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A B S T R A C T

Dietary habits are closely related to people’s health condition. Unhealthy diet can cause
obesity, diabetes, heart diseases, as well as increase the risk of cancers. It is necessary to
have a monitoring system that helps people keep tracking his/her eating behaviors. Tradi-
tional sensor-based and camera-based dietary monitoring systems either require users to wear
dedicated devices or may potentially incur privacy concerns. WiFi-based methods, though
yielding reasonably robust performance in certain cases, have major limitations. The wireless
signals usually carry substantial information that is specific to the environment where eating
activities are performed. To overcome these limitations, we propose mmEat, a millimeter wave-
enabled environment-invariant eating behavior monitoring system. In particular, we propose an
environment impact mitigation method by analyzing mmWave signals in Dopper-Range domain.
To differentiate dietary activities with various utensils (i.e., eating with fork, fork and knife,
spoon, chopsticks, bare hand) for fine-grained eating behavior monitoring, we construct Spatial–
Temporal Heatmap by integrating multiple dimensional measurements. We further utilize an
unsupervised learning-based 2D segmentation method and an eating period derivation algorithm
to estimate time duration of each eating activity. Our system has the potential to infer the food
categories and eating speed. Extensive experiments with over 1000 eating activities show that
our system can achieve dietary activity recognition with an average accuracy of 97.5% and a
false detection rate of 5%.

1. Introduction

Dietary is an important activity in people’s daily lives since it is closely related to individuals’ health conditions. CDC shows that
n unhealthy diet can cause obesity, diabetes, heart diseases, as well as increase the risk of over 13 types of cancers (The harmful
effects of poor nutrition, 2021). A recent study (Why good nutrition is important , 2017) has shown that unhealthy diet contributes to
approximately 678,000 deaths each year in the U.S. Thus, it is necessary to develop a monitoring system that can help individuals
keep tracking their dietary behaviors and offer them useful suggestions.

Eating behavior monitoring can provide essential information (e.g., food categories, eating speed) for dietary behavior analysis
and provide useful recommendations if poor dietary behaviors are detected. Traditional eating monitoring systems (Kong & Tan,
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2012; Using a wearable camera to increase the accuracy of dietary analysis, 2013) use cameras to take images or videos of users to
track their dietary information. However, those vision-based methods may raise potential privacy concerns from collecting images
or videos of users. In contrast, some studies (Amft, 2010; Zhang, Jr, Xiao, & Tham, 2009) propose to use wearable sensors for dietary
onitoring. Though sensor-based methods do not raise privacy concerns, users are required to wear one or multiple sensors during
ating, which is inconvenient and impractical.
These inconveniences contribute to the emergence of device-free monitoring systems such as WiFi-based methods. Lin et al.

ropose WiEat (Lin et al., 2020), which utilizes channel state information extracted from WiFi devices to recognize different dietary
ctivities. However, as WiFi signals are sensitive to surrounding environments and are vulnerable to interference, more stable and
tronger signals are desired for eating monitoring tasks. Recent years have witnessed the success of using mmWave signals for posture
stimation (Raja, Vali, Palipana, Michelson, & Sigg, 2020) or activity recognition (Ren et al., 2021). This is because mmWave signals
ave more stable and higher-resolution with shorter wavelengths and stronger directivity. In this paper, we propose to design an
ating behavior monitoring system via mmWave techniques which have already been integrated into the new generation WiFi
tandards (i.e., IEEE 802.11ad).
In order to utilize mmWave signals for eating behavior monitoring, several challenges should be addressed in practice. First,

eople usually eat in different places (e.g., dining room, living room) every day. Traditional WiFi-based eating monitoring systems
hat are trained in a specific environment will typically not work well when being applied in a different environment. To solve
his problem, in this work, we propose an environmental impact mitigation method by subtracting the static component from every
rame in the Dopper-Range domain. Our eating monitoring system is environment-invariant and can be applied to new environments
ithout extra training. Moreover, in the real world, people might perform non-eating activities throughout the day. Hence, we
evelop a dietary activity detection method to detect eating activities automatically based on the repetitive velocity pattern of
ating activity in the time domain. Furthermore, fine-grained eating behavior monitoring requires differentiation among eating
ctivities with various utensils (e.g, eating with a fork or spoon). However, different dietary activities are hard to be distinguished
ince they all involve hand movements with similar ranges. To address this problem, we construct Spatial–Temporal Heatmap by
ntegrating velocity information from every distance measurement in the Doppler-Range domain and combining them with time
nformation. Besides, we utilize an unsupervised learning-based 2D segmentation algorithm to facilitate accurate dietary activity
ecognition. We further develop a deep neural network to extract the unique characteristics of every eating activity and classify
hem based on the utensils used (i.e., fork, fork&knife, spoon, chopsticks, bare hand). In addition, to further derive detailed dietary
ehavior information, we estimate the eating period of every eating activity and infer the eating duration and speed of meals.
The contribution of our works are summarized as follows:

• As far as we know, mmEat is the first eating behavior monitoring system using COTS mmWave radar sensor.
• Our proposed system constructs unique environment-invariant Spatial–Temporal signal representations that integrate velocity,
time duration, and range of movement information.

• Our proposed system has the capability of eliminating environmental impact from static objects and differentiating eating
activities from daily activities. Moreover, we develop a fine-tuned deep neural network to facilitate accurate dietary activity
recognition.

• Extensive experiments with 6 people over 1000 eating activities show that our system can achieve dietary activity recognition
with an average accuracy of 97.5% and a false detection rate of 5%.

. Related work

Traditional eating monitoring systems widely use Vision-based methods (Kong & Tan, 2012; Using a wearable camera to increase
he accuracy of dietary analysis, 2013). Such methods use cameras to take images or videos when users eat meals for further analysis.
ietCam (Kong & Tan, 2012) exploits photos or videos taken by commercial mobile devices to perform dietary monitoring. Another
ystem developed by Using a wearable camera to increase the accuracy of dietary analysis (2013) exploits Microsoft SenseCams to
apture videos and estimate the dietary energy intake. Such vision-based methods usually raise potential privacy concerns since the
amera may capture users’ private information such as social relationships and location privacy.
Some existing work tend to use wearable sensors for dietary monitoring to avoid potential privacy concerns in vision-based
ethods. Amft (2010) use a condenser microphone to detect air-conducted vibrations caused by chewing to determine food textures.
hang et al. (2009) propose an accelerometer-based wearable device attached to users’ wrists to detect eating activities based on
he three-dimensional kinematics movement model. Though sensor-based methods do not have privacy concerns, users are required
o wear one or multiple sensors during eating, which is inconvenient and impractical.
Recently, radio frequency (RF) signals have been proposed to address the above limitations. As a prevalent RF sensing modality,
iFi signals have shown initial success in many activity recognition applications. Wang et al. develop E-eyes (Wang et al., 2014),
hich exploits WiFi signals to provide device-free human activity identification. Lin et al. develop WiEat (Lin et al., 2020) that can
chieve high accuracy in device-free dietary monitoring using commercial WiFi devices. However, WiFi-based methods are sensitive
o environmental changes. Millimeter wave (mmWave) has been proven more robust than WiFi due to its high bandwidth and native
eam-forming technology. Existing mmWave-based systems like (Raja et al., 2020; Ren et al., 2021) often focus on posture estimation
r activity recognition. None of them show that their system can distinguish eating activities with minute differences in hand or
inger movements and provide fine-grained analysis of eating activities. This paper develops a system leveraging mmWave signals
2

rom commodity mmWave devices to provide fine-grained dietary monitoring.
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Fig. 1. Spatial–Temporal Heatmap of three eating activities.

. System and methodology

.1. Preliminaries

The intuition behind monitoring eating activity using mmWave is that eating activities with different utensils have minute
ut different action components. For example, ‘‘eating with fork and knife’’ has a cutting action while ‘‘eating with fork’’ does
ot. Such action components generate different reflections of mmWave signals that can be utilized for eating activity monitoring.
o demonstrate the feasibility of dietary activity recognition, we conducted experiments by asking one participant to perform 3
ietary activities with different utensils (e.g., eating with fork, fork&knife, bare hand) in an office. Specifically, a mmWave device
i.e., AWR1642) with a sampling rate of 100 frames/sec is placed at one end of a table. The participant sits in front of the table with
𝑚 away from the device while performing these activities. As shown in Fig. 1, the three Spatial–Temporal Heatmap of velocity,
istance, and time duration have significantly different patterns for the three eating activities.

.2. System overview

The goal of mmFit is to provide environment-invariant fine-grained eating behavior monitoring by leveraging a single commercial
mWave device. Toward this end, we develop a low-cost mmWave-based eating behavior monitoring system, mmEat. The system
akes as input the mmWave signals reflected from the human body. The system first performs signal processing to derive the velocity,
istance information of the user’s activity from the received mmWave signals. Then, it eliminates the impact from environment
y subtracting signals reflected off static objects. Next, we construct Spatial–Temporal Heatmap to aggregate the instantaneous
elocity from every distance measurement in the Doppler-Range domain and combine them with time information. Such integrated
ultidimensional signal representation can facilitate fine-grained activity recognition. We propose a dietary activity detection
ethod based on the repetitive eating activity patterns in the time domain to detect dietary activities based on the Spatial–Temporal
ignal representation. To further differentiate eating activities, we apply DBSCAN (Schubert, Sander, Ester, Kriegel, & Xu, 2017) to
luster and segment each activity, and develop a deep neural network to identify them. The last component of our proposed system
s eating period monitoring which estimates the eating period of each eating activity. Such information is useful to assist various
ealth-related problems, such as diabetes, heart diseases, etc. The overview of mmEat is shown in Fig. 2.

.3. Spatial–temporal signal representation

Signal Preprocessing. We first perform range-FFT and Doppler-FFT on the received mmWave signals to derive the distance and
elocity information of user’s activity respectively. Then, we derive the Doppler-Range Heatmap based on the instant velocity and
istance measurements. As shown in Fig. 3, the heatmap indicates the strength of frequency responses of the reflected signals via
he color. However, since static objects (e.g., furniture and walls) in the environments can also reflect mmWave signals, it is still
ard to extract signals from the human in the Doppler-Range Heatmap.
Environmental Impact Mitigation. To eliminate the environmental impact mentioned above, we propose an environmental

mpact mitigation method by filtering out of non-moving objects in Doppler-Range domain. We note that the frequency responses
f the mmWave signals reflected from static objects in the environment (e.g., walls and furniture) do not change over time.
herefore, we can eliminate the impact caused by static objects by subtracting the time-invariant frequency response from the
oppler-Range Heatmap. In particular, we collect mmWave signals in a static environment for a short period (e.g., 3 min) and
erive the Doppler-Range Heatmap to estimate the time-invariant frequency response.
Spatial–Temporal Heatmap Construction. Although the denoised Doppler-Range Heatmap can capture the instant velocities

t different distances, it is not enough to describe the process of the dietary activities. We propose a more comprehensive signal
epresentation by constructing the Spatial–Temporal Heatmap that contains the temporal information of eating activities (e.g., time
uration of each activity and variation of velocity with time). Specifically, we accumulate the velocity measurements of each distance
n every Doppler-Range Heatmap frame and then present their dynamics in the time domain as follows:

𝑉𝑞,𝑡 =
𝐷
∑

(𝑓𝑝,𝑞,𝑡) × 𝑣𝑝,𝑡, 𝑝 ∈ [1, 𝐷], 𝑞 ∈ [1, 𝑅], (1)
3
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Fig. 2. System overview of mmEat.

Fig. 3. Doppler-Range Heatmap when one user is eating using a fork.

Fig. 4. Spatial–Temporal Heatmap of four eating activities using a fork.

where 𝑓𝑝,𝑞,𝑡 is the strength of a frequency response in the Doppler-Range Heatmap, 𝑝 is the doppler index, 𝑞 is the range index, and
𝑡 is the frame index. 𝑣𝑝,𝑡 is the velocity corresponding to a Doppler index p at frame 𝑡. Then we normalize the derived 𝑉𝑞,𝑡 to [−1, 1]
and map the original 2-dimensional Doppler-Range data to a more comprehensive 3-dimensional Spacial–Temporal Heatmap, which
presents the process of the eating activities as shown in Fig. 4.

3.4. Dietary activity classification

Dietary Activity Detection. After constructing Spatial–Temporal signal representations from mmWave signals, we perform the
dietary activity detection to determine whether the mmWave signals contain dietary activities or not. We find that dietary activities
usually have repetitive patterns in the Spatial–Temporal domain while non-dietary activities do not. The reason is that dietary
4
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Fig. 5. Experiment Setup.

activities consist of repetitive hand and arm movements that bring food to the mouth from the table. Based on the observation, we
propose to detect dietary activities by searching the repetitive patterns in the Spatial–Temporal Heatmap using a sliding window.
Particularly, we accumulate the velocities from all the distances at a particular time in a frame to transfer the heatmap to one-
dimensional data. We use an autocorrelation-based method to determine whether the mmWave signals contain a repetitive pattern
or not. We empirically determine that a dietary activity is detected when the number of peaks in the autocorrelation results is more
than 5.

Dietary Activity Clustering and 2D Segmentation. Once a dietary activity is detected, the system performs the dietary activity
segmentation to focus on the signals related to dietary activities. The basic idea is to determine each dietary activity’s time duration
and range of movement in the Spatial–Temporal Heatmap. We first remove the points with low absolute velocity from the heatmap
based on an empirical threshold. Then, we utilize an unsupervised learning-based clustering method (i.e., DBSCAN) to separate the
points into different clusters. We design a dynamic algorithm to determine the 2D window size of each activity based on its time
duration and range of movement. Particularly, for each cluster, we determine the window size based on the differences between
the coordinates of the edge points in the Spatial–Temporal plane. The box in Fig. 4 illustrates the 2d segmentation results of our
algorithm. In addition, we scale up the size of the window by an empirical constant (i.e., 1.2) to ensure that it contains all the
signals related to dietary activities.

Deep Learning-based Classifier. We choose to use neural network-based method for final classification since it has shown
robust performance in image classification tasks (Simonyan & Zisserman, 2015). The segments derived by the proposed segmentation
method are first resized to images with size of 224 × 224. Our convolutional neural network contains 9 layers. 3 convolutional layers
are exploited for up-sampling, 3 Max Pooling layers with each follows a convolutional layer are used for down-sampling. After the
process of 3 rounds of up-sampling and down-sampling, a 64-dimensional feature map is obtained and a flatten layer is followed to
reduce the feature map into a one-dimension array. Two dense layers at the end of the network will classify arrays into 5 categories,
each category is mapped to a specific dietary activity.

3.5. Eating period monitoring

Researchers (Ohkuma et al., 2015) have demonstrated that the speed of eating is an important factor for weight control. People
eating quickly have a significantly higher possibility of obesity. The basic idea of eating period monitoring is to derive the accurate
time duration of each eating activity and infer detailed eating information (e.g., eating period of a meal, eating speed). Given that
objective, we propose an eating period derivation method. We infer the time duration of each eating activity based on calculating the
interval with neighboring activities. Specifically, as shown in Fig. 4, we determine the beginning of each eating activity by searching
the time stamp of the left edge from the 2D segmentation box. We then estimate the eating period of each eating activity based on
the differences between consecutive time stamps. By estimating the time duration of each eating activity, we could further infer the
accumulated eating period using specific utensils during a meal, which could be used to estimate other high-level information such
as the calorie intake and nutrition balance. In addition, the number of eating activities during a meal and average eating period
could also be used to detect poor dietary behaviors of users, such as overeating and eating too quickly.

4. Performance evaluation

4.1. Experimental setup:

Devices: In our experiments, we use a single TI AWR1642 commercial mmWave radar equipped with a 2 × 4 antenna array. The
radar operates at a frequency band between 77 GHz and 81 GHz with a sampling rate fixed at 100 frames per second. All devices
5

are attached to a DELL G3 laptop for deep learning model inference.
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Fig. 6. Confusion matrix of dietary activity classification using CNN-based classifier.

Fig. 7. Performance Comparison among four traditional machine learning and CNN-based classifier.

Data Collection: We conduct the experiments by recruiting 6 volunteers (age from 22 to 40). The profiles are collected at an
office with a size of 5 × 3 m2. A total of 5 typical eating activities are performed by the volunteers. Over 1000 eating activity data
are collected and the ground truths are measured and verified by camera-based method during the experiments. As is shown in
Fig. 5, we totally test three different positions and three distances (1 m, 1.5 m and 2 m) to evaluate impact of device positions and
distances. For the evaluation of environment impact, we collect data under three different environments: (A). a lounge with a size
of 4 × 4 m2; (B). a corridor with a size of 5 × 9 m2; (C). a classroom with a size of 9 × 15 𝑚2.

Evaluation Metrics: We define four different evaluation metrics: Dietary Activity Recognition Accuracy is the percentage of
predicted dietary activities that are correctly recognized among all activities; False Detection Rate (FDR) is defined as the ratio
between the number of incorrectly classified activities and the total number of activities. Confusion Matrix visualizes the percentage
of a specific activity being identified among all the activities. Estimated Error defines the difference between the estimated eating
duration and actual eating duration for a single dietary activity.

4.2. Performance of dietary activity classification

In this section, we first compare the overall performance of the proposed CNN-based classification method with traditional
classifiers. Fig. 6 demonstrates the overall recognition accuracy and FDR of five classifier. Our CNN-based method outperforms
all four traditional methods and achieves 96.78% in recognition accuracy and 3.3% in FDR. We then show the dietary activity
classification for five activities. As shown in Fig. 7, the recognition accuracy for all activities are higher than 90%. The accuracy
of using bare hand is a little lower than other activities, because the body movement of using bare hand is similar to that of using
spoon, which may cause some confusion to the classifier. The result confirms that our CNN-based classifier can achieve robust
performance in dietary activity classification.

4.3. Impact of different environments

We then evaluate the impact of different environments on system performance. In particular, we collect data from three different
environments mentioned in . We use data from one environment as the training set and data from the other two environments as the

, all of the training–testing pairs achieve classification
6

testing set and try different training–testing pairs. As demonstrated in Fig. 8
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Fig. 9. Impact of different positions of mmWave device in office.

Fig. 10. Comparison of eating period estimated error.

accuracy over 88% and with FDR below 9% even the training set and testing set are collected from different places. This result
proves that our system is able to offer domain-invariant performance under different environments.

4.4. Impact of different device position

Different positions of the device may affect the accuracy of dietary activity classification. We study the impact of device position
on our CNN-based classifier. We evaluate three positions demonstrated in Fig. 5. As shown in Fig. 9, at all three positions, our system
aintains an FDR lower than 4%. The accuracy of position P1 and position P2 are slightly lower than that of default position S.
his is because when the device is located at a position not facing the user, user’s arms are parallel to the device, causing weaker
oppler effects and vaguer Spatial–Temporal Heatmaps. But our system still maintains an accuracy over 94%. The result proves that
ur system can still maintain a good performance in dietary activity classification even the device is situated at different positions.
e also test the system at three distances (i.e., 1 m, 1.5 m, 2 m) at position S and find that the performance is not affected.

.5. Performance of eating period monitoring

We next evaluate the performance of eating period monitoring for different food intake activities. In our experiments, each of
he 5 activities is performed 160 times and we collected 800 eating activities in total. As shown in Fig. 10, the average estimated
rror (indicated by red points) of using fork, fork&knife, spoon, chopsticks and bare hand are 67 ms, 88 ms, 141 ms, 67 ms and
24 ms, respectively, which are all within 150 ms. Additionally, the estimated error for all the collected activities are all smaller than
7
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400 ms. The results demonstrate that our proposed system can precisely estimate eating period and maintain a low estimated error
for different activities. Furthermore, by calculating the average time duration of each eating activity, we can estimate users’ eating
speed and infer high-level information such as calories intake or analysis of nutritional balance. The detailed dietary information
can be further used to assist the healing of various health problems caused by bad eating habits.

5. Conclusion

In this paper, we explore the feasibility of using mmWave signals for fine-grained dietary behavior monitoring. We show that the
roposed CNN-based eating behavior monitoring system is environment-invariant and can be applied to new environments without
xtra training efforts. We also demonstrate the potential of the proposed system to provide users with comprehensive understanding
f their eating behaviors and help them get rid of unhealthy dietary habits. Extensive experimental results show that our system
an achieve dietary activity recognition with over 97.5% average accuracy and less than 5% FDR.
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