
Enforcement of K-Step Opacity with Edit Functions

Andrew Wintenberg, Matthew Blischke, Stéphane Lafortune, and Necmiye Ozay

Abstract— Opacity is an information flow property for dy-
namic systems describing plausible deniability, that is whether
an eavesdropper can deduce that “secret” behavior has oc-
curred. In particular, K-step opacity considers secret actions
that have occurred within the last K-steps in the past. We
consider the problem of K-step opacity enforcement over
automata using obfuscation. We present a general framework
for K-step opacity enforcement and transform the problem
of enforcing K-step opacity to enforcing current-state opacity.
We can then apply existing obfuscation synthesis methods for
current-state opacity to K-step opacity. We demonstrate this
approach by enforcing privacy in the context of a novel contact
tracing model.

I. INTRODUCTION
Networked cyber-physical systems are becoming

widespread throughout society in the form of autonomous
vehicles, the smart grid, location-based services, and
medical monitoring, to name but a few technological
domains. These systems often transmit sensitive information
across networks which can be compromised by a malicious
eavesdropper. To address this concern, the use of formal
methods has been proposed to understand information flow
within these systems. In this work, we use the information
flow property of opacity to express the privacy and security
of cyber-physical systems. Opacity captures the notion of
plausible deniability: opacity holds if sensitive or secret
information of the system cannot be deduced by an outside
eavesdropper. In other words, the system’s secret behavior
looks the same as its nonsecret behavior.

Opacity has gained considerable interest in the area of
Discrete Event Systems (DES). Opacity has been studied
using a variety of DES models like transition systems [1],
Petri nets [2], finite state automata [3], and more. In order to
accurately reflect the complex security requirements that may
be required for these systems, a variety of notions of opacity
have been formulated along with corresponding methods
for verification. These notions include current-state opacity
[3], initial-state opacity [4], language-based opacity [5], and
approximate opacity [6]. Roughly, these notions differ in
which behavior is considered secret and what capabilities
are possessed by the eavesdropper. For example, current-state
opacity requires that the eavesdropper cannot deduce that the
system is currently at a secret state based on its observation
of system events. While not revealing current secrets may
sufficiently capture some security requirements, it is often

This work was supported in part by NSF grants CNS-1738103, CNS-
1801342, and ECCS-1553873.

A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay are with the De-
partment of Electrical Engineering and Computer Science at the University
of Michigan, Ann Arbor, MI 48109, United States, email: {awintenb,
matblisc, stephane, necmiye}@umich.edu

the case that secrets of the past are sensitive as well. In this
case, an eavesdropper can refine or smooth their knowledge
of past secrets using current observations. To model this
security concern, notions of K-step opacity [7], [8] have been
proposed which require that the eavesdropper cannot deduce
secrets within K subsequent observations. A thorough review
of opacity in the context of DES, as of 2016, is provided in
[9].

Oftentimes, it can be verified that an existing system is not
opaque, but it is desired to enforce opacity upon the system.
The problem of opacity enforcement has been approached
using a variety of mechanisms in the literature. For example,
supervisory control can enforce opacity by restricting behav-
ior that would reveal secrets to an eavesdropper. The synthe-
sis of such controllers has been investigated in [10], [11] for
instance. However, it is not always feasible to alter existing
system behavior, e.g., human behavior in a cyber-physical
system. As an alternative to control, obfuscation can enforce
opacity by altering the information ultimately available to the
eavesdropper. Several works have investigated the synthesis
of edit functions which selectively insert and delete outputs
from the system [12], [13]. These approaches synthesize edit
functions, which effectively enforce current-state opacity, as
winning strategies to finite two-player reachability games
as in [14]. Related obfuscation strategies, such as delaying
observations at runtime [8] and dynamic masks [15], have
also been studied.

In this paper, we consider the problem of synthesizing edit
functions to enforce K-step opacity. To the best of our knowl-
edge, this problem has not yet been explicitly considered
in the literature. As noted in [12], synthesis methods for
current-state opacity can be applied to enforce other notions
of opacity that can be transformed into current-state opacity,
provided the resulting enforcement strategy for current-state
opacity can be mapped back to the original notion of opacity
under consideration. For example, it was found in [16] that
initial-state and language-based opacity can be transformed
into current-state opacity. Recently, a novel language-based
formulation of the various notions of K-step and infinite
step opacity was established, for the first time, in [17].
While [17] focuses on the verification of K-step opacity over
finite automata, in this work we focus on the enforcement
of K-step opacity with edit functions. We show how safe
edit functions can be synthesized by suitably leveraging
existing methods for current-state opacity. We demonstrate
this approach on a case study by synthesizing edit functions
enforcing location privacy on a system modeling the motion
of individuals using a contact-tracing app whose data is
available to a malicious eavesdropper.

The remaining sections of this paper are organized as
follows. A review of basic automata theory and a general
framework for opacity including K-step opacity is presented
in Section II. Section III discusses how edit functions can be
used as a means of obfuscation to enforce K-step opacity.
Synthesis methods for such edit functions are presented in
Section IV which leverage existing methods for current-state
opacity. Section V demonstrates this approach to preserve
privacy in a system modeling contact-tracing. Finally, the
paper is concluded in Section VI.

II. PRELIMINARIES

In this section we review basic automata theory and
summarize the general framework for opacity from [17]
along with results for expressing K-step opacity in this
setting.

A. Operations on automata

A nondeterministic finite automaton (NFA) is defined by
a tuple G = (Q,E, f,Q0, Qm) with a finite set of states
Q, events E, transition function f : Q × (E ∪ {ε}) → 2Q,
initial states Q0 and marked states Qm. We also extend f to
the domain Q×E∗ in the standard way. Here ε denotes the
empty string. A nonempty deterministic finite automaton is
a special kind of NFA where |Q0| = 1 and |f(q, e)| ≤ 1 for
all q ∈ Q and e ∈ E. We denote the set of finite strings over
the alphabet E as E∗. We denote the set of prefixes of a
string s ∈ E∗ as s and the prefixes of the language L ⊆ E∗
as L. We denote the length of a string s as |s|. The language
generated by G is defined by

L(G) = {s ∈ E∗ | ∃q0 ∈ Q0 f(q0, s) 6= ∅} . (1)

Likewise the language marked by G is defined by

Lm(G) = {s ∈ E∗ | ∃q0 ∈ Q0 ∃qm ∈ Qm qm ∈ f(q0, s)} .
(2)

For automata G and H , we write G×H for the synchronous
product of G and H , and det(G) for the determinization of
G using the standard power set construction. We also use the
notation PEo

: E∗ → E∗o to denote the projection of strings
with respect to observable events Eo ⊆ E. These notions are
defined in detail in [18].

B. Problem setting & opacity framework

We consider discrete event systems modeled by a non-
deterministic automaton A = (X,Σ, δ,X0) without marked
states. Marked states are not considered as we are concerned
with the prefix-closed behavior of the system. The secret
behavior of this system is defined in terms of a subset of
the system’s states XS ⊆ X which are called secret. This
set is encoded with a state-labeling map ` : X → A where
A = {S,NS} defined for x ∈ X by `(x) = S if x ∈ XS and
`(x) = NS otherwise. By viewing events as inputs and state
labels as outputs, the behavior or runs of A under ` can

A 0 1

a

a

b

T IO(A, `) xinit 0 1
(σinit,NS)

(a,NS)

(a, S)

(b,NS)

Fig. 1. An automaton A (top) where the square state 1 is considered secret
so `(0) = NS and `(1) = S. The label-transform T IO(A, `) (bottom)
recognizes the input-output sequences of A under `.

be described as sequences of input-output pairs1. In order
to carry the label of the initial state in a run, the artificial
event σinit disjoint from Σ is introduced. The set of input-
output pairs is denoted by E = (Σ ∪ {σinit})× A. We can
transform A into an automaton generating strings of input-
output pairs by augmenting its transitions with the state labels
of their destination. Additionally, an artificial initial state
xinit disjoint from X is introduced as a source for σinit
events.

Definition 2.1: The label-transform of an NFA A =
(X,Σ, δ,X0) under the label map ` : X → A, is an NFA
T IO(A, `) = (Q,E, f,Q0, Qm), where Q = X ∪ {xinit},
E = (Σ∪{σinit})×A, Q0 = {xinit}, Qm = X , and whose
transitions are defined for all x ∈ X,σ ∈ Σ, a ∈ A by

f(xinit, (σinit, a)) = {x0 ∈ X0 | `(x0) = a},
f(x, (σ, a)) = {x′ ∈ δ(x, σ) | `(x′) = a} .

(3)

This label-transform is similar to the transform of automata
with state outputs to input-output automata in [18]. An
example of this label-transform is depicted in Figure 1. The
input-output behavior is then defined as follows.

Definition 2.2: The set of input-output sequences of an
NFA A = (X,Σ, δ,X0) under the label map ` : X → A is
defined as

LIO(A, `) = Lm(T IO(A, `)) . (4)
We denote the behavior or set of runs of the system A

under ` as R = LIO(A, `). The information flow out of the
system is modeled through an observation map Θ : R→ O
mapping runs in R to observations in the space O. We
consider an eavesdropper attempting to deduce whether or
not certain secret behaviors have occurred using these ob-
servations. We assume that the eavesdropper a priori knows
the system’s behavior R and the original observation map Θ.
We assume these observations are produced by the projection
onto a set of observable events Σo ⊆ Σ. While the framework
of [17] considers σinit to be observable, for simplicity in
discussing obfuscation we take σinit to be unobservable. We
assume the observation map Θ : R → O is induced by Σo

1Using the language of A alone to describe its behavior is not sufficient
for K-step opacity. As noted by [7], a single string can be considered
both secret and nonsecret depending on the state path taken. To emphasize
this point, we denote automata representing state-based behavior as A and
language-based behavior as G.

so that O = Σ∗o and for a run r = (σ0, a0) · · · (σn, an) ∈ R
it holds that

Θ(r) = PΣo
(σ0 · · ·σn) . (5)

Then for any NFA G = (Q,E, f,Q0, Qm), we can construct
an NFA Θ(G) by replacing unobservable events Σ \ Σo of
G with the empty string ε. The NFA Θ(G) encodes the
observations of G in that

L(Θ(G)) = Θ(L(G)), Lm(Θ(G)) = Θ(Lm(G)) . (6)

Under the normal assumption that the automaton A has a
nonempty set of initial states2, it holds for R = LIO(A, `)
that

Θ(R) = L(Θ(T IO(A, `))) . (7)

Various notions of opacity relate observations of secret
and nonsecret behavior. For example, current-state opacity
(CSO) requires that every run should have the same observa-
tion as a run not ending at a secret state in XS. In this case,
the eavesdropper cannot determine the system is currently at
a secret state. Formally, given

RNS = {(σ0, a0) · · · (σn, an) ∈ R | an = NS} , (8)

the system A with secret states XS is said to be current-state
opaque if Θ(R) ⊆ Θ(RNS).

C. K-step Opacity

In a dynamic system, security may require not revealing
secrets of the past as well as the present. In this case,
CSO is not sufficient for describing security. A stronger
notion, K-step opacity, requires that secrets are not revealed
within K observations of their occurrence for K ∈ N =
{0, 1, · · · }. While CSO can be described with one class of
secret behavior, i.e., runs ending at a secret state, K-step
opacity can more easily be described in terms of multiple
classes of secret behavior. These classes correspond to secrets
occurring k observations ago for k ∈ {0, · · · ,K}. Two types
of secrets between consecutive observations are considered.
In the first type, called type 1, at least one secret state is
visited. In the second type, called type 2, only secret states
are visited. Given k ∈ N and j ∈ {1, 2}, the k-delayed type
j nonsecret behavior describes runs which did not exhibit
type j secrets between k+ 1 and k observations ago. For an
automaton A, secret label map `, and observable events Σo,
this behavior can be specified using an automata HNS,j(k)
over the set of input-output pairs E as presented in [17] .
Formally the k-delayed type j nonsecret behavior RNS,j(k)
is given by

RNS,j(k) = Lm(T IO(A, `)×HNS,j(k)) ⊆ R . (9)

Remark 1: It should also be noted that the construction
of the nonsecret specification automata HNS,j(k) depends
on the secret label map ` and the set of observable events.
While in this work, we use the convention that σinit is

2This assumption guarantees that either (σinit, S) or (σinit,NS) is an
element of R = Lm(T IO(A, `)) so that ε ∈ Θ(R) under the convention
that σinit is unobservable for Θ.

Hjoint
NS,1 (1) (0, 0) (1, 0) (2, 0)

E

ENS ∩ Ẽo ENS ∩ Ẽo

ENS ∩ Ẽuo ENS ∩ Ẽuo

HNS,2(2) (0, 0) (1, 0)

(1, 1)

(2, 0) (3, 0)

E

ENS ∩ Ẽo

Ẽo

Ẽo

Ẽuo

ENS ∩ Ẽuo
Ẽuo

Ẽuo

Ẽo

Ẽuo

Fig. 2. The nonsecret specification automata Hjoint
NS,1 (1) and HNS,2(2).

These automata are defined over the input-output pairs E = (Σ∪{σinit)×
{S,NS}. Here ENS = (Σ ∪ {σinit}) × {NS}. Likewise Ẽo = (Σo ∪
{σinit})× {S,NS} and Ẽuo = E \ Ẽo.

unobservable with respect to the observation map Θ induced
by the observable events Σo, in accordance with [17] the
nonsecret specification automaton HNS,j(k) is constructed
with Σo ∪ {σinit} as the set of observable events. This
construction specifies the appropriate k-delayed nonsecret
behavior, while the new convention for σinit simplifies our
presentation of enforcement by ensuring the set Θ(R) is
prefixed-closed as seen in equation (7). For example consider
HNS,2(2) depicted in Figure 2. Strings in Ẽ2

o are accepted
starting at state (1, 0) while strings in Ẽ3

o might not be. This
is because a run of the system G with one event (after
the artificial initial event) is trivially 2-delayed nonsecret
behavior while a run with two events is not if the initial
state is secret.

Two distinct notions of K-step opacity arise by combining
these classes of nonsecret behavior. An eavesdropper whose
goal is to deduce when a secret occurred considers these
classes separately.

Definition 2.3: For K ∈ N and j ∈ {1, 2}, the system
A, with secret label map `, and observable events Σo is
separately K-step opaque with type j secrets if

∀k ∈ {0, · · · ,K}, Θ(R) ⊆ Θ(RNS,j(k)) , (10)

or equivalently

Θ(R) ⊆
K⋂

k=0

Θ(RNS,j(k)) . (11)

Alternatively, an eavesdropper whose goal is to deduce if a
secret occurred considers these classes jointly.

Definition 2.4: For K ∈ N and j ∈ {1, 2}, the system A,
with secret label map `, and observable events Σo is jointly
K-step opaque with type j secrets if

Θ(R) ⊆ Θ

(
K⋂

k=0

RNS,j(k)

)
. (12)

It is shown in [17] that these definitions capture previous
notions of K-step opacity. Namely, joint K-step opacity
with type 1 secrets is equivalent to strong K-step opacity as

defined in [8]. Likewise, separate K-step opacity with type
2 secrets is equivalent to the original definition of K-step
opacity in [3] (called weak K-step opacity in [8]).

In order to concisely represent the intersection of the de-
layed behavior for joint K-step opacity, automata Hjoint

NS,j (K)
are also presented in [17] such that

Lm(T IO(A, `)×Hjoint
NS,j (K)) =

K⋂
k=0

RNS,j(k) . (13)

For example Hjoint
NS,1 (1) is depicted in Figure 2. Also the

nonsecret specification automata HNS,j(K) and Hjoint
NS,j (K)

are complete so that

L(HNS,j(K)) = L(Hjoint
NS,j (K)) = E∗ . (14)

III. ENFORCEMENT OF K-STEP OPACITY WITH
OBFUSCATION

In this section, we discuss how obfuscation in the form
of edit functions can be used to enforce K-step opacity over
automata. We describe notions of the safety of edit functions
for enforcing K-step opacity when the edit function is either
known or unknown to the eavesdropper.

A. Obfuscation Model

Recall that opacity is violated when the eavesdropper
observes information output by the system that reveals secret
behavior. This situation can be avoided with obfuscation,
i.e., altering the information output by the system to fool
the eavesdropper while maintaining the system’s utility. We
model this type of obfuscator as a deterministic edit function
as in [19] which selectively deletes events output by the
system and possibly inserts fictitious ones. We represent edit
functions as a mapping from strings output by the system to
strings observed by the eavesdropper.

Definition 3.1: A deterministic edit function over the
space O = Σ∗o is a function M : O → O such that

∀o ∈ O, ∀o′ ∈ o, M(o′) ∈M(o) . (15)
This condition ensures that future outputs are consistent with
previous ones. Such an edit function can be implemented in
many ways. For example under some regularity assumptions,
an edit function can be represented by a finite state transducer
as in [20].

Consider the system from Section II consisting of a system
A with secret label map ` and observable events Σo. Recall
the behavior of this system is given by R = LIO(A, `) which
is mapped to observations by the map Θ : R→ O induced by
the observable events Σo with O = Σ∗o. We can compose an
edit function M : O → O with the original observation map
Θ to construct the obfuscated observation map M ◦Θ : R→
O. We call the set Θ(R) the original observations of the
system behavior. As an edit function may insert a sequence
of events, we consider the obfuscated observations of system
behavior to be the prefix-closed set M(Θ(R)). To enforce
opacity, an edit function must guarantee that its obfuscated
observations are contained in a set of safe observations that
do not reveal secrets to the eavesdropper. Figure 3 depicts
the flow of information we consider.

B. Notions of opacity under enforcement

While we assume the eavesdropper knows how informa-
tion is originally output from the system through the map
Θ, we can consider different levels of knowledge the eaves-
dropper has about the edit function M . These correspond
to different levels of safety ensured by the enforcement
mechanism. If the edit function M is unknown to the eaves-
dropper or private, then it may be desired that obfuscated
observations be consistent with the original observations of
nonsecret behavior.

Definition 3.2: For K ∈ N, j ∈ {1, 2}, we say an edit
function M is privately safe for separate K-step opacity with
type j secrets if

M(Θ(R)) ⊆
K⋂

k=0

Θ(RNS,j(k)) . (16)

Definition 3.3: For K ∈ N, j ∈ {1, 2}, we say an edit
function M is privately safe for joint K-step opacity with
type j secrets if

M(Θ(R)) ⊆ Θ

(
K⋂

k=0

RNS,j(k)

)
. (17)

Alternatively, if the edit function M is known to the
eavesdropper or public, then the obfuscated observations of
system behavior should be consistent with the obfuscated
observations of nonsecret behavior. In this work, we focus
on privately safe edit functions. These notions of public and
private safety of edit functions for K-step opacity (joint or
separate, type 1 or 2 secrets) mirror the definitions for the
case of CSO from [19].

Remark 2: While we only consider deterministic edit
functions, these definitions and the following synthesis ap-
proaches can be generalized to nondeterministic edit func-
tions which are strictly more powerful than deterministic
ones [19]. Additionally, a similar approach can be used to
define public and private safety for opacity enforcement with
supervisory control.

IV. SYNTHESIS OF EDIT FUNCTIONS

In this section, we describe how to synthesize edit func-
tions enforcing private safety for joint and separate K-step
opacity, as in Definitions 2.4 and 2.3, using existing methods
for CSO such as [13], [21], [22]. Abstracting away details
specific to each implementation, these synthesis methods can
broadly be described as solving the following problem.

Problem 1: Given an NFA G = (Q,Σo, f,Q0, Qm) and
a class of edit functions M ⊆ {M : L(G) → Σ∗o}, find an
edit function M ∈M such that

M(L(G)) ⊆ Lm(G) . (18)

System
Behavior: R

Output
Observation Map: Θ

Obfuscator
Edit Function: M Intended Receiver

Eavesdropper

Fig. 3. System framework for enforcement of opacity with edit functions.

In this problem, the marked states Qm encode admissible
or nonsecret states, and unobservable events are represented
with ε transitions. The set M describes the edit functions
that satisfy additional constraints that can be imposed in
a given synthesis method. For example, the methods of
[13], [21] synthesize edit functions with a bound on the
number of consecutive insertions. After determinizing G,
the methods of [22] also consider utility constraints which
limit the difference between original observations and their
obfuscations.

Remark 3: Other mechanisms for enforcement, such as
the dynamic masks considered in [15], can be viewed as a
specific type of edit function. Additionally while Problem 1
describes private safety for CSO, there is a similar problem
for public safety with corresponding synthesis methods that
could be applied to K-step opacity. For example synthesis of
edit functions which are both publicly and privately safe is
discussed in [21] while the R-enforcers of [8] can be viewed
as edit functions enforcing public safety using delay.

Given an automaton A with secret label map ` and
observable events Σo, we can use these synthesis methods to
enforce joint or separate K-step opacity with type j secrets
by applying the methods to an appropriately constructed
automaton G as in Problem 1.

A. Enforcing Joint K-step Opacity

As joint K-step opacity with type j secrets is defined
in terms of only one class of nonsecret runs, namely the
intersection of the sets RNS,j(k) for k ∈ {0, · · · ,K}, we can
apply synthesis methods for current-state opacity directly.

Theorem 4.1: Let G = Θ(T IO(A, `) × Hjoint
NS,j (K)). An

edit function M ∈ M is privately safe for joint K-step
opacity with type j secrets over A, `, Σo if and only if
it is a solution to Problem 1 for G, M.

Proof: From equations (7) and (14) it holds that

L(G) = Θ(L(T IO(A, `)) ∩ L(Hjoint
NS,j (K)))

= Θ(R ∩ E∗) = Θ(R) .
(19)

Likewise from equations (5) and (13)

Lm(G) = Θ(Lm(T IO(A, `)×Hjoint
NS,j (K)))

= Θ

(
K⋂

k=0

RNS,j(K)

)
.

(20)

So solutions to Problem 1 satisfying (18) are exactly the
edit functions which satisfy (17) in Definition 3.3 for private
safety for joint opacity.

If a deterministic automaton is required, the same result
holds for the determinization det(G) instead of G. Here
the automaton det(G) corresponds to the secret observer
automaton GSO for joint opacity from [17]. So to enforce
K-step opacity for an automaton A, we construct G as in
Theorem 4.1, synthesize an edit function M as a solution to
Problem 1 for G, and apply M directly to the outputs of the
original system. This is possible as the language of G is the
set of observations produced by the original automaton A.
We demonstrate this in the following example.

(xinit, (0, 0))

(0, (0, 0))

(1, (0, 0))

(xinit, (1, 0))

(0, (1, 0)) (0, (2, 0))

ε
ε

a

a
a

b

b

ε

a

Fig. 4. The automaton G = Θ(T IO(A, `)×Hjoint
NS,1 (1)) in Example 4.1.

Example 4.1: In this example we construct an edit func-
tion enforcing joint 1-step opacity with type 1 secrets.
Consider the automaton A, secret label map `, and their
label-transform T IO(A, `) depicted in Figure 1. We assume
that all events of A are observable so Σo = {a, b}. Consider
the nonsecret specification automaton Hjoint

NS,1 (1) as depicted
in Figure 2 constructed for A, `, and Σo. This automaton
marks sequences of input-output pairs corresponding to runs
that have not visited a secret state since 1 observation ago.
We construct the automaton G = Θ(T IO(A, `)×Hjoint

NS,1 (1))
which is depicted in Figure 4. This automaton G marks
the observations of the behavior of A that do not violate
joint 1-step opacity with type 1 secrets. To better understand
these observations we construct det(G) which is language
equivalent and is depicted in Figure 5. We can see that the
observation ab is not marked and hence is unsafe. This is
because if the eavesdropper observes the event b, they reason
that the system was in the secret state 1 exactly 1 step ago.

If knowing the total number of events executed in the
system is important, we can consider the following class of
edit functions

M = {M : L(G)→ Σ∗o | ∀s ∈ L(G), |M(s)| = |s|} .
(21)

Then a solution to Problem 1 for G, M is the edit func-
tion M which replaces all occurrences of b with a so
∀s ∈ L(G), M(s) = a|s|. We can verify that M is a
solution to Problem 1 as the set of obfuscated observations
is M(Θ(L(G)) = {a}∗ which is safe. Thus by Theorem 4.1,
the edit function M is privately safe for 1-step opacity with
type j secrets. This makes sense: M hides the only event b
that would reveal the secret to the eavesdropper.

B. Separate Case

Enforcing separate K-step opacity is complex as we must
consider multiple classes of nonsecret behavior RNS,j(k) for
k ∈ {0, · · ·K} and type j secrets. However, like it suffices to
consider observations of the intersection of these nonsecret
behaviors Θ

(⋂K
k=0RNS,j(k)

)
for joint K-step opacity, it

suffices to consider the intersection of the observations of
these nonsecret behaviors

⋂K
k=0 Θ(RNS,j(k)) for separate

{(xinit, (0, 0)), (xinit, (1, 0)), (0, (0, 0)), (0, (1, 0)), (0, (2, 0))}

{(0, (0, 0)), (0, (1, 0)), (0, (2, 0))(1, (0, 0))}

{(0, (0, 0)), (0, (1, 0))}

a

a b a

Fig. 5. The automaton det(G) from Example 4.1.

K-step opacity in terms of private safety. While we could
represent this latter set of observations with the automaton

K∏
k=0

Θ(T IO(A, `)×HNS,j(k)) , (22)

we can avoid this product by observing that each HNS,j(k)
is contained within HNS,j(K) for k ≤ K, i.e, they are
subautomata. Specifically as shown in [17], for each k ∈
{0, · · · ,K} there exists a set Qm,H,k of states of HNS,j(K)
such that the language of HNS,j(K) marked by the states
Qm,H,k is Lm(HNS,j(k)). For example in the automaton
HNS,2(2) depicted in Figure 2, these sets are given by
Qm,H,0 = {(1, 0)}, Qm,H,0 = {(2, 0)}, Qm,H,0 = {(3, 0)}.

Theorem 4.2: Let G = det(T IO(A, `) × HNS,j(K)) us-
ing the power set construction for determinization. Let the
marked states Qm of G be redefined as

Qm = {q | ∀k ∈ {0, · · · ,K} ∃q ∈ q ∩Q×Qm,H,k} . (23)

Then an edit function M ∈M is privately safe for separate
K-step opacity with type j secrets over A, `, Σo if and only
if it is a solution to Problem 1 for G, M.

Proof: From equations (7) and (14) it holds that

L(G) = Θ(L(T IO(A, `)) ∩ L(HNS,j(K)))

= Θ(R ∩ E∗) = Θ(R) .
(24)

Likewise from equations (5) and (9)

Lm(G) =
K⋂

k=0

Θ(Lm(T IO(A, `×HNS,j(k))))

=

K⋂
k=0

Θ(RNS,j(k)) .

(25)

So solutions to Problem 1 satisfying (18) are exactly the
edit functions which satisfy (16) in Definition 3.2 for private
safety for joint opacity.

The automaton G in this theorem corresponds to the secret
observer automaton GSO for separate opacity from [17]. We
can then synthesize edit functions by solving Problem 1 as
in the joint case.

V. CONTACT TRACING EXAMPLE

In this section, we demonstrate an application of K-
step opacity enforcement in the context of contact tracing
smartphone apps, developed in response to the COVID-
19 pandemic, that record proximity between users to a

centralized server. These apps raise a number of privacy
concerns as described in [23], [24]. We propose the use of
obfuscation to enforce privacy for users of these apps while
maintaining the utility of these apps for public health. We
demonstrate this through a small example where a malicious
user who gains access to this information may be able to
combine it with partial location information to determine
that another user has visited some secret location. We then
show how to enforce K-step opacity with a privately safe
edit function using our approach, specifically, by leveraging
Theorem 4.1. This edit function was synthesized with the
methods from [22] as implemented in the EdiSyn library3.
The automata constructions presented in this work and an
interface to the EdiSyn library are provided by the DESops
library4.

A. Preliminaries

Our model assumes that there are some number of users,
including one user that acts as a malicious eavesdropper,
that can move freely between a shared set of locations. We
suppose that the malicious user has full knowledge of their
own movements, in addition to partial knowledge of the
other users’ movements based on a partition of the map into
discrete regions. This partial knowledge is modeled similarly
to the automaton model for location-based services described
in [25], but with event labels based on the destination node
instead of the source node. We further assume that the
malicious user has access to information from the contact
tracing app from which they can deduce the sizes of contact
clusters that exist at any given time, where we consider a
contact cluster to be a set of multiple users sharing the
same location. The malicious eavesdropper does not know
the locations of the contact clusters, or which users are in
which contact clusters.

Our procedure requires as input a simple undirected graph
Γ = (V,E) that represents locations by the set of vertices V ,
and the physical paths between locations by the set of edges
E . It also requires a partition P of V into regions, a fixed
number of users n, and some definition of secret behavior.
We additionally define region : V → P so that for v ∈ V ,
region(v) is the region containing v.

Throughout this section, we illustrate our procedure using
Γ as shown in Figure 6, with P = {R, T } as shown. We
also suppose that n = 3, and user 2 visiting location 5 as
the secret state of the system.

B. Mobility Model

Using Γ , we first contruct the map automaton G =
(V, E ,∆,V0), where V is the set of states, E is the set of
events, ∆ : V × E → 2V is the transition function, and V0

is the set of initial states. We define V0 = V , E = {τ}, and
∆(v, τ) = {v} ∪ {u ∈ V : (u, v) ∈ E } for all v ∈ V .

For each i ∈ {1, 2, . . . , n}, we construct an individual
automaton Gi, which represents all movements that user i
is allowed to make in a single time step. We construct G1

3https://gitlab.eecs.umich.edu/M-DES-tools/EdiSyn
4https://gitlab.eecs.umich.edu/M-DES-tools/desops

3

1

2 4

5

R

T

Fig. 6. The graph Γ that represents the locations and the physical paths
between them. R and T represent the partition of locations into distinct
regions. Location 5 is considered to be secret.

3

1

2 4

τ

τ
τ

τ

τ

τ

τ

τ

τ

τ

τ
τ

τ

τ

Fig. 7. The individual automaton G1, representing all possible movements
by the malicious user in a single time step. The individual automata G2 and
G3 are similar, but also include the secret state 5.

from G by removing the secret location, since we assume
the malicious user is not allowed to enter the secret location.
For i > 1, we let Gi = G, since other users are unrestricted
in their movement. The individual automaton G1 for our
example is shown in Figure 7. The individual automata
G2 and G3 are not shown, but are similar with G1, with
the additional inclusion of the secret location 5. We then
construct H = G1×G2×· · ·×Gn, which gives the full model
of all possible movements by all users within the system. The
state set of H is then Vn, and for each state x ∈ Vn with
x = (v1, ..., vn), we have that vi is the location of user i.

Given a state x ∈ Vn, we define

α(x) = (α1, ..., αn) (26)

where for each i,

αi =

{
v1, i = 1

region(vi), i > 1.
(27)

The result is that α(x) denotes the locations of each user, as
observed by the malicious eavesdropper, when the system is
in state x. We also define the multiset

β(x) = {|Bv| : |Bv| > 1} (28)

where for each v ∈ V ,

Bv = {i ∈ {1, . . . , n} : vi = v}. (29)

The result is that β(x) represents the sizes of the contact
clusters that exist when the system is in state x. Note that in
general, β(x) must be a multiset since there may be more

(1, 1, 1) (2, 2, 4) (3, 5, 1). . .

...

. . .

(1,R,R){3}

(2, T , T){2}

(2, T , T){2}

(1,R,R){3}

(3, T ,R)∅
(3, T ,R)∅

(2, T , T){2}

Fig. 8. A small subautomaton of A. Events are labeled according to their
target state. The state (3, 5, 1) is secret since v2 ∈ VS = {5}.

than one contact cluster of a given size, but since also the
contact clusters are indistinguishable and thus their sizes
should be unordered. For our example with n = 3, we note
that β(x) has only three possible values: β(x) = ∅ if all
states in x are distinct, β(x) = {2} if two states of x are
identical and the third is distinct, or β(x) = {3} if all states
of x are identical.

Finally, we construct A from H by relabeling each tran-
sition as the concatenation α(x)β(x) where x is the state at
which the transition ends, and α and β are the location and
contact markings as defined in equations (26) and (28). We
let the observable event set of A be Σo = Σ. We additionally
mark states with v2 ∈ VS as secret. For our example, A
contains 100 states and 5,054 transitions, and so is unable
to be shown in full. However, a small subautomaton of A
is shown in Figure 8, illustrating the result of the event
relabeling.

C. Opacity Enforcement

Using existing methods of opacity verification, we can
determine that the system is current-state opaque, but that
it is neither separately nor jointly 1-step opaque. Note that
since Σo = Σ , there is no distinction between type 1 or type
2 secrets. One event sequence that violates 1-step opacity is

o =
(

(1, T ,R){2}, (3, T , T)∅, (4, T , T){3}
)
, (30)

which corresponds to the state-estimate sequence

X1 = {(1, 2, 1), (1, 3, 1), (1, 4, 1), (1, 5, 1)},
X2 = {(3, 2, 4), (3, 5, 4), (3, 4, 2), (3, 5, 2)},
X3 = {(4, 4, 4)}.

(31)

Each Xi contains at least one nonsecret state, and thus
current-state opacity is not violated by o. However, the only
state in X2 from which the event o3 = (4, T , T){3} can
occur is the secret state (3, 5, 4), and thus 1-step opacity is
violated.

To enforce joint 1-step opacity, we first use A to construct
G as defined in Theorem 4.1, with K = 1. We additionally
constrain the setM of allowable edit functions in two ways.
First, we only allow the edit function to replace events,
i.e. deleting events entirely or inserting new events where
none previously existed is not allowed. Second, we enforce
a utility constraint as is defined in [22]. This constraint
prevents the obfuscator from changing any of the location

information observed by the eavesdropper directly. To con-
struct this constraint, we first define the utility distance
DA : Vn×Vn → {0, 1} over the automaton A such that for
x, y ∈ Vn, we have

DA(x, y) =

{
0, α(x) = α(y)

1, otherwise.
(32)

where α is as defined in equation (26). We then transform
DA into a utility distance DG for G so that DG(s, t) = 0
if and only if for every A component x in s, there exists
an A component y in t such that DA(x, y) = 0. The utility
constraint on the edit function M over G then requires that
for any observation o ∈ Θ(R), the state s of G reached by o
and the state t of G reached by the obfuscated observation
M(o) satisfy DG(s, t) = 0.

Now we construct an edit function M by applying EdiSyn
to solve Problem 1 for G, M. The resulting edit function
is encoded by an obfuscator automaton, similar to a string
transducer, containing 440 states and 11,290 transitions.
Therefore it is not possible to include the full result in
this paper. However, we consider again the violating event
sequence o defined in equation (30). This is mapped by the
edit function to the obfuscated event sequence

M(o) =
(

(1, T ,R){2}, (3, T , T){3}, (4, T , T){3}
)
,

(33)
which corresponds to the new state-estimate sequence

X ′1 = {(1, 2, 1), (1, 3, 1), (1, 4, 1), (1, 5, 1)}
X ′2 = {(3, 3, 3)}
X ′3 = {(4, 4, 4)}.

(34)

Since X ′1 contains nonsecret states from which the event
M(o)2 = (3, T , T){3} can occur, and since X ′2 and X ′3
each contain only nonsecret states, then joint 1-step opacity
is not violated by M(o). Additionally, this is a valid edit
since each event that may occur from a state in X2 may also
occur from a state in X ′2.

VI. CONCLUSION

We considered the problem of synthesizing edit functions
that enforce the various notions of K-step opacity. By
transforming K-step opacity into a language-based notion,
we can apply existing synthesis methods for CSO. To the
authors’ knowledge, synthesis methods for edit functions
enforcing K-step opacity have not been proposed before. We
demonstrate this approach on a novel contact-tracing system
model. We focused on the effectiveness of edit functions that
are not known to the eavesdropper, but a similar approach
can be used assuming the edit function is public as in
[21]. Additionally, the language-based formulation of K-step
opacity could be used to study the problem of synthesizing
supervisory control to enforce K-step opacity.

REFERENCES

[1] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
generalised to transition systems,” International Journal of Informa-
tion Security, vol. 7, no. 6, pp. 421–435, Nov. 2008.

[2] J. Bryans, M. Koutny, and P. Ryan, “Modelling Opacity Using Petri
Nets,” Electr. Notes Theor. Comput. Sci., vol. 121, pp. 101–115, Feb.
2005.

[3] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in 2007 46th IEEE Conference on Decision
and Control, Dec. 2007, pp. 5056–5061.

[4] ——, “Verification of initial-state opacity in security applications of
DES,” in 2008 9th International Workshop on Discrete Event Systems,
May 2008, pp. 328–333.

[5] F. Lin, “Opacity of discrete event systems and its applications,”
Automatica, vol. 47, no. 3, pp. 496–503, Mar. 2011.

[6] X. Yin, M. Zamani, and S. Liu, “On Approximate Opacity of Cyber-
Physical Systems,” IEEE Transactions on Automatic Control, pp. 1–1,
2020.

[7] A. Saboori and C. N. Hadjicostis, “Verification of K-step opacity and
analysis of its complexity,” in Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) Held Jointly with 2009 28th Chinese
Control Conference, Dec. 2009, pp. 205–210.

[8] Y. Falcone and H. Marchand, “Enforcement and validation (at runtime)
of various notions of opacity,” Discrete Event Dynamic Systems,
vol. 25, no. 4, pp. 531–570, Dec. 2015.

[9] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Re-
views in Control, vol. 41, pp. 135–146, Jan. 2016.

[10] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory Control for
Opacity,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1089–1100, May 2010.

[11] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Current-state opacity en-
forcement in discrete event systems under incomparable observations,”
Discrete Event Dynamic Systems, vol. 28, no. 2, pp. 161–182, Jun.
2018.

[12] Y. Wu and S. Lafortune, “Enforcement of opacity properties using
insertion functions,” in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), Dec. 2012, pp. 6722–6728.

[13] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for
enforcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, May 2014.

[14] L. de Alfaro, T. A. Henzinger, and O. Kupferman, “Concurrent
reachability games,” Theoretical Computer Science, vol. 386, no. 3,
pp. 188–217, 2007.

[15] X. Yin and S. Li, “Synthesis of Dynamic Masks for Infinite-Step
Opacity,” IEEE Transactions on Automatic Control, pp. 1–1, 2019.

[16] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions
of opacity in centralized and coordinated architectures,” Discrete Event
Dynamic Systems, vol. 23, no. 3, pp. 307–339, Sep. 2013.

[17] A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay, “A General
Language-Based Framework for Specifying and Verifying Notions of
Opacity,” arXiv:2103.10501 [cs], Mar. 2021.

[18] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. New York, NY: Springer, 2008.

[19] Y. Ji, X. Yin, and S. Lafortune, “Opacity Enforcement Using Non-
deterministic Publicly Known Edit Functions,” IEEE Transactions on
Automatic Control, vol. 64, no. 10, pp. 4369–4376, Oct. 2019.

[20] E. Roche and Y. Schabes, Eds., Finite-State Language Processing,
ser. Language, Speech, and Communication. Cambridge, Mass: MIT
Press, 1997.

[21] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public
and private insertion functions,” Automatica, vol. 93, pp. 369–378, Jul.
2018.

[22] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia,
“Synthesis of Obfuscation Policies to Ensure Privacy and Utility,”
Journal of Automated Reasoning, vol. 60, no. 1, pp. 107–131, Jan.
2018.

[23] J. Chan, L. Cox, D. Foster, S. Gollakota, E. Horvitz, J. Jaeger,
S. Kakade, T. Kohno, J. Langford, J. Larson, P. Sharma, S. Singana-
malla, J. Sunshine, and S. Tessaro, “PACT: Privacy-sensitive protocols
and mechanisms for mobile contact tracing.” IEEE Data Engineering
Bulletin, vol. 43, no. 2, pp. 15–35, Jul. 2020.

[24] E. M. Redmiles, “User Concerns 8 Tradeoffs in Technology-facilitated
COVID-19 Response,” Digital Government: Research and Practice,
vol. 2, no. 1, pp. 6:1–6:12, Nov. 2020.

[25] Y.-C. Wu, K. A. Sankararaman, and S. Lafortune, “Ensuring Privacy
in Location-Based Services: An Approach Based on Opacity Enforce-
ment,” IFAC Proceedings Volumes, vol. 47, no. 2, pp. 33–38, 2014.

