Workshop Presentation

Checkmate "21, November 19, 2021, Virtual Event, Republic of Korea

Optimization to the Rescue: Evading Binary Code Stylometry
with Adversarial Use of Code Optimizations

Ben Jacobsen
bjacobsen@email.arizona.edu
University of Arizona
Tucson, Arizona, USA

ABSTRACT

Recent work suggests that it may be possible to determine the
author of a binary program simply by analyzing stylistic features
preserved within it. As this poses a threat to the privacy of program-
mers who wish to distribute their work anonymously, we consider
steps that can be taken to mislead such analysis. We begin by ex-
ploring the effect of compiler optimizations on the features used for
stylistic analysis. Building on these findings, we propose a gray-box
attack on a state-of-the-art classifier using compiler optimizations.
Finally, we discuss our results, as well as implications for the field
of binary stylometry.

CCS CONCEPTS

« Security and privacy — Privacy protections; « General and
reference — Empirical studies; Experimentation; « Software and
its engineering — Compilers; « Computing methodologies —
Machine learning; « Social and professional topics — Surveil-
lance.

KEYWORDS

Privacy; Adversarial Machine Learning; Stylometry; Bayesian Opti-
mization

ACM Reference Format:

Ben Jacobsen, Sazzadur Rahaman, and Saumya Debray. 2021. Optimization
to the Rescue: Evading Binary Code Stylometry with Adversarial Use of
Code Optimizations. In Proceedings of the 2021 Research on offensive and
defensive techniques in the Context of Man At The End (MATE) Attacks
(Checkmate °21), November 19, 2021, Virtual Event, Republic of Korea. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3465413.3488574

1 INTRODUCTION

The analysis of individual stylistic characteristics has been used to
infer the authorship of natural-language texts [18, 25, 33]. The
idea has also been applied to software, focusing on the analy-
sis of stylistic clues in software to identify its possible authors
[1, 4, 9, 10, 20, 21, 32, 36, 41, 46, 50]. Software, unlike natural-
language prose, has characteristics that can make stylistic analysis
challenging: for example, it can be written by multiple authors or
incorporate code snippets obtained from sites like StackOverflow.

This work is licensed under a Creative Commons Attribution International 4.0 License.

Checkmate ‘21, November 19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-8552-7/21/11.
https://doi.org/10.1145/3465413.3488574

Sazzadur Rahaman
sazz@cs.arizona.edu
University of Arizona

Tucson, Arizona, USA

Saumya Debray
debray@cs.arizona.edu
University of Arizona
Tucson, Arizona, USA

There are tools that automatically standardize features, like inden-
tation, which might otherwise carry stylistic information. Many
researchers have proposed strategies for dealing with each of these
issues, but for the most part they remain challenging open problems
for the field [26]. Nonetheless, in controlled settings, researchers
working with raw source code have attained accuracy of more than
95% when discriminating between over 200 authors [10]. Recent
work suggests that stylistic features may also survive compilation,
allowing the author to be identified from binaries [9]. However,
most prior work on this topic has typically considered only a few
“standard” optimization flags. It therefore remains an open question
whether stylometric analysis is robust in the face of the full array
of optimizations made available by modern compilers.

Note that while it is obvious that in, general, compiler optimiza-
tions can profoundly alter many of the low-level characteristics of
compiled code, it is not a priori obvious that such optimizations
can sufficiently erase all of the stylistic features characteristic of an
individual programmer for a particular program (see Section 3.4).
This makes it hypothetically possible that enough stylistic clues
might survive the optimization process to allow that program’s
author to be identified.

While code stylometry can be a useful tool in some circum-
stances, e.g., for resolving copyright disputes or identifying malware
authors, it also poses an undeniable privacy threat. There are many
legitimate reasons for a programmer to wish to distribute their
code anonymously. For example, programmers who write software
tools to circumvent the surveillance or censorship of repressive
governments, help activists track legislation and organize protests,
or help members of oppressed minorities, might all have reason
to fear discrimination or harassment should their involvement in
such projects become public knowledge.

This paper aims to address this privacy challenge, focusing on
compiled binaries, which are commonly used to distribute software.
We reject the use of code obfuscation tools, since these can make
maintenance problematic—and, more importantly from the per-
spective of a privacy-conscious developer, can potentially embed
identifying markers into the obfuscated code in ways that may
not be easy to detect (e.g., see [14]). Instead, we focus on leverag-
ing conventional compiler optimizations to erase stylistic clues in
compiled binaries. Importantly, our approach is usable by ordinary
privacy-conscious programmers who need not be familiar with
sophisticated machine learning concepts or tools based on such
concepts [42]. Our approach is based on Bayesian optimization, but
it is used only to recommend optimization flags to the program-
mer. The programmer can then research the recommended flags
to understand what the optimizations do, apply them and examine
the resulting binaries to determine their effect, and possibly adapt

Workshop Presentation

them in ways she prefers. This has two important advantages: (1) it
is easily integrated into conventional software development prac-
tices; and (2) it provides transparency and does not demand any
additional trust from the programmer on any “magic” software (e.g.,
obfuscators or anti-stylometry tools).

This paper makes the folowing contributions:

(1) We demonstrate experimentally that carefully chosen com-
piler optimizations can significantly alter the stylometric
characteristics of compiled binaries and impact the accuracy
of binary code stylometry. This indicates limits to the scope
of earlier work on binary-level stylometry when applied to
optimized binaries [9].

(2) We propose a method that is usable by ordinary program-
mers, using ordinary software development practices, to
systematically evade binary-level stylometry.

(3) Experimental evaluation, based on a state-of-the-art open
source binary stylometry system [9], shows that, our method
can cause a significant drop (%) in stylometric accuracy.

2 BACKGROUND
2.1 Code Stylometry

Code stylometry is the process of using the stylistic features of a
program to determine who wrote it [36, 41, 50]. This is typically
modeled as a supervised machine learning problem [1, 4, 9, 10, 20,
21, 32, 46].

A researcher begins by assembling a training dataset consisting
of many programs, all of which have known authorship. From each
program, the researcher extracts features which succinctly describe
it. These might be lexical features (such as indentation style or
function names), syntactic features (such as a preference for certain
data structures or tendency to write longer or shorter functions),
or semantic features (such as the actual algorithms implemented,
or the overall flow of control) [26]. In whatever combination, these
features are paired with a label indicating the author of the program
and fed to some variety of machine learning algorithm, which learns
how to discriminate between the different authors in the data. The
final result is a model, which can be used to predict the author of
new programs.

2.2 Compiler Optimization

Compiler optimizations aim to improve binary-level code metrics
while preserving observable behavior. The code metrics most com-
monly used are execution speed and code size, though researchers
have also considered energy usage [27, 38] and (in smart contracts)
monetary cost [3, 13]. Not surprisingly, optimizations focus on pro-
gram constructs that most impact the metric under consideration.
Thus, optimizations aimed at improving execution speed typically
focus on loops (e.g., loop unrolling, loop fusion, code motion out of
loops, loop vectorization), memory accesses (register allocation),
removal of redundant or unnecessary code (constant folding, dead
code elimination, common subexpression elimination), etc. [2]. Op-
timizations aimed at improving code size focus on reducing code
replication, e.g., via procedural abstraction [16].

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

2.3 Adversarial Machine Learning

Machine learning techniques generally operate by studying a large
amount of data drawn from some statistical distribution, and learn-
ing to recognize patterns within that data which help it solve some
task at hand (say, distinguishing spam from legitimate email). Once
these patterns have been learned, they can be used to classify new
inputs drawn from the same distribution.

Attacking these models generally boils down to violating the
assumption that the inputs to the model are drawn from the same
distribution as the training data. This might involve tampering
with the training data (data poisoning [35]), or carefully crafting
inputs that fool the classifier (called adversarial examples[12, 52]).
In both cases, the goal is to cause the classifier to behave incorrectly
in certain cases, for example by allowing spam into a recipient’s
inbox. Despite the success of machine learning in other domains,
many common machine learning techniques have been shown to be
extremely vulnerable to these sorts of attacks, and devising methods
for more robust learning remains a major open problem [5, 7, 53, 54].

In categorizing different types of attacks, one important variable
is the extent of the attacker’s knowledge of the system they are tar-
geting. At one extreme, the attacker is assumed to know everything
— the data used, the features extracted, the type of classifier, and so
on. This model, which is generally called white-box [51], represents
a worst-case scenario for the defender. At the other extreme, the
attacker knows only high-level information about what a classifier
is supposed to do, and the only way they can learn about its inner
workings is by feeding it inputs and seeing what it does. This model
is appropriately called black-box [15, 39]. In this paper, we adopt a
gray-box approach for our own attack model, which we explain in
Section 5.

2.4 Bayesian Optimization

Bayesian optimization is a technique for black-box global optimiza-
tion. That is, if we are allowed to query a function repeatedly, but
otherwise have no access to its inner workings, Bayesian optimiza-
tion can be used to search effectively for the input which maximizes
(or minimizes) the output. In our case, we use it to find the max-
imum of the function “Given some set of compiler optimizations,
return the accuracy of the target model when classifying a binary
compiled with those optimizations.”

For a more technical description of Bayesian optimization, the
reader is referred to Peter Frazier’s excellent tutorial [22]. This is
the high level concept:

At each stage of the algorithm, we have access to a record of all
of our previous queries. Using these inputs and outputs, we use
statistical inference to create a model of what we think our objective
function looks like. The core assumption here is that points that
are close to those we have already queried are likely to have similar
outputs, and we can be more certain about the output we would get
at a point the closer it is to points that we have already checked.

From here, we need to decide the next point to query. In order
to leverage our earlier queries, we want to focus on points near the
highest-value points we have found. But simultaneously, because
we want to find the global optimum, we also want to look at points
where we are very uncertain what we might get. To balance these
competing goals, we define an acquisition function over our domain

Workshop Presentation

which gives a certain weight to each priority, and choose our next
point by finding the maximum of this acquisition function. The
acquisition function is chosen so that it is easy to find the true,
global maximum in a short amount of time.

Finally, once we find the point that maximizes our acquisition
function, we query our objective function there, record the result,
and update our data. This process can be repeated as often as desired,
or until some computational budget is exceeded.

Bayesian optimization excels when querying our objective func-
tion is very expensive. In this situation, it’s worthwhile to take the
time to construct a surrogate model and optimize an acquisition
function over it. Choosing our next point in such a careful manner
lets us cut down on the total number of queries we need to make,
saving time and resources.

The greatest difficulty with Bayesian optimization is in scaling to
higher dimensions [22]. Intuitively, in high-dimensional spaces, ev-
erything is far away from everything else (a phenomenon poetically
called the Curse of Dimensionality). So, even after many queries, we
still might be very uncertain of the value of our objective function
for most inputs.

24.1 REMBO. REMBO is an extention of Bayesian optimization
proposed by Wang et al. [55]. In many real-world situations, a
problem can appear to be very high-dimensional, when in fact its
intrinsic dimensionality is quite small. That is, it may be the case
that only a few of the dimensions affect the objective function
significantly. For example, the hyperparameters of neural networks
have been found to have this property [6].

The key insight of Wang et al. is that it is possible to take advan-
tage of this structure when optimizing such a function, even when
we do not know exactly which of the hyperparemeters are actually
relevant. Thus, as long as we know that the intrinsic dimensionality
of a function is small (say, 10), we can find its optimum almost as
easily as we could a normal 10-dimensional function, even if we do
not know which 10 dimensions matter.

An example is useful to illustrate this surprising fact. Suppose
we want to find the optimum of a function with two parameters,
f(x,y). We suspect that only one of these parameters matter, but
we do not know which one. One solution is to simply look for
optimums on the line x = y. This reduces the space we have to
search from 2 dimensions to 1, and our space is still guaranteed
to contain the optimal value regardless of whether x or y is the
important dimension.

What if all the variation in our objective function lies in a 1-
dimensional subspace that isn’t aligned to either x or y? Then we
can simply choose a line to optimize along at random, and we will
only fail to find our optimum if the line we choose just happens to
be exactly perpendicular to the true 1-dimensional subspace, which
happens with probability 0.

This same reasoning can be extended to higher dimensions. The
upshot is that we can use Bayesian optimization for very high
dimensional functions as long as there is compelling reason to
believe that the intrinsic dimensionality is small. In section 3, we
study the impact of different compiler optimizations on binary
stylometry, and conclude that it appears to fit this pattern.

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

3 DESIGN INTUITIONS

Before diving into the details of our work, in this section we present
our intuitions behind leveraging compiler optimizations to build a
framework to evade binary code stylometry. Specifically, we discuss
how compiler optimizations affect binary-level code characteristics
and how this can impact binary-level code stylometry. This can
help us to provide a context to generalizations about binary-level
stylometry of optimized code that are sometimes encountered in
the research literature. Figure 1 shows the effects of some common
compiler optimizations successively applied to a small example C
program, shown in Figure 1(a).! Function inlining pulls the body of
the function f() into the caller function (Figure 1(b)). This causes
the iteration count of the for-loop to become known, allowing it to
be unrolled (Figure 1(c)). Finally, constant folding on the unrolled
loop allows the conditionals to be optimized away and results in the
code shown in Figure 1(d). In this example, a similar effect could
have been obtained using interprocedural constant propagation [11]
instead of function inlining. This example illustrates the following
key observations.

3.1 Optimizations affect core features

The characteristics of an optimized program can be very different
from both the source code it was obtained from as well as those of
the same program compiled with a different set of optimizations. For
example, function inlining can significantly change the structure
and size of function bodies, as shown in Figure 1(b); loop unrolling
can replace loops with longer loop-free instruction sequences, as
shown in Figure 1(c); and constant folding can get rid of conditional
branches, as shown in Figure 1(d).

It follows from this that source-level code features such as loop
structure or function size, which may be useful for source-level
stylometry, may not survive optimization unscathed. For example,
the loop and conditional in the original source code shown in Figure
1(a) are completely eliminated in the optimized code shown in
Figure 1(d). A corollary is that for stylometry purposes, source-
level code features such as function size or loop structure, extracted
from optimized binaries that have been decompiled using tools
such as Hex-Rays or Ghidra, may not correspond meaningfully to
the original source code.

3.2 Impact of code structure on optimization

The impact of any given optimizing transformation is dependent on
the characteristics of the code being optimized. For example, loop
unrolling will not have any effect on a program that does not have
any unrollable loops, and function inlining will not significantly
impact programs with few inlinable functions.

It follows from this that when we consider the efficacy of binary-
level code stylometry on optimized code, it is important to take into
account both the kinds of optimizations being applied and also the
characteristics of the code those optimizations are being applied
to. There are two corollaries: first, inferences about the efficacy

!For ease of understanding the results of various optimization steps are shown in the
form of C source code, although in reality the compiler would use an intermediate
representation, such as three-address code organized into a control flow graph, to
which the optimizations would be applied [2].

Workshop Presentation

void f(int m, int k)

for (; k>0; k--) {
if (k % 2 ==0) /* k even %/

m += 2x%k;
else /* k odd */
m-=1;

int main(int argc, char *xargv)
{
int n = atoi(argv[1]);

int m = n;
for (k = 3; k> 0; k--) {
if (k % 2 ==10) /x k even */

int main(int argc, char *xargv)
{
int n = atoi(argv[1]);
int m = n;
int k = 3;

if (k% 2==0) /x iter 1 %/
m += 2%k;

else
m-=1;

k=-;

if (k% 2==0) /x iter 2 %/
m += 2xk;

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

int main(int argc, char *xxargv)
{

int n = atoi(argv[1]);

int m = n;

;0 /% iter 1 %/
/* iter 2 x/
/* iter 3 x/

m-=1;
m += 4;
m-=1;

printf("%d\n", m);

return 0;

3 m += 2%k;
printf("%d\n", m); else /x k odd */
3 m-=1;
}
int main(int argc, char *xargv) printf("%d\n", m);
{
int n = atoi(argv[1]); return 9;
f(n, 3); }
return 9;
}

(a) Original program (b) After function inlining

else
m-=1;
k-=;

if (k % 2 ==0) /% iter 3 %/
m += 2%k;

else
m-=1;

k-=;

printf("%d\n", m);

return 0;

(d) After constant folding and
dead code elimination

(c) After loop unrolling

Figure 1: An example of the effect of compiler optimizations

of binary code stylometry based on a particular set of optimiza-
tions on a particular set of programs may or may not generalize
to a different set of optimizations applied to a different set of pro-
grams; and second, optimizations tailored to the characteristics of
a particular program can have a significantly greater impact on the
characteristics of the optimized code than a generic set of optimiza-
tions that may or may not be relevant to the code characteristics of
that program [45].

3.3 Interactions between optimizations

Compiler optimizations may not be independent of each other. This
is illustrated in Figure 1, where constant propagation to eliminate
the if-statement in the loop was made possible due to the prior
application of loop unrolling, which in turn was enabled due to the
loop iteration count becoming known via function inlining. Ren et
al. observe that optimizations may also sometimes influence each
other negatively [45].

3.4 Optimization and stylometry

As noted in Section 3.1, compiler optimizations can profoundly
alter the features in the optimized code. However, this does not, in
itself, imply that optimization can necessarily render binary-level
stylometry ineffective. There are two reasons for this:

(1) As discussed in Section 3.2, the impact of an optimization is
dependent on the structure of the code it is applied to. Thus,
even if an optimization is very effective in altering low-level
code features in general, the characteristics of a particular
program may render that optimization ineffective for that
program.

(2) Stylometric analyses rely on statistical analyses of multiple
stylistic features to attribute authorship. Even if we assume
that compiler optimizations can erase many of the stylistic
features characteristic of a particular programmer, it is by
no means obvious that they will be able to erase all such
characteristic stylistic features from a particular program. In
other words, it is possible that, for that particular program,
enough stylistic features may survive optimization to allow
authorship attribution.

3.5 The difficulty of provenance analysis

Compiler provenance refers to the problem of determining the exact
compiler and optimizations used to create a particular binary. This
involves identifying the family of compiler (e.g. GCC vs. Clang), the
version used (e.g. GCC 3.4.x vs. GCC 4.4.x), and the optimizations
employed (e.g. O0 vs. O2). Recent work in this area has produced
tools which are capable of determining the difference between
optimized and unoptimized binaries with high accuracy [43, 47].
However, compilers like GCC are capable of performing on the order
of 200 independent optimizations, and no work has come remotely
close to being able to distinguish between the corresponding ~ 2200
possible combinations.

This poses a difficulty for binary stylometry. Recall that clas-
sifiers generally must be trained on data drawn from the same
distribution that they will eventually be employed on. Thus, to
avoid accidentally classifying particular compilers or optimizations
instead of authors, it is important to use a classifier trained on pro-
grams compiled under the same conditions as the program being
studied. This may be feasible when that program has been compiled

Workshop Presentation

with very standard options, such as O0 and O2, but is currently
impossible to guarantee in general.

4 PRELIMINARY EXPLORATION

In this section, we present preliminary experiments that we per-
formed to assess the feasibility of our basic method. Binary sty-
lometry relies on extracting certain informative features from a
given binary. Our guiding research question was “do different com-
piler optimizations meaningfully influence the distribution of these
features?” An affirmative answer to this question is a necessary con-
dition to use compiler optimizations for obscuring stylistic features
and protecting programmer privacy.

4.1 Google Code Jam Dataset

In all of our experiments, we used data from the Google Code Jam
(GCJ), which is a popular international coding competition hosted
by Google. This dataset is standard in much of the literature around
program stylometry, e.g. [4, 9, 10] because it is one of the few large
corpuses of programs that:

(1) Are known to be written by specific, single authors
(2) Do not contain 3rd party or copy-pasted code
(3) Are attempting to perform the same task

These features make it in some sense ideal for analyzing pro-
gramming style. Specifically, our dataset consists of 200 authors
who participated in the 2017 GCJ. Then, for each author, our dataset
contains their submissions to 8 of the problems from the coding
competition. This data was originally collected by Quiring et al. [42],
who made it publicly available. All submissions were confirmed to
be correct.

4.2 Impact of optimization on core features

While it is clear that different choices of optimizations can lead to
different binaries being produced, it is not immediately obvious
to what extent these differences might interfere with stylometry.
In particular, it is conceivable that the features which carry the
most stylistic information might be particularly resilient to being
manipulated through optimization.

To investigate this possibility, we decided to focus on the dis-
tribution of opcode ngram frequencies, as this was reported by
Caliskan et al. [9] as being one of the most informative sources for
stylistic features. We compiled the 2017 Google Code Jam dataset
with eleven different optimization flags, chosen to cover the range
of common optimizations while also including architecture-specific
optimizations. We then disassembled each of the resulting binaries
using objdump and extracted the frequency of each opcode 2-gram
in the disassembly.? Finally, we used scikit-learn [40] to extract
the 50 2-grams most useful for stylometry, using information gain.
The five most informative 2-grams are provided in Table 1 for il-
lustrative purposes. We then studied the extent to which these
frequencies were perturbed by optimization, using the measure of
cosine distance.

2The use of n-grams with n = 2 in this example is intended only to illustrate the
impact of compiler optimizations on binary-level code features; our experiments with
other values of n show qualitatively similar results. We note that 2-grams play an
important role in the binary-level stylometric analysis of Caliskan et al. [9].

Checkmate "21, November 19, 2021, Virtual Event, Republic of Korea

Opcode 2-gram
mov mov
mov call

endbr64 push
call mov
lea mov

S O e R

Table 1: The 5 opcode 2-grams which carry the most stylistic
information

opt_level
— 02
15 4 Ofast
— 0Os
2
‘s 1.0 4
g
0.5 1
0.0 u T T T

0.0 0.2 0.4 0.6
Cosine Distance

Figure 2: Distribution of the cosine distance between opti-
mized and unoptimized versions of the same program, con-
sidering only the 50 most informative opcode ngrams.

Cosine distance is a measure of the similarity of two vectors,
defined to be 1—cos 8, where 0 is the angle between the two vectors.
When used on vectors whose components are all non-negative
(such as vectors of frequencies), this value always lies between 0
and 1. A distance of 0 indicates that the two vectors have the same
orientation, and differ only in length, if at all. Conversely, a distance
of 1 indicates that the two vectors are orthogonal. In the context
of frequency vectors, this would imply that the any feature which
appears in one observation is absent in the other, and visa versa.

Because cosine distance measures angle and not magnitude, it is
particularly useful for comparing vectors that can vary considerably
in size. We might, for example, expect two programs written by
the same author to have similar distributions of opcode ngrams.
However, if one program is larger than the other, then the raw
numbers may be very different. The cosine distance between these
two programs would be quite small, whereas it might be quite large
for a metric like Euclidean distance.

Using cosine distance, we can measure the size of the pertur-
bation caused by compiling a program with a certain level of op-
timization. Using kernel density estimation, we then estimate the
probability distribution of distances between binaries optimized
with a certain flag and their unoptimized counterparts. Our results,
showing the calculated distributions for three different levels of
optimization, are presented in Figure 2.

From this figure, we can see that all three levels of optimization
led to similar distributions of distances. These distributions turn out
to be very right-skewed, with a median cosine distance of roughly
0.16 at all three levels of optimization tested. Concretely, the figure

Workshop Presentation

tells us that almost all programs were perturbed to some degree,
and typically the perturbation was moderate in size. However, some
programs showed extreme variation. Full data from this experiment
is available at https://github.com/skdebray/Stylometry. On
the basis of these results, we believe that there is compelling reason
to suspect that compiler optimizations could substantially interfere
with binary stylometry.

5 EVADING CODE STYLOMETRY

In this section, we present our code optimization-based binary code
stylometry evasion framework.

5.1 Threat Model

We assume that a programmer knows the crowd among which she
wants to hide identity and also able to collect code samples from
them. She can change the crowd when she wishes. We also assume
that the programmer is skeptical about using any obfuscation or
other black-box methods that are not transparent to her. Here, we
refer the programmer as the attacker and the entity interested
in binary code authorship attribution as the defender, since the
programmer is potentially attacking the authorship attribution for
evasion.

Current compiler provenance technology is only able to distin-
guish relatively coarse levels of optimization, as discussed in Section
3. Accordingly, we also assume that defender is able to perform a
limited degree of compiler provenance, distinguishing between the
optimization flags -00, -O1, -O2, and -O3.

Under these circumstances, the goal of the attacker is to re-
peatedly query the defender’s models, using the results to find
combinations of optimizations which can mislead attribution. Be-
cause even a single query takes a non-trivial amount of time, the
attacker would ideally like to find such a combination within a
reasonably small number of queries. Figure 3 summaries our attack
methodology.

5.2 Attack Methodology

To decouple our framework from any stylometric approach, we
assume only limited access to our target stylometry model. We are
allowed to compile our program with whatever flags we choose,
submit it to the classifier, and observe which author it is attributed
to and the confidence of that attribution. We do not have direct
access to any structural information about the model, such as the
set of features it uses.

Since the defender is able to perform compiler provenience for
-00, -01, -02, and -O3 optimization flags, we use an ensemble of
four classifiers trained on datasets compiled with these four flags.
To avoid the added complexity of actually performing compiler
provenance on the binary, we simply feed our input program to
each of these classifiers in turn, and use the lowest error rate of any
classifier in the ensemble to quantify the effectiveness of the attack.
In this way, we model a defender which is capable of identifying
with perfect accuracy which of the four coarse levels of optimization
best matches our input program.

Next, we define our objective function. The input to this function
is a binary vector, indicating which of 192 of GCC’s optimizations
to use. Given the input program, our framework compiles it with

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

the given set of optimizations, and submits it to our ensemble of
classifiers. Our objective function is equal to 1 minus the confidence
of the most confident correct attribution. If all of the classifiers in
the ensemble misclassify the binary, then the attack is considered a
success.

Formally, let 7 € F}} denote a binary vector corresponding to a
certain set of optimizations, and let C denote an ensemble of classi-
fiers. We model each classifier as a function ¢; € C : F} — [0, 1].
Let a; denote the confidence with which the classifier ¢; correctly
attributes a binary compiled with the given set of optimizations, or
0 if the binary is misclassified. Then ¢;(7) := 1 — a;. Our objective
is to find @ such that:

argmaxf (9)
7

where
f(@) = min({c(@)}) Yc e C

For example, suppose we compile a program with a certain set
of optimizations and feed it to our ensemble of classifiers. The
classifiers trained on -O0 and -O1 both misclassify the binary, while
the classifier trained on -O2 correctly attributes it with confidence
0.3, and the classifier trained on -O3 correctly attributes it with
confidence 0.4. In this case, our objective function is 1 minus the
largest of these values, or 0.6.

To actually carry out our attack, our framework maximizes this
objective function using Bayesian Optimization, and specifically us-
ing the REMBO platform [55]. At each step of the process, REMBO
outputs a binary vector indicating a set of optimizations to use, and
is given the computed objective function in return, which helps
determine the next set of optimizations to try. Recall that REMBO
is able to substantially improve the efficiency of Bayesian Optimiza-
tion on high-dimensional functions (such as our objective function)
when the intrinsic dimensionality is low. We conservatively esti-
mate that the intrinsic dimensionality of our problem is 20, as this
is at the upper end of the range where Bayesian Optimization is
believed to be effective [22].

6 EVALUATION

Our experimental evaluation seeks to evaluate the effectiveness
of our authorship attribution evasion technique. Specifically, Our
experimental evaluation answers the following research questions:

e Can our compiler optimization-based evasion method sys-
tematically generate adversarial examples?

e What is the impact of the number of iterations in Bayesian
optimization on finding adversarial examples?

Next, we discuss our experimental setup, design and finally our
evaluation results.

6.1 Experimental Setup

We used the Google code jam dataset that we used for our prelimi-
nary exploration (Section 4.1). We ran our experiment on a server
with 32 cores (@ 3.30 Ghz) and 1 TB of RAM, running Ubuntu 20.04
and GCC 7.5.0.

Workshop Presentation

Checkmate "21, November 19, 2021, Virtual Event, Republic of Korea

,— = TrainingPhase - === - - =-=-=-=----=-—-—-—---—- - v+~~~ AttackPhase == - - - - --—-=-=-=------- <—/—>— -
I 11 |
1 [; €« 1
I o E’I S & 1 o «——— Agvers‘jalrlal Source Code |
I 3 1 : ompiler I
X D Binary |
I <I> m g ? 11 I
I) |
| </> 0, Ensemble ®_) f;t Global | = |
! <I> Classifier Optimizer Compiler P !
I [E —_ P;'} ompiler Params
: Code Dataset : : :
| Oo IE i @ > o |
: —_—> ‘(} : : Evaded? Adversarial Example :
\ Binary Datasets Classifiers I !
Figure 3: An overview of our attack methodology.
0.8 —— Sample 1 2
Sample 2 0.8 /
‘\ —— Sample 3
0.7 —— Sample 4 _S : 7 =
o071 |
20.6 5 [, ~
e & [
> [
[} = 0.6
é(’ 0.5 Ag
0.4 go0s5 /
0.3 0.4
0 20 40 60 80 100 0 20 40 60 80 100
Iterations # Iterations

(a) Line graph depicting the drop in classifier accuracy as the
number of iterations increases in each of our four experiments.

(b) Line graph depicting the improvements made to the objective
function over time when an adversarial example was not found.

Figure 4: Summarizes our attack results.

6.2 Experimental Design

For each experiment, we randomly sample 10 authors with 8 pro-
grams per author from the Google Code Jam dataset. We use Caliskan
et al’s [9] model as an authorship attribution oracle, which our
framework aims to evade. This model was chosen because it repre-
sents the state-of-the-art in binary stylometry. Note that, since, our
framework does not directly depend on Caliskanet al’s model [9],
it could potentially be used to evade any such system.

To build the authorship attribution model for these 10 program-
mers, we use 7 programs for each. The remaining 10 programs
are used to perform 10 attacks on the model, one for each author.
To avoid complications from a single problem being particularly
ill-suited for stylometry (for example, because it is very simple), we
ensure that the ’testing’ programs are chosen evenly between the 8
problems in the dataset. Finally, we assign a computational budget
of 100 total iterations. The success of the attack is the maximum
value of the objective function that it managed to locate.

6.3 Replication of Caliskan et al.

The evaluation of our method critically depends on the performance
of Caliskan et al’s model [9]. For sanity checking, we replicated the
work of Caliskan et al. [9]. Using their publicly provided code, we

were able to build a stylometric classifier with 90% accuracy, using
a dataset of 20 authors and 8 programs per author.

This number is meaningfully lower than the 99% accuracy re-
ported by Caliskan et al. under the same conditions, but similar
to the figure reported by Meng et al. in their 2018 replication of
Caliskan’s work [31]. Both our work and Meng’s used a 64-bit plat-
form, while Caliskan et al. studied 32-bit platforms, which may
account for some of the difference.

6.4 Results

Finding adversarial examples. We have completed a total of 40
attacks, using 4 random and independent samples of 10 authors
from the Google Code Jam Dataset. Our results are presented in
Table 2. For each sample, we give the success rate, which is the
proportion of programs in that sample for which we successfully
found an adversarial example within 100 iterations. We also describe
the average number of iterations required to find an adversarial
example in successful attacks. Finally, we present the average value
of the objective function attained in unsuccessful attacks (recall
that our objective function is equal to 1 minus the confidence of
the most confident correct attribution).

In all cases, the classifier models attained an accuracy of roughly
85% on the training dataset, with 7 instances per author. Our at-
tack succeeded in reducing this accuracy to 45%. In cases where an

Workshop Presentation

Sample Success Rate | Successful At- | Failed Attack
tack Duration | Avg. Value
1 0.7 4.43 0.81
2 0.5 1.4 0.69
3 0.7 1.0 0.71
4 0.3 2.0 0.65
| Total 0.55 2.32 [07

Table 2: Summarizes the results of our experiments. The suc-
cess rate is the proportion of times our attack produced an
adversarial example. Also presented is the average number
of iterations required to find an adversarial example, and
the average value of the objective function when an adver-
sarial example could not be found after 100 iterations. Sta-
tistics are presented for each sample individually, as well as
in aggregate.

adversarial example was found, the average number of iterations
required was only 2.32. In other words, simply choosing a random
selection of optimizations was often sufficient to produce an ad-
versarial example. However, when this initial random selection
failed, our technique typically failed to find an adversarial example
within 100 iterations. Nonetheless, even when the attack failed, the
attribution of the binary on average had only 30% confidence.
Impact of the number of iterations. We show the impact of the
number of iterations to find adversarial examples in Figure 4. Figure
(a) reinforces the observation that most adversarial examples were
found in the first few iterations. However, from figure (b), we can
see that the system continued to find modest improvements to the
objective function throughout, decreasing the confidence of the
final attribution.

The high success rate of our initial query supports our hypothesis
that using atypical combinations of optimizations can substantially
interfere with binary stylometry, even in the absence of repeated
rounds of refinement. At the same time, however, repeated itera-
tions led to only marginal improvement in the effectiveness of the
attack. It is possible that this is a result of insufficient computational
resources, or an indication that we chose too high a number for
the dimensionality of the problem. But it may also indicate limita-
tions on the possibility of crafting extremely effective adversarial
examples using compiler optimizations alone - further data will be
required to form more definitive judgments.

7 DISCUSSION

Prior work on binary stylometry has assumed full knowledge of
the tool chain used to produce the target binary, including the
exact optimizations used [9]. However, as discussed in section 2.4,
this is in general not possible to guarantee. Our results suggest
provisionally that violating this assumption by using non-standard
optimizations can substantially reduce classification accuracy. In
fact, even without access to a stylometric classifier, simply choosing
sets of optimizations uniformly at random may be an effective
and easily-implemented strategy for programmers to obscure their
stylistic fingerprint.

While our technique is non-deterministic, it does not make any
strong guarantees about the distribution of optimizations it will

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

ultimately choose. It is therefore conceivable that a sophisticated
defender could utilize our technique to produce a representative
set of optimizations and use them to train a classifier which would
be robust against our attack. To combat this, the attacker could
begin their attack by randomly choosing some percentage of the
possible optimizations, and restricting their search only to those.
By increasing or decreasing this percentage, the attacker would be
able to make a tradeoff between the power and flexibility of the
attack on the one hand, and the ease with which the defender could
predict the optimizations at play on the other.

Finally, several interesting questions arose during the course
of this work which could not be answered because of constraints
on time and resources. To understand the feasibility of adversarial
attacks on stylometric tools more deeply, it will be necessary to
replicate our experiment under many different conditions, including
datasets of different size and from different sources.

8 RELATED WORK
8.1 Code Stylometry

Formal research into code stylometry began in the 1970s, where it
was primarily focused on the problem of plagiarism detection [37] [17].
This research focused on manually searching for comprehensible
measures of code similarity, which were then empirically validated
on datasets of student code. Early emphasis was placed on lexi-
cal features, such as counting the number of operands or lines of
code. Later, researchers shifted towards syntactic features, such as
a preference for certain data structures, which are more resilient to
sophisticated plagiarism methods [19, 48, 56].

Study of authorship attribution — that is, research premised on
the idea that authors have unique and identifiable fingerprints —
began in the late 80s [36], and was strongly influenced by the work
of Spafford and Weeber[50] in 1993. Spafford and Weeber were
among the first to consider authorship attribution in an adversar-
ial context, investigating whether it could be used to identify the
authors of malware.

In these early decades, focus was placed on easily interpreted fea-
tures, chosen manually by human researchers. In 2006, Frantezkou
et al. revolutionized the field by proposing the use of byte-level
ngrams [20, 21], which they showed to by highly effective for sty-
lometry. Subsequent research has largely followed in their footsteps,
automatically extracting relevant features from their data rather
than defining them in advance. In addition to ngrams, features ex-
tracted from the abstract syntax tree (AST) of a program have also
become standard [4, 10, 41].

The current state of the art in source-level stylometry is repre-
sented by Caliskan et al., who use a wide range of automatically-
extracted features to classify 1600 authors with 94% accuracy [10].
More recently, Abuhamad et al. report 92% accuracy in classifying
8903 authors, using primarily lexical features and recurrent neural
networks [1].

8.2 Binary Stylometry

The application of stylometry to binary programs is more recent.
Rosenblum et al. were among the first to consider the problem in
detail, and found that programmer style appeared to meaningfully
survive the compilation process [46]. Caliskan et al., whose work

Workshop Presentation

is the subject of the attack described in this paper, improved on
Rosenblum’s results through the use of a random forest classifier [9].
Meng et al. consider the problem in the context of programs written
by multiple authors, and propose fine-grained stylometric analysis
at the level of individual basic blocks [32].

8.3 Evasion of Stylometry

Despite growing interest in the application of stylometry to adver-
sarial scenarios, relatively little work has considered the applica-
tion of adversarial machine learning to evade stylistic classification.
Brennan et al. considered manual attacks on literary stylometry,
but did not find effective automatable methods for evasion [8]. Muir
et al. investigated the possibility of using compiler optimization
and static linkage to evade binary stylometry. They achieved mod-
est decreases in accuracy, but only considered two different levels
of optimization [34]. In 2018, Meng et al. were among the first to
study adversarial attacks on binary stylometry by altering a pre-
existing binary, and achieved a high success rate in untargeted
attacks [31]. Quiring et al. presented the first automated attack on
source-level stylometry in 2019, using the Monte-Carlo Tree Search
method alongside several hand-crafted code transformations to
create plausible-looking adversarial examples [42].

While not related to stylometry as such, Ren et al [45]. investigate
the impact of non-standard optimizations on binary diffing. Using
the genetic algorithm to select optimizations, they were able to
create effective adversarial examples for malware detection tools.

There are several studies on evading textual stylometric clas-
sifiers [24, 28, 29, 44, 49]. In [44], authors proposed a round trip
translation-based method to break stylometric linkability, but this
was shown to be infefective in practice [30]. Later, McDonald et al.
proposed a machine learning-based tool which would produce a
sequence of suggestions enabling users to anonymize their own
documents [30]. Shetty et al. proposed A*NT [49], which used an
approach similar to generative adversarial networks (GAN) [23] to
anonymize documents while preserving semantics. A*NT is suit-
able for mapping the writing style of a group of people to another
group. Mahmood et al. proposed a semantic guided mutation-based
approach to obfuscate stylistic features of a given text [29]. Recently,
Grondahl and Asokan [24] and Krishna et al. [28] have showed the
feasibility of style transfer by leveraging recent advances in text
paraphrasing.

9 CONCLUSION

In this paper, we showed that compiler optimization plays a bigger
role in the accuracy of binary code stylometry than previously un-
derstood. Based on this insight, we developed an evasion technique
to protect programmers’ privacy against systematic surveillance.
The experimental evaluation on the Google Code Jam dataset shows
the effectiveness of our approach. Note that our method does not
directly produce evading samples for the programmer. Instead, it
recommends a set of compiler optimization flags for the compilation
to produce an evading sample, providing more transparency than
traditional transformation-oriented feature-perturbation-based eva-
sion techniques.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foun-
dation under grant no. 1908313.

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

REFERENCES

[1] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun Nyang.
Large-scale and language-oblivious code authorship identification. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 101-114, 2018.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers — Principles, Techniques,
and Tools. Addison-Wesley, Reading, Mass., 1985.

[3] Elvira Albert, Jesus Correas, Pablo Gordillo, Guillermo Roman-Diez, and Albert
Rubio. Gasol: Gas analysis and optimization for ethereum smart contracts. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 118-125,
2020.

[4] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and Rachel

Greenstadt. Source code authorship attribution using long short-term memory

based networks. In European Symposium on Research in Computer Security, pages

65-82. Springer, 2017.

Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients

give a false sense of security: Circumventing defenses to adversarial examples.

In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th Interna-

tional Conference on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm,

Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,

pages 274-283. PMLR, 2018.

[6] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of machine learning research, 13(2), 2012.

[7] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial
machine learning. Pattern Recognition, 84:317-331, 2018.

[8] Michael Brennan, Sadia Afroz, and Rachel Greenstadt. Adversarial stylometry:
Circumventing authorship recognition to preserve privacy and anonymity. ACM
Transactions on Information and System Security (TISSEC), 15(3):1-22, 2012.

[9] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad Rieck,

Rachel Greenstadt, and Arvind Narayanan. When coding style survives compila-

tion: De-anonymizing programmers from executable binaries. In Proceedings of

the 2018 Network and Distributed System Security Symposium (NDSS), February

2018.

Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan, Clare

Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing programmers

via code stylometry. In 24th USENIX Security Symposium, pages 255-270, 2015.

David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon. Interproce-

dural constant propagation. ACM SIGPLAN Notices, 21(7):152-161, 1986.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of

neural networks. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San

Jose, CA, USA, May 22-26, 2017, pages 39-57. IEEE Computer Society, 2017.

[13] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-optimized smart
contracts devour your money. In 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 442-446, 2017.

[14] Christian Collberg, Edward Carter, Saumya Debray, Andrew Huntwork, John
Kececioglu, Cullen Linn, and Martin Stepp. Dynamic path-based software wa-
termarking. In Proc. ACM SIGPLAN 04 Conference on Programming Language
Design and Implementation (PLDI-2004), June 2004.

[15] Hung Dang, Yue Huang, and Ee-Chien Chang. Evading classifiers by morphing in

the dark. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,

2017, pages 119-133. ACM, 2017.

Saumya Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler

techniques for code compaction. ACM Transactions on Programming Languages

and Systems, 22(2):378-415, March 2000.

[17] John L Donaldson, Ann-Marie Lancaster, and Paula H Sposato. A plagiarism
detection system. In Proceedings of the twelfth SIGCSE technical symposium on
Computer science education, pages 21-25, 1981.

[18] Maciej Eder. Rolling stylometry. Digital Scholarship in the Humanities, 31(3):457-

469, 2016.

Jinan AW Faidhi and Stuart K Robinson. An empirical approach for detecting

program similarity and plagiarism within a university programming environment.

Computers & Education, 11(1):11-19, 1987.

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and Sokratis Kat-

sikas. Effective identification of source code authors using byte-level information.

In Proceedings of the 28th international conference on Software engineering, pages

893-896, 2006.

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis, and Sokratis

Katsikas. Source code author identification based on n-gram author profiles. In

IFIP International Conference on Artificial Intelligence Applications and Innovations,

pages 508-515. Springer, 2006.

Peter I Frazier. A tutorial on Bayesian optimization.

arXiv:1807.02811, 2018.

—_—
i)

[10

[11

[12

=
&

[19

[20

[21

~
5,

arXiv preprint

Workshop Presentation

[23]

[24]

[25

[26

S
)

[28]

[29]

[30

(31

[32]

[33

[36]

[37

[38]

[39

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 2672-2680, 2014.

Tommi Grondahl and N. Asokan. Effective writing style transfer via combinatorial
paraphrasing. Proc. Priv. Enhancing Technol., 2020(4):175-195, 2020.

Patrick Juola. How a computer program helped reveal JK Rowling as author of A
Cuckoo’s Calling. Scientific American, 20:13, 2013.

Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova, and
Alina Matyukhina. Code authorship attribution: Methods and challenges. ACM
Computing Surveys (CSUR), 52(1):1-36, 2019.

Mahmut Kandemir, N Vijaykrishnan, and Mary Jane Irwin. Compiler optimiza-
tions for low power systems. In Power aware computing, pages 191-210. Springer,
2002.

Kalpesh Krishna, John Wieting, and Mohit Iyyer. Reformulating unsupervised
style transfer as paraphrase generation. In Bonnie Webber, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages
737-762. Association for Computational Linguistics, 2020.

Asad Mahmood, Faizan Ahmad, Zubair Shafiq, Padmini Srinivasan, and Fareed
Zaffar. A girl has no name: Automated authorship obfuscation using mutant-x.
Proc. Priv. Enhancing Technol., 2019(4):54-71, 2019.

Andrew W. E. McDonald, Sadia Afroz, Aylin Caliskan, Ariel Stolerman, and
Rachel Greenstadt. Use fewer instances of the letter "i": Toward writing style
anonymization. In Privacy Enhancing Technologies - 12th International Symposium,
PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings, pages 299-318, 2012.
Xiaozhu Meng, Barton P Miller, and Somesh Jha. Adversarial binaries for author-
ship identification. arXiv preprint arXiv:1809.08316, 2018.

Xiaozhu Meng, Barton P Miller, and Kwang-Sung Jun. Identifying multiple
authors in a binary program. In European Symposium on Research in Computer
Security, pages 286—-304. Springer, 2017.

Frederick Mosteller and David L Wallace. Inference in an authorship problem:
A comparative study of discrimination methods applied to the authorship of
the disputed federalist papers. Journal of the American Statistical Association,
58(302):275-309, 1963.

Macaully Muir and Johan Wikstrém. Anti-analysis techniques to weaken author
classification accuracy in compiled executables, 2016.

Luis Mufioz-Gonzalez, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C. Lupu, and Fabio Roli. Towards poisoning of deep learning
algorithms with back-gradient optimization. In Bhavani M. Thuraisingham,
Battista Biggio, David Mandell Freeman, Brad Miller, and Arunesh Sinha, editors,
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
AlSec@CCS 2017, Dallas, TX, USA, November 3, 2017, pages 27-38. ACM, 2017.
Paul W Oman and Curtis R Cook. Programming style authorship analysis. In
Proceedings of the 17th conference on ACM Annual Computer Science Conference,
pages 320-326, 1989.

Karl J Ottenstein. An algorithmic approach to the detection and prevention of
plagiarism. ACM Sigcse Bulletin, 8(4):30-41, 1976.

James Pallister, Simon J Hollis, and Jeremy Bennett. Identifying compiler options
to minimize energy consumption for embedded platforms. The Computer Journal,
58(1):95-109, 2015.

Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and Xun
Yi, editors, Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April
2-6, 2017.

Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

10

[40

[41

[42

T~
&

(44

[45

[46

[47

(48

N
X2

[50

[51

[52

o
&

[54

[55]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

Brian N Pellin. Using classification techniques to determine source code au-
thorship. White Paper: Department of Computer Science, University of Wisconsin,
2000.

Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading authorship attribution
of source code using adversarial learning. In 28th USENIX Security Symposium,
pages 479-496, 2019.

Ashkan Rahimian, Paria Shirani, Saed Alrbaee, Lingyu Wang, and Mourad Deb-
babi. Bincomp: A stratified approach to compiler provenance attribution. Digital
Investigation, 14:5146-5155, 2015.

Josyula R. Rao and Pankaj Rohatgi. Can pseudonymity really guarantee privacy?
In 9th USENIX Security Symposium, Denver, Colorado, USA, August 14-17, 2000,
2000.

Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. Unleashing the hidden
power of compiler optimization on binary code difference: An empirical study.
In Proceedings of the ACM International Conference on Programming Language

Design and Im;l))lementation (PLDI), June 2021.
Nathan Rosenblum, Xiaojin Zhu, and Barton P Miller. Who wrote this code?

identifying the authors of program binaries. In European Symposium on Research
in Computer Security, pages 172-189. Springer, 2011.

Nathan E Rosenblum, Barton P Miller, and Xiaojin Zhu. Extracting compiler
provenance from program binaries. In Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and engineering, pages
21-28, 2010.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algo-
rithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 76-85, 2003.

Rakshith Shetty, Bernt Schiele, and Mario Fritz. A4NT: author attribute
anonymity by adversarial training of neural machine translation. In William
Enck and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1633-1650. USENIX
Association, 2018.

Eugene H Spafford and Stephen A Weeber. Software forensics: Can we track
code to its authors? Computers & Security, 12(6):585-595, 1993.

Nedim Srndic and Pavel Laskov. Practical evasion of a learning-based classifier:
A case study. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 197-211. IEEE Computer Society, 2014.
Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

Florian Tramer, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jérn-
Henrik Jacobsen. Fundamental tradeoffs between invariance and sensitivity to
adversarial perturbations. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 9561-9571. PMLR, 2020.
Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry.
On adaptive attacks to adversarial example defenses. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas,
et al. Bayesian optimization in high dimensions via random embeddings. In
IJCAI, pages 1778-1784, 2013.

Geoff Whale. Identification of program similarity in large populations. The
Computer Journal, 33(2):140-146, 1990.

	Abstract
	1 Introduction
	2 Background
	2.1 Code Stylometry
	2.2 Compiler Optimization
	2.3 Adversarial Machine Learning
	2.4 Bayesian Optimization

	3 Design Intuitions
	3.1 Optimizations affect core features
	3.2 Impact of code structure on optimization
	3.3 Interactions between optimizations
	3.4 Optimization and stylometry
	3.5 The difficulty of provenance analysis

	4 Preliminary Exploration
	4.1 Google Code Jam Dataset
	4.2 Impact of optimization on core features

	5 Evading Code Stylometry
	5.1 Threat Model
	5.2 Attack Methodology

	6 Evaluation
	6.1 Experimental Setup
	6.2 Experimental Design
	6.3 Replication of Caliskan et al.
	6.4 Results

	7 Discussion
	8 Related Work
	8.1 Code Stylometry
	8.2 Binary Stylometry
	8.3 Evasion of Stylometry

	9 Conclusion
	Acknowledgments
	References

