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• We use symbol table information in the JIT compiler exe-
cutable to map each instruction in the trace to the function
it belongs to. Thus, given the names of the JIT compiler’s
IR node allocation function(s), we can identify entry into
and return from these allocation functions, and thereby
determine the address and size of the allocated node.

• Given a (direct or indirect) function call instruction in the
trace, we collect the return value of the call. The location
of the return value can be obtained from the system’s
application-binary interface (ABI), e.g., on an x86-64 sys-
tem, an address is returned in the rax register.

• For each instruction in the trace, we collect information
about (𝑎) the registers or memory locations it reads to-
gether with the values read; and (𝑏) the registers or mem-
ory locations it writes together with the values written.We
use the read/write information to model the JIT compiler’s
creation, modification, and manipulation of IR nodes and
Instruction objects in the course of execution.

To enhance portability, we push system-specific aspects of
trace analysis, in particular the functionality to identify the
address, opcode, and size of IR node, into a library that is
accessed through a system-independent API, so that the re-
maining logic of model construction and analysis can be
kept system-independent. At this time, we have successfully
used this approach for system-independent modeling of IR
optimization for three different JIT compilers, namely: Tur-
boFan [13], DFG JIT [12], and IonMonkey [14]. Due to space
constraints, this paper provides experimental data for a V8
TurboFan optimization bug. We have not had time to apply
this approach to modeling JIT compiler back end structures.

This approach is conceptually simple, does not require
a great deal of knowledge about the JIT compiler system
beyond recognizing the functions that create the objects ma-
nipulated by the JIT compiler, and is portable across different
JIT compiler implementations. However, collecting and ana-
lyzing such traces can be expensive in both space and time.
An alternative would be to instrument the JIT compiler to
only emit information about specific events of interest. The
latter approach would likely incur less runtime overhead,
but has the following disadvantages:

1. It would require deeper knowledge of what to instru-
ment in the JIT compiler as well as more manual effort.

2. It would potentially be more brittle in handling
changes to the JIT compiler’s code.

3. It would not be portable across different JIT compilers.

4 Model Representations

Although a JIT compiler is a combination of several different
components, such as the parser, analyzer, optimizer, machine
code generator, etc, we focus on two components that play
an important in code manipulation in the JIT compiler. In
this section, we describe our abstract models of the code rep-
resentations used by the JIT compiler for manipulating the

input program during optimization and code generation. We
focus, in particular, on two components of the JIT compiler:
(1) the IR optimizer, which is responsible for converting byte-
code into a system-independent intermediate representation
(IR) and optimizing it; and (2) system-specific native code
generator, which is the back end of the JIT compiler.

4.1 Optimizer - Intermediate Representation

The JIT compiler parses its input, a sequence of bytecode
instructions, and builds an initial unoptimized IR. The IR
optimizer (łoptimizerž for short) then performs a variety
of machine-independent optimizations on the resulting IR.
Different JIT compilers may differ in the details of their
optimization processes, both in terms of the optimizations
used and the particulars of how they are implemented.

In order to characterize and reason about the optimization
process within the JIT compiler, we build an abstract model
of the IR manipulated by the optimizer, as discussed below.

4.1.1 IR Graphs. We extract information about the IR
nodes and edges manipulated by the JIT compiler during
an execution by examining the instructions in its execu-
tion trace. We assume that we know the names of the JIT
compiler’s IR node allocation function(s).2 We can therefore
identify the instructions that enter and return from these
allocation functions, from which we can determine the ad-
dress and size of the allocated node; by examining values
assigned to fields within the node we can determine the node
type (i.e., an operation such as mult or div, or a data type
such as int). Given an IR node 𝑣𝑖 of type 𝑡𝑖 and size 𝑠𝑖 at
address 𝑎𝑖 , the corresponding łabstract IR nodež is obtained
as 𝛼 (𝑣𝑖 ) = (𝑖, 𝑡𝑖 , 𝑠𝑖 , 𝑎𝑖 ). The index 𝑖 refers to the order of node
creation during optimization. The size 𝑠𝑖 and address 𝑎𝑖 allow
us to keep track of operations performed on the node during
optimization, including addition/deletion of edges.

Given an edge 𝑒 ≡ (𝑢, 𝑣) in the concrete IR graph manipu-
lated by the JIT compiler, the corresponding łabstract edgež
is 𝛼 (𝑒) = (𝛼 (𝑢), 𝛼 (𝑣)).

4.1.2 IR Graph Transformations. The optimization pro-
cess in a JIT compiler on a given input can be thought of as
a sequence of IR graph modifications of the form

𝐺0

(𝑣𝑖0 ,𝜏0 )
−−−−−→ 𝐺1

(𝑣𝑖1 ,𝜏1 )
−−−−−→ · · ·

(𝑣𝑖𝑛−1 ,𝜏𝑛−1 )
−−−−−−−−−→ 𝐺𝑛

where each 𝐺𝑖 is an IR graph and 𝐺 𝑗

(𝑣𝑖 𝑗 ,𝜏 𝑗 )

−−−−−−→ 𝐺 𝑗+1 denotes
that a transformation3 𝜏 𝑗 is applied to 𝐺 𝑗 ≡ (𝑉𝑗 , 𝐸 𝑗 ) at node
𝑣𝑖 𝑗 ∈ 𝑉𝑗 to obtain the graph 𝐺 𝑗+1. In practice the JIT com-
piler does not construct a sequence of different IR graphs

2Identifying and extracting such functions from the source code is typically

straightforward: e.g., the functions can be found in node.h for TurboFan,

DFGNode.h for DFG JIT, and MIR.h for IonMonkey.
3For our purposes, the transformations 𝜏𝑖 are low-level changes to the

graph, i.e., addition, deletion, or modification of nodes or edges, rather than

high-level optimization transformations such as loop unrolling or inlining.
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𝐺0, . . . ,𝐺𝑛 , but successively transforms a single data struc-
ture, by adding, deleting, or modifying nodes and/or edges,
until the final łfully optimizedž IR graph 𝐺𝑛 is obtained. To
avoid confusion, we refer to the IR graphs manipulated by
the JIT compiler as concrete IR graphs.

In order to model such optimization behaviors of the JIT
compiler for bug localization purposes, we summarize the
changes occurring in the concrete IR graphs using an abstract
IR graph. A key consideration here is the handling of node
and edge deletions. Suppose that a node (edge) is deleted from
a concrete IR graph at some point in the optimization process.
We cannot simply delete the corresponding node (edge) in
the abstract IR graph, since it would be lost to subsequent
reasoning if it were. Instead, we retain the corresponding
node (edge) in the abstract IR graph, but flag it as łremoved.ž

Thus, given a concrete IR graph transformation sequence

𝐺0

(𝑣𝑖0 ,𝜏0 )
−−−−−→ 𝐺1

(𝑣𝑖1 ,𝜏1 )
−−−−−→ · · ·

(𝑣𝑖𝑛−1 ,𝜏𝑛−1 )
−−−−−−−−−→ 𝐺𝑛

where 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) is a concrete IR graph, we model this us-

ing an abstract IR graph (𝑉 , 𝐸, 𝐻 ) where𝑉 is a set of abstract

nodes, 𝐸 is a set of abstract edges, and 𝐻 is a transformation

history. The set of nodes 𝑉 and edges 𝐸 in the abstract IR
graph capture all of the nodes and edges in the concrete IR
graphs encountered during optimization:

𝑉 =

⋃
{𝛼 (𝑣) | 𝑣 ∈ 𝑉𝑖 , 0 ≤ 𝑖 ≤ 𝑛}

𝐸 =

⋃
{𝛼 (𝑒) | 𝑒 ∈ 𝐸𝑖 , 0 ≤ 𝑖 ≤ 𝑛}

The transformation history 𝐻 specifies the location and na-
ture of graph transformations applied during optimization.
We consider three kinds of graph modifications, denoted
as Mods = {addition, removal, replacement}; since we are in-
terested in bug localization, with each transformation we
record the JIT compiler source-code function that performs
that transformation (this can be deduced by using the sym-
bol table of the JIT compiler binary to map instructions in
the execution trace to source-level function names). The

transformation history 𝐻 is a sequence of tuples of the form

𝐻 = ⟨(𝑣0,𝑚0, 𝑓0), (𝑣1,𝑚1, 𝑓1), . . . , (𝑣𝑛,𝑚𝑛, 𝑓𝑛)⟩.

where 𝑣𝑖 ∈ 𝑉 is the vertex in the abstract IR graph that is
transformed at step 𝑖;𝑚𝑖 ∈ Mods specifies the nature of the
transformation applied at that step; and 𝑓𝑖 is the name of the
JIT compiler function that performs the modification.

4.2 Back End Instruction Selector - Instruction

The instruction selector in the JIT compiler back end uses
the Instruction data structure to represent the optimized
machine instructions to be generated. Our analysis examines
the JIT compiler’s execution trace and extracts the following
information for each allocated instance of this data structure:

• Its address.
• The opcode of the instruction represented by this instance.

Figure 2. Buggy IR (left) vs. Non-Buggy IR (right)

• The operands of that instruction. This field in the source
code is a dynamically sized array. Each element in the
array is an 8-byte long operand encoding. Each operand
encoding describes attributes of the operand. As an exam-
ple, one of the attributes indicates whether the operand
will use a register or a stack slot. Since this field is a dynam-
ically sized array, we do not know its length. We currently
consider only the first two elements of this array.

• State changes of the opcode and operands fields. Each field
has its own sequence of state changes. For each field, let
𝑆 = (𝑓 , 𝑣) be the state of the field, which means the value
𝑣 is written to the field by a function 𝑓 . The state of the
field is changed when a new function writes a new value
to the field. When such a change happens, we record the
new state of the field. Let 𝑆𝑖 be the 𝑖-th state of the field.
So the state changes of the field is {𝑆1, 𝑆2, ..., 𝑆𝑛}.

Let Instr to denote the information we extract for each in-
stance. Our model is defined as a sequence {Instr1, ..., Instr𝑛},
where 𝑛 is the number of allocated instances.

5 Applications of Models

One of the useful applications of the abstract models dis-
cussed above is in identifying the bugs of the JIT compiler
which can happen during the code manipulation, i.e., opti-
mization and instruction selection. Our models hold enough
information about the result of the operation, e.g., the struc-
ture of an IR node after edge replacement graph modification
or the operand of Instruction instance after encoding, etc.,
which can be used in the analysis to identify the buggy IR
nodes and buggy Instruction instances. The buggy struc-
tures so identified can then be mapped back to the code that
manipulated them to identify the actual buggy functions in
the JIT compiler source code. For the purposes of this paper,
we focus on applying our abstract models to identify the
buggy IR nodes and buggy Instruction instances.

To identify buggy IR nodes and Instruction instances,
we compare the buggy and non-buggy models to find the
differences between them. For example, in the case of opti-
mizer IR graph, we compare the nodes from two IR graphs
to determine the nodes in the buggy IR graph that shows
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the difference in any one of metadata, structure, and the opti-
mization. The nodes found to be different are the candidates
to be selected as the buggy IR nodes.

For example, in Figure 2, let A be the modeled buggy IR
and B be the modeled non-buggy IR. While nodes a, c, and d

are the same, the node b in the buggy IR graph has an extra
edge to the node d whereas the non-buggy IR graph does not.
This indicates that (1) this difference makes one IR graph
buggy while the other non-buggy; (2) the bug is likely to be
in the code that created the extra edge from b to 𝑑 .

Note that, in the reality, the models and comparisons are
much more complicated than the given example. We pro-
vide specific examples of both optimizer IR and back end
Instruction instance model applications in Section 6.

6 Evaluation

To evaluate our ideas, we built two prototype tools, one that
models the IR optimizer and a (partially implemented) tool
that models the back end. Our experiments were run on a
machine with 32 cores (@ 3.30 GHz) and 1TB of RAM, run-
ning Ubuntu 20.04.1 LTS. A dynamic analysis tool built using
Intel’s Pin software (version 3.7) [25] is used for program
instrumentation and instruction-level execution trace collec-
tion; XED version 8.20.0 [7] is used to decode instructions.

Our prototypes target the JIT compiler, TurboFan, used in
JavaScript engines Google Chrome V8 [16] and Node.js [15]
to present the results on the use cases discussed in Section 5.
Specifically, (1) identify and rank the IR nodes that are sus-
picious to be buggy, and (2) identify potentially buggy in-
stances of Instruction data structure. In our experiments, we
took the following procedures:

1. Search and retrieve the separate bug reports for op-
timizer and back end that are marked as fixed from
Google Chrome’s bug report community [17].

2. Get the proof-of-concept (PoC) codes from the reports.
Use our fuzzer to generate a set of variants of the PoC.

3. Run our prototype tools on these PoC variants to iden-
tify a candidate set of buggy instances of JIT compiler
data structures.

4. Check that the results from the prototypes are correct.
We do this by checking that the result returned by
our tool matches that targeted by the fix in the source
code.

6.1 Optimizer Buggy IR Identification

Bug issue 5129 [9] was reported in June 2016 explaining that
the V8 JIT compiler version 8.3.1 incorrectly optimizes the
nodes for subtract and less-than operations: e.g., given the
expression x - y < 0, the optimizer transforms the IR graph
to generate x < y expression instead. Mathematically, the
two expressions are equivalent, which makes the conversion
seems to be reasonable. However, according to the develop-
ers, this can cause an overflow resulting to wrong evaluation,

e.g., true for x - y < 0, but false once converted to x < y. The
fix was made in the MachineOperatorReducer::Reduce op-
timizer function optimizing the operator nodes for less-than
and subtract. Thus, our goal is to model the IR graph and
analyze the model to confirm that we can identify the buggy
subtract and less-than operator nodes.

For this bug, our tool modeled a total of 300 nodes with 260
different opcodes in a single IR graph. We confirmed that our
model is correct by manually adding the print statements in
the optimizer source code to print the generated nodes with
opcode.We used the print-statements in the optimizer source
code and V8’s default tracing options, i.e., –trace-opt, to
confirm that our IR modeler tool has properly modeled the
optimization and constructed the model.

Table 1. Ordered List of Potentially Buggy Nodes

Order no. Node ID Opcode Mnemonic

1 242 007c NumberSubtract
2 243 006f NumberLessThan
3 285 014c Word32Equal

Our IR modeler analyzed both buggy and non-buggy mod-
eled IRs to compute their differences. We used a custom
fuzzer, which we built, to generate 13 additional JavaScript
program inputs for this PoC, for a total of 14 input programs;
of these, 4 programs trigger the JIT compiler bug and 10
do not. The results are shown in Table 1. The analyzer se-
lected and returned only 3 nodes out of 300 nodes, namely,
NumberSubtract, NumberLessThan, and Word32Equal, and
ranked them in the order shown. Of these, NumberSubtract
and NumberLessThan are the actual buggy nodes.

Our tool takes about 2 minutes to model a single IR graph
for the PoC for this bug, i.e., a total of 28 minutes to model 14
IR graphs. Generating additional input programs via fuzzing,
analyzing the modeled IR graphs to identify the buggy IR
nodes, and ranking them like in the Table 1 takes less than a
minute. Thus, starting from a single input PoC program, it
takes approximately 30 minutes to get the result.

6.2 Back End Buggy Instance Identification

We evaluated the back end model on issue 9980 [10]. This
bug was reported in November 2019 explaining that the V8
JIT compiler version 8.0.0. causes a crash in the generated
dynamic code due to the following description.

The InstructionSelector::VisitS8x16Shuffle

function allocates instances of Instruction data structure
that have the opcode pshufd. This opcode reorganizes bytes
in a specified order. Among the Instruction instances,
there is an instance whose operand encoding encodes
that the operand will be stored to a stack slot. If pshufd
has a stack operand, the operand is required to have
16-byte memory alignment. However, V8 does not check
for this memory alignment, which results in a crash. We
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call such an instance a "buggy instance". We can see that
the bug roots in the buggy instance which has a buggy
operand encoding that eventually causes the crash. In the
next V8 version, we see that the fix [1] was made in the
InstructionSelector::VisitS8x16Shuffle function.

In our experiment, our task is to identify the buggy in-
stance. The proof-of-concept we use is here [11]. Given a PoC
retrieved from the bug report, we generated an additional 20
buggy and 17 non-buggy input programs. In summary, 21
buggy input programs and 17 non-buggy input programs.

Table 2 shows the summary of our result. Initially, in all
the buggy models, there are 2143 potentially buggy instances.
We found that each buggy model has 102 potentially buggy
instances on average for this specific bug. We compute the
intersections of buggy instances to select only the instances
that commonly appear among the buggy instances. The re-
sult shows that there are only 35 potentially buggy instances
out of 2143 instances. Then, we compute the difference be-
tween the intersection result and non-buggy instances to se-
lect the instances that only appear on the buggy side. We call
this process subtraction. The result shows that the number
of potentially buggy instances was reduced to 15 instances.
The whole process took approximately 60 minutes.

Table 2. Number of Potentially Buggy Instances

Initial Total Average Intersection Difference

2143 102 35 15

Initially, there were 102 potentially buggy instances on
average. Our model narrowed this down to 15, and one of
them is the actual buggy instance. Furthermore, we can tell
which operand and which state of the operand is possibly
buggy. If we compare the potentially buggy instances with
the non-buggy instances, we can tell which operands and
states are different. Those operands and states are possibly
buggy in the potentially buggy instances.

We have not fully implemented modeling the back end at
this time. However, our initial results are encouraging, and
we plan to continue work on modeling the back end.

7 Future Work

As our evaluation shows, our approach is capable of iden-
tifying the buggy IR nodes and Instruction instances via
using dynamic analysis on execution traces of Google V8’s
JIT compiler optimizer and back end. Nevertheless, our idea
was experimented only with JIT compilers for JavaScript
language. Therefore, we plan to experiment with other lan-
guage JIT compilers, e.g., HHVM JIT and/or PHP 8 JIT, etc.,
to show that the idea is generalizable. Additionally, we aim
to model other internal components of the JIT compiler, e.g.,
register allocator, etc, and improve the approach to handle
more types of bugs, e.g., performance bugs that do not show

clear distinct behavior between the normal and abnormal
execution.

8 Related Work

Lim andDebray [24] discuss bug localization in the TurboFan
JIT compiler for Google’s V8 JavaScript engine. The work is
considerably less precise than ours, in that bug localization
is done at the granularity of optimization phases, and only
for a limited class of JIT compiler bugs. It also requires de-
tailed symbol information for the code implementing each
optimization phase, which makes generalizing to other JIT
compilers difficult.

The work on formal verification of JIT compilers [2, 26, 27]
has the laudable advantage of proving the correctness of the
verified JIT compiler. However, the size and complexity of
real-world JIT compilers, combined with the fact that they
are typically not written with verification in mind, make its
application to real-world JIT compilers challenging.

Static approaches used in automated bug localization [29,
32] typically uses the information retrieval technique. These
approaches require source code information in their anal-
ysis. There are two main problems using the approach in
JIT compilers: (1) JIT compilers generate code at run-time
and execution behavior tend to change per execution; (2) JIT
compilers, which generally is a part of larger system, tend
to share many functions with other components, e.g., inter-
preter. Thus, source code information used in the analysis
might not necessarily belong to the JIT compiler execution
but, for example, the interpreter.

The dynamic analysis approach used in the statistical de-
bugging [5, 23] targets to instrument specific types of pred-
icates, which are then analyzed and ranked. The approach
assumes that the program will always take the same exe-
cution path that identifying the predicates appear the most
within the buggy programs’ execution paths gives the idea
of where the bug is located in the source code. Nonetheless,
the JIT compiler’s execution paths are inconsistent.

9 Conclusion

In this paper, we present a new approach in analyzing the
execution behaviors of JIT compilers by modeling the in-
termediate representation, which the optimizer builds and
optimizes, and the instruction selector, which the back end
builds from the optimized IR to generate native code. Our ex-
periments on the real bugs show that our models are useful
in bug localization. Nevertheless, our approach was tested
on JIT compilers for JavaScript language only. Thus, we plan
to test on other language JIT compilers, e.g., PHP.
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