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Abstract. The task of estimating a person’s real age using uncon-
strained facial images has been actively studied in biometrics research.
We developed several deep learning architectures and supervision meth-
ods for facial age estimation and evaluate the impact of different pre-
processing and face alignment (or normalization) methods on the feature
embedding subspace. The proposed novel two-stage supervised learning
model utilizes ResNeXt as a backbone combined with a two-layer ran-
dom forest (TLRF) to estimate age. Our deep architectures are trained
using a custom loss function to handle variations in gender, pose, illu-
mination, ethnicity, expression and context, on the VGG-Face2 MIVIA
Age Dataset with over 575K images, as part of the Guess the Age (GTA)
contest. Surprisingly, face alignment using FANet during training did not
improve accuracy. We were able to achieve an Age Accuracy and Regu-
larity score AAR = 7.02 with a variance σ = 1.16 using only ResNeXt.
The proposed ResNeXt+TLRF model improved age-class generalizabil-
ity with a smaller variance of σ = 0.98 and a second best AAR = 6.97.

Keywords: Age estimation · Face recognition · Face verification · Face
alignment · Deepfakes · Deep learning · Random forest · Biological age

1 Introduction

Age estimation has many real-world applications including social robotic inter-
action, biometrics, demographics, business intelligence, online advertising, item
recommendation, identity verification, video surveillance, access control, human-
computer interaction, privacy and security, crowd behavior, law enforcement,
and many more [1–3]. Single facial image age prediction is highly challenging
[4–7], due to the variability in how individuals age based on their “ageotype”
[8]. Everyone ages at different rates and biological age is influenced by genetics,
diet, exercise, stress and environment. Moreover, visual cues about an individ-
ual’s chronological age can vary due to pose, lighting, gender, scale, cosmetics,
accoutrements, race, height, weight, health, emotion, occlusion, etc. [1,3,9,10].
Facial age feature embeddings can also be used to improve face recognition [11]
and distinguish between real and synthetic (Deepfake) faces [12].
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In the field of facial age estimation, there is an absence of large, reliable anno-
tated datasets due to the difficulty in establishing ground truth ages. The LAP
2016 dataset [13] is reliable but only contains 7,591 images. Large datasets, like
IMDB-Wiki [14], CACD [15], and UTK [16] are annotated with the age informa-
tion based on online web crawling and social networks, therefore, reliability is not
guaranteed. Some of the datasets for face aging prediction (prediction of a per-
son’s appearance at a younger or older time period) do not have enough diversity
because many pictures are from the same individual at different times; like the FG-
NET [17] dataset which contains 1,002 images of only 82 people. MORPH Album
2 [18] is another longitudinal dataset that contains 55,134 images of 13,618 sub-
jects, but with a limited age distribution that ranges between 16 to 77. The CAIP
Guess the Age (GTA) Contest [19], uses the VGG-Face2 MIVIA Age Dataset [2].
It consists of 575,073 images of more than 9,000 identities, collected at different
ages. The images are extracted from the VGGFace2 [20] and annotated with the
person’s age by means of a knowledge distillation technique [2]. The VGG-Face2
MIVIA Age Dataset is the most accurate facial age dataset currently available at
this scale in terms of sample size and heterogeneity. Despite the lack of precise
age data, several machine learning and data driven age estimation models have
emerged [1]. DLDL-v2 (ThinAgeNet) [21] currently stands as the state-of-the-art
on the MORPH Album 2 and ChaLearn 2015 and 2016 [22] datasets.

Guess the Age (GTA) Contest considers the biometric task of estimating
a person’s age using only their facial image as input [1,2]. Although there are
over 575K age labeled images in the VGG-Face2 MIVIA Age Dataset covering
gender, ethnicity, varying poses, scale and illumination, there is a high degree
of age class imbalance. The four age groups covering, 1 to <20 and ≥60, the
two youngest and two oldest groups (out of eight categories) constitute less than
10% of the data; the youngest and oldest age categories make up less than 1%.

In this paper, we propose a novel age estimation approach that uses a two-
layer classification-plus-regression random forest trained on deep feature embed-
dings from the ResNeXt50 architecture [23]. We show that an ensemble of weak
decision trees trained on deep features has smaller variance than a pure deep
neural model with end-to-end optimization.

2 Deep Learning Methods for Age Estimation

2.1 Pre-processing

We used z-normalization to normalize the intensity value of the pre-cropped
input face images. VGG-Face2 MIVIA Age dataset contains images with already
cropped single faces, and hence a face detection step was not necessary.

Our experience with incorporating a face-alignment step using FANet pro-
duced mixed results [24]. FANet was used to estimate 68 facial key-points in the
cropped face image. These extracted key-points are matched with a template
(standard face pose) set of key-points to estimate the 2D alignment transforma-
tion matrix. We then apply this transformation to warp the original face image
to realign the face. Sample results from this step are shown in Fig. 1.
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Fig. 1. Sample face-alignment using FANet [24] applied to face images from the VGG-
Face2 MIVIA Age Dataset. Note that not all faces are warped when they are side
profiles or have up-down tilts. Our final age estimates using ResNeXT+TLRF (vs
actual) for these subjects from left to right and top to bottom are: 27 (27), 27 (30), 29
(29), 34 (35), 31 (31), 56 (57), 27 (29), 58 (59), 28 (28).

We evaluated the potential benefit of face-alignment since this can reduce the
learning complexity for age estimation when faces are in similar poses. However,
we found that face-alignment reduced the diversity in the training dataset which
could lead to overfitting, and reduce the performance of deep neural networks.
For this reason, we trained the deep neural models on non-aligned faces to ensure
better generalizability. Although face-alignment of training images had limited
benefit in our initial testing, several approaches are being studied to better incor-
porate face-alignment as a data augmentation approach to improve performance
during inference.

2.2 ResNeXt CNN

Architecture. We use the ResNeXt architecture [23] for extracting feature
descriptors due to its advantages over the classical ResNet architecture. ResNet
uses residual blocks [25] that make use of sequential convolution layers with an
added skip connection. This simple modification led to a breakthrough in per-
formance when compared to classical CNNs (such as VGG [26]). The ResNeXt
architectural insight was the notion of cardinality, that many parallel small con-
volutions are better than a single deep sequence of convolutions with wider
kernels. This is done by using parallel convolution streams with fewer channels
instead of a single sequential stream with more channels. Using the cardinality
property, they experimentally demonstrated an improvement in accuracy on the
ImageNet benchmark [27] by simply increasing the cardinality without adding
more parameters. This is crucial when dealing with smaller class sizes where
over-fitting is more likely.
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Hyper-parameters. We train a single output regression version of ResNeXt
using the Adam [28] optimizer that is a variation of the Stochastic Gradient
Descent algorithm [29]. We use an initial learning rate α = 10−4. The model
weight initialization is based on transfer learning with pre-trained weights from
the ImageNet classification dataset. Additionally, we adopt warm restart schedul-
ing during training using the cosine annealing method [30]. Learning rate is one
of the most important hyper-parameters in training neural networks. For this
reason, adaptively selecting a learning rate and/or scheduling are crucial for a
more robust training [31–33].

Loss. We define a new loss function LAAR inspired by the Age Accuracy and
Regularity (AAR) metric from the GTA contest. For a set of predicted ages ŷ
and real ages y of size N , the loss function equation is given as:

LAAR(y, ŷ) = γL1(y, ŷ) + λσ (1)

where:

L1(y, ŷ) =
1
N

N∑

i=1

�1(yi, ŷi) (2)

with:

�1(y, ŷ) =

{
1
2β (y − ŷ)2, if |y − ŷ| < β

|y − ŷ| − 1
2β, otherwise

(3)

and:

σ =

√√√√1
8

8∑

j=1

[L1(yj , ŷj) − L1(y, ŷ)]2 (4)

where y is the set of true ages, ŷ is the set of predicted ages, yj and ŷj are
the true and predicted ages respectively that belong to jth age group. L1 is the
smooth L1 norm (mean absolute error), σ is a regularization term to reduce the
model’s sensitivity to the dataset imbalance. γ and λ are coefficients terms for
two parts of the loss function. The loss parameters used in this work are γ = 0.7,
λ = 0.3, and β = 1.0.

Note that there are two main differences between our loss function and the
AAR metric. First, we use smooth L1 distance �1 as opposed to MAE. Smooth
L1 was proven less sensitive to outliers and less prone to exploding gradients
[34,35]. Second, we do not clip L1 and σ components to a maximum value;
instead, we give them different weights to emphasize one over the other.

Label Distribution Smoothing (LDS). To tackle the challenge of age imbal-
ance in the dataset, the Label Distribution Smoothing (LDS) method was evalu-
ated [36]. LDS convolves a symmetric 1-D Gaussian smoothing kernel k with the
label distribution (histogram) p(y) to produce a kernel-smoothed version that
interpolates information of data samples with nearby labels. A symmetric kernel
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is a kernel that satisfies: k(y+Δy) = k(y−Δy) and ∇yk(y+Δy)+∇yk(y−Δy) =
0,∀y ∈ Y . The smoothed label distribution, p′(x), is a convolution between the
distribution p(y) and the kernel k(y):

p′(y) = k(y) ∗ p(y) (5)

where ∗ is the convolution operator. The loss function is then reweighted by
scaling the estimates with the inverse of the label frequency for each sample:

L =
1
N

N∑

i=1

�(yi, ŷi)
p′(ŷi)

. (6)

2.3 Two-Layer Random Forest (TLRF)

ResNeXt takes an RGB input image xi and uses a series of convolutional blocks
to produce a feature embedding of 2,048 dimensions fi ∈ R

2,048. It then uses a
single-layer perceptron (fully connected neural regressor) with learned weights
to make a final prediction of age, ŷi ∈ R. We replace the neural regressor with
our two-layer random forest (TLRF) combining classification-plus-regression to
make a final prediction. In the first stage, TLRF uses ResNeXt features as input
to the first layer (random forest classifier) to make a classification of the given
sample’s age group in the form of a probability vector pi(G) ∈ R

8 where:

G ∈ {[1, 9], [10, 19], [20, 29], [30, 39], [40, 49], [50, 59], [50, 59], [60, +∞]}
We concatenate the 8-dimensional predicted probability vector for all eight of
the age groups with the learned 2048-dimensional deep embedding feature vector
fi into an augmented vector. We, then use that as input to the second random
forest regressor layer in our TLRF. The final regression output is then rounded
up to the nearest integer. A visual diagram of our approach is shown in Fig. 2.

Our experiments showed that TLRF improves the performance and stability
of ResNeXt. For each layer of TLRF, we utilize a random forest of 100 decision
trees trained in parallel on the ResNeXt embedding feature vectors, and each
decision tree uses a maximum of 128 randomly selected features.

2.4 Training the Deep Architectures

Dataset Split. The VGG-Face2 MIVIA Age Dataset consists of 575,073 exam-
ple cases [1,2]. We used 90% of this dataset (517,562) for training and the remain-
ing 10% for evaluation (57,511). As the dataset is not uniformly distributed in
terms of age, we sample 10% from each age group j for evaluation; rather than
10% uniformly sampled across the entire set. We then divide the training data
further into a training and validation split of 90% and 10% sizes respectively.

Pre-processing. Face images are normalized as explained in the pre-processing
section. In addition, we resize the images to 224 × 224 resolution to match the
expected input of ResNeXt network. Additionally, for better network stability,
we normalize the age to range between 0 and 1.
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Fig. 2. Proposed ResNeXt+TLRF facial age estimation pipeline using ResNeXt-50
feature embedding vector with ImageNet transfer learning plus VGG-Face2 MIVIA
Age training. A dual stage random forest estimates both class labels and age estimates.

Data Augmentation. For data augmentation, we use random horizontal flip-
ping. Since our experiments showed that face-alignment hurts training, random
rotations and distortions could also be applied in future work.

3 Experimental Results

In addition to the mean absolute error, we report the Age Accuracy and Regu-
larity (AAR metric). GTA contest defined the AAR performance measure as:

AAR = max(0; 7 − MAE) + max(0; 3 − σ) (7)

with a maximum score of 10; with σ =
√

1
8

∑8
j=1(MAEj − MAE)2 where MAE

is the mean absolute error and MAEj is the mean absolute error for the jth age
group. The mean average error (MAE) is given as MAE = 1

N

∑
i |yi − ŷi|, where

i is the sample index over all age categories. All evaluations are performed on
the evaluation set that we described in Sect. 2.4 unless specified otherwise.

3.1 ResNeXt

A performance comparison of ResNet vs. ResNeXt in terms of MAE is given in
the Table 1. Additionally, the table shows the difference in performance of our
custom soft AAR loss compared to the mean squared error (MSE) loss LMSE

where, for a given batch of size n:

LMSE =
1
n

n∑

i=1

||yi − ŷi||2 (8)



Deep Random Forests for Facial Age Estimation 291

Table 1 shows how using ResNeXt over its predecessor ResNet improves per-
formance. Additionally, our custom AAR loss consistently improves the AAR
metric in both networks. We can also note that LDS did not help in improv-
ing the performance; hence, we choose to move forward with ResNeXt trained
using the AAR Loss. The LDS-trained ResNeXt network was trained using both
MSE and AAR loss functions. The LDS-trained ResNeXt trained using AAR
loss shows better performance.

Table 1. Accuracy comparison of ResNet, ResNeXt and ResNeXt with label distribu-
tion smoothing LDS using the evaluation data.

Architecture Loss MAE1 MAE2 MAE3 MAE4 MAE5 MAE6 MAE7 MAE8 MAE↓ σ ↓ AAR↑
ResNet LMSE 1.74 1.94 1.58 2.00 2.05 1.83 1.77 1.94 1.87 ± 2.05 0.14 7.99

LAAR 1.79 1.96 1.47 1.83 1.94 1.77 1.69 1.99 1.75 ± 1.98 0.17 8.08

ResNeXt LMSE 2.11 1.85 1.53 1.95 2.02 1.81 1.72 1.93 1.82 ± 2.06 0.17 8.01

LAAR 1.91 1.89 1.46 1.80 1.93 1.72 1.74 1.78 1.73 ± 1.97 0.15 8.12

ResNeXt (LDS) LMSE 1.92 2.11 1.61 1.97 2.04 1.84 1.85 1.88 1.88 ± 2.06 0.15 7.98

LAAR 1.98 2.02 1.51 1.90 2.01 1.79 1.76 1.87 1.81 ± 2.05 0.17 8.03

3.2 Two-Layer Random Forest (TLRF)

TLRF Classifier Module. Although classifying a face’s age group is an easier
task than the exact age, it is still challenging due to age class imbalance. Table 2
shows the performance of the TLRF classifier module on our evaluation set. The
F1 measure is much lower for underrepresented age groups due to lower recall.

TLRF Regressor Module. Several regression random forest topologies were
evaluated against our proposed TLRF. First, a traditional regression random
forest (RRF) was trained and evaluated with different number of trees using the
ResNeXt 2048-dimensional feature descriptor. Then, we compare the single-layer
random forest approach (RRF) to the proposed TLRF. Table 3 summarizes the
RF ablation study experimental results using ResNeXt in combination with dif-
ferent RF configurations. For this part, a ResNeXt-50 was trained using MSE
loss. The ResNeXt-50 residual deep network with a fully connected final regres-
sion layer performed well with an AAR of 8.01 on the held out evaluation set
and 8.16 on the combined training and evaluation sets. Incorporating a random

Table 2. TLRF age group classifier module performance (using ResNeXt descriptor)
on evaluation data. Support is the subset of data in each of the eight age categories
used for evaluation.

Age group <10 10–19 20–29 30–39 40–49 50–59 60–69 >69 Overall

Precision 0.85 0.75 0.87 0.83 0.82 0.83 0.82 0.85 0.83

Recall 0.63 0.58 0.89 0.83 0.83 0.84 0.77 0.54 0.83

F1 0.72 0.66 0.88 0.83 0.82 0.84 0.80 0.66 0.83

Support 185 1960 14153 15001 13226 9341 3298 347 57,511
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Table 3. Experimental results showing accuracy on training+evaluation (T+E) and
evaluation (E) sets with different random forest learning methods (number of trees
and number of layers). Last row ResNeXt+TLRF is our final result. RRF refers to
Regression Random Forest. All ResNeXt networks were trained using the MSE loss.

Method MAE↓ σ ↓ AAR↑
Dataset T+E E T+E E T+E E

ResNeXt 1.35 ± 1.75 1.82 ± 2.06 0.14 0.17 8.16 8.01

ResNeXt + RRF (64 trees) 1.65 ± 1.57 1.90 ± 2.10 0.16 0.15 8.19 7.95

ResNeXt + RRF (100 trees) 1.66 ± 1.56 1.89 ± 2.09 0.15 0.15 8.20 7.96

ResNeXt + RRF (200 trees) 1.66 ± 1.56 1.89 ± 2.09 0.17 0.15 8.17 7.96

ResNeXt + TLRF (2×100 trees) 1.66 ± 1.56 1.88 ∓ 2.08 0.13 0.14 8.21 7.98

forest learning component improves the overall AAR accuracy using 100 trees
to 8.20 on the combined training and evaluation sets and reduces AAR to 7.96
on the held out evaluation set. Increasing the number of trees to 200 did not
improve performance on the evaluation set and decreased AAR performance to
8.17 on the combined T+E sets. Using the two-layer classification plus regression
random forest with the same ResNeXt-50 feature embedding vector results in the
best AAR of 8.21 on the combined training and evaluation sets and improves
the score to 7.98 comparing to traditional regression random forests. This model
also had the smallest class standard deviation (σ), on the held out evaluation
set and the combined set.

3.3 Generalizability Performance Using the Withheld GTA Data

Based on the results described previously, we submitted the ResNeXt+TLRF
as our single official submission to the GTA Challenge competition. After our
official submission to the GTA contest, we continued to explore the generaliza-
tion capability of the different architectures on the unseen hidden dataset with
assistance from the MIVIA Lab at the University of Salerno.

Experimental results in Table 4 show that using the proposed custom AAR
loss function consistently improves the generalizability of face estimation MAE
accuracy in both our evaluation and the GTA hidden test set for all methods.
ResNeXt trained using the AAR loss function has the highest AAR score of
8.12 on the heldout evaluation data and score of 7.02 on the hidden test set.
The submitted ResNeXt+TLRF method also generalizes well on new unseen
faces and has the lowest age group variance of 0.98. We notice that apart from
the two underrepresented age groups (MAE1 and MAE8 with < 1.0% samples),
the MAE scores are quite consistent between our evaluation split data and the
GTA challenge’s hidden test data. It is important to note that the standard
deviation, σ, is more than eight times higher in the hidden dataset than the held
out evaluation data due to larger deviations in MAE1 and MAE8. The lowest
variation in the hidden or withheld data is the ResNeXt (MSE)+TLRF method,
that we submitted to the GTA contest, and is italicized in Table 4.
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Table 4. Results on the Guess the Age (GTA) contest hidden (or withheld) test
dataset. Column labeled D indicates dataset used: T, for our separate evaluation set
(see Sect. 2.4); H, for the unseen hidden GTA challenge test set.

Method D MAE1 MAE2 MAE3 MAE4 MAE5 MAE6 MAE7 MAE8 MAE↓ σ ↓ AAR↑
ResNeXt (MSE) T 2.11 1.85 1.53 1.95 2.02 1.81 1.72 1.93 1.82 0.17 8.01

ResNeXt (AAR) T 1.91 1.89 1.46 1.80 1.93 1.72 1.74 1.78 1.73 0.15 8.12

ResNeXt (LDS MSE) T 1.92 2.11 1.61 1.97 2.04 1.84 1.85 1.88 1.88 0.15 7.98

ResNeXt (LDS AAR) T 1.98 2.02 1.51 1.90 2.01 1.79 1.76 1.87 1.81 0.17 8.03

ResNeXt + RF T 1.81 2.04 1.57 2.01 2.08 1.88 1.88 1.97 1.89 0.15 7.96

ResNeXt (MSE) + TLRF T 1.89 1.92 1.57 2.01 2.08 1.87 1.87 1.92 1.88 0.14 7.98

ResNeXt (AAR) + TLRF T 1.61 1.94 1.51 1.85 2.00 1.78 1.79 1.79 1.79 0.15 8.06

ResNeXt (MSE) H 5.92 2.52 1.71 1.86 1.96 1.86 2.37 3.21 1.91 1.31 6.78

ResNeXt (AAR) H 5.35 2.37 1.59 1.80 1.89 1.78 2.23 3.09 1.82 1.16 7.02

ResNeXt (LDS MSE) H 5.87 2.63 1.86 2.03 2.02 1.85 2.07 2.60 2.00 1.26 6.74

ResNeXt (LDS AAR) H 5.42 2.24 1.74 1.94 1.92 1.80 2.24 3.55 1.91 1.19 6.90

ResNeXt + RF H 5.35 2.38 1.66 1.83 1.94 1.85 2.38 3.82 1.88 1.20 6.92

ResNeXt (MSE) + TLRF H 4.84 2.45 1.87 2.05 2.10 1.94 2.44 3.67 2.05 0.98 6.97

ResNeXt (AAR) + TLRF H 5.29 2.35 1.67 1.83 1.94 1.83 2.34 3.64 1.87 1.17 6.96

Additionally, using MSE loss, our TLRF method outperformed LDS.
Although ResNeXt (AAR) without a TLRF module achieves a slightly bet-
ter AAR score than ResNeXt+TLRF, it actually has a higher (worse) σ score,
which indicates less generalizability across underrepresented age groups. Other
methods of augmentation may help with enhancing the generalization capability
of the architectures by pretraining with automatic face aging methods which
provide a large amount of ground truth across age categories [37], selectively
augmenting the lowest representated groups more, incorporating augmentation
in feature space during the random forest training, etc.

4 Conclusions

Accurate unconstrained age estimation or categorization, using images or video,
is useful in a number of applications including face recognition, age appropri-
ate advertising and retail, venue access, detecting deep fakes, health and exer-
cise monitoring, emotion analysis, forensics, privacy and security applications
[38]. Our proposed two-stage supervised learning pipeline for facial age esti-
mation using a ResNeXt deep learning stage followed by a two-layer random
forest (TLRF) was able to estimate age with a mean absolute error of about
2 years across all eight age categories with a standard deviation of less than
one year. Despite the significant class imbalance in the training data, we were
able to achieve an AAR score of 6.97±0.98 (ResNeXt+TLRF) and 7.02±1.16
(ResNeXt) out of 10.0 on the hidden test data of the VGG-Face2 MIVIA Age
Dataset as part of the Guess the Age (GTA) contest. The most challenging age
categories are the youngest and oldest groups at the two extremes of the age dis-
tribution for which there was the least amount of training data (less than 1%).
The experimental results demonstrate that a distribution adaptive (AAR) loss
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function is effective for training with class imbalance. Face alignment did not
improve performance and test time data augmentation had limited benefit. For
facial age estimation, an ensemble of weak learners trained on deep features is
less sensitive to under-represented age groups compared to a purely deep neural
regression model trained in an end-to-end fashion.
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