukee, WI, USA). 147 Thioflavin T (ThT) and potassium bromide were obtained from 148 Acros Organics (New Jersey, USA). Silicon dioxide nanopowder was 149 purchased from US Research Nanomaterials, Inc. (Houston, TX, 150 USA). 0.2 μ m nylon or PTFE syringe filters were purchased from GE 151 Healthcare (Chicago, IL, USA). 96-well half-area, clear bottom, and 152 nonbinding microplates and microplate sealing tapes were purchased 153 from Corning Inc. (Corning, NY, USA). 154

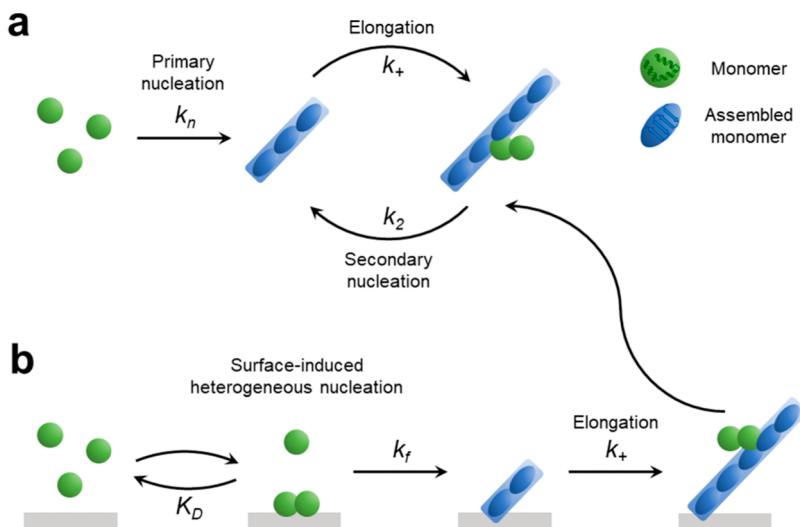
Instrumentation. Nuclear magnetic resonance spectra were 155 recorded on a DMX 500 MHz spectrometer (Bruker Corporation, 156 Billerica, MA, USA) for polymer characterization. Tandem gel 157 permeation chromatography (GPC) experiments of poly(ϵ -benzyl- 158 carbonyl-L-lysine) (PZLL) polymers were performed on a system 159 equipped with an isocratic pump (model 1100, Agilent Technology, 160 Santa Clara, CA, USA), a DAWN HELEOS 18-angle laser light 161 scattering detector [also known as multi-angle laser light scattering 162 (MALLS) detector, Wyatt Technology, Santa Barbara, CA, USA], and 163 an Optilab rEX refractive index detector (Wyatt Technology, Santa 164 Barbara, CA, USA). The detection wavelength of HELEOS was set at 165 658 nm. Separations were performed using serially connected size 166 exclusion columns (100, 500, 103, and 10⁴ Å Phenogel columns, 167 5 μ m, 300 \times 7.8 mm, Phenomenex, Torrance, CA, USA) at 60 °C using 168 DMF containing 0.1 M LiBr as the mobile phase. The MALLS 169 detector was calibrated using pure toluene, with no need for external 170 polymer standards, and can be used for the determination of the 171 absolute molecular weights (MWs) of polymers. GPC data of poly(γ - 172 benzyl-L-glutamate) (PBLG) polymers were collected via an instru- 173 ment equipped with an isocratic pump (1260 Infinity II, Agilent, 174 Santa Clara, CA, USA), a multi-angle static light scattering (MALS) 175 detector with the detection wavelength at 658 nm (DAWN HELEOS- 176 II, Wyatt Technology, Santa Barbara, CA, USA), and a differential 177 refractometer detector (Optilab T-rEX, Wyatt Technology, Santa 178 Barbara, CA, USA). Separations were performed by serially connected 179 size exclusion columns (three PLgel MIXED-B columns, 10 μ m, 7.5 \times 180 300 mm, Agilent, Santa Clara, CA, USA), which were maintained at 181 40 °C using DMF containing 0.1 M LiBr as the mobile phase at a flow 182 rate of 0.7 mL/min. The MALS detector was calibrated using pure 183 toluene and then was used for the determination of the absolute 184 MWs. All sample solutions were filtered by a 0.45 μ m PTFE filter 185 before injection. The MWs of polypeptides were determined based on 186 the dn/dc value of each sample calculated offline by using the internal 187 calibration system processed by the software ASTRA 7 (version 188 7.1.3.15, Wyatt Technology, Santa Barbara, CA, USA). Fourier 189 transform infrared (FTIR) spectra were obtained using a PerkinElmer 190 100 serial FTIR spectrophotometer (PerkinElmer, Santa Clara, CA, 191 USA) which was calibrated with a polystyrene film. 192

193 Dynamic light scattering (DLS) studies of SiO_2-NH_2 NPCs were
194 carried out on an ALV compact goniometer system with a 90°
195 detector (CGS-3MD) (Germany), which consists of a 22 mW He-
196 Ne laser (emitting vertically polarized light with a wavelength of 632.8
197 nm). SiO_2-NH_2 NPCs were dispersed in 15 mM sodium acetate
198 buffer with pH 4.0 for characterizations. The zeta potential of SiO_2-
199 NH_2 NPCs was measured using the laser Doppler velocimetry
200 method in a ZetaPlus zeta potential analyzer (Brookhaven Instru-
201 ments Corporation, Holtsville, NY, USA). Zeta potentials were
202 measured in a 4 mL polystyrene cuvette, with at least three replicates
203 for each sample, and analyzed by using the Smoluchowski equation.
204 Circular dichroism (CD) spectra were measured by a Chirascan V100
205 spectropolarimeter (Applied Photophysics, Leatherhead, Surrey, UK)
206 and a quartz cuvette with either 1 or 3 mm path length. Temperature
207 was controlled by a Peltier holder. Attenuated total reflection infrared
208 spectroscopy (FTIR-ATR) was carried out using a Nicolet Magna
209 560 spectrometer equipped with a diamond ATR element (Thermo
210 Fisher Sci., Waltham, MA, USA). The ATR spectra of the freeze-dried
211 samples were obtained with 4 cm^{-1} resolution and 64 co-averages.
212 UV-vis spectra were measured using a Nanodrop 2000 spectrometer
213 (Thermo Fisher Sci., Waltham, MA, USA) with a path length of 1
214 mm. Morphologies of the amyloid assemblies were characterized by a
215 Tecnai T12 G2 Spirit BioTWIN (Thermo Fisher Sci., Waltham, MA,
216 USA) transmission electron microscope (TEM) operating at an
217 accelerating voltage of 80 kV. Sample solutions were deposited on
218 TEM grids, blotted by a filter paper, and allowed to dry under
219 ambient conditions. The carbon-coated copper grids (carbon film 200
220 mesh copper, Ted Pella Inc., Redding, CA, USA) were pretreated with
221 plasma for 15 s (Harrick Plasma PDC-32G, Harrick Plasma, Ithaca,
222 NY, USA) before loading samples. The morphologies of the amyloid
223 structure and NPCs were also characterized with a FEI Nova
224 NanoSEM 450 (Thermo Fisher Sci., Waltham, MA, USA) field
225 emission scanning electron microscope with an accelerating voltage of
226 1 kV. Amyloid assembly samples were deposited on TEM grids and
227 then coated with another layer of platinum before imaging. The
228 cationic NPC sample was deposited on TEM grids without coating
229 before imaging. Wide-field fluorescence microscopy experiments were
230 performed on an Andor confocal microscope (Oxford Instrument
231 Andor, Belfast, Northern Ireland). The excitation wavelength was
232 chosen at 488 nm and the detection wavelength at 509 nm. Before the
233 experiments, the supramolecular assemblies were stained with ThT.
234 ThT-based fluorescence assays were performed using a FlexStation 3
235 microplate reader (Molecular Devices, San Jose, CA, USA). The pH
236 values of all the solutions were measured by an Orion 8103BNUWP
237 ROSS Ultra pH electrode (Thermo Fisher Sci., Waltham, MA, USA)
238 and adjusted to the targeted values.

239 **Synthesis of PLG Polymers.** PBLG was synthesized by NCA
240 polymerization using hexylamine as the initiator using previously
241 reported methods.^{59,60} GPC characterization indicated a well-defined
242 polypeptide structure (PBLG₅₀, $M_n = 11.0$ kDa, $D = 1.05$; PBLG₈₅, M_n
243 = 19.2 kDa, $D = 1.05$). To deprotect PBLG to obtain PLG, PBLG (80
244 mg, 0.36 mmol benzyl groups) was dissolved in DCM at room
245 temperature, into which fresh iodotrimethylsilane (312 μL , 2.19
246 mmol) was added through a syringe under nitrogen protection. The
247 solution was stirred at room temperature for 24 h. After precipitation
248 by the addition of ether (40 mL), NaHCO_3 saturated solution (4 mL)
249 was added to dissolve the solid residue. The byproduct benzyl iodide
250 was removed by extraction with ether (3 \times 3 mL). The product PLG
251 was purified by dialysis (MWCO = 1 kDa) for 48 h, followed by
252 lyophilization.

253 **Synthesis of Poly(*l*-lysine) Polymers.** Poly(*ε*-carboxybenzyl-*L*-
254 lysine) (PZLL) was synthesized by NCA polymerization using
255 hexylamine as the initiator using previously reported methods.^{59,60}
256 GPC characterization indicated a well-defined polypeptide structure
257 (PZLL₂₉₈, $M_n = 78.0$ kDa, $D = 1.20$). For the deprotection of PZLL,
258 PZLL (70 mg, 0.27 mmol benzyl groups) was dissolved in TFA at 0
259 °C in an ice bath, into which the HOAc solution of HBr (33 wt %,
260 234 μL , 1.33 mmol) was added through a syringe. The solution was
261 stirred at 0 °C for 2 h. After the removal of solvent by precipitation in
262 ether (40 mL), HCl solution (0.1 M, 2 mL) and DI water (2 mL)

263 were added to dissolve the solid residue. The byproduct benzyl 264 bromide was removed by extraction with ether (3 \times 3 mL). The 265 product poly(*l*-lysine) (PLL) was purified by dialysis (MWCO = 1 266 kDa) for 48 h, followed by lyophilization.
266


267 **Synthesis of Cationic Silica NPCs.** Cationic NPCs were 268 synthesized by the surface modification of bare silica NPs with 269 APTES by modified established methods.^{61,62} Silica NP powder ($d \sim$ 270 20 nm, 100 mg) was dispersed in a mixture of DI water (90 mL) and 271 methanol (100 mL) in a round-bottom flask by sonicating for 0.5 h 272 with an ice bag, into which the mixture of ammonium hydroxide 273 (28%, 15 mL) and methanol (20 mL) was added. The resulting 274 dispersion was functionalized by adding APTES (15 mL in 30 mL of 274 methanol) dropwise with stirring. The mixture was allowed to stir and 275 reflux at 70 °C for 4 h. The product NPs were purified by 276 centrifugation and redispersion for two times in isopropanol, followed 277 by two times in 5 mM HCl. The product cationic silica NPCs was 278 vacuum-dried for 12 h at room temperature. From DLS, it is observed 279 that the dispersion of cationic silica NPCs has an average 280 hydrodynamic diameter of 130 nm (Figure S5c,d), which is a suitable 281 size for equilibrium binding studies with PLG by the centrifugation 282 assay. The clustered structure of cationic silica NPCs increases the 283 surface area-to-volume ratio for maximized binding capacity.
284

285 **Binding Isotherms of PLGs on NPCs.** The dissociation 286 equilibrium constant (K_D) and the binding capacity of PLG₅₀ to 287 NPCs at 25, 45, and 75 °C were measured by UV-vis-based 288 centrifugation assay. Briefly, stock solutions of PLG₅₀ sodium salt 289 (0.53 mM) and NPC (2 mg/mL) were prepared in filtered 15 mM 289 sodium acetate buffer. If necessary, the stock solutions were adjusted 290 with filtered 1 M HCl to achieve a final pH of 4.0. NPCs were 291 sonicated until they were evenly dispersed in solution. Working 292 solutions consisting of 0–73.8 μM of PLG₅₀ and 0.4 mg/mL of NPCs 293 were prepared in Eppendorf PCR tubes on ice by combining 294 appropriate volumes of the stock solutions and diluting with 15 mM 295 sodium acetate, pH 4.0. After incubation in a water bath at a set 296 temperature for 10 min, the NPCs and bound PLG₅₀ were removed 297 by centrifugation. Free PLG concentrations were quantified by UV 298 absorbance at 209 nm. Bound PLG concentrations were determined 299 by subtracting the free PLG concentrations from the total 300 concentrations. Each analyte solution was prepared at least in 301 triplicate. K_D and the binding capacity were determined by fitting the 302 experimental data with the Langmuir binding isotherm model with a 303 single type of independent sites. Studies on the binding of PLL₂₉₈ to 304 PAA-AuNPs was carried out in a similar way.
305

306 **Assembly Kinetics of PLGs Monitored by Ex Situ ThT 306**
Fluorescence Assays. The solutions were prepared by combining 307 appropriate volumes of the PLG₅₀ and NPC stock solutions and 308 diluting with 15 mM sodium acetate, pH 4.0, in low-binding 309 Eppendorf tubes on ice. Each condition was prepared at least in 310 triplicate. 60 μM ThT stock solution in 15 mM sodium acetate, pH 311 4.0, was filtered prior to use. To initiate the amyloid assembly, PLG 312 solutions were incubated in water bath at 45 or 75 °C. 15 μL of the 313 reaction aliquot was removed at intervals and immediately combined 314 with 75 μL of 60 μM ThT in a Corning 3881 96-well half-area, clear 315 bottom, and nonbinding microplate. ThT emission spectra were 316 obtained using a FlexStation 3 plate reader at 25 °C with excitation at 317 440 nm. The linear relationship between the ThT fluorescence 318 intensity and the mass concentration of PLG₅₀ amyloid fibrils was 319 validated by carrying out a series of control experiments (see the 320 Materials and Methods section). Fluorescence intensities at 485 nm 321 were used to obtain the time progress kinetic profile.
322

323 **Kinetic Data Processing.** The calibration experiments show an 323 excellent linear correlation between the ThT fluorescence and the 324 mass concentration of PLG₅₀ amyloid fibrils. To calculate the fraction 325 aggregated at a given time, fluorescence intensities at 485 nm for each 326 sampling point in a kinetic trace were normalized by the final 327 fluorescence intensity at equilibrium. All the kinetic profiles in Figures 328 4, 7, and S8 are from the average of three independent experiments, 329 showing a good reproducibility of the measurements.
330

331 **Kinetic Modeling.** The differential rate equations were solved 331 numerically using ode15s or ode45 in MATLAB. The rate constants 332

Figure 1. Schematic illustration of the kinetic model for supramolecular assembly of synthetic polypeptides regulated by the NP surface. (a) In the absence of particle-based nucleators, the amyloid-like fibrillation of polypeptides in solution follows a classic nucleation–elongation pathway. In addition to the spontaneous primary nucleation, a secondary nucleation process may occur on the surface of the existing fibrils to initiate the growth of new fibrils. (b) In the presence of particle-based nucleators, the primary nucleation may occur through a heterogeneous nucleation pathway facilitated by the interaction between the polypeptide monomers and the particle surface.

were obtained by minimizing the sum of squared error between the simulated results and the experimental data. See the Supporting Information for sample scripts written in MATLAB.

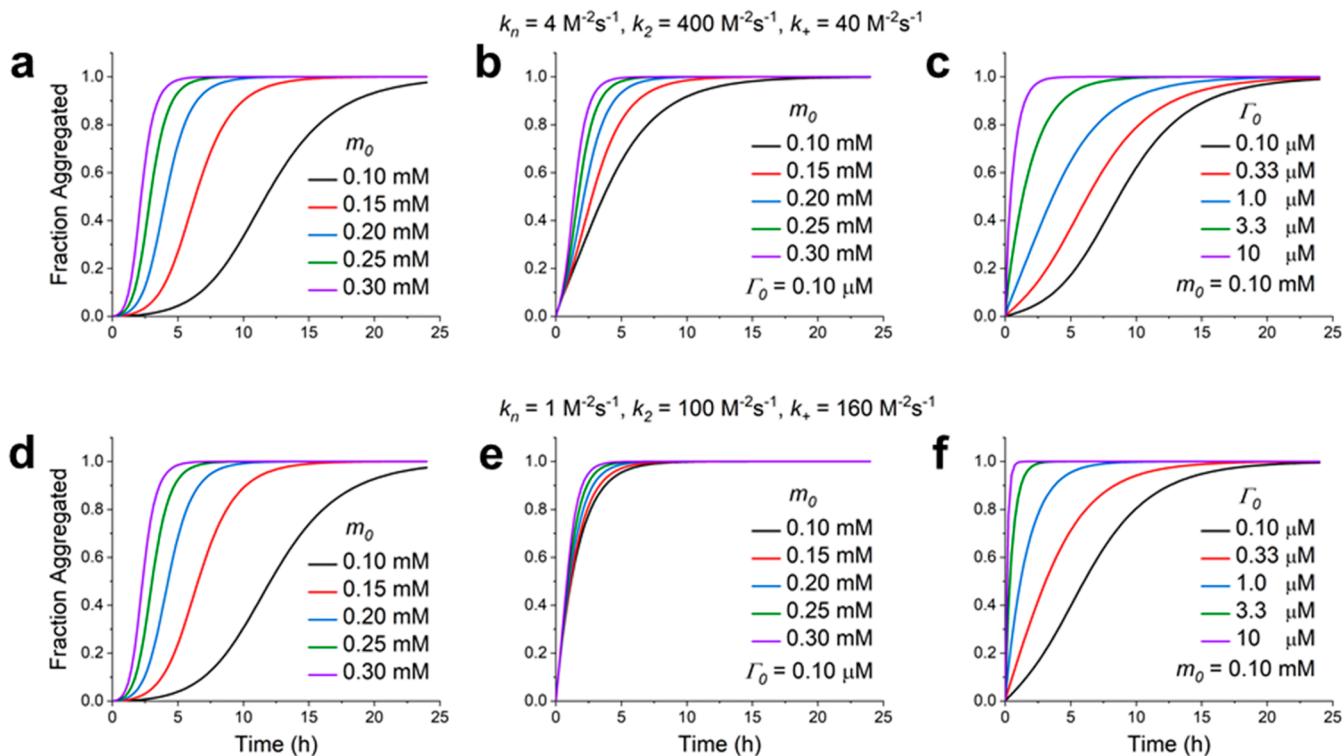
Monitoring the Refolding of PLGs and PLLs in the Assembly Process by CD Spectroscopy. Time-dependent CD spectra of PLG solutions in the absence or presence of various types of NPs were collected at intervals of 10 min, scanning from 200 to 250 nm with 1 nm of wavelength step. Solutions were prepared in a similar way as mentioned in ThT fluorescence assays. The solution was sealed in a quartz cuvette with 1 mm path length and incubated in a Peltier holder set to a specific temperature. Background signals were subtracted using an appropriate buffer solution. Studies on PLLs were carried out in a similar way.

Supramolecular Assembly Kinetics of PLGs Monitored by in Situ ThT Fluorescence Assays. PLG sodium salt (4 mg/mL, 0.53 mM), NPCs (2 mg/mL), and ThT (500 μ M) stock solutions were prepared in filtered (0.22 μ m Nylon syringe filter) 15 mM sodium acetate. The pH of stock solutions was tuned to 4.0 using 1 M HCl. The reaction solutions were prepared by combining appropriate volumes of the stock solutions and diluting with 15 mM sodium acetate, pH 4.0, in low-binding Eppendorf tubes on ice. Each reaction solution also contained 50 μ M of ThT as the in situ fluorescent probe. The samples were pipetted into multiple wells of a Corning 3881 microplate, 100 μ L per well. Each kinetic group was prepared and measured at least in triplicate. The microplates were sealed by Corning 6575 optical adhesive tapes, and the supramolecular polymerization was initiated by placing the microplate at 45 °C in a FlexStation 3 plate reader. The ThT fluorescence was recorded every 7 min using the bottom reading mode with 440 nm excitation, 485 nm emission, and 455 nm cutoff filters. The plate reader shook the microplates for 20 s prior to each measurement.

RESULTS AND DISCUSSION

Kinetic Model of Particle-Regulated Amyloid Assembly

We consider a kinetic model for amyloid fibrillation of polypeptides in the presence and absence of particle-based artificial nucleators (Figure 1). In the absence of nucleators, the assembly of proteins and peptides into amyloid fibrils was usually modeled as a two-stage, nucleated polymerization process (Figure 1a) by considering a homogeneous nucleation pathway, in which fibril growth follows the spontaneous


formation of primary nucleus, as well as a secondary pathway, for example, a secondary nucleation process in which the surface of existing fibrils initiates growth of new fibrils or a fragmentation process of the fibrils which increase the number of growing chains.^{48,63} We focus on the secondary nucleation process here as it is more relevant for the assembly of synthetic polypeptides without vigorous stirring,⁶⁴ and the mathematics can be readily extended to fragmentation or other processes. The time progress of monomer (m) conversion from the dispersed to aggregated state can then be followed by solving the following two kinetic equations for principal moments

$$\frac{dP(t)}{dt} = k_n m(t)^{n_c} + k_2 m(t)^{n_2} M(t) \quad (1)$$

$$\frac{dM(t)}{dt} = k_+ m(t) P(t) \quad (2)$$

where $P(t)$, $M(t)$, and $m(t)$ are the concentrations of supramolecular polymers, polymerized monomers, and monomers in solution, at time t , respectively. k_n is the rate constant for the formation of the primary nucleus, k_+ is the fibril elongation rate constant, k_2 is the secondary nucleus formation rate constant, and n_c and n_2 denote the nucleus sizes of the primary and secondary nucleation processes.

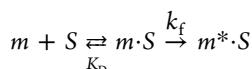

We note that although a nucleus is usually conceived as an aggregate, it is not necessarily the case for macromolecular monomers such as polypeptides. Nucleation is indeed used to identify the rate-limiting step in the formation of fibrils, and in some cases, a nucleus can even be “monomeric” if the refolding process of polypeptides rather than the oligomerization is rate-limiting. This refolding here refers to the conformational change of a monomer to an assembly-competent structure that is less stable than the original conformation but progressively more stable when assembled into larger aggregates.⁶⁵ The phenomenon was first discovered in polyglutamine assembly and thought to also exist in other amyloid fibrillations.⁶⁶ The concept is particularly relevant to particle-based nucleation, as a suitable particle surface may interact with polypeptides in

Figure 2. Simulations with the particle-regulated amyloid fibrillation model. (a–c) Plots of the fraction aggregated vs time for test cases with $k_n = 4 \text{ M}^{-2} \text{ s}^{-1}$, $k_2 = 400 \text{ M}^{-2} \text{ s}^{-1}$, and $k_+ = 40 \text{ M}^{-1} \text{ s}^{-1}$ at selected values of m_0 and Γ_0 . (d–f) Plots of the fraction aggregated vs time for test cases with $k_n = 1 \text{ M}^{-2} \text{ s}^{-1}$, $k_2 = 100 \text{ M}^{-2} \text{ s}^{-1}$, and $k_+ = 160 \text{ M}^{-1} \text{ s}^{-1}$ at selected values of m_0 and Γ_0 . Fraction aggregated was calculated using the numerical solutions of eqs 4–6. $n_c = 3$, $n_2 = 2$, $k_f = 1 \text{ s}^{-1}$, and $K_D = 1 \mu\text{M}$.

such a way that the assembly-competent structure may subsequently be facilitated following the reversible binding of solution monomers on the surface, that is, similar to a two-step, Michaelis–Menten-like process commonly found in enzymatic reactions (the “enzyme” being a surface site).

Therefore, for particle-catalyzed amyloid fibrillation, the simplest possible mechanism may follow the principle of the Langmuir/Michaelis–Menten model, which is often used to explain how surfaces that bind reactants can activate them in some way for catalyzing reactions (Figure 1b). As there is no bond-breaking or bond-forming reactions in the amyloid fibrillation, the most plausible mechanism by which binding to a surface increases the rate of nucleation process is that surface interaction helps to pull the conformation of polypeptides (either helices or coils) into a structure resembling that in the nucleus (a “strain” mechanism), such as forming turns or chain reversals that can stack into antiparallel β -sheets. Suppose S is such a surface site that catalyzes the nucleation, the binding of a monomer (m) to the surface causes a conformational change that “activates” m , making it more “nucleus”-like; we can consider the reaction in two steps

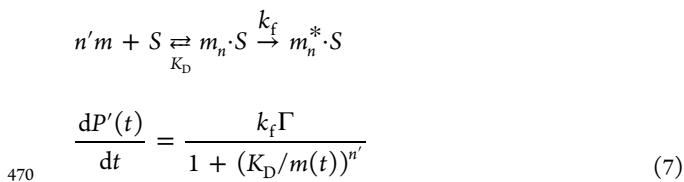
Step 1 is the reversible adsorption of m to the surface to reach an activated state of $m \cdot S$. We use the Langmuir model for this step, where K_D is the dissociation equilibrium constant. Step 2 involves the conversion of the bound monomer to a nucleus-like conformation and assembly-ready, so that another incoming monomer may stack onto it and enter the propagation process. The second step involves crossing an

energy barrier, which occurs with the rate constant k_f . The overall rate r of the production of nuclei on the surface is given by eq 3.

$$r = k_f \Gamma_0 \theta = \frac{k_f \Gamma_0}{1 + K_D/m} \quad (3)$$

where Γ_0 is the concentration of the total binding sites, and θ is the fraction of surface that is covered by bound monomers.

Adding this particle-induced heterogeneous nucleation pathway into the existing model (eqs 1 and 2), and considering that the nuclei formed on the particle surface likely remain bound rather than being released into the solution, the kinetic equations for the principal moments then become


$$\frac{dP(t)}{dt} = k_n m(t)^{n_c} + k_2 m(t)^{n_2} M(t) \quad (4)$$

$$\frac{dP'(t)}{dt} = \frac{k_f \Gamma}{1 + K_D/m(t)} \quad (5)$$

$$\frac{dM(t)}{dt} = k_+ m(t)(P(t) + P'(t)) \quad (6)$$

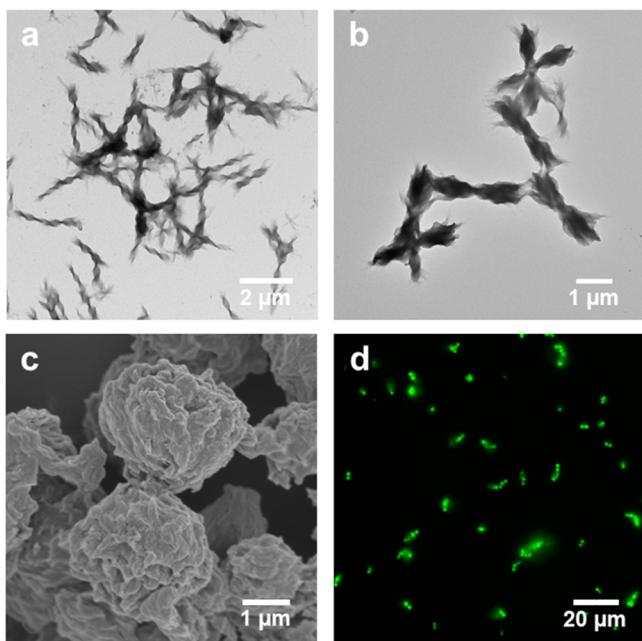
where $P'(t)$ is concentration of fibrils initiated from the particle surface, and Γ is the concentration of binding sites on NPs, which are considered nonrecoverable once a fibril grows from it. Γ has an initial value of Γ_0 and decreases with time in the reaction. In the unlikely case that the binding sites can be fully recovered after the formation of nuclei (e.g., mature nuclei dissociate instantly from the site—a truly enzyme-like behavior), Γ would remain unchanged from its initial value, and this would lead to a very fast nucleation process that is

458 rarely observed in artificial systems. As the binding affinity and
 459 the concentration of total binding sites can be experimentally
 460 determined from the binding isotherm, the fitting parameters
 461 in a typical kinetic analysis are the rate constants $k_n, k_2, k_+,$ and
 462 k_f . It is a standard practice to determine the numerical
 463 solutions of these kinetic equations. When there are no
 464 catalytic particles in solution, eqs 4–6 reduce to eqs 1 and 2.
 465 If the heterogeneous nucleation process does require
 466 multiple monomers on the surface (n') to form a nucleus,
 467 then the Hill equation can replace the Langmuir equation to
 468 account for the process, and the rate of the nucleation process
 469 on particles is given by eq 7 as

471 In practice, unless n' is a large number (e.g., >3) and
 472 cooperative binding of a monomer on the particle surface is
 473 clearly evidenced in the experiments, the Langmuir equation is
 474 usually sufficient for calculating the occupancy of binding sites
 475 in the differential equations of the rate laws.

476 Simulations with the Particle-Regulated Amyloid Assembly 477 Model

478 Figure 2 shows an example of the kinetics of assembly
 479 behavior at various initial concentrations of monomers (m_0), in
 480 the absence (Figure 2a,d) or presence (Figure 2b,c,e,f) of
 481 particle-based nucleators, predicted by eqs 4–6. n_c and n_2 were
 482 chosen to be 3 and 2, respectively, which are common values
 483 found in amyloid-like fibrillation. Without particles, the
 484 spontaneous formation of nuclei is the rate-limiting process
 485 in the initial stage (Figure 2a). Once some nuclei form and
 486 grow into fibrils, the secondary process starts to take control,
 487 and the rate of fibrillation accelerates. The rate of polymer-
 488 ization in the very early stage shows a clear power law
 489 dependence on m_0 . It is also obvious that, in the absence of the
 490 $P'(t)$ term, the rate constants are contained in the form of
 491 product of k_+k_n and k_+k_2 in eqs 4 and 6. Therefore, kinetic
 492 analysis on the data in the absence of particles provides
 493 information as to the size of the nuclei for the primary and
 494 secondary processes and k_+k_n and k_+k_2 only. In the presence of
 495 particles, the formation of nuclei is now catalyzed by the
 496 particle surface, that is, a heterogeneous primary nucleation
 497 pathway, and individual rate constants can now be
 498 deconvoluted in eqs 4–6. The characteristic of particle-
 499 catalyzed polymerization is that the rate of polymerization in
 500 the initial stage loses dependence on m_0 and becomes
 501 approximately proportional to the concentration of particle
 502 nucleators (Figure 2b,c). As the binding isotherm between the
 503 monomer and particles can be easily measured experimentally,
 504 global analysis on a series of kinetic data from varying
 505 monomer and particle concentrations can determine the
 506 individual rate constants and lower limit of k_f with a good
 507 fidelity (see the Supporting Information for a MATLAB script
 508 on solving eqs 4–6 numerically).


509 The kinetic profiles in the presence of regulated particles are
 510 sensitive to the individual rate constants. Figure 2d–f shows
 511 the kinetic profiles simulated with k_+ that is 4 times larger than
 512 that in Figure 2a–c, while k_n and k_2 are 4 times smaller. As
 513 both k_+k_n and k_+k_2 remain the same, the kinetic profiles in the
 514 absence of particles (Figure 2d) are identical to that of Figure

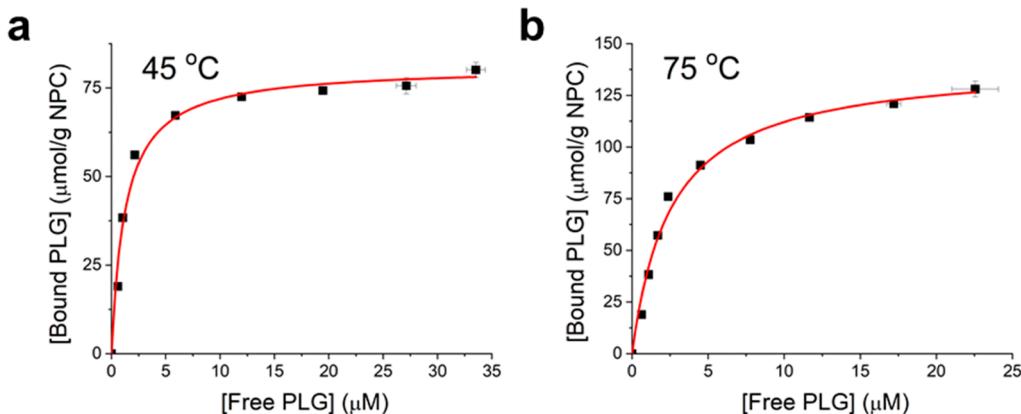
515 2a. In the presence of catalytic particles, however, the kinetic
 516 profiles in Figure 2e,f are distinct from those of Figure 2b,c,
 517 respectively, as the fibril growth from the particle-regulated
 518 heterogeneous pathway is in control. Therefore, even with
 519 limited data sets, $k_n, k_+,$ and k_2 can be determined with good
 520 accuracy (see an example of MATLAB script in the Supporting
 521 Information). On the other hand, determining K_D directly
 522 from the kinetic profiles is possible but would require data
 523 collected from various m_0 in the presence of particles,
 524 especially from the concentration range that is comparable to
 525 K_D . For the monomers with the modest to strong binding
 526 affinity to particles (e.g., K_D in the range of μM), it may not
 527 always be practical. Additionally, k_f cannot be determined
 528 without knowing the Γ_0 first (k_f and Γ appear as products in
 529 the rate equations). Therefore, in practice, measuring K_D and
 530 Γ_0 is a prerequisite for applying the model to analyze the
 531 particle-regulated assembly kinetics of synthetic polypeptides.
 532 Next, we show the use of this model in designing and analyzing
 533 the particle-regulated fibrillation of PLGs in aqueous solution.

Amyloid-like Assembly of PLGs

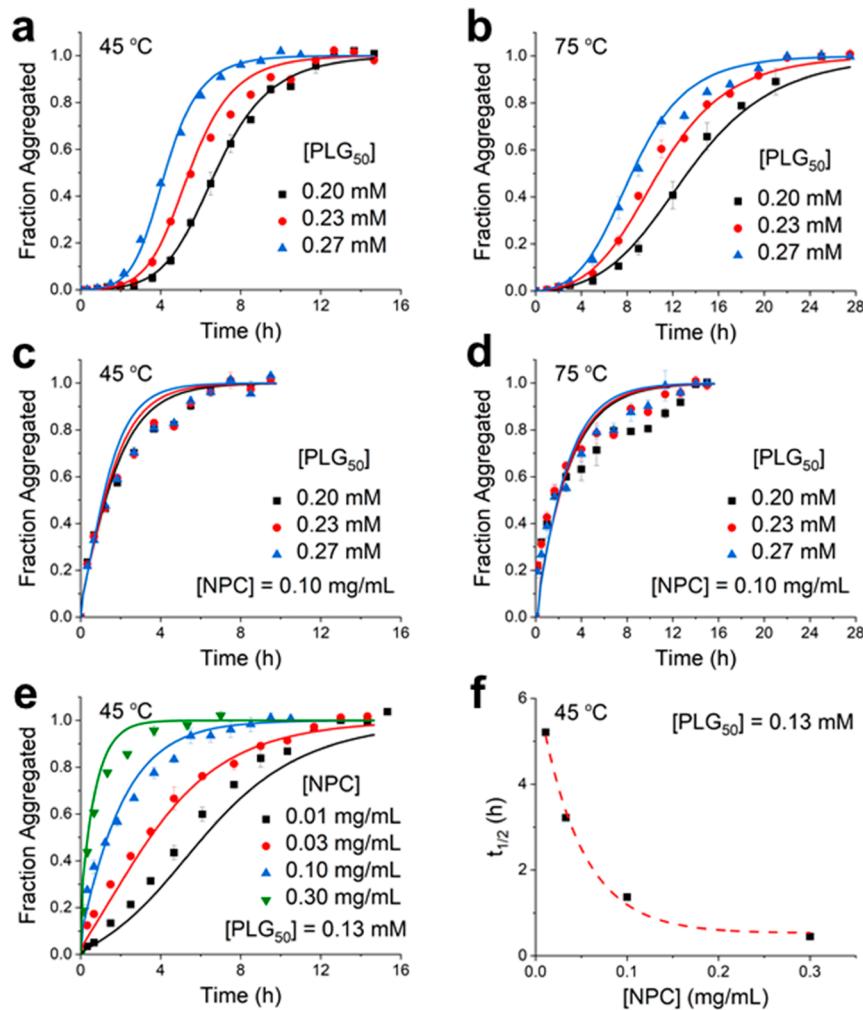
534 PLGs and other ionic homopeptides have predictable
 535 conformational structures, and their interactions can be
 536 modulated in solution.¹⁸ The aggregation behaviors of PLGs
 537 in aqueous solution are nucleation-controlled processes and
 538 show interesting structures at different hierarchical levels, from
 539 nanosized amyloid fibrils and their twisted, bowtie-like bundles
 540 to micron-sized, spherulitic assemblies.²⁰ Additionally, block or
 541 random copolymers of PLGs can readily be synthesized to tune
 542 their interactions in aqueous solution. Therefore, we chose
 543 PLGs as our supramolecular monomers to test the model for
 544 the regulated assembly of synthetic polypeptides. PLGs with
 545 low polydispersity ($D < 1.1$) were synthesized by the
 546 controlled ring-opening polymerization of amino acid NCA
 547 (see the Materials and Methods section and Figures S1–2 for
 548 the synthesis and characterization).^{59,60} Figure S3 shows the
 549 conformations of PLG_{50} (DP ~ 50) at different pHs, as
 550 examined by CD. At pH 4, PLG_{50} is dispersed as α -helices in a
 551 freshly made solution (15 mM sodium acetate buffer), but
 552 slowly associated into amyloid fibrils that further aggregate into
 553 twisted ribbons at temperatures above 30 °C (Figure 3a,b),
 554 and eventually into spherulitic assemblies after incubation for
 555 over 40 h (Figure 3c), similar to previous reports.²⁰ The β -
 556 sheet structure in mature PLG_{50} fibrils was confirmed by the
 557 FTIR analysis (Figure S4a), and the superstructure of the large
 558 spherulitic aggregates can be visualized by fluorescence
 559 microscopy (Figure 3d) after staining the sample with ThT,
 560 a fluorescent probe which shows a large fluorescence
 561 enhancement upon binding to the cross- β -amyloid fibrils.⁶⁷
 562 The formation of spherulitic amyloid superstructures (size
 563 distribution shown in Figure S4b) from PLG fibrils is similar to
 564 the formation of spherulites by the amyloid fibrils of bovine
 565 insulin, the mechanism of which was previously discussed.^{68,69}

566 Upon introduction of cationic silica NPCs into the solution,
 567 anionic PLGs bind to the particle surface, reducing the
 568 repulsive interactions between PLGs and increasing the
 569 likelihood of refolding and stacking of local PLGs to form
 570 amyloid-like fibrils. Cationic NPCs were prepared by surface
 571 modification of silica NPs (~ 20 nm in diameter) with APTES,
 572 following established methods (see the Materials and Methods
 573 section and Figure S5 for the synthesis and character-
 574 izations).⁷⁰ The silica NPCs are composed of multiple NPs
 575 of 20 nm in diameter, have an average size of 130 nm as
 576 measured by DLS (Figure S5c–g), and have a zeta potential of
 577

Figure 3. Hierarchically organized structures assembled from PLG₅₀ in aqueous solution ([PLG₅₀] = 0.13 mM) at 45 °C. TEM images of fibrils and fibril bundles formed in solution after incubation for (a) 10 and (b) 20 h. (c) SEM image of large spherite superstructures formed from further bundling of fibrils in solution after incubation for 40 h. (d) Fluorescence microscopy image of the superstructure in (c) after staining with 50 μM of ThT.


+34.4 mV in 15 mM sodium acetate at pH 4.0. The use of NPCs formed by small NPs increases the surface area-to-volume ratio⁷¹ and makes it easy to separate NPCs by centrifugation. The binding isotherms between the NPCs and PLG₅₀ in the solution were carefully measured at different temperatures and fitted by the Langmuir equation (Figures 4 and S6). The K_D value of PLG₅₀ to the surface of cationic NPCs was 1.3 μM at 45 °C and 2.6 μM at 75 °C. τ_0 , the binding capacity, was found to be 81 μmol/g NPC at 45 °C and 141 μmol/g NPC at 75 °C. Clearly, PLGs can bind tightly to cationic NPCs through electrostatic interactions, and increasing the temperature only modestly reduced the binding affinity. Introduction of NPCs into the solution of PLGs

drastically accelerated the assembly process at 45 and at 75 °C. The morphologies of the resulting supramolecular structures at different hierarchical levels (Figure S7) are similar to those in Figure 3, although the spherulitic assemblies tend to further aggregate into networks, as evidenced in the fluorescence microscopy images.


Kinetics of the Polypeptide Assembly and Fitting of Assembly Kinetics with the Model

The assembly of PLGs in the absence and presence of NPCs by ThT fluorescence, which can be used to quantify amyloid fibrils formed in the solution at a given time interval, is a common method to track the growth of amyloid-like aggregates from polypeptides. ThT can quickly bind to an amyloid-like structure in solution, and the fluorescence of bound ThT varies linearly with the mass concentration of fibrils, as demonstrated by many groups^{64,72} as well as our own experiments (Figure S8). We used an “ex situ” ThT fluorescence measurement instead of an “in situ” method which has ThT present in the solution for continuous monitoring of the assembly process. This is to minimize the interference of ThT on the nucleation process, as ThT has a positive charge and may act as a molecular cofactor.

Figure 5a,b shows the assembly kinetics of PLG₅₀ into fibrils at pH 4 and at 45 or 75 °C at different initial concentrations of PLG₅₀. As in previous studies, the PLG assembly occurred in two distinct stages, with a slow nucleation step followed by a faster fibril growth. Increasing the concentration of PLG reduced the time required to enter the growth stage, suggesting that the spontaneous formation of nuclei in solution requires the interaction of a few PLG chains. Thus, a higher concentration of PLG increases the likelihood of formation of oligomeric nuclei. Figure S9 shows the global fit of kinetic profiles at each temperature by solving the differential rate equations (eqs 1 and 2) numerically. n_c and n_2 were determined to be 3 and 2 at both temperatures. We note that these values are related to the effective portion of the nucleating aggregate that participates in the conformational conversion rather than the overall size of the nucleating aggregates. The slow nucleation is presumably due to the repulsive interactions of charged PLG monomers and the activation barrier in unfolding the α -helical PLGs to permit stable stacking into the β -sheet structure. k_+k_n and k_+k_2 were determined to be 57 ± 6 and $6280 \pm 380 \text{ M}^{-3} \text{ s}^{-2}$ at 45 °C and

Figure 4. Adsorption of PLG₅₀ on cationic NPCs. Adsorption isotherms of PLG₅₀ on cationic NPCs at (a) 45 and (b) 75 °C. The NPC concentration was kept constant (at 0.4 mg/mL) with the increase of the PLG₅₀ concentration from 0 to 75 μM. The data (black squares) were fit with the Langmuir adsorption model (red lines) to obtain the binding affinity and binding capacity of PLG₅₀ on cationic NPCs.

Figure 5. Analysis of the supramolecular assembly of PLG_{50} in the absence and presence of cationic NPCs with the kinetic model. Assembly kinetics of PLG_{50} (0.2–0.27 mM) at 45 °C (a) and 75 °C (b), PLG_{50} (0.2–0.27 mM) in the presence of 0.1 mg/mL cationic NPCs ($\Gamma_0 = 8.1 \mu\text{M}$) at 45 °C (c) and 75 °C (d), and PLG_{50} (0.13 mM) regulated by increasing concentrations of NPC ($\Gamma_0 = 0.8, 2.4, 8.1$, and $24.3 \mu\text{M}$, respectively) (e) and fit with the kinetic model (eqs 4–6) by sharing the same kinetic rate constants for all the kinetic profiles collected at the same temperature (Table 1). (f) Plot of the half-assembly time, $t_{1/2}$, against [NPC] in (e); the dashed line is provided for visual guidance. Data are representative of three replicate experiments.

39 \pm 8 and 837 \pm 85 $\text{M}^{-3} \text{s}^{-2}$ at 75 °C, respectively. As we mentioned earlier, it is their product rather than individual rate constants which can be determined in the absence of NPCs. In marked contrast, the introduction of even small amounts of cationic NPCs (0.1 mg/mL) eliminated the slow lag phase (Figure 5c,d), drastically reducing the time required to complete the assembly process. When catalyzed by NPCs, the time progress of amyloid formation became independent of initial PLG concentrations. Varying the NPC concentration efficiently regulated the apparent kinetic rates (Figure 5e), demonstrating the effectiveness of NPCs as a primitive nucleation factor. The half-life of polymerization time, $t_{1/2}$ (time taken to reach 50% of the equilibrium fibril mass) reduced more than 10-fold from 5.3 to 0.3 h at 45 °C, when [NPC] increased from 0.01 to 0.3 mg/mL (Figure 5f). Negatively charged NPs, such as poly(acrylic acid)-coated gold NPs (PAA–AuNPs)⁷³ (see the Supporting Information for the synthesis, Figure S10a), and neutral NPs, such as poly(*N,N*-dimethylacrylamide)-coated gold NPs (PDMA–AuNPs) (see the Supporting Information for the synthesis, Figure S10b),

did not accelerate the PLG assembly, as confirmed in our control experiments (Figure S11).

The nucleator-like effect of cationic NPCs and accelerated PLG assembly is clearly evidenced. The accumulation of PLG_{50} onto particle surface facilitated the rapid nucleation and growth of amyloid fibrils. The insensitivity of the kinetic profiles to the PLG concentration indicates a low reaction order with respect to monomers, in contrast to multiple monomers ($n_c = 3$) required in primary nucleation in the absence of NPCs, similar to what was predicted by our model. The strong dependence of polymerization rates on [NPC] suggests that the particle surface acts like a one-time-use catalyst for PLG nucleation. Presumably, the attractive electrostatic interactions between the NPCs and PLGs facilitate the conformational change of helical chains to structures resembling the nucleus, permitting the incoming PLGs to further stack on them to form a stable β -sheet structure. We applied the kinetic model described in the previous section to analyze the data quantitatively.

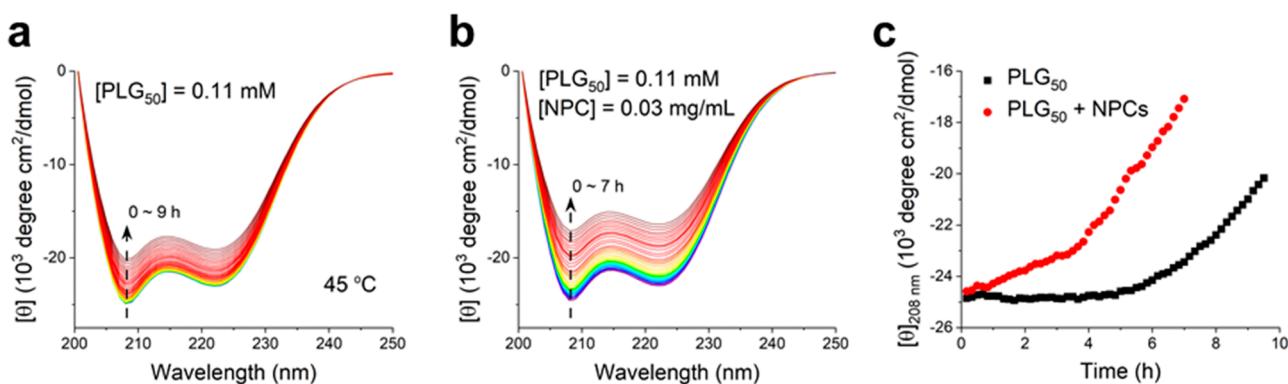
The simple kinetic model (Figure 1 and eqs 4–6) can fit all the kinetic profiles collected (both in the absence and presence

675 of NPCs) at a given temperature simultaneously, without any
676 fudge factors. The colored lines in Figure 5a–e show the
677 calculated kinetic curves from solving eqs 4–6 numerically,
678 where the rate constants are shared by all curves at a given
679 temperature (Table 1). The experimentally measured values of

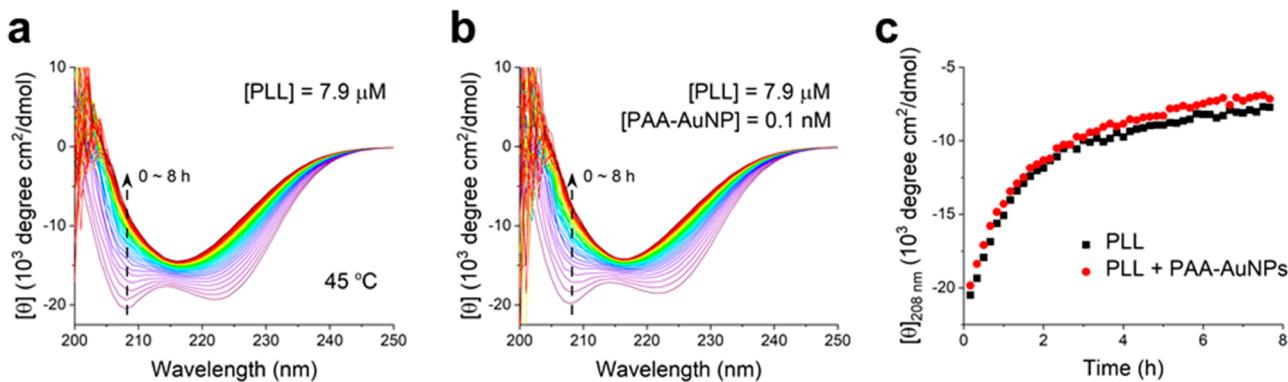
Table 1. Rate Constants Obtained from the Global Analysis of PLG Assembly Kinetics from Figure 5

	k_n ($M^{-2} s^{-1}$)	k_+ ($M^{-1} s^{-1}$)	k_2 ($M^{-2} s^{-1}$)	k_f (s^{-1})
45 °C	2.1 ± 0.3	15 ± 1	480 ± 35	>0.9
75 °C	4.8 ± 0.8	6.4 ± 0.4	134 ± 20	>0.2

680 K_D and Γ_0 at each temperature were directly used in the
681 equation. k_f was determined to have a value in the order of 0.9
682 s^{-1} at 45 °C and 0.2 s^{-1} at 75 °C. This provides a sense on the
683 rearrangement time required for surface-bound PLGs to form
684 pseudonuclei, on which incoming PLGs can stack and form a
685 β -sheet structure. The model successfully describes the
686 concentration dependence of the kinetic curves on m_0 in the
687 absence of NPCs and the catalytic behavior of NPC nucleators
688 under varying m_0 and NPC concentrations.


689 Critical Role of the Refolding Process Facilitated by 690 Particle–Polypeptide Interaction

691 To confirm that the NPC surface can instantaneously
692 provide a heterogeneous nucleation pathway, we monitored
693 the early stage of assembly process by CD. Figure 6 compares
694 the time-dependent CD spectra of PLG₅₀ in the absence and
695 presence of NPCs. At time 0, PLGs showed a strong negative
696 signal at 222 and 208 nm, which are the characteristic peaks of
697 α -helix. Signals from the β -sheet PLG amyloid fibrils are much
698 weaker, with a minimum at 216 nm, and easily obscured in the
699 aggregates.⁷⁴ Without NPCs, the CD signals remained to be
700 the same for the first few hours (Figure 6c), due to the slow
701 nucleation stage. In contrast, the signals started to diminish as
702 soon as NPCs were added (Figure 6c), suggesting that the
703 refolding of the bound PLGs into the pseudonucleus and the
704 formation of β -sheet amyloid fibrils occurred rapidly on the
705 particle surface. A similar study on PLG₈₅ gave an identical
706 result (Figure S12).


707 Additional control experiments were carried out to elucidate
708 the requirements in designing particle-based nucleation factors.
709 First, binding between the polypeptides and particles is a
710 prerequisite, but it is not sufficient. As an example, PLG

711 assembly at pH 4 occurs extremely slow at room temperature
712 (25 °C), beyond our detection window (48 h). PLG binds
713 tightly to cationic NPCs at room temperature (Figure S13),
714 but the NPCs alone cannot accelerate the assembly process at
715 this temperature, and the CD signals showed no change in the
716 presence of NPCs (Figure S14). Only at elevated temper-
717 atures, the particle-bound PLGs can overcome the activation
718 energy required for nucleus formation. Second, the particle
719 may not further accelerate the fibrillation if the spontaneous
720 primary nucleation process is not the rate-limiting process, for
721 example, being extremely fast in the experimental conditions or
722 through “monomeric nuclei” ($n_c \sim 1$). To investigate this, we
723 tested the amyloid fibrillation of PLL in the presence of anionic
724 NPs such as PAA–AuNPs. Long-chain PLLs (DP > 200),
725 which are thought to form a series of turns and chain reversals
726 in basic solution at elevated temperatures,⁷⁵ required relatively
727 low activation energy to organize into long fibrils of antiparallel
728 β -sheets (Figure S15a,b) in the aggregation process. Figure 7
729 compares the time progress of CD signals of PLL₂₉₈ with and
730 without anionic PAA–AuNPs. The strong binding affinity of
731 PLL on PAA–AuNPs was obvious based on their equilibrium-
732 binding isotherm (Figure S15c). However, PAA–AuNPs did
733 not accelerate the supramolecular assembly of PLL₂₉₈. The
734 kinetics were nearly identical, whether the particles were
735 present or absent (Figure 7c). This is because the nucleation
736 process for long PLL does not require an oligomerization step,
737 as a helical PLL chain with sufficient length consists of a
738 “broken-rod” structure that turns into a β -sheet relatively
739 easily. In other words, PLL can assemble rapidly at elevated
740 temperatures, with no significant lag phase from the nucleation
741 step. In this case, particles cannot facilitate any rate
742 acceleration.

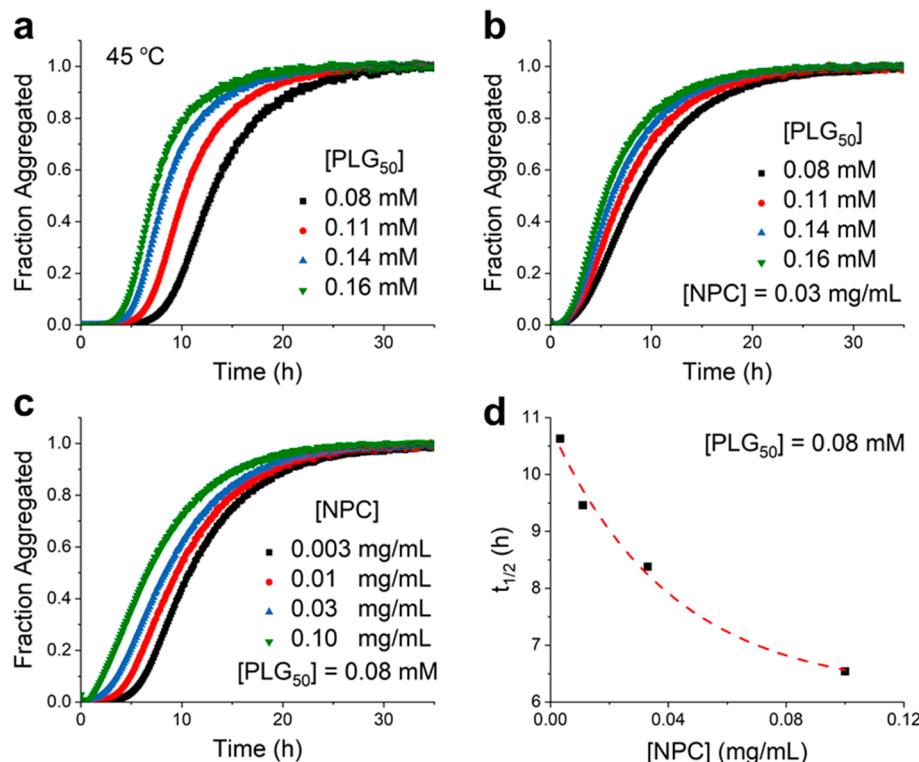

743 Combining all these results, it appears to us that the
744 formation of surface-induced nuclei in the polypeptide
745 assembly process may consist of at least two steps: the binding
746 of polypeptide chains to the particle surface and a subsequent
747 conformational change of the adsorbed polypeptide to form a
748 nucleus for fibril growth. While it is a surface-facilitated
749 phenomenon, the rate equation shows some similarity with a
750 Michaelis–Menten-like equation, which is well established to
751 describe the catalytic reactions of many enzymes or enzyme-
752 like systems. Once the fibrils form on the particle surface, they
753 can also serve as secondary nucleation sites, as in the case of
754 solution kinetics. The combined effect leads to the accelerated

Figure 6. Comparison of the early assembly kinetics and conformational change of PLG₅₀ at 45 °C in the absence and presence of cationic NPCs, as monitored by CD spectroscopy. Time progress of CD signals from the PLG₅₀ solution (0.11 mM) in the absence (a) and in the presence (b) of 0.03 mg/mL of NPCs ($\Gamma_0 = 2.4 \mu M$). The rainbow-like colors were used to provide a visual guidance of the time progress. (c) Plot of early assembly kinetics based on the time-dependent CD signals at 208 nm in (a, b).

Figure 7. Comparison of early assembly kinetics and conformational change of PLL₂₉₈ at 45 °C in the absence and presence of anionic PAA–AuNPs, as monitored by CD spectroscopy. Time progress of CD signals from PLL₂₉₈ solution (7.9 μM) in the absence (a) and in the presence (b) of PAA–AuNPs (0.1 nM). The rainbow-like colors were used to provide a visual guidance of the time progress. (c) Plot of early assembly kinetics based on the time-dependent CD signals at 208 nm in (a, b).

Figure 8. Assembly kinetics of PLG₅₀ in the absence and in the presence of cationic NPCs, as monitored by in situ ThT fluorescence measurements. Assembly kinetics of PLG₅₀ (0.08–0.16 mM) at 45 °C (a), PLG₅₀ (0.08–0.16 mM) in the presence of 0.03 mg/mL cationic NPCs ($\Gamma_0 = 2.4 \mu\text{M}$) at 45 °C (b), and PLG₅₀ (0.08 mM) regulated by increasing concentrations of NPC ($\Gamma_0 = 0.2, 0.8, 2.4$, and $8.1 \mu\text{M}$) (c). Data are representative of three replicate experiments. The error bars are smaller than the size of symbols. (d) Plot of the half-assembly time, $t_{1/2}$, against [NPC] in (c); the dashed line is provided for visual guidance.

assembly of polypeptides into amyloid fibrils, which can further bundle together or form a cross-linked network or superstructures afterward, as the nucleation of new fibrils on the existing ones generates attached arrays or webs of fibrils. Thus, particles can catalyze a heterogeneous primary nucleation pathway that is much faster than the corresponding steps in solution.

Other Molecular Factors Affecting the Assembly

We also note that nucleators are not the only molecular factors that may affect the assembly of synthetic polypeptides in aqueous solution. Specific ions or molecules may also act as rate regulators to accelerate or decelerate the kinetic process by

complexing with the polypeptide chain and making its conformational structure more favorable or less favorable for assembly. We have mentioned the reason why we avoided the use of in situ fluorescence experiments for the kinetic study: dispersed ThT molecules or their micelles in the solution may bind to PLGs or fibrils and affect the kinetics.^{76,77} Figure 8 shows the kinetic profiles of the PLG assembly without or with NPCs at 45 °C, from in situ ThT fluorescence measurements. Using an automated microplate reader, the continuous development of kinetic profiles was collected with superior quality and reproducibility. However, the presence of ThT in the solution changed the apparent reaction order of primary

779 nucleation with respect to the PLG concentrations ($n_c \sim 2$)
780 (Figure S16). Nevertheless, the general trend of kinetic profiles
781 under particle regulation still agreed with the predictions of our
782 model (e.g., the simulated profiles in Figure 2). The full
783 description of the kinetic behavior under the coexistence of a
784 potential secondary molecular cofactor requires the consid-
785 eration of its binding equilibrium with polypeptides at different
786 conformational states, which were discussed as “ p (parameter)
787 molecules” by Oosawa in his classic book on supramolecular
788 polymerization of proteins. The refinement of the kinetic
789 model to reflect the potential influence of additional molecular
790 cofactors is the subject of future study.

791 Potential Limitations of Particle-Based Regulators

792 In the end, we discuss the potential limitations of current
793 particle-based regulators and make suggestions on what need
794 to be overcome to develop more sophisticated synthetic
795 nucleators. First, like an enzyme, a true nucleation factor
796 should be able to release the mature nuclei and regenerate the
797 active sites to continue the catalytic process. For this purpose,
798 there should be an optimal binding affinity for catalytic
799 effectiveness in nucleators. If monomers bind to the nucleators
800 too weakly, the reaction is slow because there is little “reactant”
801 on the surface. When a monomer binds the nucleator too
802 strongly, the reaction is also slow because the “product”
803 (nucleus) is slow to leave the surface, occupying the sites
804 where new monomers could bind. The best nucleators should
805 bind neither too weakly nor too strongly. However, it is
806 difficult to design particle-based regulators to have relatively
807 high affinity for the transition state of the reaction that also do
808 not bind monomers too weakly or nuclei too tightly. In this
809 context, a macromolecule-based regulator, with the size,
810 architecture, and binding affinity similar to the biological
811 nucleators such as Arp2/3 and formins, may be a promising
812 candidate, as the conformational change of complex macro-
813 molecules may be used to engineering dynamic binding
814 properties desired for a more sophisticated nucleation factor.
815 Second, for the purpose of quantitative analysis and predicting
816 the regulated kinetics, the binding affinity and maximal binding
817 sites on particles need to be measured accurately. This may be
818 challenging in some cases, when the binding isotherm deviates
819 from the Langmuir isotherm (e.g., a cooperative binding). In
820 the model-based analysis, any inaccuracy in determining the
821 binding sites would directly propagate into the value of rate
822 constants. Third, a question that remains to be answered is
823 related to the surface diffusion of bound monomers on the
824 particle surface, which is thought to accelerate the rate of
825 nucleation, either by the increased local molarity of monomers
826 or by the enhanced prospect of clustering in a confined space.
827 In a preliminary test, a variation of the current model was
828 found to account for the kinetic data at 45 °C, even better by
829 considering a fast segregation of bound monomers on a
830 particle surface (see the Supporting Information, eqs S3–S9).
831 Figure S17 and Table S1 show the calculated kinetic curves
832 and kinetic rate constants from solving these differential
833 equations numerically, where the rate constants are shared by
834 all curves. The improvement in the fit quality, however, is not
835 sufficient to reach a firm conclusion, considering that new
836 parameters were added into the equations.

837 ■ CONCLUSIONS

838 We proposed a simple kinetic model to describe the particle-
839 accelerated self-assembly of synthetic polypeptides in aqueous
840 solution and demonstrated an effective strategy to achieve such

841 a behavior, in which cationic nucleators accelerated the 841
842 nucleation and subsequent growth of anionic PLGs. The 842
843 cationic particles serve to locally concentrate the PLG 843
844 monomers on the surface and facilitate their conformational 844
845 change required for stacking into amyloid-like fibrils. The 845
846 primary heterogeneous nucleation pathway follows a Lang- 846
847 muir/Michaelis–Menten-type scheme. While we exclusively 847
848 focused on homopolymers in this study, the preliminary result 848
849 from the random copolymers of synthetic polypeptides (e.g., 849
850 by including a second type of amino acids that have 850
851 hydrophobic side chains) suggests that the abovementioned 851
852 mechanism is equally applicable. The findings provide an 852
853 exciting example and a theoretical framework of how artificial 853
854 nucleators may be designed and refined further, based on 854
855 macromolecular interactions and affinities. These efforts 855
856 should offer an important insight into the rational design of 856
857 next-generation artificial nucleators with higher complexity and 857
858 greater regulatory control of supramolecular assembly in 858
859 aqueous solutions.

860 ■ ASSOCIATED CONTENT

861 ■ Supporting Information

862 The Supporting Information is available free of charge at
863 <https://pubs.acs.org/doi/10.1021/acs.biomac.1c01230>.

864 Additional experimental details on the synthesis of 864
865 PAA–AuNPs and PDMA–AuNPs; additional methods 865
866 for the calibration of the ThT fluorescence assays, 866
867 analysis of the early-stage PLG assembly kinetics, and a 867
868 variation of the surface-induced polymerization model; 868
869 synthetic routes and GPC results of PLG and PLL 869
870 polymers; pH-induced conformational changes in PLG 870
871 by CD; FTIR-ATR results of PLG supramolecular 871
872 assemblies; synthetic route and FTIR, DLS, TEM, and 872
873 SEM results of NPCs; linear relationship between UV 873
874 absorbance at 209 nm and the concentration of PLG₅₀ 874
875 α -helices; TEM and fluorescence microscopy images of 875
876 PLG₅₀ in the presence of NPCs; linear relationship 876
877 between ThT fluorescence and mass concentration of 877
878 PLG₅₀ fibrils; global fit on the supramolecular assembly 878
879 kinetics of PLG₅₀ based on a nucleated polymerization 879
880 model; TEM images of the polymer-grafted AuNPs; 880
881 control experiments of supramolecular assembly kinetics 881
882 in the presence of negatively charged and neutral NPs; 882
883 early assembly kinetics and conformational change of 883
884 PLG₈₅ at 45 °C in the absence and presence of NPCs, as 884
885 monitored by CD spectroscopy; adsorption isotherm of 885
886 PLG₅₀ on cationic NPCs at 25 °C; early assembly 886
887 kinetics and conformational change of PLG₅₀ at 25 °C in 887
888 the presence of cationic NPCs, as monitored by CD 888
889 spectroscopy; hierarchically organized structures as- 889
890 sembed from PLL₂₉₈ by TEM and adsorption isotherm 890
891 of PLL₂₉₈ on PAA–AuNPs; model-based analytical fit of 891
892 PLG₅₀ early-stage assembly at 45 °C by an in situ ThT 892
893 approach; analysis of supramolecular assembly of PLG₅₀ 893
894 in the absence and presence of cationic NPCs with the 894
895 variation model; and source code for kinetic simulations 895
896 in Figure 2 and sample fittings (PDF)

897 ■ AUTHOR INFORMATION

898 Corresponding Authors

899 Jianjun Cheng – Department of Chemistry and Department of
900 Materials Science and Engineering, University of Illinois at

901 *Urbana-Champaign, Urbana, Illinois 61801, United States;*
902 orcid.org/0000-0003-2561-9291; Email: jianjunc@illinois.edu
903
904 **Challa V. Kumar** — *Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States;*
905 orcid.org/0000-0002-4396-8738; Email: challa.kumar@uconn.edu
906
907
908 **Yao Lin** — *Polymer Program, Institute of Materials Science and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States;* orcid.org/0000-0001-5227-2663; Email: yao.lin@uconn.edu
911

912 Authors

913 **Tianjian Yang** — *Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States*
914
915
916 **Kyle Benson** — *Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States;* orcid.org/0000-0001-9986-6696
917
918
919 **Hailin Fu** — *Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States;* orcid.org/0000-0002-3972-7659
920
921
922 **Tianrui Xue** — *Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States*
923
924
925 **Ziyuan Song** — *Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States;* orcid.org/0000-0002-3165-3712
926
927
928
929 **Hanyi Duan** — *Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States*
930
931
932 **Hongwei Xia** — *Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States*
933
934 **Ankarao Kalluri** — *Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States*
935
936 **Jie He** — *Polymer Program, Institute of Materials Science and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States;* orcid.org/0000-0003-0252-3094
937
938
939

940 Complete contact information is available at:

941 <https://pubs.acs.org/10.1021/acs.biomac.1c01230>

942 Author Contributions

943 T.Y., K.B., and H.F. contributed equally. T.Y., K.B., H.F., T.X.,
944 J.H., J.C., C.V.K., and Y.L. conceived and designed the
945 experiments. T.Y., K.B., T.X., Z.S., H.D., H.X., and A.K.
946 performed the experiments. T.Y., K.B., H.F., T.X., Z.S., J.H.,
947 J.C., C.V.K., and Y.L. analyzed the data and prepared the
948 manuscript with contributions from all authors.

949 Notes

950 The authors declare no competing financial interest.

951 ■ ACKNOWLEDGMENTS

952 This work was supported by the NSF grant (DMR 1809497)
953 and by the Graduate Assistance in Areas of National Need
954 (GAANN) fellowship (Award P200A150330 and
955 P200A180065). C.V.K. thanks the OVPR Research Excellence
956 Award. The authors thank Joseph Gorecki for help with
957 binding studies. The authors thank Prof. Carolyn Teschke for
958 granting access to circular dichroism measurement (NIH

959 3R01GM076661-11S1) and Richard Whitehead for help with
960 the instrument training.

961 ■ REFERENCES

962 (1) Kang, J.; Miyajima, D.; Mori, T.; Inoue, Y.; Itoh, Y.; Aida, T. A rational strategy for the realization of chain-growth supramolecular polymerization. *Science* **2015**, *347*, 646–651.

963 (2) Korevaar, P. A.; George, S. J.; Markvoort, A. J.; Smulders, M. M. J.; Hilbers, P. A. J.; Schenning, A. P. H. J.; De Greef, T. F. A.; Meijer, E. W. Pathway complexity in supramolecular polymerization. *Nature* **2012**, *481*, 492–496.

964 (3) Zhang, W.; Jin, W.; Fukushima, T.; Saeki, A.; Seki, S.; Aida, T. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. *Science* **2011**, *334*, 340–343.

965 (4) Ogi, S.; Sugiyasu, K.; Manna, S.; Samitsu, S.; Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. *Nat. Chem.* **2014**, *6*, 188–195.

966 (5) Ogi, S.; Stepanenko, V.; Thein, J.; Würthner, F. Impact of alkyl spacer length on aggregation pathways in kinetically controlled supramolecular polymerization. *J. Am. Chem. Soc.* **2016**, *138*, 670–678.

967 (6) Datta, S.; Kato, Y.; Higashiharaguchi, S.; Aratsu, K.; Isobe, A.; Saito, T.; Prabhu, D. D.; Kitamoto, Y.; Hollamby, M. J.; Smith, A. J.; Dalglish, R.; Mahmoudi, N.; Pesce, L.; Perego, C.; Pavan, G. M.; Yagai, S. Self-assembled poly-catenanes from supramolecular toroidal building blocks. *Nature* **2020**, *583*, 400–405.

968 (7) Boekhoven, J.; Hendriksen, W. E.; Koper, G. J. M.; Eelkema, R.; van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. *Science* **2015**, *349*, 1075–1079.

969 (8) Li, X.; Kuang, Y.; Lin, H.-C.; Gao, Y.; Shi, J.; Xu, B. Supramolecular nanofibers and hydrogels of nucleopeptides. *Angew. Chem., Int. Ed.* **2011**, *50*, 9365–9369.

970 (9) Yu, Z.; Tantakitti, F.; Yu, T.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Simultaneous covalent and noncovalent hybrid polymerizations. *Science* **2016**, *351*, 497–502.

971 (10) Besenius, P.; Portale, G.; Bomans, P. H. H.; Janssen, H. M.; Palmans, A. R. A.; Meijer, E. W. Controlling the growth and shape of chiral supramolecular polymers in water. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, *107*, 17888–17893.

972 (11) Sorrenti, A.; Leira-Iglesias, J.; Sato, A.; Hermans, T. M. Non-equilibrium steady states in supramolecular polymerization. *Nat. Commun.* **2017**, *8*, 15899.

973 (12) Aida, T.; Meijer, E. W. Supramolecular Polymers—we've Come Full Circle. *Isr. J. Chem.* **2020**, *60*, 33–47.

974 (13) Oosawa, F.; Asakura, S. *Thermodynamics of the Polymerization of Protein*; Academic Press, 1975.

975 (14) Oosawa, F.; Kasai, M. A theory of linear and helical aggregations of macromolecules. *J. Mol. Biol.* **1962**, *4*, 10–21.

976 (15) Zhao, D.; Moore, J. S. Nucleation-elongation: a mechanism for cooperative supramolecular polymerization. *Org. Biomol. Chem.* **2003**, *1*, 3471–3491.

977 (16) De Greef, T. F. A.; Smulders, M. M. J.; Wolfs, M.; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Supramolecular polymerization. *Chem. Rev.* **2009**, *109*, 5687–5754.

978 (17) Gillam, J. E.; MacPhee, C. E. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. *J. Phys.: Condens. Matter* **2013**, *25*, 373101.

979 (18) Fändrich, M.; Dobson, C. M. The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. *EMBO J.* **2002**, *21*, 5682–5690.

980 (19) Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide-sheet tapes, ribbons, fibrils, and fibers. *Proc. Natl. Acad. Sci. U.S.A.* **2001**, *98*, 11857–11862.

981 (20) Colaco, M.; Park, J.; Blanch, H. The kinetics of aggregation of poly-glutamic acid based polypeptides. *Biophys. Chem.* **2008**, *136*, 74–86.

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026 (21) Lashuel, H. A.; LaBrenz, S. R.; Woo, L.; Serpell, L. C.; Kelly, J. 1027 W. Protofilaments, filaments, ribbons, and fibrils from peptidomimetic 1028 self-assembly: implications for amyloid fibril formation and materials 1029 science. *J. Am. Chem. Soc.* **2000**, *122*, 5262–5277.

1030 (22) Wang, J.; Lu, H.; Kamat, R.; Pingali, S. V.; Urban, V. S.; Cheng, 1031 J.; Lin, Y. Supramolecular polymerization from polypeptide-grafted 1032 comb polymers. *J. Am. Chem. Soc.* **2011**, *133*, 12906–12909.

1033 (23) Won, Y.-Y.; Davis, H. T.; Bates, F. S. Giant wormlike rubber 1034 micelles. *Science* **1999**, *283*, 960–963.

1035 (24) Su, H.; Zhang, W.; Wang, H.; Wang, F.; Cui, H. Paclitaxel- 1036 promoted supramolecular polymerization of peptide conjugates. *J. 1037 Am. Chem. Soc.* **2019**, *141*, 11997–12004.

1038 (25) Warren, N. J.; Armes, S. P. Polymerization-induced self- 1039 assembly of block copolymer nano-objects via RAFT aqueous 1040 dispersion polymerization. *J. Am. Chem. Soc.* **2014**, *136*, 10174– 1041 10185.

1042 (26) Fenyves, R.; Schmutz, M.; Horner, I. J.; Bright, F. V.; Rzayev, J. 1043 Aqueous self-assembly of giant bottlebrush block copolymer 1044 surfactants as shape-tunable building blocks. *J. Am. Chem. Soc.* 1045 **2014**, *136*, 7762–7770.

1046 (27) Fernandez-Castano Romera, M.; Lafleur, R. P.; Guibert, C.; 1047 Voets, I. K.; Storm, C.; Sijbesma, R. P. Strain stiffening hydrogels 1048 through self-assembly and covalent fixation of semi-flexible fibers. 1049 *Angew. Chem., Int. Ed.* **2017**, *56*, 8771–8775.

1050 (28) Yang, J.; Song, J. I.; Song, Q.; Rho, J. Y.; Mansfield, E. D. H.; 1051 Hall, S. C. L.; Sambrook, M.; Huang, F.; Perrier, S. Hierarchical Self- 1052 Assembled Photo-Responsive Tubosomes from a Cyclic Peptide- 1053 Bridged Amphiphilic Block Copolymer. *Angew. Chem., Int. Ed.* **2020**, 1054 *59*, 8860–8863.

1055 (29) Merg, A. D.; Touponse, G.; Genderen, E. v.; Blum, T. B.; Zuo, 1056 X.; Bazrafshan, A.; Siaw, H. M. H.; McCanna, A.; Brian Dyer, R.; 1057 Salaita, K.; Abrahams, J. P.; Conticello, V. P. Shape-Shifting Peptide 1058 Nanomaterials: Surface Asymmetry Enables pH-Dependent Forma- 1059 tion and Interconversion of Collagen Tubes and Sheets. *J. Am. Chem. 1060 Soc.* **2020**, *142*, 19956–19968.

1061 (30) Yan, D.; Zhou, Y.; Hou, J. Supramolecular self-assembly of 1062 macroscopic tubes. *Science* **2004**, *303*, 65–67.

1063 (31) Cui, H.; Chen, Z.; Zhong, S.; Wooley, K. L.; Pochan, D. J. 1064 Block copolymer assembly via kinetic control. *Science* **2007**, *317*, 1065 647–650.

1066 (32) Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; 1067 Winnik, M. A. Cylindrical block copolymer micelles and co-micelles 1068 of controlled length and architecture. *Science* **2007**, *317*, 644–647.

1069 (33) Gilroy, J. B.; Gädt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, 1070 J. M.; Richardson, R. M.; Winnik, M. A.; Manners, I. Monodisperse 1071 cylindrical micelles by crystallization-driven living self-assembly. *Nat. 1072 Chem.* **2010**, *2*, 566–570.

1073 (34) Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; 1074 Schmalz, H.; Müller, A. H. Guided hierarchical co-assembly of soft 1075 patchy nanoparticles. *Nature* **2013**, *503*, 247–251.

1076 (35) Qiu, H.; Hudson, Z. M.; Winnik, M. A.; Manners, I. 1077 Multidimensional hierarchical self-assembly of amphiphilic cylindrical 1078 block coromicelles. *Science* **2015**, *347*, 1329–1332.

1079 (36) Mullins, R. D.; Heuser, J. A.; Pollard, T. D. The interaction of 1080 Arp2/3 complex with actin: nucleation, high affinity pointed end 1081 capping, and formation of branching networks of filaments. *Proc. Natl. 1082 Acad. Sci. U.S.A.* **1998**, *95*, 6181–6186.

1083 (37) Pollard, T. D.; Borisy, G. G. Cellular motility driven by 1084 assembly and disassembly of actin filaments. *Cell* **2003**, *112*, 453– 1085 465.

1086 (38) Campellone, K. G.; Welch, M. D. A nucleator arms race: 1087 cellular control of actin assembly. *Nat. Rev. Mol. Cell Biol.* **2010**, *11*, 1088 237–251.

1089 (39) Romero, S.; Le Clainche, C.; Didry, D.; Egile, C.; Pantaloni, D.; 1090 Carlier, M.-F. Formin is a processive motor that requires profilin to 1091 accelerate actin assembly and associated ATP hydrolysis. *Cell* **2004**, 1092 *119*, 419–429.

1093 (40) Linse, S.; Cabaleiro-Lago, C.; Xue, W.-F.; Lynch, I.; Lindman, 1094 S.; Thulin, E.; Radford, S. E.; Dawson, K. A. Nucleation of protein 1095 fibrillation by nanoparticles. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, *104*, 1095 8691–8696.

1096 (41) Cabaleiro-Lago, C.; Szczepankiewicz, O.; Linse, S. The effect of 1097 nanoparticles on amyloid aggregation depends on the protein stability 1098 and intrinsic aggregation rate. *Langmuir* **2012**, *28*, 1852–1857.

1099 (42) Alvarez, Y. D.; Fauerbach, J. A.; Pellegratti, J. V.; Jovin, T. M.; 1100 Jares-Erijman, E. A.; Stefani, F. D. Influence of gold nanoparticles on 1101 the kinetics of α -synuclein aggregation. *Nano Lett.* **2013**, *13*, 6156– 1102 6163.

1103 (43) John, T.; Gladlytz, A.; Kubeil, C.; Martin, L. L.; Risselada, H. J.; 1104 Abel, B. Impact of nanoparticles on amyloid peptide and protein 1105 aggregation: a review with a focus on gold nanoparticles. *Nanoscale* 1106 **2018**, *10*, 20894–20913.

1107 (44) Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; 1108 Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle- 1109 protein corona using methods to quantify exchange rates and affinities 1110 of proteins for nanoparticles. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, *104*, 1111 2050–2055.

1112 (45) Gladlytz, A.; Abel, B.; Risselada, H. J. Gold-Induced Fibril 1113 Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation. 1114 *Angew. Chem., Int. Ed.* **2016**, *55*, 11242–11246.

1115 (46) Powers, E. T.; Powers, D. L. The kinetics of nucleated 1116 polymerizations at high concentrations: amyloid fibril formation near 1117 and above the “supercritical concentration”. *Biophys. J.* **2006**, *91*, 1118 122–132.

1119 (47) Knowles, T. P. J.; Waudby, C. A.; Devlin, G. L.; Cohen, S. I. A.; 1120 Aguzzi, A.; Vendruscolo, M.; Terentjev, E. M.; Welland, M. E.; 1121 Dobson, C. M. An analytical solution to the kinetics of breakable 1122 filament assembly. *Science* **2009**, *326*, 1533–1537.

1123 (48) Knowles, T. P. J.; Vendruscolo, M.; Dobson, C. M. The 1124 amyloid state and its association with protein misfolding diseases. *Nat. 1125 Rev. Mol. Cell Biol.* **2014**, *15*, 384–396.

1126 (49) Ferrone, F. [17] Analysis of protein aggregation kinetics. 1127 *Methods Enzymol.* **1999**, *309*, 256–274.

1128 (50) Dear, A. J.; Meisl, G.; Michaels, T. C. T.; Zimmermann, M. R.; 1129 Linse, S.; Knowles, T. P. J. The catalytic nature of protein aggregation. 1130 *J. Chem. Phys.* **2020**, *152*, 045101.

1131 (51) Michaelis, L.; Menten, M. L. Die kinetik der invertinwirkung. 1132 *Biochem. Z.* **1913**, *49*, 352.

1133 (52) Deming, T. J. Synthetic polypeptides for biomedical 1134 applications. *Prog. Polym. Sci.* **2007**, *32*, 858–875.

1135 (53) Song, Z.; Fu, H.; Wang, R.; Pacheco, L. A.; Wang, X.; Lin, Y.; 1136 Cheng, J. Secondary structures in synthetic polypeptides from N- 1137 carboxyanhydrides: design, modulation, association, and material 1138 applications. *Chem. Soc. Rev.* **2018**, *47*, 7401–7425.

1139 (54) Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. 1140 Synthesis of Well-Defined Polypeptide-Based Materials via the Ring- 1141 Opening Polymerization of α -Amino Acid N-Carboxyanhydrides. 1142 *Chem. Rev.* **2009**, *109*, 5528–5578.

1143 (55) Xia, H.; Fu, H.; Zhang, Y.; Shih, K.-C.; Ren, Y.; Anuganti, M.; 1144 Nieh, M.-P.; Cheng, J.; Lin, Y. Supramolecular assembly of comb-like 1145 macromolecules induced by chemical reactions that modulate the 1146 macromolecular interactions in situ. *J. Am. Chem. Soc.* **2017**, *139*, 1147 11106–11116.

1148 (56) Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; 1149 Deming, T. J. Stimuli-responsive polypeptide vesicles by conforma- 1150 tion-specific assembly. *Nat. Mater.* **2004**, *3*, 244–248.

1151 (57) Chen, C.; Wang, Z.; Li, Z. Thermoresponsive polypeptides 1152 from pegylated poly-L-glutamates. *Biomacromolecules* **2011**, *12*, 1153 2859–2863.

1154 (58) Rodríguez-Hernández, J.; Lecommandoux, S. Reversible 1155 inside-out micellization of pH-responsive and water-soluble vesicles 1156 based on polypeptide diblock copolymers. *J. Am. Chem. Soc.* **2005**, 1157 *127*, 2026–2027.

1158 (59) Lu, H.; Cheng, J. Hexamethyldisilazane-Mediated Controlled 1159 Polymerization of α -Amino Acid N-Carboxyanhydrides. *J. Am. Chem. 1160 Soc.* **2007**, *129*, 14114–14115.

1161 (60) Song, Z.; Fu, H.; Wang, J.; Hui, J.; Xue, T.; Pacheco, L. A.; Yan, 1162 H.; Baumgartner, R.; Wang, Z.; Xia, Y.; Wang, X.; Yin, L.; Chen, C.; 1163

1164 Rodríguez-López, J.; Ferguson, A. L.; Lin, Y.; Cheng, J. Synthesis of
1165 polypeptides via bioinspired polymerization of in situ purified *N*-
1166 carboxyanhydrides. *Proc. Natl. Acad. Sci. U.S.A.* **2019**, *116*, 10658–
1167 10663.

1168 (61) Mahalingam, V.; Onclin, S.; Péter, M.; Ravoo, B. J.; Huskens, J.;
1169 Reinhoudt, D. N. Directed self-assembly of functionalized silica
1170 nanoparticles on molecular printboards through multivalent supra-
1171 molecular interactions. *Langmuir* **2004**, *20*, 11756–11762.

1172 (62) Schiestel, T.; Brunner, H.; Tovar, G. E. M. Controlled surface
1173 functionalization of silica nanospheres by covalent conjugation
1174 reactions and preparation of high density streptavidin nanoparticles.
1175 *J. Nanosci. Nanotechnol.* **2004**, *4*, 504–511.

1176 (63) Bishop, M. F.; Ferrone, F. A. Kinetics of nucleation-controlled
1177 polymerization. A perturbation treatment for use with a secondary
1178 pathway. *Biophys. J.* **1984**, *46*, 631–644.

1179 (64) Cohen, S. I. A.; Linse, S.; Luheshi, L. M.; Hellstrand, E.; White,
1180 D. A.; Rajah, L.; Otzen, D. E.; Vendruscolo, M.; Dobson, C. M.;
1181 Knowles, T. P. J. Proliferation of amyloid-42 aggregates occurs
1182 through a secondary nucleation mechanism. *Proc. Natl. Acad. Sci.*
1183 *U.S.A.* **2013**, *110*, 9758–9763.

1184 (65) Ferrone, F. A. Assembly of $\text{A}\beta$ Proceeds via Monomeric Nuclei.
1185 *J. Mol. Biol.* **2015**, *427*, 287–290.

1186 (66) Chen, S.; Ferrone, F. A.; Wetzel, R. Huntington's disease age-
1187 of-onset linked to polyglutamine aggregation nucleation. *Proc. Natl.*
1188 *Acad. Sci. U.S.A.* **2002**, *99*, 11884–11889.

1189 (67) Naiki, H.; Higuchi, K.; Hosokawa, M.; Takeda, T. Fluorometric
1190 determination of amyloid fibrils in vitro using the fluorescent dye,
1191 thioflavine T. *Anal. Biochem.* **1989**, *177*, 244–249.

1192 (68) Krebs, M. R. H.; MacPhee, C. E.; Miller, A. F.; Dunlop, I. E.;
1193 Dobson, C. M.; Donald, A. M. The formation of spherulites by
1194 amyloid fibrils of bovine insulin. *Proc. Natl. Acad. Sci. U.S.A.* **2004**,
1195 *101*, 14420–14424.

1196 (69) Krebs, M. R. H.; Bromley, E. H. C.; Rogers, S. S.; Donald, A.
1197 M. The mechanism of amyloid spherulite formation by bovine insulin.
1198 *Biophys. J.* **2005**, *88*, 2013–2021.

1199 (70) Lehman, S. E.; Tataurova, Y.; Mueller, P. S.; Mariappan, S. V.
1200 S.; Larsen, S. C. Ligand characterization of covalently functionalized
1201 mesoporous silica nanoparticles: An NMR toolbox approach. *J. Phys.*
1202 *Chem. C* **2014**, *118*, 29943–29951.

1203 (71) Stolarczyk, J. K.; Deak, A.; Brougham, D. F. Nanoparticle
1204 clusters: assembly and control over internal order, current capabilities,
1205 and future potential. *Adv. Mater.* **2016**, *28*, 5400–5424.

1206 (72) Levine, H., III Thioflavine T interaction with synthetic
1207 Alzheimer's disease β -amyloid peptides: Detection of amyloid
1208 aggregation in solution. *Protein Sci.* **1993**, *2*, 404–410.

1209 (73) Duan, H.; Luo, Q.; Wei, Z.; Lin, Y.; He, J. Symmetry-Broken
1210 Patches on Gold Nanoparticles through Deficient Ligand Exchange.
1211 *ACS Macro Lett.* **2021**, *10*, 786–790.

1212 (74) Krejtschi, C.; Hauser, K. Stability and folding dynamics of
1213 polyglutamic acid. *Eur. Biophys. J.* **2011**, *40*, 673–685.

1214 (75) Dzwolak, W.; Muraki, T.; Kato, M.; Taniguchi, Y. Chain-length
1215 dependence of α -helix to β -sheet transition in polylysine: Model of
1216 protein aggregation studied by temperature-tuned FTIR spectroscopy.
1217 *Biopolymers* **2004**, *73*, 463–469.

1218 (76) Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S. A.;
1219 Krishna, V.; Grover, R. K.; Roy, R.; Singh, S. Mechanism of thioflavin
1220 T binding to amyloid fibrils. *J. Struct. Biol.* **2005**, *151*, 229–238.

1221 (77) Arad, E.; Green, H.; Jelinek, R.; Rapaport, H. Revisiting
1222 thioflavin T (ThT) fluorescence as a marker of protein fibrillation -
1223 The prominent role of electrostatic interactions. *J. Colloid Interface Sci.*
1224 **2020**, *573*, 87–95.