Modeling Code Manipulation in JIT Compilers

HeuiChan Lim

Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
hlim1@email.arizona.edu

Abstract

Just-in-Time (JIT) compilers are widely used to improve the
performance of interpreter-based language implementations
by creating optimized code at runtime. However, bugs in
the JIT compiler’s code manipulation and optimization can
result in the generation of incorrect code. Such bugs can be
difficult to diagnose and fix, and can result in exploitable
vulnerabilities. Unfortunately, existing approaches to auto-
matic bug localization do not carry over well to such bugs.
This paper discusses a different approach to analyzing JIT
compiler optimization behaviors, based on using dynamic
analysis to construct abstract models of the JIT compiler’s
optimizer and back end. By comparing the models obtained
for buggy and non-buggy executions of the JIT compiler, we
can pinpoint the components of the JIT compiler’s internal
representation that have been affected by the bug; this can
then be mapped back to identify the buggy code. Our ex-
periments with two real bugs for Google V8 JIT compiler,
TurboFan, show the utility and practicality of our approach.

CCS Concepts: » Theory of computation — Program
analysis.

Keywords: program analysis, jit compiler, optimization, dy-
namic code generation

ACM Reference Format:

HeuiChan Lim, Xiyu Kang, and Saumya Debray. 2022. Modeling
Code Manipulation in JIT Compilers. In Proceedings of the 11th ACM
SIGPLAN International Workshop on the State Of the Art in Program
Analysis (SOAP °22), June 14, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3520313.3534656

1 Introduction

JIT compilers are ubiquitous in today’s world and appear
within a wide range of software systems, ranging from
widely used applications such as web browsers [14, 16, 18]

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SOAP °22, June 14, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9274-7/22/06.
https://doi.org/10.1145/3520313.3534656

Xiyu Kang
Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
kangxiyu@email.arizona.edu

Saumya Debray
Department of Computer Science
The University Of Arizona
Tucson, AZ 85721, USA
debray@cs.arizona.edu

to specialized performance-critical code in OS kernels [30].
JIT compiler systems are typically large and complex, and
often incur rapid code change—a combination that makes
them fertile ground for bugs. Particularly challenging, in
this context, are dynamic code generation bugs, which
cause the JIT compiler to silently emit incorrect code,
resulting in incorrect execution behavior in the application
being optimized. Such bugs can be difficult to diagnose and
correct, for two reasons: first, the program that exhibits
incorrect behavior (the application being optimized) is not
the program that contains the bug (the JIT compiler); and
second, the code that manifests the incorrect behavior is
transiently generated at runtime and is not available for
static inspection. They also have significant security impli-
cations: e.g., an alias analysis bug in Mozilla’s lTonMonkey
JIT compiler results in the erroneous elimination of an
array bounds check (CVE-2019-17026) [31], and a bug in the
BPF JIT compiler in the Linux kernel results in incorrect
branch displacement computations (CVE-2021-29154)
[22], in each case resulting in vulnerabilities that can be
exploited to achieve arbitrary code execution. The difficulty
in diagnosing such bugs, combined with their security
implications, makes it important to provide tool support for
reasoning about JIT compiler optimization processes.
Unfortunately, existing approaches to automated bug lo-
calization [4-6, 8, 20, 21, 23] do not carry over to such bugs.
The problem is that these approaches are application-agnostic,
i.e., do not have any higher-level characterization of what the
applications under consideration do. A common approach
is to identify differences between the machine-level state
sequences observed in “good” and “bad” executions, map
these differences to code locations, then use a ranking func-
tion to determine their likelihood of being the cause of the
bug; code that causes differences earlier in execution are
typically ranked higher [3]. This approach, while very gen-
eral, unfortunately does not carry over well to JIT compil-
ers, whose inputs must first be processed by the interpreter
front end (parser, bytecode generator, etc.). The problem is
that, given two different input programs—one that triggers
a JIT-compiler bug and one that does not—their source-code
differences necessarily give rise to execution differences in
the interpreter front end that, because they occur early in ex-
ecution, are ranked higher by the bug localizer. For example,
in our experiments with a state-of-the-art bug localization
system [3], the root cause of a JIT compiler dynamic code

SOAP °22, June 14, 2022, San Diego, CA, USA

INTERPRETER
FRONT END

. =
i g 5] S
input 2 < g S5
program 2 s ge £ 2
8 2% o]

OPTIMIZER
.
Q
k<]
bytecode 3 e

o

HeuiChan Lim, Xiyu Kang, and Saumya Debray

computation
results

JIT COMPILER

BACK END
] 5 = 5 s d
Q o 5 O Sy optimize
= R 2= g8 computation
EL—H S8 23 S £ L— machine — p
g 53 @ o 5 E results
5 a g] 2 9 code

Figure 1. Interpreter/JIT Compiler Systems: Organization and structure

generation bug was erroneously identified as occurring in
the parser in the interpreter front end.

Instead, we take a very different approach. The problem
we are concerned with is: given a “proof of concept” (PoC)
input P that triggers a dynamic code generation bug in the
JIT compiler (such PoCs are typically provided alongside bug
reports), use program analysis techniques to identify poten-
tially incorrectly optimized components of the JIT compiler’s
representation of the input program. We use directed fuzzing
to create a set of variants of P and determine which of them
result in buggy JIT compiler executions and which do not.!
For each of these input programs, we use dynamic analysis
to obtain an instruction-level execution trace of the JIT com-
piler, from which we construct an abstract model of how it
manipulates its representation(s) of that program. We then
compare these abstract models for buggy and non-buggy JIT
compiler executions to determine how they differ, and use
these differences to identify structures in the JIT compiler’s
program representation that have potentially incorrect val-
ues. This allows us to pinpoint specific components of the
program representation that may be problematic: e.g., a par-
ticular intermediate representation node where an edge was
incorrectly modified during optimization, or an instance of
an instruction data structure in the JIT compiler back end
where an operand may have been improperly encoded. This
information can then be used to locate the buggy code.

This paper makes the following technical contributions:
(1) it describes how the program representations manipu-
lated by JIT compilers can be modeled in a general way;
and (2) it discusses how the resulting abstract models can
be used for automatic identification of witnesses to dynamic
code generation bugs, i.e., specific components of the JIT
compiler’s representation of the input program that have

For our purposes, a JIT compiler execution is non-buggy if the input
program’s behavior is the same with and without JIT compilation, i.e., if
the JIT-compiled code has the same behavior as interpreted code. The JIT
compiler’s execution is considered buggy if program’s behavior with JIT
compilation differs from its behavior when it is interpreted.

incorrect values. Preliminary results from a prototype imple-
mentation are encouraging and suggest that this approach
may be helpful in dealing with such bugs. Our prototype
currently targets three JavaScript JIT compilers: TurboFan,
(V8), DFG (JavaScriptCore), and IonMonkey (Spidermonkey);
due to space constraints we present results for V8.

2 Background

Figure 1 shows the conceptual structure of a typical inter-
preter/JIT compiler system. The input program is read by the
interpreter front end, converted to bytecode, and executed
by the interpreter. If a section of bytecode is executed a large
number of times, the JIT compiler is invoked and optimizes
the bytecode to generate optimized machine code.

JIT compilers typically convert the bytecode generated
by the interpreter into a graph-structured intermediate rep-
resentation (IR) that is used for optimization and transla-
tion to machine code. E.g., the TurboFan JIT compiler for
Google’s V8 JavaScript engine uses a sea-of-nodes repre-
sentation, where nodes represent operations, control flow,
types, and state; and edges represent control flow, data flow,
and effect dependencies [19, 28]. The optimized IR is con-
verted it into a different internal representation via lowering.
E.g., the resulting used in V8’s instruction selector, called
an Instruction, is a data structure that represents a ma-
chine code instruction. The Instruction data structure has
a number of different fields; when modeling the back end
we focus on two of these fields: opcode and operands.

3 An Overviw of Our Approach

We use dynamic analysis using Intel’s Pin Tool [25] to col-
lect an execution trace of a JIT compiler, i.e., a sequence
of dynamic instances of machine instructions obtained on
a particular execution of the input program (including JIT
compiler invocations occuring during execution). While an-
alyzing each instruction in a given trace, we extract the
following information to model the JIT compiler optimizer
and back end Instruction Selector:

10

Modeling Code Manipulation in JIT Compilers

e We use symbol table information in the JIT compiler exe-
cutable to map each instruction in the trace to the function
it belongs to. Thus, given the names of the JIT compiler’s
IR node allocation function(s), we can identify entry into
and return from these allocation functions, and thereby
determine the address and size of the allocated node.

e Given a (direct or indirect) function call instruction in the
trace, we collect the return value of the call. The location
of the return value can be obtained from the system’s
application-binary interface (ABI), e.g., on an x86-64 sys-
tem, an address is returned in the rax register.

e For each instruction in the trace, we collect information
about (a) the registers or memory locations it reads to-
gether with the values read; and () the registers or mem-
ory locations it writes together with the values written. We
use the read/write information to model the JIT compiler’s
creation, modification, and manipulation of IR nodes and
Instruction objects in the course of execution.

To enhance portability, we push system-specific aspects of
trace analysis, in particular the functionality to identify the
address, opcode, and size of IR node, into a library that is
accessed through a system-independent API, so that the re-
maining logic of model construction and analysis can be
kept system-independent. At this time, we have successfully
used this approach for system-independent modeling of IR
optimization for three different JIT compilers, namely: Tur-
boFan [13], DFG JIT [12], and IonMonkey [14]. Due to space
constraints, this paper provides experimental data for a V8
TurboFan optimization bug. We have not had time to apply
this approach to modeling JIT compiler back end structures.

This approach is conceptually simple, does not require
a great deal of knowledge about the JIT compiler system
beyond recognizing the functions that create the objects ma-
nipulated by the JIT compiler, and is portable across different
JIT compiler implementations. However, collecting and ana-
lyzing such traces can be expensive in both space and time.
An alternative would be to instrument the JIT compiler to
only emit information about specific events of interest. The
latter approach would likely incur less runtime overhead,
but has the following disadvantages:

1. It would require deeper knowledge of what to instru-
ment in the JIT compiler as well as more manual effort.

2. It would potentially be more brittle in handling
changes to the JIT compiler’s code.

3. It would not be portable across different JIT compilers.

4 Model Representations

Although a JIT compiler is a combination of several different
components, such as the parser, analyzer, optimizer, machine
code generator, etc, we focus on two components that play
an important in code manipulation in the JIT compiler. In
this section, we describe our abstract models of the code rep-
resentations used by the JIT compiler for manipulating the

11

SOAP °22, June 14, 2022, San Diego, CA, USA

input program during optimization and code generation. We
focus, in particular, on two components of the JIT compiler:
(1) the IR optimizer, which is responsible for converting byte-
code into a system-independent intermediate representation
(IR) and optimizing it; and (2) system-specific native code
generator, which is the back end of the JIT compiler.

4.1 Optimizer - Intermediate Representation

The JIT compiler parses its input, a sequence of bytecode
instructions, and builds an initial unoptimized IR. The IR
optimizer (“optimizer” for short) then performs a variety
of machine-independent optimizations on the resulting IR.
Different JIT compilers may differ in the details of their
optimization processes, both in terms of the optimizations
used and the particulars of how they are implemented.

In order to characterize and reason about the optimization
process within the JIT compiler, we build an abstract model
of the IR manipulated by the optimizer, as discussed below.

4.1.1 IR Graphs. We extract information about the IR
nodes and edges manipulated by the JIT compiler during
an execution by examining the instructions in its execu-
tion trace. We assume that we know the names of the JIT
compiler’s IR node allocation function(s).” We can therefore
identify the instructions that enter and return from these
allocation functions, from which we can determine the ad-
dress and size of the allocated node; by examining values
assigned to fields within the node we can determine the node
type (i.e., an operation such as mult or div, or a data type
such as int). Given an IR node v; of type t; and size s; at
address a;, the corresponding “abstract IR node” is obtained
as a(v;) = (i, t, si, a;). The index i refers to the order of node
creation during optimization. The size s; and address a; allow
us to keep track of operations performed on the node during
optimization, including addition/deletion of edges.

Given an edge e = (u,v) in the concrete IR graph manipu-
lated by the JIT compiler, the corresponding “abstract edge”

is a(e) = (a(u), a(v)).

4.1.2 IR Graph Transformations. The optimization pro-
cess in a JIT compiler on a given input can be thought of as
a sequence of IR graph modifications of the form

(Uiorrﬂ) (Uil,ﬁ) (Uin,l,Tn—l)
0 1 T n

Vi ., T
where each G; is an IR graph and G; g Gj+1 denotes
that a transformation® 7; is applied to G; = (V}, E;) at node
v;; € Vj to obtain the graph Gj,;. In practice the JIT com-
piler does not construct a sequence of different IR graphs

Ydentifying and extracting such functions from the source code is typically
straightforward: e.g., the functions can be found in node.h for TurboFan,
DFGNode.h for DFG JIT, and MIR.h for IonMonkey.

3For our purposes, the transformations 7; are low-level changes to the
graph, i.e., addition, deletion, or modification of nodes or edges, rather than
high-level optimization transformations such as loop unrolling or inlining.

SOAP 22, June 14, 2022, San Diego, CA, USA

Go, - - -, Gp, but successively transforms a single data struc-
ture, by adding, deleting, or modifying nodes and/or edges,
until the final “fully optimized” IR graph G, is obtained. To
avoid confusion, we refer to the IR graphs manipulated by
the JIT compiler as concrete IR graphs.

In order to model such optimization behaviors of the JIT
compiler for bug localization purposes, we summarize the
changes occurring in the concrete IR graphs using an abstract
IR graph. A key consideration here is the handling of node
and edge deletions. Suppose that a node (edge) is deleted from
a concrete IR graph at some point in the optimization process.
We cannot simply delete the corresponding node (edge) in
the abstract IR graph, since it would be lost to subsequent
reasoning if it were. Instead, we retain the corresponding
node (edge) in the abstract IR graph, but flag it as “removed”

Thus, given a concrete IR graph transformation sequence

(Uig,‘fo) (Uil,Tl) (Uin,l,‘fn—l)
0 1 T n

where G; = (V;, E;) is a concrete IR graph, we model this us-
ing an abstract IR graph (V,E, H) where V is a set of abstract
nodes, E is a set of abstract edges, and Hisa transformation
history. The set of nodes V and edges E in the abstract IR
graph capture all of the nodes and edges in the concrete IR
graphs encountered during optimization:

V=U{a) | veV,0<i<n}
E=U{a(e) | e E,0<i<n}

The transformation history H specifies the location and na-
ture of graph transformations applied during optimization.
We consider three kinds of graph modifications, denoted
as Mods = {addition, removal, replacement}; since we are in-
terested in bug localization, with each transformation we
record the JIT compiler source-code function that performs
that transformation (this can be deduced by using the sym-
bol table of the JIT compiler binary to map instructions in
the execution trace to source-level function names). The
transformation history Hisa sequence of tuples of the form

H = {(vo, mo, fo), (01,m1, 1) - -, (0, s).

where v; € V is the vertex in the abstract IR graph that is
transformed at step i; m; € Mods specifies the nature of the
transformation applied at that step; and f; is the name of the
JIT compiler function that performs the modification.

4.2 Back End Instruction Selector - Instruction

The instruction selector in the JIT compiler back end uses
the Instruction data structure to represent the optimized
machine instructions to be generated. Our analysis examines
the JIT compiler’s execution trace and extracts the following
information for each allocated instance of this data structure:

o Its address.
e The opcode of the instruction represented by this instance.

12

HeuiChan Lim, Xiyu Kang, and Saumya Debray

Buggy IR Graph Non-Buggy IR Graph
4 B

Figure 2. Buggy IR (left) vs. Non-Buggy IR (right)

o The operands of that instruction. This field in the source
code is a dynamically sized array. Each element in the
array is an 8-byte long operand encoding. Each operand
encoding describes attributes of the operand. As an exam-
ple, one of the attributes indicates whether the operand
will use a register or a stack slot. Since this field is a dynam-
ically sized array, we do not know its length. We currently
consider only the first two elements of this array.

o State changes of the opcode and operands fields. Each field
has its own sequence of state changes. For each field, let
S = (f,v) be the state of the field, which means the value
v is written to the field by a function f. The state of the
field is changed when a new function writes a new value
to the field. When such a change happens, we record the
new state of the field. Let S; be the i-th state of the field.
So the state changes of the field is {S1, Sy, ..., Sn }-

Let Instr to denote the information we extract for each in-
stance. Our model is defined as a sequence {Instry, ..., Instr, },
where n is the number of allocated instances.

5 Applications of Models

One of the useful applications of the abstract models dis-
cussed above is in identifying the bugs of the JIT compiler
which can happen during the code manipulation, i.e., opti-
mization and instruction selection. Our models hold enough
information about the result of the operation, e.g., the struc-
ture of an IR node after edge replacement graph modification
or the operand of Instruction instance after encoding, etc.,
which can be used in the analysis to identify the buggy IR
nodes and buggy Instruction instances. The buggy struc-
tures so identified can then be mapped back to the code that
manipulated them to identify the actual buggy functions in
the JIT compiler source code. For the purposes of this paper,
we focus on applying our abstract models to identify the
buggy IR nodes and buggy Instruction instances.

To identify buggy IR nodes and Instruction instances,
we compare the buggy and non-buggy models to find the
differences between them. For example, in the case of opti-
mizer IR graph, we compare the nodes from two IR graphs
to determine the nodes in the buggy IR graph that shows

Modeling Code Manipulation in JIT Compilers

the difference in any one of metadata, structure, and the opti-
mization. The nodes found to be different are the candidates
to be selected as the buggy IR nodes.

For example, in Figure 2, let A be the modeled buggy IR
and B be the modeled non-buggy IR. While nodes q, ¢, and d
are the same, the node b in the buggy IR graph has an extra
edge to the node d whereas the non-buggy IR graph does not.
This indicates that (1) this difference makes one IR graph
buggy while the other non-buggy; (2) the bug is likely to be
in the code that created the extra edge from b to d.

Note that, in the reality, the models and comparisons are
much more complicated than the given example. We pro-
vide specific examples of both optimizer IR and back end
Instruction instance model applications in Section 6.

6 Evaluation

To evaluate our ideas, we built two prototype tools, one that
models the IR optimizer and a (partially implemented) tool
that models the back end. Our experiments were run on a
machine with 32 cores (@ 3.30 GHz) and 1TB of RAM, run-
ning Ubuntu 20.04.1 LTS. A dynamic analysis tool built using
Intel’s Pin software (version 3.7) [25] is used for program
instrumentation and instruction-level execution trace collec-
tion; XED version 8.20.0 [7] is used to decode instructions.

Our prototypes target the JIT compiler, TurboFan, used in
JavaScript engines Google Chrome V8 [16] and Node.js [15]
to present the results on the use cases discussed in Section 5.
Specifically, (1) identify and rank the IR nodes that are sus-
picious to be buggy, and (2) identify potentially buggy in-
stances of Instruction data structure. In our experiments, we
took the following procedures:

1. Search and retrieve the separate bug reports for op-
timizer and back end that are marked as fixed from
Google Chrome’s bug report community [17].

2. Get the proof-of-concept (PoC) codes from the reports.
Use our fuzzer to generate a set of variants of the PoC.

3. Run our prototype tools on these PoC variants to iden-
tify a candidate set of buggy instances of JIT compiler
data structures.

4. Check that the results from the prototypes are correct.
We do this by checking that the result returned by
our tool matches that targeted by the fix in the source
code.

6.1 Optimizer Buggy IR Identification

Bug issue 5129 [9] was reported in June 2016 explaining that
the V8 JIT compiler version 8.3.1 incorrectly optimizes the
nodes for subtract and less-than operations: e.g., given the
expression X - y < @, the optimizer transforms the IR graph
to generate x < y expression instead. Mathematically, the
two expressions are equivalent, which makes the conversion
seems to be reasonable. However, according to the develop-
ers, this can cause an overflow resulting to wrong evaluation,

13

SOAP °22, June 14, 2022, San Diego, CA, USA

e.g., truefor x - y < @, but false once converted to x < y. The
fix was made in the MachineOperatorReducer: :Reduce op-
timizer function optimizing the operator nodes for less-than
and subtract. Thus, our goal is to model the IR graph and
analyze the model to confirm that we can identify the buggy
subtract and less-than operator nodes.

For this bug, our tool modeled a total of 300 nodes with 260
different opcodes in a single IR graph. We confirmed that our
model is correct by manually adding the print statements in
the optimizer source code to print the generated nodes with
opcode. We used the print-statements in the optimizer source
code and V8’s default tracing options, i.e., —trace-opt, to
confirm that our IR modeler tool has properly modeled the
optimization and constructed the model.

Table 1. Ordered List of Potentially Buggy Nodes

’ Order no. \ Node ID \ Opcode \ Mnemonic
1 242 007c NumberSubtract
2 243 006f | NumberLessThan
3 285 014c Word32Equal

Our IR modeler analyzed both buggy and non-buggy mod-
eled IRs to compute their differences. We used a custom
fuzzer, which we built, to generate 13 additional JavaScript
program inputs for this PoC, for a total of 14 input programs;
of these, 4 programs trigger the JIT compiler bug and 10
do not. The results are shown in Table 1. The analyzer se-
lected and returned only 3 nodes out of 300 nodes, namely,
NumberSubtract, NumberLessThan, and Word32Equal, and
ranked them in the order shown. Of these, NumberSubtract
and NumberLessThan are the actual buggy nodes.

Our tool takes about 2 minutes to model a single IR graph
for the PoC for this bug, i.e., a total of 28 minutes to model 14
IR graphs. Generating additional input programs via fuzzing,
analyzing the modeled IR graphs to identify the buggy IR
nodes, and ranking them like in the Table 1 takes less than a
minute. Thus, starting from a single input PoC program, it
takes approximately 30 minutes to get the result.

6.2 Back End Buggy Instance Identification

We evaluated the back end model on issue 9980 [10]. This
bug was reported in November 2019 explaining that the V8
JIT compiler version 8.0.0. causes a crash in the generated
dynamic code due to the following description.

The InstructionSelector::VisitS8x16Shuffle
function allocates instances of Instruction data structure
that have the opcode pshufd. This opcode reorganizes bytes
in a specified order. Among the Instruction instances,
there is an instance whose operand encoding encodes
that the operand will be stored to a stack slot. If pshufd
has a stack operand, the operand is required to have
16-byte memory alignment. However, V8 does not check
for this memory alignment, which results in a crash. We

SOAP 22, June 14, 2022, San Diego, CA, USA

call such an instance a "buggy instance". We can see that
the bug roots in the buggy instance which has a buggy
operand encoding that eventually causes the crash. In the
next V8 version, we see that the fix [1] was made in the
InstructionSelector::VisitS8x16Shuffle function.

In our experiment, our task is to identify the buggy in-
stance. The proof-of-concept we use is here [11]. Given a PoC
retrieved from the bug report, we generated an additional 20
buggy and 17 non-buggy input programs. In summary, 21
buggy input programs and 17 non-buggy input programs.

Table 2 shows the summary of our result. Initially, in all
the buggy models, there are 2143 potentially buggy instances.
We found that each buggy model has 102 potentially buggy
instances on average for this specific bug. We compute the
intersections of buggy instances to select only the instances
that commonly appear among the buggy instances. The re-
sult shows that there are only 35 potentially buggy instances
out of 2143 instances. Then, we compute the difference be-
tween the intersection result and non-buggy instances to se-
lect the instances that only appear on the buggy side. We call
this process subtraction. The result shows that the number
of potentially buggy instances was reduced to 15 instances.
The whole process took approximately 60 minutes.

Table 2. Number of Potentially Buggy Instances
’ Initial Total \ Average \ Intersection \ Difference ‘

[2143 [102 | 35 | 15]

Initially, there were 102 potentially buggy instances on
average. Our model narrowed this down to 15, and one of
them is the actual buggy instance. Furthermore, we can tell
which operand and which state of the operand is possibly
buggy. If we compare the potentially buggy instances with
the non-buggy instances, we can tell which operands and
states are different. Those operands and states are possibly
buggy in the potentially buggy instances.

We have not fully implemented modeling the back end at
this time. However, our initial results are encouraging, and
we plan to continue work on modeling the back end.

7 Future Work

As our evaluation shows, our approach is capable of iden-
tifying the buggy IR nodes and Instruction instances via
using dynamic analysis on execution traces of Google V8’s
JIT compiler optimizer and back end. Nevertheless, our idea
was experimented only with JIT compilers for JavaScript
language. Therefore, we plan to experiment with other lan-
guage JIT compilers, e.g., HHVM JIT and/or PHP 8 JIT, etc.,
to show that the idea is generalizable. Additionally, we aim
to model other internal components of the JIT compiler, e.g.,
register allocator, etc, and improve the approach to handle
more types of bugs, e.g., performance bugs that do not show

14

HeuiChan Lim, Xiyu Kang, and Saumya Debray

clear distinct behavior between the normal and abnormal
execution.

8 Related Work

Lim and Debray [24] discuss bug localization in the TurboFan
JIT compiler for Google’s V8 JavaScript engine. The work is
considerably less precise than ours, in that bug localization
is done at the granularity of optimization phases, and only
for a limited class of JIT compiler bugs. It also requires de-
tailed symbol information for the code implementing each
optimization phase, which makes generalizing to other JIT
compilers difficult.

The work on formal verification of JIT compilers [2, 26, 27]
has the laudable advantage of proving the correctness of the
verified JIT compiler. However, the size and complexity of
real-world JIT compilers, combined with the fact that they
are typically not written with verification in mind, make its
application to real-world JIT compilers challenging.

Static approaches used in automated bug localization [29,
32] typically uses the information retrieval technique. These
approaches require source code information in their anal-
ysis. There are two main problems using the approach in
JIT compilers: (1) JIT compilers generate code at run-time
and execution behavior tend to change per execution; (2) JIT
compilers, which generally is a part of larger system, tend
to share many functions with other components, e.g., inter-
preter. Thus, source code information used in the analysis
might not necessarily belong to the JIT compiler execution
but, for example, the interpreter.

The dynamic analysis approach used in the statistical de-
bugging [5, 23] targets to instrument specific types of pred-
icates, which are then analyzed and ranked. The approach
assumes that the program will always take the same exe-
cution path that identifying the predicates appear the most
within the buggy programs’ execution paths gives the idea
of where the bug is located in the source code. Nonetheless,
the JIT compiler’s execution paths are inconsistent.

9 Conclusion

In this paper, we present a new approach in analyzing the
execution behaviors of JIT compilers by modeling the in-
termediate representation, which the optimizer builds and
optimizes, and the instruction selector, which the back end
builds from the optimized IR to generate native code. Our ex-
periments on the real bugs show that our models are useful
in bug localization. Nevertheless, our approach was tested
on JIT compilers for JavaScript language only. Thus, we plan
to test on other language JIT compilers, e.g., PHP.

Acknowledgments

This research was supported in part by the National Science
Foundation under grant no. 1908313.

Modeling Code Manipulation in JIT Compilers SOAP °22, June 14, 2022, San Diego, CA, USA

References Automated software engineering. 184-193.

[21] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instru-
mentation and sampling strategies for cooperative concurrency bug
isolation. In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications. 241-255.

[22] Piotr Krysiuk. 2021. [CVE-2021-29154] Linux kernel incorrect compu-
tation of branch displacements in BPF JIT compiler can be abused to
execute arbitrary code in Kernel mode. https://www.openwall.com/
lists/oss-security/2021/04/08/1.

[23] Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan. 2003. Bug

isolation via remote program sampling. ACM Sigplan Notices 38, 5
(2003), 141-154.

[24] HeuiChan Lim and Saumya Debray. 2021. Automated bug localization
in JIT compilers. In VEE °21: 17th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, Virtual USA, April 16,
2021, Ben L. Titzer, Harry Xu, and Irene Zhang (Eds.). ACM, 153-164.
https://doi.org/10.1145/3453933.3454021

[25] C.-K.Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V.J.Reddi, and K. Hazelwood. 2005. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In Proc. ACM Confer-
ence on Programming Language Design and Implementation (PLDI).
Chicago, IL, 190-200.

[26] Magnus O Myreen. 2010. Verified just-in-time compiler on x86. In
Proceedings of the 37th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 107-118.

[27] Luke Nelson, Jacob Van Geffen, Emina Torlak, and Xi Wang. 2020.
Specification and verification in the field: Applying formal methods
to BPF just-in-time compilers in the Linux kernel. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). 41-61.

[28] Michael Paleczny, Christopher A. Vick, and Cliff Click. 2001. The Java
HotSpot Server Compiler. In Proceedings of the 1st Java Virtual Machine
Research and Technology Symposium, April 23-24, 2001, Monterey, CA,
USA, Saul Wold (Ed.). USENIX. http://www.usenix.org/publications/
library/proceedings/jvm01/paleczny.html

[29] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E
Perry. 2013. Improving bug localization using structured information
retrieval. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 345-355.

[30] Dominik Scholz, Daniel Raumer, Paul Emmerich, Alexander Kurtz,
Krzysztof Lesiak, and Georg Carle. 2018. Performance Implications of
Packet Filtering with Linux eBPF. In 2018 30th International Teletraffic
Congress (ITC 30), Vol. 01. 209-217. https://doi.org/10.1109/ITC30.
2018.00039

[31] Max Van Amerongen. 2020. Exploiting CVE-2019-17026 - A Firefox
JIT Bug. https://labs.f-secure.com/blog/exploiting-cve-2019-17026-a-
firefox-jit-bug/.

[32] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs
be fixed? more accurate information retrieval-based bug localization
based on bug reports. In 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 14-24.

[1] Ng Zhi An. 2019. Issue 9980 Fix. https://chromium.googlesource.com/
v8/v8.git/+/d9feec111268d796d46b3e48511ba11738006dc8%5E %21/
#F0.

[2] Aurele Barriére, Sandrine Blazy, and David Pichardie. 2020. Towards
Formally Verified Just-in-Time Compilation. In Proc. Sixth International
Workshop on Coq for Programming Languages (CoqPL’20).

[3] Tim Blazytko, Moritz Schl6gel, Cornelius Aschermann, Ali Abbasi, Joel
Frank, Simon Warner, and Thorsten Holz. 2020. AURORA: Statistical
Crash Analysis for Automated Root Cause Explanation. In Proceedings
of the 29th USENIX Security Symposium. 235-252.

[4] Gary Brooks, Glibert J. Hansen, and Steve Simmons. 1992. A new
approach to debugging optimized code. PLDI ’92: Proceedings of the
ACM SIGPLAN 1992 conference on Programming language design and
implementation (1992), 1-11.

[5] Trishul M Chilimbi, Ben Liblit, Krishna Mehra, Aditya V Nori, and
Kapil Vaswani. 2009. HOLMES: Effective statistical debugging via
efficient path profiling. In 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 34-44.

[6] Max Copperman. 1994. Debugging Optimized Code without Being
Misled. 16,3 (1994). https://doi.org/10.1145/177492.177517

[7] Intel Corp. 2019. Intel XED. https://intelxed.github.io. Accessed
2020-08-23.

[8] D. S. Coutant, S. Meloy, and M. Ruscetta. 1988. DOC: A Practical
Approach to Source-Level Debugging of Globally Optimized Code. In
Proceedings of the ACM SIGPLAN 1988 Conference on Programming
Language Design and Implementation. 125-134. https://doi.org/10.
1145/53990.54003

[9] V8 Developer. 2016. Issue 5129: Turbofan changes x — y < 0 to
x < y which is not equivalent when (x — y) overflows. https:
//bugs.chromium.org/p/v8/issues/detail?id=5129

[10] V8 Developer. 2019. Issue 9980. https://bugs.chromium.org/p/v8/
issues/detail?id=9980&q=9980&can=2.

[11] V8 Developer. 2019. Proof-of-Concept of Issue 9980. https://bugs.
chromium.org/p/v8/issues/attachmentText?aid=422581.

[12] WebKit Developers. 2014. DFG JIT. https://trac.webkit.org/browser/
trunk/Source/JavaScriptCore/dfg. Accessed 2022-04-23.

[13] Jeremy Fetiveau. 2019. Introduction to TurboFan. https://doar-e.github.
io/blog/2019/01/28/introduction-to-turbofan/. Accessed 2022-01-22.

[14] Mozilla Foundation. 2016. IonMonkey/MIR. https://wiki.mozilla.org/
lonMonkey/MIR. Accessed 2022-01-22.

[15] OpenJS Foundation. 2009. node.js. https://github.com/nodejs/node.
Accessed 2022-02-18.

[16] Google. 2008. v8 JavaScript Engine. https://v8.dev/. Accessed 2022-01-
18.

[17] Google. n.d. Google Chromium Bug Report Community. https://bugs.
chromium.org/p/v8/issues/list. Accessed 2022-01-15.

[18] Apple Inc. 2014. JavaScriptCore DFG Source Code. https://trac.webkit.
org/browser/trunk/Source/JavaScriptCore/dfg. Accessed 2022-01-22.

[19] Fedor Indutny. 2015. Sea of Nodes. Accessed 2022-02-22.

[20] Lingxiao Jiang and Zhendong Su. 2007. Context-aware statistical
debugging: from bug predictors to faulty control flow paths. In Pro-
ceedings of the twenty-second IEEE/ACM international conference on

15

	Abstract
	1 Introduction
	2 Background
	3 An Overviw of Our Approach
	4 Model Representations
	4.1 Optimizer - Intermediate Representation
	4.2 Back End Instruction Selector - Instruction

	5 Applications of Models
	6 Evaluation
	6.1 Optimizer Buggy IR Identification
	6.2 Back End Buggy Instance Identification

	7 Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

