


them in ways she prefers. This has two important advantages: (1) it

is easily integrated into conventional software development prac-

tices; and (2) it provides transparency and does not demand any

additional trust from the programmer on any łmagicž software (e.g.,

obfuscators or anti-stylometry tools).

This paper makes the folowing contributions:

(1) We demonstrate experimentally that carefully chosen com-

piler optimizations can significantly alter the stylometric

characteristics of compiled binaries and impact the accuracy

of binary code stylometry. This indicates limits to the scope

of earlier work on binary-level stylometry when applied to

optimized binaries [9].

(2) We propose a method that is usable by ordinary program-

mers, using ordinary software development practices, to

systematically evade binary-level stylometry.

(3) Experimental evaluation, based on a state-of-the-art open

source binary stylometry system [9], shows that, our method

can cause a significant drop (%) in stylometric accuracy.

2 BACKGROUND

2.1 Code Stylometry

Code stylometry is the process of using the stylistic features of a

program to determine who wrote it [36, 41, 50]. This is typically

modeled as a supervised machine learning problem [1, 4, 9, 10, 20,

21, 32, 46].

A researcher begins by assembling a training dataset consisting

of many programs, all of which have known authorship. From each

program, the researcher extracts features which succinctly describe

it. These might be lexical features (such as indentation style or

function names), syntactic features (such as a preference for certain

data structures or tendency to write longer or shorter functions),

or semantic features (such as the actual algorithms implemented,

or the overall flow of control) [26]. In whatever combination, these

features are paired with a label indicating the author of the program

and fed to some variety of machine learning algorithm, which learns

how to discriminate between the different authors in the data. The

final result is a model, which can be used to predict the author of

new programs.

2.2 Compiler Optimization

Compiler optimizations aim to improve binary-level code metrics

while preserving observable behavior. The code metrics most com-

monly used are execution speed and code size, though researchers

have also considered energy usage [27, 38] and (in smart contracts)

monetary cost [3, 13]. Not surprisingly, optimizations focus on pro-

gram constructs that most impact the metric under consideration.

Thus, optimizations aimed at improving execution speed typically

focus on loops (e.g., loop unrolling, loop fusion, code motion out of

loops, loop vectorization), memory accesses (register allocation),

removal of redundant or unnecessary code (constant folding, dead

code elimination, common subexpression elimination), etc. [2]. Op-

timizations aimed at improving code size focus on reducing code

replication, e.g., via procedural abstraction [16].

2.3 Adversarial Machine Learning

Machine learning techniques generally operate by studying a large

amount of data drawn from some statistical distribution, and learn-

ing to recognize patterns within that data which help it solve some

task at hand (say, distinguishing spam from legitimate email). Once

these patterns have been learned, they can be used to classify new

inputs drawn from the same distribution.

Attacking these models generally boils down to violating the

assumption that the inputs to the model are drawn from the same

distribution as the training data. This might involve tampering

with the training data (data poisoning [35]), or carefully crafting

inputs that fool the classifier (called adversarial examples[12, 52]).

In both cases, the goal is to cause the classifier to behave incorrectly

in certain cases, for example by allowing spam into a recipient’s

inbox. Despite the success of machine learning in other domains,

many commonmachine learning techniques have been shown to be

extremely vulnerable to these sorts of attacks, and devisingmethods

for more robust learning remains a major open problem [5, 7, 53, 54].

In categorizing different types of attacks, one important variable

is the extent of the attacker’s knowledge of the system they are tar-

geting. At one extreme, the attacker is assumed to know everything

Ð the data used, the features extracted, the type of classifier, and so

on. This model, which is generally called white-box [51], represents

a worst-case scenario for the defender. At the other extreme, the

attacker knows only high-level information about what a classifier

is supposed to do, and the only way they can learn about its inner

workings is by feeding it inputs and seeing what it does. This model

is appropriately called black-box [15, 39]. In this paper, we adopt a

gray-box approach for our own attack model, which we explain in

Section 5.

2.4 Bayesian Optimization

Bayesian optimization is a technique for black-box global optimiza-

tion. That is, if we are allowed to query a function repeatedly, but

otherwise have no access to its inner workings, Bayesian optimiza-

tion can be used to search effectively for the input which maximizes

(or minimizes) the output. In our case, we use it to find the max-

imum of the function łGiven some set of compiler optimizations,

return the accuracy of the target model when classifying a binary

compiled with those optimizations."

For a more technical description of Bayesian optimization, the

reader is referred to Peter Frazier’s excellent tutorial [22]. This is

the high level concept:

At each stage of the algorithm, we have access to a record of all

of our previous queries. Using these inputs and outputs, we use

statistical inference to create a model of what we think our objective

function looks like. The core assumption here is that points that

are close to those we have already queried are likely to have similar

outputs, and we can be more certain about the output we would get

at a point the closer it is to points that we have already checked.

From here, we need to decide the next point to query. In order

to leverage our earlier queries, we want to focus on points near the

highest-value points we have found. But simultaneously, because

we want to find the global optimum, we also want to look at points

where we are very uncertain what we might get. To balance these

competing goals, we define an acquisition function over our domain
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which gives a certain weight to each priority, and choose our next

point by finding the maximum of this acquisition function. The

acquisition function is chosen so that it is easy to find the true,

global maximum in a short amount of time.

Finally, once we find the point that maximizes our acquisition

function, we query our objective function there, record the result,

and update our data. This process can be repeated as often as desired,

or until some computational budget is exceeded.

Bayesian optimization excels when querying our objective func-

tion is very expensive. In this situation, it’s worthwhile to take the

time to construct a surrogate model and optimize an acquisition

function over it. Choosing our next point in such a careful manner

lets us cut down on the total number of queries we need to make,

saving time and resources.

The greatest difficulty with Bayesian optimization is in scaling to

higher dimensions [22]. Intuitively, in high-dimensional spaces, ev-

erything is far away from everything else (a phenomenon poetically

called the Curse of Dimensionality). So, even after many queries, we

still might be very uncertain of the value of our objective function

for most inputs.

2.4.1 REMBO. REMBO is an extention of Bayesian optimization

proposed by Wang et al. [55]. In many real-world situations, a

problem can appear to be very high-dimensional, when in fact its

intrinsic dimensionality is quite small. That is, it may be the case

that only a few of the dimensions affect the objective function

significantly. For example, the hyperparameters of neural networks

have been found to have this property [6].

The key insight of Wang et al. is that it is possible to take advan-

tage of this structure when optimizing such a function, even when

we do not know exactly which of the hyperparemeters are actually

relevant. Thus, as long as we know that the intrinsic dimensionality

of a function is small (say, 10), we can find its optimum almost as

easily as we could a normal 10-dimensional function, even if we do

not know which 10 dimensions matter.

An example is useful to illustrate this surprising fact. Suppose

we want to find the optimum of a function with two parameters,

𝑓 (𝑥,𝑦). We suspect that only one of these parameters matter, but

we do not know which one. One solution is to simply look for

optimums on the line 𝑥 = 𝑦. This reduces the space we have to

search from 2 dimensions to 1, and our space is still guaranteed

to contain the optimal value regardless of whether 𝑥 or 𝑦 is the

important dimension.

What if all the variation in our objective function lies in a 1-

dimensional subspace that isn’t aligned to either 𝑥 or 𝑦? Then we

can simply choose a line to optimize along at random, and we will

only fail to find our optimum if the line we choose just happens to

be exactly perpendicular to the true 1-dimensional subspace, which

happens with probability 0.

This same reasoning can be extended to higher dimensions. The

upshot is that we can use Bayesian optimization for very high

dimensional functions as long as there is compelling reason to

believe that the intrinsic dimensionality is small. In section 3, we

study the impact of different compiler optimizations on binary

stylometry, and conclude that it appears to fit this pattern.

3 DESIGN INTUITIONS

Before diving into the details of our work, in this section we present

our intuitions behind leveraging compiler optimizations to build a

framework to evade binary code stylometry. Specifically, we discuss

how compiler optimizations affect binary-level code characteristics

and how this can impact binary-level code stylometry. This can

help us to provide a context to generalizations about binary-level

stylometry of optimized code that are sometimes encountered in

the research literature. Figure 1 shows the effects of some common

compiler optimizations successively applied to a small example C

program, shown in Figure 1(𝑎).1 Function inlining pulls the body of

the function f() into the caller function (Figure 1(𝑏)). This causes

the iteration count of the for-loop to become known, allowing it to

be unrolled (Figure 1(𝑐)). Finally, constant folding on the unrolled

loop allows the conditionals to be optimized away and results in the

code shown in Figure 1(𝑑). In this example, a similar effect could

have been obtained using interprocedural constant propagation [11]

instead of function inlining. This example illustrates the following

key observations.

3.1 Optimizations affect core features

The characteristics of an optimized program can be very different

from both the source code it was obtained from as well as those of

the same program compiled with a different set of optimizations. For

example, function inlining can significantly change the structure

and size of function bodies, as shown in Figure 1(𝑏); loop unrolling

can replace loops with longer loop-free instruction sequences, as

shown in Figure 1(𝑐); and constant folding can get rid of conditional

branches, as shown in Figure 1(𝑑).

It follows from this that source-level code features such as loop

structure or function size, which may be useful for source-level

stylometry, may not survive optimization unscathed. For example,

the loop and conditional in the original source code shown in Figure

1(𝑎) are completely eliminated in the optimized code shown in

Figure 1(𝑑). A corollary is that for stylometry purposes, source-

level code features such as function size or loop structure, extracted

from optimized binaries that have been decompiled using tools

such as Hex-Rays or Ghidra, may not correspond meaningfully to

the original source code.

3.2 Impact of code structure on optimization

The impact of any given optimizing transformation is dependent on

the characteristics of the code being optimized. For example, loop

unrolling will not have any effect on a program that does not have

any unrollable loops, and function inlining will not significantly

impact programs with few inlinable functions.

It follows from this that when we consider the efficacy of binary-

level code stylometry on optimized code, it is important to take into

account both the kinds of optimizations being applied and also the

characteristics of the code those optimizations are being applied

to. There are two corollaries: first, inferences about the efficacy

1For ease of understanding the results of various optimization steps are shown in the
form of C source code, although in reality the compiler would use an intermediate
representation, such as three-address code organized into a control flow graph, to
which the optimizations would be applied [2].

Workshop Presentation Checkmate ’21, November 19, 2021, Virtual Event, Republic of Korea

3



void f(int m, int k)

{

for ( ; k > 0; k--) {

if (k % 2 == 0) /* k even */

m += 2*k;

else /* k odd */

m -= 1;

}

printf("%d\n", m);

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

f(n, 3);

return 0;

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

int m = n;

for (k = 3; k > 0; k--) {

if (k % 2 == 0) /* k even */

m += 2*k;

else /* k odd */

m -= 1;

}

printf("%d\n", m);

return 0;

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

int m = n;

int k = 3;

if (k % 2 == 0) /* iter 1 */

m += 2*k;

else

m -= 1;

k--;

if (k % 2 == 0) /* iter 2 */

m += 2*k;

else

m -= 1;

k--;

if (k % 2 == 0) /* iter 3 */

m += 2*k;

else

m -= 1;

k--;

printf("%d\n", m);

return 0;

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

int m = n;

m -= 1; /* iter 1 */

m += 4; /* iter 2 */

m -= 1; /* iter 3 */

printf("%d\n", m);

return 0;

}

(𝑎) Original program (𝑏) After function inlining (𝑐) After loop unrolling (𝑑) After constant folding and

dead code elimination

Figure 1: An example of the effect of compiler optimizations

of binary code stylometry based on a particular set of optimiza-

tions on a particular set of programs may or may not generalize

to a different set of optimizations applied to a different set of pro-

grams; and second, optimizations tailored to the characteristics of

a particular program can have a significantly greater impact on the

characteristics of the optimized code than a generic set of optimiza-

tions that may or may not be relevant to the code characteristics of

that program [45].

3.3 Interactions between optimizations

Compiler optimizations may not be independent of each other. This

is illustrated in Figure 1, where constant propagation to eliminate

the if-statement in the loop was made possible due to the prior

application of loop unrolling, which in turn was enabled due to the

loop iteration count becoming known via function inlining. Ren et

al. observe that optimizations may also sometimes influence each

other negatively [45].

3.4 Optimization and stylometry

As noted in Section 3.1, compiler optimizations can profoundly

alter the features in the optimized code. However, this does not, in

itself, imply that optimization can necessarily render binary-level

stylometry ineffective. There are two reasons for this:

(1) As discussed in Section 3.2, the impact of an optimization is

dependent on the structure of the code it is applied to. Thus,

even if an optimization is very effective in altering low-level

code features in general, the characteristics of a particular

program may render that optimization ineffective for that

program.

(2) Stylometric analyses rely on statistical analyses of multiple

stylistic features to attribute authorship. Even if we assume

that compiler optimizations can erase many of the stylistic

features characteristic of a particular programmer, it is by

no means obvious that they will be able to erase all such

characteristic stylistic features from a particular program. In

other words, it is possible that, for that particular program,

enough stylistic features may survive optimization to allow

authorship attribution.

3.5 The difficulty of provenance analysis

Compiler provenance refers to the problem of determining the exact

compiler and optimizations used to create a particular binary. This

involves identifying the family of compiler (e.g. GCC vs. Clang), the

version used (e.g. GCC 3.4.x vs. GCC 4.4.x), and the optimizations

employed (e.g. O0 vs. O2). Recent work in this area has produced

tools which are capable of determining the difference between

optimized and unoptimized binaries with high accuracy [43, 47].

However, compilers like GCC are capable of performing on the order

of 200 independent optimizations, and no work has come remotely

close to being able to distinguish between the corresponding ∼ 2200

possible combinations.

This poses a difficulty for binary stylometry. Recall that clas-

sifiers generally must be trained on data drawn from the same

distribution that they will eventually be employed on. Thus, to

avoid accidentally classifying particular compilers or optimizations

instead of authors, it is important to use a classifier trained on pro-

grams compiled under the same conditions as the program being

studied. This may be feasible when that program has been compiled
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tells us that almost all programs were perturbed to some degree,

and typically the perturbation was moderate in size. However, some

programs showed extreme variation. Full data from this experiment

is available at https://github.com/skdebray/Stylometry. On

the basis of these results, we believe that there is compelling reason

to suspect that compiler optimizations could substantially interfere

with binary stylometry.

5 EVADING CODE STYLOMETRY

In this section, we present our code optimization-based binary code

stylometry evasion framework.

5.1 Threat Model

We assume that a programmer knows the crowd among which she

wants to hide identity and also able to collect code samples from

them. She can change the crowd when she wishes. We also assume

that the programmer is skeptical about using any obfuscation or

other black-box methods that are not transparent to her. Here, we

refer the programmer as the attacker and the entity interested

in binary code authorship attribution as the defender, since the

programmer is potentially attacking the authorship attribution for

evasion.

Current compiler provenance technology is only able to distin-

guish relatively coarse levels of optimization, as discussed in Section

3. Accordingly, we also assume that defender is able to perform a

limited degree of compiler provenance, distinguishing between the

optimization flags -O0, -O1, -O2, and -O3.

Under these circumstances, the goal of the attacker is to re-

peatedly query the defender’s models, using the results to find

combinations of optimizations which can mislead attribution. Be-

cause even a single query takes a non-trivial amount of time, the

attacker would ideally like to find such a combination within a

reasonably small number of queries. Figure 3 summaries our attack

methodology.

5.2 Attack Methodology

To decouple our framework from any stylometric approach, we

assume only limited access to our target stylometry model. We are

allowed to compile our program with whatever flags we choose,

submit it to the classifier, and observe which author it is attributed

to and the confidence of that attribution. We do not have direct

access to any structural information about the model, such as the

set of features it uses.

Since the defender is able to perform compiler provenience for

-O0, -O1, -O2, and -O3 optimization flags, we use an ensemble of

four classifiers trained on datasets compiled with these four flags.

To avoid the added complexity of actually performing compiler

provenance on the binary, we simply feed our input program to

each of these classifiers in turn, and use the lowest error rate of any

classifier in the ensemble to quantify the effectiveness of the attack.

In this way, we model a defender which is capable of identifying

with perfect accuracywhich of the four coarse levels of optimization

best matches our input program.

Next, we define our objective function. The input to this function

is a binary vector, indicating which of 192 of GCC’s optimizations

to use. Given the input program, our framework compiles it with

the given set of optimizations, and submits it to our ensemble of

classifiers. Our objective function is equal to 1 minus the confidence

of the most confident correct attribution. If all of the classifiers in

the ensemble misclassify the binary, then the attack is considered a

success.

Formally, let ®𝑣 ∈ F𝑛2 denote a binary vector corresponding to a

certain set of optimizations, and let 𝐶 denote an ensemble of classi-

fiers. We model each classifier as a function 𝑐𝑖 ∈ 𝐶 : F𝑛2 → [0, 1].

Let 𝑎𝑖 denote the confidence with which the classifier 𝑐𝑖 correctly

attributes a binary compiled with the given set of optimizations, or

0 if the binary is misclassified. Then 𝑐𝑖 (®𝑣) := 1 − 𝑎𝑖 . Our objective

is to find ®𝑣 such that:

argmax
®𝑣

𝑓 (®𝑣)

where

𝑓 (®𝑣) = 𝑚𝑖𝑛({𝑐 (®𝑣)}) ∀𝑐 ∈ 𝐶

For example, suppose we compile a program with a certain set

of optimizations and feed it to our ensemble of classifiers. The

classifiers trained on -O0 and -O1 both misclassify the binary, while

the classifier trained on -O2 correctly attributes it with confidence

0.3, and the classifier trained on -O3 correctly attributes it with

confidence 0.4. In this case, our objective function is 1 minus the

largest of these values, or 0.6.

To actually carry out our attack, our framework maximizes this

objective function using Bayesian Optimization, and specifically us-

ing the REMBO platform [55]. At each step of the process, REMBO

outputs a binary vector indicating a set of optimizations to use, and

is given the computed objective function in return, which helps

determine the next set of optimizations to try. Recall that REMBO

is able to substantially improve the efficiency of Bayesian Optimiza-

tion on high-dimensional functions (such as our objective function)

when the intrinsic dimensionality is low. We conservatively esti-

mate that the intrinsic dimensionality of our problem is 20, as this

is at the upper end of the range where Bayesian Optimization is

believed to be effective [22].

6 EVALUATION

Our experimental evaluation seeks to evaluate the effectiveness

of our authorship attribution evasion technique. Specifically, Our

experimental evaluation answers the following research questions:

• Can our compiler optimization-based evasion method sys-

tematically generate adversarial examples?

• What is the impact of the number of iterations in Bayesian

optimization on finding adversarial examples?

Next, we discuss our experimental setup, design and finally our

evaluation results.

6.1 Experimental Setup

We used the Google code jam dataset that we used for our prelimi-

nary exploration (Section 4.1). We ran our experiment on a server

with 32 cores (@ 3.30 Ghz) and 1 TB of RAM, running Ubuntu 20.04

and GCC 7.5.0.
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Sample Success Rate Successful At-

tack Duration

Failed Attack

Avg. Value

1 0.7 4.43 0.81

2 0.5 1.4 0.69

3 0.7 1.0 0.71

4 0.3 2.0 0.65

Total 0.55 2.32 0.7

Table 2: Summarizes the results of our experiments. The suc-

cess rate is the proportion of times our attack produced an

adversarial example. Also presented is the average number

of iterations required to find an adversarial example, and

the average value of the objective function when an adver-

sarial example could not be found after 100 iterations. Sta-

tistics are presented for each sample individually, as well as

in aggregate.

adversarial example was found, the average number of iterations

required was only 2.32. In other words, simply choosing a random

selection of optimizations was often sufficient to produce an ad-

versarial example. However, when this initial random selection

failed, our technique typically failed to find an adversarial example

within 100 iterations. Nonetheless, even when the attack failed, the

attribution of the binary on average had only 30% confidence.

Impact of the number of iterations.We show the impact of the

number of iterations to find adversarial examples in Figure 4. Figure

(a) reinforces the observation that most adversarial examples were

found in the first few iterations. However, from figure (b), we can

see that the system continued to find modest improvements to the

objective function throughout, decreasing the confidence of the

final attribution.

The high success rate of our initial query supports our hypothesis

that using atypical combinations of optimizations can substantially

interfere with binary stylometry, even in the absence of repeated

rounds of refinement. At the same time, however, repeated itera-

tions led to only marginal improvement in the effectiveness of the

attack. It is possible that this is a result of insufficient computational

resources, or an indication that we chose too high a number for

the dimensionality of the problem. But it may also indicate limita-

tions on the possibility of crafting extremely effective adversarial

examples using compiler optimizations alone ś further data will be

required to form more definitive judgments.

7 DISCUSSION

Prior work on binary stylometry has assumed full knowledge of

the tool chain used to produce the target binary, including the

exact optimizations used [9]. However, as discussed in section 2.4,

this is in general not possible to guarantee. Our results suggest

provisionally that violating this assumption by using non-standard

optimizations can substantially reduce classification accuracy. In

fact, even without access to a stylometric classifier, simply choosing

sets of optimizations uniformly at random may be an effective

and easily-implemented strategy for programmers to obscure their

stylistic fingerprint.

While our technique is non-deterministic, it does not make any

strong guarantees about the distribution of optimizations it will

ultimately choose. It is therefore conceivable that a sophisticated

defender could utilize our technique to produce a representative

set of optimizations and use them to train a classifier which would

be robust against our attack. To combat this, the attacker could

begin their attack by randomly choosing some percentage of the

possible optimizations, and restricting their search only to those.

By increasing or decreasing this percentage, the attacker would be

able to make a tradeoff between the power and flexibility of the

attack on the one hand, and the ease with which the defender could

predict the optimizations at play on the other.

Finally, several interesting questions arose during the course

of this work which could not be answered because of constraints

on time and resources. To understand the feasibility of adversarial

attacks on stylometric tools more deeply, it will be necessary to

replicate our experiment undermany different conditions, including

datasets of different size and from different sources.

8 RELATEDWORK

8.1 Code Stylometry

Formal research into code stylometry began in the 1970s, where it

was primarily focused on the problem of plagiarism detection [37] [17].

This research focused on manually searching for comprehensible

measures of code similarity, which were then empirically validated

on datasets of student code. Early emphasis was placed on lexi-

cal features, such as counting the number of operands or lines of

code. Later, researchers shifted towards syntactic features, such as

a preference for certain data structures, which are more resilient to

sophisticated plagiarism methods [19, 48, 56].

Study of authorship attribution Ð that is, research premised on

the idea that authors have unique and identifiable fingerprints Ð

began in the late 80s [36], and was strongly influenced by the work

of Spafford and Weeber[50] in 1993. Spafford and Weeber were

among the first to consider authorship attribution in an adversar-

ial context, investigating whether it could be used to identify the

authors of malware.

In these early decades, focus was placed on easily interpreted fea-

tures, chosen manually by human researchers. In 2006, Frantezkou

et al. revolutionized the field by proposing the use of byte-level

ngrams [20, 21], which they showed to by highly effective for sty-

lometry. Subsequent research has largely followed in their footsteps,

automatically extracting relevant features from their data rather

than defining them in advance. In addition to ngrams, features ex-

tracted from the abstract syntax tree (AST) of a program have also

become standard [4, 10, 41].

The current state of the art in source-level stylometry is repre-

sented by Caliskan et al., who use a wide range of automatically-

extracted features to classify 1600 authors with 94% accuracy [10].

More recently, Abuhamad et al. report 92% accuracy in classifying

8903 authors, using primarily lexical features and recurrent neural

networks [1].

8.2 Binary Stylometry

The application of stylometry to binary programs is more recent.

Rosenblum et al. were among the first to consider the problem in

detail, and found that programmer style appeared to meaningfully

survive the compilation process [46]. Caliskan et al., whose work
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is the subject of the attack described in this paper, improved on

Rosenblum’s results through the use of a random forest classifier [9].

Meng et al. consider the problem in the context of programs written

by multiple authors, and propose fine-grained stylometric analysis

at the level of individual basic blocks [32].

8.3 Evasion of Stylometry

Despite growing interest in the application of stylometry to adver-

sarial scenarios, relatively little work has considered the applica-

tion of adversarial machine learning to evade stylistic classification.

Brennan et al. considered manual attacks on literary stylometry,

but did not find effective automatable methods for evasion [8]. Muir

et al. investigated the possibility of using compiler optimization

and static linkage to evade binary stylometry. They achieved mod-

est decreases in accuracy, but only considered two different levels

of optimization [34]. In 2018, Meng et al. were among the first to

study adversarial attacks on binary stylometry by altering a pre-

existing binary, and achieved a high success rate in untargeted

attacks [31]. Quiring et al. presented the first automated attack on

source-level stylometry in 2019, using the Monte-Carlo Tree Search

method alongside several hand-crafted code transformations to

create plausible-looking adversarial examples [42].

While not related to stylometry as such, Ren et al [45]. investigate

the impact of non-standard optimizations on binary diffing. Using

the genetic algorithm to select optimizations, they were able to

create effective adversarial examples for malware detection tools.

There are several studies on evading textual stylometric clas-

sifiers [24, 28, 29, 44, 49]. In [44], authors proposed a round trip

translation-based method to break stylometric linkability, but this

was shown to be infefective in practice [30]. Later, McDonald et al.

proposed a machine learning-based tool which would produce a

sequence of suggestions enabling users to anonymize their own

documents [30]. Shetty et al. proposed A4NT [49], which used an

approach similar to generative adversarial networks (GAN) [23] to

anonymize documents while preserving semantics. A4NT is suit-

able for mapping the writing style of a group of people to another

group. Mahmood et al. proposed a semantic guided mutation-based

approach to obfuscate stylistic features of a given text [29]. Recently,

Gröndahl and Asokan [24] and Krishna et al. [28] have showed the

feasibility of style transfer by leveraging recent advances in text

paraphrasing.

9 CONCLUSION

In this paper, we showed that compiler optimization plays a bigger

role in the accuracy of binary code stylometry than previously un-

derstood. Based on this insight, we developed an evasion technique

to protect programmers’ privacy against systematic surveillance.

The experimental evaluation on the Google Code Jam dataset shows

the effectiveness of our approach. Note that our method does not

directly produce evading samples for the programmer. Instead, it

recommends a set of compiler optimization flags for the compilation

to produce an evading sample, providing more transparency than

traditional transformation-oriented feature-perturbation-based eva-

sion techniques.
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