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Abstract

Machine learning has demonstrated success in

clinical risk prediction modeling with complex

electronic health record (EHR) data. However, the

evolving nature of clinical practices can dynami-

cally change the underlying data distribution over

time, leading to model performance drift. Adopting

an outdated model is potentially risky and may

result in unintentional losses. In this paper, we

propose a novel Hybrid Adaptive Boosting approach

(HA‐Boost) for transfer learning. HA‐Boost is

characterized by the domain similarity‐based and

class imbalance‐based adaptation mechanisms,

which simultaneously address two critical limita-

tions of the classical TrAdaBoost algorithm. We

validated HA‐Boost in predicting hospital‐acquired
acute kidney injury using real‐world longitudinal

EHRs data. The experiment results demonstrate

that HA‐Boost stably outperforms the competing

baselines in terms of both Area Under Receiver

Operating Characteristic and Area Under Precision‐
Recall Curve across a 7‐year time span. This study

has confirmed the effectiveness of transfer learning

Int J Intell Syst. 2022;1–18. wileyonlinelibrary.com/journal/int © 2022 Wiley Periodicals LLC. | 1

Xiangzhou Zhang, Kang Liu and Borong Yuan contributed equally to this study.

https://orcid.org/0000-0003-3752-0045
mailto:meiliu@kumc.edu
mailto:yonghu@jnu.edu.cn
https://wileyonlinelibrary.com/journal/int
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.23055&domain=pdf&date_stamp=2022-09-02


National Institute of Diabetes and
Digestive and Kidney Diseases,
Grant/Award Number: R01DK116986;
National Science Foundation,
Grant/Award Number: 2014554

as a superior model updating approach in a dynamic

environment.
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1 | INTRODUCTION

With the worldwide adoption of electronic health record (EHR) systems, machine learning has
made great strides in the secondary use of EHR data toward more accurate clinical risk
prediction.1–5 These studies have a fundamental assumption that the data distributions of the
training and test sets are the same, and thus prediction model development is typically a one‐
time activity. However, clinical practices such as patient care and hospital conditions can
change over time, and disease prevalence and cause can also change over time6; both cases
would lead to changes in the data distributions, resulting in model performance drift.7,8

Previously developed models can be outdated, making more and more inaccurate predictions
for incoming patients.

Effective model updating is critical to continually maintaining prediction perform-
ance, and it requires a certain amount of new data (usually only a small amount of new
data is available).8,9 A range of model updating approaches is available, including
recalibration, model‐specific adaptation (e.g., incremental learning for tree‐based model
and neural network), model extension (e.g., incorporating new features), and full
retraining, varying in analytical and computational complexity and sample size
requirement.10 The most straightforward method is full retraining periodically, whereas
the corresponding challenge is how to prioritize the knowledge between new and old data.
If the old data are completely ignored and the new (and often smaller) data are used alone,
model overfitting would become a critical risk. Compared with full retraining, adapting
the current model to a new environment requires a more complex learning paradigm,
such as online learning11 and lifelong learning,12 both of which are prominent for
dynamic environments or concept drift scenarios, while lifelong learning is superior to
online learning in preserving old knowledge against being overwritten by new
knowledge.12 However, they are not suitable for EHR‐based clinical prediction modeling
because (1) they are designed to tackle streaming data (such as stock price, sensor, and
other time‐series data), that is, learn from a sequence of data instances one by one at each
time and continually adapt the current model to the new environment, and (2) most EHR‐
based modeling studies are based on cross‐sectional and longitudinal data of irregular
time points.

Considering the above characteristics of EHR‐based clinical prediction modeling, in the
present study, we preferred another method named transfer learning, which is a prevalent
machine learning approach toward modeling on a small target data set by (selectively) reusing
source instances, features, and models/parameters.13 We introduce transfer learning to address
the problem of time‐varying distribution, by treating the new data as the target domain and the
historical data as the source domain, which can effectively reuse the historical data and only
requires a small amount of new data. We believe that transfer learning can provide insights
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from another perspective into the performance drift issue compared with other common
approaches, such as recalibration and incremental learning. For example, when the data
distribution significantly changes, transfer learning can immediately discard the old
knowledge/model and reselect sample from the source domain for training, while incremental
learning suffers from slow progressive adaptation.

Among various transfer learning algorithms, we chose the prevalent TrAdaBoost,14

which is prominent on instance transfer, that is, reusing instances from the source
domain to reduce the sample requirement of the target domain. Under the time‐varying
scenario, it iteratively assigns higher weights to the old data instances that are similar to
the new data and lower weights to those not similar. During this process, old knowledge
can be selectively reused when learning new knowledge. However, TrAdaBoost does not
differentiate the causes of misclassifying the old data instances during training
iterations,15 such as (1) whether the misclassified instance is under a different
distribution from the new data, (2) whether the weak classifier suffers from model
underfitting and/or class imbalance issues. TrAdaBoost simply assumes all misclassified
old data instances are under different distributions from the new data, and lowers their
weights. To address these limitations, we propose a new set of reweighting criteria: when
an old data instance is misclassified, we decrease its weight only if it is under a different
distribution from the new data, while we increase its weight if it is under the same
distribution as the new data. In addition, to reduce the impact of class imbalance on
TrAdaBoost, we further propose a method to reweight the positive and negative instances
differently during the training process. Because the instance reweighting mechanism of
TrAdaBoost is very unfavorable to the minority class, it is prone to erroneously decrease
the weight of misclassified minority class instances in old data, compared with the case of
new data. In summary, we improved the original TrAdaBoost algorithm by introducing
two adaptation mechanisms, named domain similarity‐based adaptation and class
imbalance‐based adaptation, respectively.

We validated the proposed method for predicting hospital‐acquired acute kidney
injury (AKI). AKI is a highly lethal clinical syndrome caused by multiple etiologies in
hospitalized patients. It is associated with much higher in‐hospital morbidity and
mortality, and the AKI survivors are at increased risk for developing chronic kidney
disease, end‐stage renal disease, and recurrent AKI.8,16 Most importantly, AKI has a high
nonrecognition rate.17,18 Thus, early prediction of AKI has been an urgent demand. Early
prediction of AKI can support clinical decision‐making,19,20 so that patient care can be
assessed, intervened, and managed in advance.

To this end, we summarize the contributions of this study as follows:

1. We improve the classical transfer learning algorithm TrAdaBoost, by
introducing the domain similarity‐based and the class imbalance‐based adaptation
mechanisms. Essentially, these two mechanisms realize a superior instance
reweighting procedure, addressing the issues of misclassification and class imbalance
simultaneously.

2. We empirically validate the proposed approach on real‐world EHR data, addressing the
performance drift problem of the AKI prediction model over a long‐time span. Particularly,
we confirm the effectiveness of transfer learning as a superior model updating approach in a
dynamic environment, such as clinical decision‐making.
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2 | METHOD

2.1 | Preliminary

We first briefly introduce the background of AdaBoost and TrAdaBoost, from which our
proposed approach was derived.

AdaBoost, short for Adaptive Boosting, is a traditional machine learning method.21 Its basic idea
is paying more attention to instances that are hard to classify and less on others already handled well.
Formally, let  and  be the instance and label space, respectively.  { × }   be training
instances. AdaBoost learning is a sequential process of training a set of base classifiers and then
weighting them together. Assume the distribution of instance weights as wt in tth round of learning.
A base classifier as h :t   is generated from  and wt. In the next round, wt+1 will be adjusted,
where the weights of the misclassified instances by ht will be increased. By using training instances 
and the updated weights distribution wt+1, a new base classifier ht+1 will be obtained. After repeating
such a process for N rounds, the final discrimination function is derived by the weighted sum of all N
base classifiers, where the weights of the classifiers are computed according to the error rate of the
rounds.

TrAdaBoost is an extension of AdaBoost for transferring knowledge from the source domain to
the target domain.14 It assumes that the source and target domain data belong to the same feature
and label space, but those data distributions are different. Due to differences in distribution, it
considers there are some data in the source domain that can still be reused in learning for the target
domain. To find them, TrAdaBoost tries to iteratively reweight the source domain data to put more
weight on instances with the same distribution as the target domain and less on different. Formally,
let s and d denote the same‐ and diff‐distribution instance space, respectively.  denotes the label
space. The training instances are set to  { × }   , where = d s   . Note that, d and s
actually denote the source domain data and the target domain, respectively. In each learning round,
TrAdaBoost decreases the weights of misclassified instances in the source domain, since its
fundamental assumption is that this part of instances with diff‐distribution from the target domain.
The weight update is based on Hedge β( ),21 decreasingly multiplied by β h x c x| ( )− ( )|t , where c x( ) is the
mapping function from  to  . For the data of s , the weights are updated in the same way as
AdaBoost. Unlike AdaBoost, TrAdaBoost only unites the second half N/2 base classifiers to output
the final decision.

2.2 | Prediction task and challenges

In this study, we consider AKI prediction as a binary classification task under a long‐time span.
We define the encounters that occurred AKI as the positive class and others as the negative
class. Note that, the number of negative encounters greatly exceeded the number of positive
encounters. Each encounter can be represented as x ℝd∈ based on the observation records
before the AKI prediction point, where d refers to the dimensionality of a set of variables of
interest for a patient, usually with a large value. Our target population is new encounters. Thus,
a large number of historical encounters and a small number of more recent encounters
constitute the instance spaces d and s , respectively. Note that, in continuous time, d and s
change dynamically as new data are generated. The task is learning a model from the available
data = d s   to predict the class of a given unknown encounter representation x.
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Applying traditional machine learning approaches in such a scenario would suffer from the
challenges of data shift and class imbalance, which would lead to performance drift.

2.3 | HA‐Boost

To solve the above challenges, we propose the Hybrid Adaptive Boosting approach (HA‐Boost)
as shown in Figure 1, where Figure 1A depicts the domain similarity‐based and class
imbalance‐based adaptation mechanisms, for instance, weight updating, and Figure 1B
represents the boosting learning process.

2.3.1 | Domain similarity‐based adaptation

The TrAdaBoost approach intrinsically assumes that the source domain is under a significantly
different distribution from the target domain, which is not suitable for the case of similar
source and target domains, as well as the case of changing similarity. For this sake, we
intuitively designed the domain similarity‐based adaptation mechanism that balances the
weight updating mechanisms of TrAdaBoost and AdaBoost in reweighting the instances of
the source domain. The dominant mechanism depends on the distribution similarity between
the source and target domains, that is, the higher the domain similarity, the greater the impact
of the AdaBoost mechanism than the TrAdaBoost mechanism, and vice versa.

The first key point is how to measure the similarity between the source and target domains.
Inspired by the idea of multiview learning, where one of the optimization objectives is to achieve

FIGURE 1 Framework of HA‐Boost. (A) The weight updating mechanisms, where ρ is the distribution
similarity measure, α is the balance factor for class imbalance‐based adaptation, computed as the ratio of
misclassified positive instances to misclassified negative instances, and β is used in Hedge β( ) for updating the
weights. (B) The boosting learning process. HA‐Boost, Hybrid Adaptive Boosting approach. [Color figure can be
viewed at wileyonlinelibrary.com]
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consistent predictions for the same instance between classifiers from different views.22 We calculated
the similarity between the source and target domains by comparing the predictions of the source and
target domain classifiers for the target domain instances. Formally, suppose classifier hd and classifier
hs are trained based on d and s , respectively. The round index is omitted for clarity. Note that, we
performed 10‐fold cross‐validation on s when constructing classifier hs. Suppose s is split into
training set ℝ d

s
tra ×m9

10 ∈ and validation set ℝ d
s
val ×m

10 ∈ , only s
tra is available for training. Besides,

we applied stratified random sampling on s
tra to balance the proportion of positive and negative

instances before training classifier hs. The similarity ρ is defined as follows:
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validation to reduce variance.
The next key point is how to assign the impact of TrAdaBoost and AdaBoost on weight

updating based on similarity ρ. We propose the following formula to update the weight of
instance in d ,

























 

 w

w β f ρ p

ε w β f ρ q

f ρ w β

f ρ ε w β

=

, ( ) ,

2(1 − ) , ( ) < ,

( )

+ (1 − ( )) 2(1 − ) , else,

i
t

i
t

t
h x c x t

t i
t h x c x t

t
i
t

t
h x c x

t
t i

t h x c x

+1

−| ( )− ( )|

AdaBoost

( )− ( )

TrAdaBoost

− ( )− ( )

AdaBoost

| ( )− ( )|

TrAdaBoost

t i i

t i i

t i i

t i i

  

  

  

  

(2)

where β n N= 1/(1 + 2ln / ), β = ϵ /(1 − ϵ )t t t , and εt is the error of ht on s , calculated by

 ε
w h x c x

w
=

| ( ) − ( )|
.t

i n

n m
i
t

t i i

i n
n m

i
t

= +1

+

= +1
+ (3)

In Equation (2), f ( ) is a mapping function defined as f x( ) =
x q

p q

−

−
, where p and q are

the two hyperparameters to normalize the similarity. When the similarity is greater than p, we
consider that the source and target domains belong to the same distribution, and less than q,
different distributions. For brevity, we redefine f as follows:
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then Equation (2) is modified as follows:
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For the instance from s , AdaBoost is still good and so is used to update
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The ensemble classifier is similar to TrAdaBoost, based on the voting of the base classifiers
obtained from the training process. TrAdaBoost considers that the distributions between the
source and target domains are more different from the beginning, so only the second half of
the base classifiers are considered for voting. However, we consider that the similarity between
the source and target domains is uncertain, so we use all base classifiers.

2.3.2 | Class imbalance‐based adaptation

Class imbalance is a very common problem in machine learning. Many models do not handle
this problem very well, since their training process usually prefers the majority class over the
minority class. However, the minority class usually carries richer concepts than the majority
class, especially for medical data.23 TrAdaBoost is more extreme, where it decreases the weight
of diff‐distribution instances if they are misclassified. Even though the minority class instances
are more important, they are easily misclassified in an imbalanced data scenario, thus easily
ignored by TrAdaBoost. To solve this drawback, we designed the class imbalance‐based
adaptation mechanism to promote TrAdaBoost in learning diff‐distribution instances.

We used αt as a balance factor for class imbalance‐based adaptation. In detail, suppose
ϵ− and ϵ+ represent the error measures of negative and positive classes in the source domain
under ht prediction, respectively, and n− and n+ represent the number of instances they have,
respectively. On the basis of Equation (3), the balance factor αt is defined as follows:
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On the basis of the weight update scheme of TrAdaBoost and the balance factor α, we
adjusted the reweighting scheme of positive instances. If a positive instance x+ from diff‐
distribution is wrongly classified, its weight is multiplied by β

ht x c x
αt

| ( )− ( )|

rather than β h x c x| ( )− ( )|t . As
a result, Equation (5) is modified as follows:
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Algorithm 1 outlines the details of our novel modeling approach, including two adaptation
mechanisms. First, it measures the similarity of d and s . Then it concatenates d and s to
train a classifier ht. Finally, the instance weights are adjusted according to the similarity of d
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and s and the error rate of ht. After N rounds, it integrates all base classifiers into an ensemble
classifier.

Algorithm 1. HA‐Boost Algorithm

Input: ℝn d
d

× ∈ and ℝm d
s

× ∈ , base classifier algorithm, and the maximum number of iterations N ;

Output: The final classifier h x( )f ;
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Calculate the similarity ρt between d and s by Equation (1);

Call the base classifier algorithm over d and s , and then get back a base classifier h (x)t ;

Calculate the error of base classifier εt on s by Equation (3);

Calculate the balance factor αt on d by Equation (7);

if  n i n m+ 1 + then

Update wi
t by Equation (6);

else

Update wi
t by Equation (8);

end

end

Output: an ensemble classifier,
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3 | EXPERIMENT

3.1 | Study population

To evaluate HA‐Boost, we conducted experiments on a large‐scale retrospective observational
cohort constructed in our previous study on AKI prediction,5 drawn from a deidentified EHR
repository at the University of Kansas Medical Center (KUMC). The data set contains adult
patients (age ≥ 18 years at admission) who were hospitalized for at least 2 days from 2010 to
2017. We defined AKI using the Kidney Disease Improving Global Outcomes (KDIGO) serum
creatinine (SCr) criteria24: (1) an increase in SCr of 0.3 mg/dl (26.5 mol/L) within 48 h, or (2) an
increase in SCr of 1.5 times of the patient's baseline creatinine (which is defined as the most
recent SCr, or admission SCr value when past measurements were not available). According to
the necessary conditions for determining AKI, we excluded patients that (1) with <2 SCr
measurement, or (2) with moderate‐to‐severe kidney dysfunction at the time of admission, that
is, estimated glomerular filtration rate lower than 60ml/min/1.73 m2 using the Modified Died
in Renal Disease equation, or SCr > 1.3 mg/dl within 24 h of admission. The final cohort
consisted of 141,696 encounters.
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3.2 | Data preprocessing

The original data cover more than 28,000 variables. Each instance has a sequence of time‐
stamped clinical variables, including (1) demographics, such as age, race, and gender; (2) vital
signs, such as BMI, tobacco, and blood pressure; (3) laboratory tests based on LOINC codes; (4)
comorbidities based on ICD‐9 and ICD‐10 codes; and (5) medications based on RXNORM and
NDC codes.25 When constructing the training instance, each encounter representation is
generated from the clinical variables collected before the prediction point, and its label is
whether the sample outbreaks AKI within the next h hours. In this study, we set h to 24 and
48 h for predicting AKI 24 and 48 h ahead, respectively. Table 1 shows the patient demographic
characteristics in different years for 24 h prediction task. As can be seen that the number of
negative instances is almost six times the positive instances in all years, which indicates the
data set has an imbalance problem. Also, the distribution of each feature changes across years.

We represent each instance as a vector of fixed dimensions, using the following criteria: (1) we
selected the most recent value for the variables which are repeatedly measured within a certain
time interval; (2) we applied one‐hot encoding for categorical variables; (3) we set the number of
times the patient took the medication before the prediction point as the medication representation;
(4) we removed variables with a missing rate >99.99%; (5) we made feature selection for categorical
and continuous variables by chi‐square statistics and analysis of variance, respectively, and retain
variables with p<0.05; (6) we constructed additional variables, such as daily blood pressure trends,
which are useful for AKI prediction.26 Note that the variables directly related to SCr and blood urea
nitrogen are not included, because they are used to determine the AKI outcome.5

3.3 | Experimental settings

The evaluation metrics used in this study include: (1) the Area Under Receiver Operating
Characteristic (AUROC), which is the most widely used performance metric of binary
classification tasks, to summarize the sensitivity and specificity of the model; (2) the Area
Under Precision‐Recall Curve (AUPRC), which is one of the most appropriate performance
metrics of imbalance classification tasks, to summarize the sensitivity and precision of the
model by focusing on how well the model performs on the positive class.

Considering that the available data size of the target domain is usually small in real‐world
applications due to scarcity of data, high costs of data cleaning, and so forth, we used all
historical data as source domain data to build the new model. For example, to build a
prediction model for the target domain 2014, we used all data up to 2013 as the source domain.
Using stratified random sampling, we extracted 20% of the target domain data as training data
to help capture the data shift in 2014, and the rest as test data. Fivefold cross‐validation was
adopted in all experiments to reduce variance.

To illustrate the effectiveness of our method, we chose AdaBoost which did not use
historical data as the baseline to compare the model performances between transferring or not,
and TrAdaBoost as another baseline to measure whether the model performance improved or
not. For all models, we choose LightGBM as the base learner, which is widely utilized in
various fields of machine learning‐based researches, and we used the default parameters
provided in the official release code (available at github.com/Microsoft/LightGBM) if not
specified otherwise. We set the number of iteration parameter N to 5, hyperparameters p and q
to 0.9 and 0.1, respectively.
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TABLE 1 Patient demographic characteristics for 24 h AKI prediction task

Characteristics 2010 2011 2012 2013 2014 2015 2016 2017

Age

18–25 869 886 923 918 1077 1082 1086 1001

(5.81%) (5.75%) (5.53%) (5.26%) (5.76%) (5.38%) (5.32%) (5.56%)

26–35 1290 1275 1468 1567 1717 1814 1823 1664

(8.63%) (8.27%) (8.80%) (8.98%) (9.18%) (9.03%) (8.94%) (9.24%)

36–45 1640 1727 1696 1861 1819 2136 2196 1919

(10.97%) (11.20%) (10.17%) (10.66%) (9.73%) (10.63%) (10.77%) (10.66%)

46–55 3025 2998 3203 3133 3150 3482 3259 2762

(20.24%) (19.44%) (19.20%) (17.95%) (16.84%) (17.33%) (15.98%) (15.34%)

56–65 3383 3659 3951 4161 4558 4897 4840 4088

(22.63%) (23.73%) (23.68%) (23.85%) (24.37%) (24.37%) (23.73%) (22.71%)

>65 4739 4877 5441 5810 6380 6683 7195 6568

(31.71%) (31.62%) (32.62%) (33.30%) (34.12%) (33.26%) (35.27%) (36.48%)

Sex

Female 7399 7787 8250 8810 9394 9980 10,149 8957

(49.50%) (50.49%) (49.45%) (50.49%) (50.23%) (49.67%) (49.75%) (49.76%)

Male 7547 7635 8432 8639 9307 10,114 10,249 9045

(50.50%) (49.51%) (50.55%) (49.51%) (49.77%) (50.33%) (50.24%) (50.24%)

Race

White 10,891 11,476 12,667 13,273 14,230 15,270 15,388 13,514

(72.87%) (74.41%) (75.93%) (76.06%) (76.09%) (75.99%) (75.44%) (75.07%)

Black 2286 2240 2255 2510 2685 2883 2896 2614

(15.30%) (14.52%) (13.52%) (14.38%) (14.36%) (14.35%) (14.20%) (14.52%)

Asian 125 128 153 167 210 184 254 149

(0.84%) (0.83%) (0.92%) (0.96%) (1.12%) (0.92%) (1.25%) (0.83%)

Native American 53 52 46 79 68 87 80 63

(0.35%) (0.34%) (0.28%) (0.45%) (0.36%) (0.43%) (0.39%) (0.35%)

Other 1591 1526 1561 1421 1508 1670 1781 1662

(10.64%) (9.90%) (9.36%) (8.15%) (8.06%) (8.31%) (8.73%) (9.24%)

Hispanic

Yes 792 798 964 970 1064 1169 1155 1039

(5.30%) (5.17%) (5.78%) (5.56%) (5.69%) (5.82%) (5.66%) (5.77%)

No 14,139 14,572 15,655 16,383 17,473 18,716 19,028 16,766

(94.60%) (94.49%) (93.84%) (93.89%) (93.43%) (93.14%) (93.28%) (93.13%)
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3.4 | Results

Figure 2 shows the model performances for 24 and 48 h AKI prediction tasks in terms of
AUROC and AUPRC. First, predicting AKI in 24 h showed uniformly better performance than
48 h prediction, in terms of both AUROC and AUPRC. Second, the HA‐Boost model performed
best, with an average AUROC of 0.854 and 0.782 for predicting AKI risk in 24 and 48 h,
respectively, and an average AUPRC of 0.615 and 0.440. Third, the HA‐Boost model
outperforms the TrAdaBoost model by an average ΔAUROC of 0.028 and 0.023/year for 24 and
48 h prediction tasks, respectively, and an average ΔAUPRC of 0.069 and 0.058. Four, the
AdaBoost model, which only used training data from the target domain in our experiment
setting, underperformed the TrAdaBoost and HA‐Boost models.

To examine the effects of the proposed adaptation mechanisms, we conducted an ablation
study by removing the components one by one, with the results shown in Figure 3. When
removing the class imbalance‐based adaptation mechanism from HA‐Boost, that is, compared
with HA‐Boost, the TrAdaBoost with domain similarity‐based adaptation mechanism suffered
an average drop of AUROC by 0.003 and 0.006/year for predicting AKI risk in 24 and 48 h,
respectively, and AUPRC by 0.006 and 0.009. When removing the domain similarity‐based
adaptation mechanism, that is, compared with HA‐Boost, the TrAdaBoost with class
imbalance‐based adaptation mechanism suffered an average drop of AUROC by 0.002 and
0.004/year for predicting AKI risk in 24 and 48 h, respectively, and AUPRC by 0.033 and 0.025.
Either the domain similarity‐based or class imbalance‐based adaptation mechanism could
result in a considerable gain in AUROC and AUPRC compared with TrAdaBoost. Except for
the AUROC of 2013, the combination of these two adaptation mechanisms always had a
complementary effect, yielding better performance.

We also conducted experiments with different sizes of available training data from the
target domain, that is, splitting the target domain data into training and testing data sets as 1:9,
1:4, 1:2, 1:1, and 2:1. Figure 4 shows the performance of the HA‐Boost model, averaged by the
cross‐validation approach. As can be seen, whatever the size of training data from the target
domain, predicting AKI in 48 h showed uniformly worse performance than the 24 h prediction.
As the size of available training data from the target domain increased, the model performed
better and better, which implied the general scarcity of training data (i.e., new data in the real‐
world scenario) from the target domain, and inherently the difference between source and
target domain.

TABLE 1 (Continued)

Characteristics 2010 2011 2012 2013 2014 2015 2016 2017

Unkonwn 15 52 63 97 164 209 216 197

(0.10%) (0.34%) (0.38%) (0.56%) (0.88%) (1.04%) (1.06%) (1.09%)

AKI

Non‐AKI 12,414 12,937 14,097 15,124 16,165 17,435 17,660 15,705

(83.06%) (83.89%) (84.50%) (86.67%) (86.44%) (86.77%) (86.57%) (87.24%)

Any AKI 2532 2485 2585 2326 2536 2659 2739 2297

(16.94%) (16.11%) (15.50%) (13.33%) (13.56%) (13.23%) (13.43%) (12.76%)
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To further investigate the impact of the class imbalance issue, we analyzed the classification
error rates of positive and negative samples at each iteration during model training. Take the
target domain 2014 as an example, Figure 5 shows the error rates of the original TrAdaBoost
and the improved TrAdaBoost with the class imbalance‐based adaptation mechanism.
Beginning with the same error rate, the positive error rate of the improved TrAdaBoost with
class imbalance‐based adaptation gradually decreased, while the original TrAdaBoost gradually
increased. On the contrary, the negative error rate had an opposite trend to the positive error
rate. Besides, the improved TrAdaBoost with the class imbalance‐based adaptation mechanism
had a smaller magnitude of changes in error rates, compared with the original TrAdaBoost.
Thus, the choice under this trade‐off between positive and negative error rates is clear, since
the positive samples receive more attention in clinical scenarios. Besides, we found that
the performance differences between the 24 and 48 h prediction were mainly reflected in the
positive error rate, whereas less difference reflected in the negative error rate.

FIGURE 2 Model performance for AKI prediction. The X‐axis is years. The Y‐axis of both (A) and (B) is
AUROC, and Y‐axis of both (C) and (D) is AUPRC. AKI, acute kidney injury; AUPRC, Area Under Precision‐Recall
Curve; AUROC, Area Under Receiver Operating Characteristic; HA‐Boost, Hybrid Adaptive Boosting approach.
[Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Under the scenario of data shift over time, it is theoretically necessary to treat the historical and
new data in different ways. Simply pooling the historical and new data as training data to
construct a prediction model is contradicted with this assumption. Thus, in this study, we
trained the AdaBoost model only based on the new data, completely ignoring the historical
data, to obtain a baseline model that only focuses on the current situation. Unsurprisingly, the
AdaBoost model was vulnerable to the problem of insufficient new data for training, and
yielded the worst performance in terms of AUROC and AUPRC. Nevertheless, we trained the

FIGURE 3 Ablation study of the impact of adaptation mechanisms on the AKI prediction model. The X‐axis is
years. The Y‐axis of (A) and (B) is AUROC, and the Y‐axis of (C) and (D) is AUPRC. AKI, acute kidney injury; AUPRC,
Area Under Precision‐Recall Curve; AUROC, Area Under Receiver Operating Characteristic; HA‐Boost, Hybrid
Adaptive Boosting approach. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Comparison of HA‐Boost model performances on different sizes of training data from target domain
for 24 h and 48 h AKI prediction. The X‐axis is years. The Y‐axis of (A) and (B) is AUROC. The Y‐axis of (C) and (D) is
AUPRC. AKI, acute kidney injury; AUPRC, Area Under Precision‐Recall Curve; AUROC, Area Under Receiver
Operating Characteristic; HA‐Boost, Hybrid Adaptive Boosting approach. [Color figure can be viewed at
wileyonlinelibrary.com]

TrAdaBoost and HA‐Boost models based on both the new and historical data, by iteratively
overweighting the instances of historical data with the same distribution as the new data while
underweighting the ones with different distributions. They succeeded in selectively reusing the
historical data to increase the training sample size without being negatively affected by the
outdated knowledge underlying the historical data, resulting in a significant performance gain.
Compared with the TrAdaBoost model, the HA‐Boost model has a superior ability of instance
screening and thus uniformly performed better.

As for the HA‐Boost model, both the domain similarity‐based and class imbalance‐based
adaptation mechanisms were applied in each iteration during model training process. This
intrinsically provided more dynamic characteristics to HA‐Boost than the one‐shot scheme of
domain similarity measurement and class imbalance‐orient resampling before model training.
Furthermore, the ablation study showed that the domain similarity‐based adaptation could
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obtain more performance gain than the class imbalance‐based adaptation mechanism
(especially in terms of AUPRC), and achieved a very close performance to the HA‐Boost
model that incorporated both two adaptation mechanisms. This might imply that the domain
difference (i.e., data shift between the historical and new data) was highly related to the
changing class imbalance over time, and the domain similarity‐based adaptation mechanism
could partially capture these changes, having a similar effect as the class imbalance‐based
adaptation mechanism. Therefore, the proposed domain similarity‐based adaptation mecha-
nism would be the most important improvement to TrAdaBoost (at least for our study
population).

Usually, the change in clinical practices would not be drastic and sharp, and thus the data
shift over time would be in a gradual way. For example, as shown in Table 1, the difference in
AKI incidence rate between any two consecutive years is relatively small, while the AKI
incidence rate has a significant drop from 16.94% to 12.76% between 2010 and 2017. However,
the TrAdaBoost approach intrinsically assumes that the distributions of target and source
domains are significantly different, and adopts opposite instance reweighting methods between

FIGURE 5 Positive and negative error rates for AKI prediction (Take 2014 as a case study). The X‐axis is the
iteration number. The Y‐axis of (A) and (B) is a positive error rate, and the Y‐axis of (C) and (D) is a negative
error rate. AKI, acute kidney injury. [Color figure can be viewed at wileyonlinelibrary.com]
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the source and target domains, considering the misclassified instances in the source domain
belong to a different distribution from the target domain and thus underweighted. In other
words, in the scenario of gradual data shift, the TrAdaBoost approach might easily underweight
or discard some misclassified instances in the source domain that actually belong to the same
distribution as the target domain. And worse yet, the class imbalance problem would lead to
the minority class being more likely to be misclassified. Unfortunately, the positive class of
interest in most clinical modeling studies, for example, the AKI patients, belongs to the
minority class. Therefore, the TrAdaBoost approach would not be expected to perform well in
this case.

Next, we analyze the training process of the HA‐Boost model. In the initial iterations, the
source and target domains are similar and the AdaBoost‐like reweighting scheme would
dominate, thus the weights of misclassified instances in the source domain would be increased,
which promotes them to be correctly classified in the subsequent iterations, while the weights
of correctly classified instances in the source domain would be decreased. However, the
misclassified instances in the source domain with a different distribution from the target
domain also “erroneously” gain increased weights. As this continues, the source and target
domains become more and more different, and the AdaBoost‐like reweighting scheme would
gradually lead to negative transfer.27 Take 2014 for illustration, we found that the average
similarity ρ dropped from 0.67 to 0.40 through five iterations. Therefore, in the later iterations,
the TrAdaBoost‐like reweighting scheme is more prone to dominate, thus the weights of
misclassified instances in the source domain would be decreased while the weights of correctly
classified instances would be increased. In summary, the HA‐Boost approach can maintain a
balance between the AdaBoost‐like and TrAdaBoost‐like reweighting schemes during the
entire iterations.

As for the performance drift issue of AKI prediction models, Davis et al. have conducted the
most comprehensive investigations.8,10 However, their data set was collected from the US
Department of Veterans Affairs, making it not a typical scenario of population drift, as reflected
in the experiment results that model discrimination was maintained for all models but
calibration declined.8 They also found that machine learning models (random forest and neural
network models) maintained more stable calibration compared with regression models.
Furthermore, they focused on investigating a comprehensive procedure to select the
appropriate updating method among several alternatives to correct performance drift by
balancing simplicity against accuracy.10 To the best of our knowledge, our HA‐Boost model was
the first to demonstrate the effectiveness of transfer learning in addressing the performance
drift issue, especially for the AKI prediction task.

5 | CONCLUSION AND FUTURE WORK

Clinical risk prediction is significant for improving patient care, but prediction models are
facing the problem of performance drift across years. Periodical model updating can address
this problem, and it is necessary to consider how to balance the impact of the old and new data.
In this paper, we designed two adaptation mechanisms, including domain similarity‐based
adaptation and class imbalance‐based adaptation, to improve the classical TrAdaBoost. Using
real‐world EHRs data for AKI prediction model development, we have demonstrated that
HA‐Boost is more suitable for long‐time span data‐shift scenarios compared with TrAdaBoost.
Furthermore, we have confirmed the effectiveness of transfer learning as a superior model

16 | ZHANG ET AL.



updating approach in a dynamic environment. However, we have only validated this on a
single‐center data set, without external validation in other medical centers, so that the
generalizability of HA‐Boost is still uncertain. Also, we still need to investigate the impact of
AKI prediction models on clinical decision support to improve medical care in the future.
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