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ABSTRACT
Obfuscation can be used by dynamic systems to ensure private and
secure communication over networks vulnerable to eavesdroppers.
Balancing the utility of sending information to intended recipi-
ents and privacy by hiding information from unintended recipients
presents an interesting challenge. We propose a new framework for
obfuscation that includes an inference interface to allow intended
recipients to interpret obfuscated information. We model the secu-
rity of the obfuscation with opacity, a formal notion of plausible
deniability. Using techniques from distributed reactive synthesis, we
show how to automatically design a privacy-enforcing obfuscator
along with the inference interface that is given to intended recipi-
ents to use as a “key”. We demonstrate this approach by enforcing
privacy while maintaining utility in a contact tracing model.
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1 INTRODUCTION
Recently, the number of networked cyber-physical systems has
been increasing dramatically in the form of autonomous vehicles,
the smart grid, location-based services, medical monitoring, and
other applications. As these systems transmit potentially sensitive
information to recipients, there are often strict requirements for
privacy and security. However, many commonly used networks are
vulnerable to eavesdropping by unintended recipients. For example,
wireless networks are inherently accessible to the general public.
To address this issue, techniques from formal methods have been
used to understand information flow within these systems, for
example observational determinism [11] or non-interference [2]. In
particular the information flow property of opacity has been widely
used to express notions of privacy and security of cyber-physical
systems [27, 28]. In words, opacity captures the notion of plausible
deniability: opacity holds if unintended recipients cannot deduce
sensitive information. A general overview of opacity is provided
in [12].

In this setting, a common problem is given an existing system
called the plant that is not opaque, how do we enforce opacity
upon it? A variety of mechanisms have been proposed for opacity
enforcement. For example, supervisory control enforces opacity by
restricting behavior that would reveal sensitive information when
transmitted to the network [6, 23]. However, it may not be practical
∗Currently at ECE Department at the University of California, Santa Barbara

to alter or restrict an existing plant’s behavior, e.g., human behavior
in a cyber-physical system. Alternatively, we consider obfuscation
which enforces opacity by altering the information transmitted to
the network. In addition to privacy, obfuscation must also maintain
the utility of the system in granting access to information for some
intended recipients. In [25], the selective insertion and deletion of
outputs with edit functions can effectively hide secrets from anyone
on the network. However, the utility of this method is limited as
these methods do not distinguish between intended and unintended
recipients. Hence information that is available to some is available
to all. Likewise, many techniques for achieving differential privacy
[7] are similar to obfuscation in adding noise to the outputs of the
system to hide information, but again do not distinguish recipients.

In this paper we propose an obfuscation framework that allows
an intended recipient to infer sensitive information that cannot be
deduced by unintended recipients. Similar to encryption, this is pos-
sible by designing a “key” that is provided to the intended recipient
to recover information about the plant from their obfuscated ob-
servations. Whereas encryption achieves privacy by conspicuously
altering data to ensure it is impossible or at least computationally
difficult to recover, our proposed method of obfuscation achieves
privacy by inconspicuously altering data to deceive recipients with
partial knowledge of the system. In this sense, our goals for ob-
fuscation are orthogonal to those of encryption. We provide an
automatic method for the simultaneous design of obfuscation and
inference policies for dynamic systems subject to security and util-
ity requirements. In this work, we focus on the networked aspect
of cyber-physical systems. In this setting, plants can be modeled
by finite automata over which we can specify requirements with
temporal logics. We consider obfuscation policies similar to edit
functions which can produce a positive number of outputs given a
single input from the plant. By modeling the obfuscation and infer-
ence policies as processes in a distributed system, we can leverage
techniques from distributed synthesis [10] to design solutions with
formal guarantees of privacy and utility. We motivate our solution
to this problem with the following simple example.

Example 1.1. Consider a company operating a research facility
whose layout is depicted in Figure 1. Smart devices report employee’s
locations throughout the building to a server over an internal net-
work. However, the devices’ accuracies are limited and only report
an approximate location represented by a region of the building: R is
the lobby, T is the offices, andU is the electronics lab and chemical
lab. The company is concerned this information may reveal to their
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Figure 1: The graph 𝛤 = (V,ℰ) that represents the locations
V and the physical paths between themℰ. Regions R, T , U
represent the approximate locations the smart device can
report and partition the spaceV. The chemistry lab is con-
sidered to be a secret location.

competitors how they allocate their resources, i.e., when an employee
enters the chemistry lab. However, the company does not want to re-
strict employees’ movements or alter their schedules. While encryption
can secure this information over the network, it alerts competitors to
the existence of a secret and may prompt them to investigate using
other means. Instead the company chooses to deceive competitors by
reporting obfuscated employee locations, but these must be consistent
with the building layout in order to not raise suspicion.

By expressing the requirement to hide their location as opacity,
obfuscation techniques can be applied to the dynamic model induced
by the building layout for each employee. However, the company also
utilizes an emergency response service that must be informed when
individuals are using the chemical lab. Existing methods of obfusca-
tion cannot guarantee this form of utility as they view all recipients
equally: if this information is hidden to competitors, it must be hid-
den from everyone. Instead, the company realizes they could provide
information about their obfuscation to the emergency service, so that
the service can infer the relevant information from the obfuscated
locations. In summary, the company wants to design obfuscation and
inference policies that are consistent with the dynamics induced by
the building layout, guarantee privacy from their competitors, and
maintain utility with the emergency service.

The rest of this work is organized as follows. In Section 2, we
review results from formal languages and reactive synthesis. Next
in Section 3, we formulate the problem of obfuscation synthesis
with inference. We then present a solution to this problem by trans-
forming it to a standard distributed synthesis problem in Section 4.
Then in Section 5 we discuss our implementation of this method
and present a case study of privacy for contact tracing using our
approach.

2 PRELIMINARIES
In this section we review concepts from formal languages and
automata theory and then techniques from reactive and distributed
synthesis. A general introduction to these topics can be found in
[1] and [4].

2.1 Formal Languages
For the finite alphabet Σ we denote the set of finite sequences, non-
empty finite sequences, and infinite sequences over Σ by Σ∗, Σ+, and
Σ𝜔 , respectively. We denote the empty sequence as 𝜖 . A language is
a subset 𝐿 ⊆ Σ while an 𝜔-language is a subset 𝑃 ⊆ Σ𝜔 . For finite
sequences, also calledwords, 𝑠, 𝑠 ′ ∈ Σ∗, we write their concatenation
as 𝑠𝑠 ′ ∈ Σ∗. We denote the set of finite prefixes of a word 𝑠 , language
𝐿, infinite word 𝑡 , and 𝜔-language 𝑃 by 𝑠, 𝐿, 𝑡, 𝑃 ⊆ Σ∗, respectively.
The limit of a language 𝐿 is the𝜔-language lim𝐿 containing infinite
words with infinitely many prefixes in 𝐿. We say an𝜔-language 𝑃 is
closed, also called a safety property, if 𝑃 = lim 𝑃 . Closed𝜔-languages
𝑃1 and 𝑃2 satisfy the following properties:

𝑃1 ∩ 𝑃2 = 𝑃1 ∩ 𝑃2, 𝑃1 ⊆ 𝑃2 ⇔ 𝑃1 ⊆ 𝑃2 . (1)

An automaton is a tuple𝐺 = (𝑄, Σ, 𝛿,𝑄0) with states𝑄 , alphabet
Σ, partial transition function 𝛿 : 𝑄 × Σ → 2𝑄 , and initial states
𝑄0 ⊆ 𝑄 . A run of 𝐺 over the word 𝑡0 · · · 𝑡𝑛−1 ∈ Σ∗ is a sequence
of states 𝑞0, · · · , 𝑞𝑛 ∈ 𝑄 such that 𝑞0 ∈ 𝑄0 and for all 𝑗 < 𝑛 it
holds that 𝑞 𝑗+1 ∈ 𝛿 (𝑞 𝑗 , 𝑡 𝑗 ). The language generated by 𝐺 denoted
L(𝐺) ⊆ Σ∗ contains the words with a corresponding run over 𝐺 .
We say𝐺 is finite if𝑄 and Σ are finite sets, while the size of𝐺 refers
to the number of states |𝑄 |. We say 𝐺 is deterministic if |𝑄0 | = 1
and for all 𝑞 ∈ 𝑄 and 𝜎 ∈ Σ, it holds that |𝛿 (𝑞, 𝜎) | = 1. We can
also consider infinite runs over automata along with acceptance
conditions for runs. A Büchi automaton is an automaton augmented
with a set of accepting states 𝑄 𝑓 denoted by 𝐻 = (𝑄, Σ, 𝛿,𝑄0, 𝑄 𝑓 ).
An infinite run over an infinite word is accepted by 𝐻 if it contains
an element of 𝑄 𝑓 infinitely often. The language accepted by 𝐻
denoted by L(𝐻 ) contains all infinite words with a corresponding
accepting run over 𝐻 . We say an 𝜔-language is 𝜔-regular if it is
accepted by a finite Büchi automaton. In order to reason about finite
behaviors using infinite ones we use the following simple result.

Lemma 2.1. If 𝐿 = L(𝐺) where𝐺 = (𝑄, Σ, 𝛿,𝑄0) is finite and has
no deadlocked state, i.e., each state has an outgoing transition, then
lim(𝐿) is closed and 𝜔-regular, being accepted by the finite Büchi
automaton 𝐻 = (𝑄, Σ, 𝛿,𝑄0, 𝑄), and lim𝐿 = 𝐿.

2.2 Reactive Synthesis
We consider systems whose inputs and outputs are Boolean vari-
ables that evolve over time, i.e., for variables 𝑉 we consider the
alphabet Σ = 2𝑉 . Given a sequence, also called a trace, 𝑡 = 𝑡0𝑡1 · · · ⊆(
2𝑉

)𝜔
, we define the restriction of 𝑡 from 𝑉 onto a subset of vari-

ables 𝑈 ⊆ 𝑉 by 𝑡 |𝑈 = (𝑡0 ∩ 𝑈 ) (𝑡1 ∩ 𝑈 ) · · · . We similarly define
restrictions for finite sequences. A reactive process dynamically
produces outputs based upon inputs it has received from the envi-
ronment. Formally a process Ψ = (𝐼 ,𝑂) is defined by a finite set of
input variables 𝐼 and output variables 𝑂 . An implementation of a
process Ψ is a strategy𝜓 :

(
2𝐼
)+

→ 2𝑂 that maps a nonempty finite
sequence or history of inputs to the current output. Such strate-
gies can be represented as a type of automaton called a transducer,
defined over an alphabet consisting of the input and the output
symbols. We call a strategy finite if it has a finite representation as
a transducer.
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Figure 2: The pipeline architecture A (top) and the structure
of the obfuscation system (bottom).

We model the obfuscation system as a distributed system where
output from the plant (the environment) flows into the obfusca-
tor process and then into the inference process at the recipient.
This arrangement of processes is known as a pipeline architecture
[10, 18] or one-way chain [15]. Formally, we define a pipeline ar-
chitecture as a tripleA = (𝑂𝐸 ,Ψ0,Ψ1) where𝑂𝐸 are the outputs of
the environment and Ψ0 = (𝐼0,𝑂0) and Ψ1 = (𝐼1,𝑂1) are controlled
processes such that 𝐼0 ⊆ 𝑂𝐸 , 𝐼1 ⊆ 𝑂0, and 𝑂𝐸 ,𝑂0,𝑂1 are pairwise
disjoint1. This architecture is depicted in Figure 2. Importantly, our
definition allows for partial observation in that a process may not
observe all outputs of the previous process. For the pipeline archi-
tecture A we define the set of variables𝑉 (A) = 𝑂𝐸 ∪𝑂0 ∪𝑂1. An
implementation of A consists of strategies 𝜓0 and 𝜓1 for each of
its processes. A trace of the implementation (𝜓0,𝜓1) is a trace over
𝑉 (A) that is consistent with the strategies𝜓0 and𝜓1. For a given
architecture A, the set of such traces is defined by

𝑇𝑟 (𝜓0,𝜓1) = {𝑡 = 𝑡0𝑡1 · · · ∈
(
2𝑉 (A)

)𝜔
|

∀𝑗 ∈ {0, 1}, ∀𝑛 ∈ N : 𝑡𝑛 |𝑂 𝑗
= 𝜓 𝑗 ((𝑡0 · · · 𝑡𝑛) |𝐼 𝑗 )} . (2)

It is straightforward to show that the set of traces 𝑇𝑟 (𝜓0,𝜓1) is
closed [22]. The distributed synthesis problem involves determining
an implementation of a distributed architecture that satisfies a given
specification. The synthesis method of [10] considers specifications
𝜑 over the computation tree of the implementation, for example
given by 𝜇-calculus [16]. In this workwe consider a subclass of these
specifications known as linear-time properties given by 𝜔-regular
languages describing traces of the system..

Problem 1 (Distributed Synthesis). Given the pipeline archi-

tecture A = (𝑂𝐸 ,Ψ0,Ψ1) and specification 𝜑 ⊆
(
2𝑉 (A)

)𝜔
, find

strategies𝜓0 and𝜓1 implementing A such that

∀𝑡 ∈ 𝑇𝑟 (𝜓0,𝜓1) : 𝑡 ∈ 𝜑 . (3)

It is well-known that the distributed synthesis problem is decid-
able for the pipeline architecture, and furthermore when a solution
exists, there must also exist finite solutions [10, 18]. In this case
for two processes, along with the environment, the size of the syn-
thesized solutions are double-exponential in the size of the Büchi
automaton accepting the specification.

Remark 1. The works [10, 18] consider the distributed synthesis
problem with delay, i.e., outputs from one process are available to the
next process after one step. There is a simple transformation to the
problem without delay we consider here.

1Our notion of the pipeline architecture A = (𝑂𝐸 ,Ψ0,Ψ1) is readily expressed as the
more general notion of architectures defined in [10].

3 OBFUSCATION PROBLEM
In this section, we formulate the problem of obfuscation synthesis
with formal models for the plant, obfuscator, and recipients. We
express security and utility requirements through opacity and a
new notion of inference.

3.1 System Model & Requirements
We consider a plant that sequentially outputs over a set of Boolean
variables 𝑂𝐸 . This behavior is defined by a set of finite traces
𝐿𝐸 ⊆

(
2𝑂𝐸

)∗
. The obfuscator obf receives a subset 𝐼obf ⊆ 𝑂𝐸

of the plant’s output variables as input and produces a sequence
of outputs on the Boolean variables 𝑂obf at each step. We only
consider obfuscators that are deterministic, i.e., producing a single
sequence of outputs on a single input, and non-silent, i.e., never
producing the empty sequence. We call the implementation of an
obfuscator an obfuscation policy.

Definition 3.1. A deterministic and non-silent obfuscation pol-
icy is a function obf :

(
2𝐼obf

)+
→

(
2𝑂obf

)+
that maps input histories

to a sequence of produced outputs.

This definition is similar to the concept of an edit functions as in
[14]. Given an input history 𝑖 = 𝑖0 · · · 𝑖𝑛 ∈

(
2𝐼obf

)+
, the correspond-

ing output histories consist of the complete output sequences made
for 𝑖0 through 𝑖𝑛−1 followed by a partial output sequence made for
𝑖𝑛 . We define the set of such output histories Hist(obf, 𝑖) by
Hist(obf, 𝑖) = {obf (𝑖0) · · · obf (𝑖0 · · · 𝑖𝑛−1)} · (obf (𝑖0 · · · 𝑖𝑛) \ {𝜖}) .

(4)
For example, if obf (𝑖0) = 𝑜0𝑜1 and obf (𝑖0𝑖1) = 𝑜2𝑜3 then the output
histories are Hist(obf, 𝑖0𝑖1) = {𝑜0𝑜1𝑜2, 𝑜0𝑜1𝑜2𝑜3}.

Recipients passively observe a subset 𝐼inf ⊆ 𝑂obf of the obfus-
cator’s output variables and try to reason about the state of the
plant. Importantly we assume that recipients only observe the out-
puts of the obfuscator sequentially, not how they are produced, e.g.
they cannot distinguish outputting the word 𝜎𝜎 on one input and
outputting 𝜎 twice over two inputs. This motivates our definition of
the output histories from equation (4). Privacy and security require-
ments express limits on the knowledge deduced by unintended
recipients. In the context of opacity [14], the notion of private
safety describes privacy from a recipient that knows the plant but
is unaware of obfuscation. In this case the recipient’s observations
should correspond to observations of nonsecret behavior in the
plant. In this work, we more generally require these observations
to belong to some nonsecret language 𝐿NS.

Definition 3.2. We say an obfuscation policy obf enforces private
safety with respect to the plant behavior 𝐿𝐸 and nonsecret output
histories 𝐿NS ⊆

(
2𝑂obf

)∗
if

∀𝑒 ∈ 𝐿𝐸 \ {𝜖}, ∀ℎ ∈ Hist(obf, 𝑒 |𝐼obf ) : ℎ ∈ 𝐿NS . (5)

In the next subsection, we show how this notion of private safety
can express the inability of a recipient with uncertain knowledge
of the obfuscation policy to infer information about the plant. For
instance, we construct 𝐿NS for Example 1.1 as the set of location
histories that do not visit the chemistry lab. In this case, private
safety ensures that competitors can never deduce when employees
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enter the chemistry lab. For simplicity, we will assume that both
𝐿𝐸 and 𝐿NS satisfy the conditions of Lemma 2.1 so that they can be
generated by finite automata without deadlock.

While obfuscation ensures security against unintended recipi-
ents, the intended recipient must be able to infer certain information
about the plant’s behavior using the outputs of the obfuscator. So
the inputs to the recipient are 𝐼inf = 𝑂obf while their outputs 𝑂inf
encode their inferences about the plant with Boolean variables.
The recipient’s reasoning is then modeled by an inference policy

inf :
(
2𝐼inf

)+
→ 2𝑂inf mapping the recipient’s history of observa-

tions to their inferences. While the recipient could reason about
arbitrary predicates over the plant behavior, we consider only their
ability to always infer some fixed function data : 2𝑂𝐸 → 2𝑂inf of
the current plant output. This means if the current plant output is
𝑒 ∈ 2𝑂𝐸 , then the recipient’s inference policy should output data(𝑒).
The number of possible inferences is given by 2 |𝑂inf | . In the context
of Example 1.1, the emergency service must infer when the user is
in the chemistry lab, so we define data to output true when there
is a user present and false otherwise.

Definition 3.3. Given the plant behavior 𝐿𝐸 ⊆
(
2𝑂𝐸

)∗
, obfus-

cation policy obf :
(
2𝐼obf

)+
→

(
2𝑂obf

)+
, and data function data :

2𝑂𝐸 → 2𝑂inf , an inference policy inf :
(
2𝐼inf

)+
→ 2𝑂inf is correct if

∀𝑒 = 𝑒0 · · · 𝑒𝑛 ∈ 𝐿𝐸\{𝜖}, ∀ℎ ∈ Hist(obf, 𝑒 |𝐼obf ) : inf (ℎ) = data(𝑒𝑛) .
(6)

With the models of the system defined along with the notions
of correct inferences and private safety, we can now define the
obfuscation synthesis problem.

Problem 2 (Obfuscation synthesis). Given a plant with behav-
ior 𝐿𝐸 , nonsecret output histories 𝐿NS, and information data, find an
obfuscation policy obf that enforces private safety and an inference
policy inf that is correct.

After designing the obfuscation and inference policies, the infer-
ence policy can be securely transferred to the intended recipient.
Critically, this allows the intended recipient to infer information
about the plant that unintended recipients cannot.

3.2 Modeling Security Requirements
Wenow show how to construct the language 𝐿NS to express security
properties as private safety. In the context of opacity, reference [14]
provides a definition of 𝐿NS expressing the inability of an observer
unaware of any obfuscation to deduce the plant is currently at a
secret state. We extend this definition by considering recipients
with some fixed but uncertain knowledge of the plant and obfusca-
tion policy a priori. Namely they believe the plant behavior belongs
to the set 𝐿′

𝐸
⊆

(
2𝑂𝐸

)+
and that this behavior is altered with an

obfuscation policy in the class Θ ⊆ {obf ′ :
(
2𝐼obf

)+
→

(
2𝑂obf

)+
}.

We consider the security requirement that the output of the ob-
fuscator must be consistent with the recipient’s model of 𝐿′

𝐸
and

Θ. Additionally, the recipient must not be able to deduce that the
plant behavior did not belong to some set of nonsecret behavior
𝐿′
𝐸,NS ⊆ 𝐿′

𝐸
. We clarify that while the unintended recipient may

know that their observations have been altered, we assume they
do not know for what purpose or how the obfuscation is designed2.
In this case it suffices to ensure any output history of the true ob-
fuscation policy obf over the plant behaviors 𝐿𝐸 is also the output
history of some obfuscation policy obf ′ ∈ Θ applied to a nonsecret
plant trace 𝑒 ′NS ∈ 𝐿′

𝐸,NS. Formally,

∀𝑒 ∈ 𝐿𝐸 \ {𝜖}, ∀ℎ ∈ Hist(obf, 𝑒 |𝐼obf ),
∃𝑒 ′NS ∈ 𝐿′𝐸,NS, ∃obf

′ ∈ Θ : ℎ′ ∈ Hist(obf ′, 𝑒 ′NS |𝐼obf ) . (7)

A class of obfuscation policies Θ = {obf ′ :
(
2𝐼obf

)+
→

(
2𝑂obf

)+
}

defines a relation RΘ ⊆
(
2𝐼obf

)+
×
(
2𝑂obf

)+
between plant behaviors

and the corresponding possible output histories defined by

RΘ =
⋃

𝑒′∈(2𝐼obf )+

⋃
obf′∈Θ

{𝑒 ′} × Hist(obf ′, 𝑒 ′) . (8)

We call such a relation regular if it can be represented by a finite
transducer, i.e., RΘ is the set of all pairs of input and output words
accepted by the transducer. These relations are also called rational
transductions in [20]. The composition R(𝐿) of a relation R to a
language 𝐿 is defined by

R(𝐿) = {ℎ | ∃𝑒 ∈ 𝐿 : (𝑒, ℎ) ∈ R} . (9)

We assume that the behavior𝐿′
𝐸,NS satisfies the conditions of Lemma

2.1 and the class of obfuscation policies Θ defines a regular relation.
Under these assumptions, we have the following result.

Theorem 3.1. Let 𝐿′
𝐸,NS be a language satisfying the conditions

of Lemma 2.1 and let Θ be such that RΘ is regular. Then 𝐿NS =

RΘ (𝐿′𝐸,NS \ {𝜖}) also satisfies the conditions of Lemma 2.1. Further-
more, an obfuscation policy obf is privately safe with respect to 𝐿𝐸
and 𝐿NS if and only if unintended recipients never deduce the plant
behavior did not belong to 𝐿′

𝐸,NS, i.e, condition (7) holds.

Proof. By assumption, there exists a finite automaton 𝐺 with
L(𝐺) = 𝐿′

𝐸,NS. Then as RΘ is a regular relation, by the results of
[20] the composition 𝐿NS = RΘ (𝐿′𝐸,NS \ {𝜖}) can be represented by
an automaton constructed as the product of the finite transducer
representing RΘ with 𝐺 . As both 𝐺 and the transducer are both
finite and deadlock-free (as obfuscation policies are defined over all
inputs), it follows that this product automaton is also deadlock-free
in the sense of Lemma 2.1. Hence 𝐿NS satisfies the conditions of
Lemma 2.1.

Next observe by the definition of 𝐿NS and RΘ that

ℎ ∈ 𝐿NS
(9)
⇐=⇒ ∃𝑒 ′ ∈ 𝐿′𝐸,NS : (𝑒 ′, ℎ) ∈ RΘ

(8)
⇐=⇒ ∃𝑒 ′ ∈ 𝐿′𝐸,NS, ∃obf

′ ∈ Θ : ℎ ∈ Hist(obf ′, 𝑒 ′) .

Hence condition (7) is equivalent to private safety. □

By explicitly modeling the knowledge of unintended recipients,
we have control over the level of security the obfuscator guarantees.
We also note that the more uncertain the unintended recipient, i.e.,
the larger 𝐿′

𝐸,NS and Θ are, the easier it is to enforce private safety.

2In future work, we can consider obfuscators that are secure to recipients aware of
the design requirements and synthesis method. This would be similar to the notion of
public safety [14].
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For example if the unintended recipient is not aware that the plant
outputs are altered, we consider the class Θ with only the identity
map. This corresponds to the existing notion of private safety in
[13]. If instead the unintended recipient is more uncertain and
believes that the outputs could be altered but there can only be
𝑘 consecutive outputs for a single input, we consider the class
Θ = {obf | ∀𝑒 : |obf (𝑒) | ≤ 𝑘}. In this case, any solution for the
first case will also be a solution for the second case. In both bases,
we can also see that the induced relations RΘ are regular.

Example 3.1. We transform the problem described in Example 1.1
into an instance of Problem 2 as follows. First we model the movement
of the employee around the building layout graph 𝛤 from Figure 1
and the regions detected by the smart devices as the plant behavior
𝐿𝐸 . We define this behavior over the possible regions and whether or
not the current location is the secret one (the chemistry lab). So we
define 𝑂𝐸 = {R,T ,U, S} where S denotes the secret3. We construct
an automaton that generates the behavior 𝐿𝐸 with states given by the
locations in 𝛤 . Then for each movement from one location to another
given by an edge in 𝛤 , we add a transition labeled with the region
and secret status of the destination. This results in the automaton 𝐺
depicted in Figure 3.

Next, we model the obfuscator. Recall the obfuscator only ob-
serves the current region (and not the secret output S) so we have
𝐼obf = {R,T ,U}. Likewise the obfuscator outputs regions which we
represent with copies of the region variables 𝑂obf = {R ′,T ′,U ′}
(variables across processes must be disjoint). We can then express the
privacy requirement as private safety. Recall the unintended recipients
are competitors that should not be able to deduce that an employee is in
the chemistry lab. As the competitor knows the true layout of the build-
ing, their model of the plant is also given by 𝐿′

𝐸
= L(𝐺). The nonsecret

behavior 𝐿′
𝐸,NS is then given by the language generated by 𝐺 after

removing the secret state, i.e., 𝐿′
𝐸,NS = {UR,TR}∗. As we assume

the competitor will not be aware of this obfuscation, we consider the
class Θ consisting only of the identity map (mapping regions to their
copy). We can then construct 𝐿NS = RΘ (𝐿′𝐸,NS) = {U ′R ′,T ′R ′}∗ as
in Theorem 3.1 to define the appropriate notion of private safety.

Finally, we model the intended recipient. Recall the intended recipi-
ent is the emergency service that observes outputs from the obfuscator
and must be able to infer when an employee is in the chemistry lab.
So we define 𝐼inf = 𝑂obf and 𝑂inf = {S′} and data : 2𝑂𝐸 → 2𝑂inf

with data(𝑒) = {S′} if S ∈ 𝑒 and data(𝑒) = ∅ otherwise. Here S′ is a
copy of the plant variable S that is true when the recipient infers an
employee is in the chemistry lab.

The company then desires to solve Problem 2 to design an obfus-
cation policy obf and inference policy inf . By having each employee
obfuscate their location with obf on their smart device, they ensure
their competitors will not think they visit the chemistry lab. Then by
securely distributing inf to the emergency service, they ensure they
will be able to know when they visit the chemistry lab.

4 OBFUSCATION SYNTHESIS
In this section, we show how to transform Problem 2 for obfuscation
synthesis into an instance of Problem 1 for pipeline synthesis that
3For simplicity, we encode each region with a single variable. As they are disjoint,
they could more efficiently be encoded with two variables rather than three total.

0 1

2 3

{U}

{T }

{U, S}
{R}

{R} {T }

Figure 3: An automaton 𝐺 generating the plant behavior 𝐿𝐸
corresponding to the employee’s movement throughout the
building depicted in Figure 1. Each region of the building is
encoded with its own variable R,T ,U along with the secret
status of the room encoded with the variable S .

we know how to solve. While the system of Problem 2 resembles
the pipeline architecture of Problem 1 with the plant feeding into
the obfuscation policy feeding into the inference policy, it is not
“synchronous”: the obfuscation policy produces a variable-length
sequence of outputs on consuming a single input. To address this
issue we unfold the obfuscation system and specifications for pri-
vate safety and correct inferences into synchronous ones. Then
solutions to Problem 2 can be found by folding solutions found to
an instance of Problem 1 over the unfolded system.

4.1 Unfolding the System
We must unfold our the obfuscation system so that one output is
produced by the obfuscation policy in each step. This unfolded
system has the same plant outputs 𝑂𝐸 as the original or folded
system. We represent the obfuscator with a process Ψ0 = (𝐼0,𝑂0)
with the same inputs 𝐼0 = 𝐼obf but with outputs𝑂0 = 𝑂obf ∪ {yield}
augmented with a variable yield indicating the sequence of out-
puts has completed. As the inference with an inference policy is
already synchronous, we can represent it directly with the process
Ψ1 = (𝐼1,𝑂1) with 𝐼1 = 𝐼inf and𝑂0 = 𝑂inf. Here the yield variable is
output by the obfuscator process Ψ0 because the obfuscation policy
controls the length of its output sequences; however, the yield vari-
able is not available to the inference process Ψ1 as input because
recipients do not observe these lengths. This defines a pipeline ar-
chitectureA = (𝑂𝐸 ,Ψ0,Ψ1). We now show how to unfold behavior
of the original or folded system into behavior over A.

In a single step of the folded system, the plant generates an out-
put 𝑣 ∈ 2𝑂𝐸 , the obfuscation policy outputs the sequence 𝑜0 · · ·𝑜𝑛 ∈(
2𝑂𝐸

)+
, and finally the inference policy makes a corresponding se-

quence of inferences 𝑝0 · · · 𝑝𝑛 ∈
(
2𝑂inf

)+
. By defining 𝑓 = (𝑣, (𝑜0 ∪

𝑝0) · · · (𝑜𝑛 ∪ 𝑝𝑛)) we can view a step of the folded system as ele-
ments of the set

𝐹 = 2𝑂𝐸 ×
(
2𝑂obf∪𝑂inf

)+
. (10)

To unfold this step of the original system, we break each output
of the obfuscation policy into a single step. The auxiliary output
yield is used to indicate that output has completed. As there must
be one environment output each step, we have it output 𝑣 on the
first step followed by ∅ on subsequent steps. So we unfold the step,
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as unfold(𝑓 ) = 𝑡0 · · · 𝑡𝑛 ∈
(
2𝑉 (A)

)+
where

𝑡0 = 𝑣 ∪ 𝑜0 ∪ 𝑝0, ∀𝑗 ∈ {1, · · · , 𝑛 − 1} : 𝑡 𝑗 = 𝑜 𝑗 ∪ 𝑝 𝑗 , (11)
𝑡𝑛 = 𝑜𝑛 ∪ 𝑝𝑛 ∪ {yield} , (12)

when 𝑛 > 0 and 𝑡0 = 𝑣 ∪ 𝑜0 ∪ 𝑝0 ∪ {yield} when 𝑛 = 0.
Now we extend this notion from a single step to infinite traces.

To this end, we denote the flattening or concatenating of a sequence
of empty words into a sequence of letters by flat : (Σ+)𝜔 → Σ𝜔

so that for 𝑠 = (𝑠 𝑗 ) 𝑗 ∈N with 𝑠 𝑗 ∈ Σ+, it holds flat(𝑠) = 𝑠0𝑠1 · · · . We
can then define the traces of the folded system by

𝑇𝑟 (obf, inf) = {(𝑒 𝑗 , 𝑎 𝑗 )∞𝑗=0 ∈ 𝐹𝜔 |
∀𝑗 ∈ N : 𝑎 𝑗 |𝑂obf = obf (𝑒0 · · · 𝑒 𝑗 |𝐼obf ),

for (𝑎𝑘 )𝑘∈N = flat((𝑎 𝑗 ) 𝑗 ∈N),
∀𝑘 ∈ N : 𝑎𝑘 |𝑂inf = inf (𝑎0 · · ·𝑎𝑘 |𝐼inf )} . (13)

We denote the set of words possible after unfolding a single step by
𝑈 = unfold(𝐹 ) ⊆

(
2𝑉 (A)

)+
. So to unfold a trace in 𝐹𝜔 , we unfold

each each step to an element of𝑈 and flatten the result. Formally,
we define

𝑃𝑈 = flat(𝑈𝜔 ) ⊆
(
2𝑉 (A)

)𝜔
, (14)

and unfold : 𝐹𝜔 → 𝑃𝑈 by

unfold(𝑓0 𝑓1 · · · ) = unfold(𝑓0)unfold(𝑓1) · · · . (15)

To demonstrate unfolding, consider a behavior of the plant from
Example 3.1 as depicted in Figure 3 where the employee moves from
the lobby to the office to the chemistry lab, i.e., {T } → {U, S}. We
consider the obfuscation and inference policies obf and inf depicted
in Figure 4. Over this path, the obfuscator first outputs movement
to office and back to the lobby, i.e., {T ′} → {R ′}, then movement
to the electronics lab and back to the lobby {U ′} → {R ′}. We see
as the inference policy is correct, for the first two locations it infers
that they are not in the chemistry lab, i.e., ∅, then on the next two
that they are, i.e., {S′}. This corresponds to the finite folded trace

𝑓 = ( {T }︸︷︷︸
𝑒

, {T ′}︸︷︷︸
𝑎0

{R ′}︸︷︷︸
𝑎1

) ({U, S}, {U ′, S′}{R ′, S′}) .

This is unfolded to

unfold(𝑓 ) = {T ,T ′}︸   ︷︷   ︸
𝑡0

{R ′, yield}︸       ︷︷       ︸
𝑡1

{U, S,U ′, S′}{R ′, S′, yield} .

The following result shows that unfold can be inverted to fold
traces. Importantly, this defines a transformation between behaviors
in the folded setting of Problem 2 and unfolded setting of Problem
1.

Lemma 4.1. The map unfold : 𝐹𝜔 → 𝑃𝑈 is a bijection.

Proof. From the definition for a single step, we see unfold de-
fines a bijection between 𝐹 and 𝑈 . Then as unfold(𝑓0 𝑓1 · · · ) =

unfold(𝑓0)unfold(𝑓1) · · · we see unfold is surjective onto 𝑃𝑈 . Fi-
nally as every word in𝑈 ends with yield, there is a unique way to
write traces in 𝑃𝑈 as sequences of words in 𝑈 (delimited by yield).
So as unfold is injective for a single step, unfold is injective over
𝐹𝜔 . Hence unfold is a bijection. □

In addition to unfolding the traces of an obfuscation policy
obf :

(
2𝐼obf

)+
→

(
2𝑂obf

)+
and inference policy inf :

(
2𝐼inf

)+
→

2𝑂inf , we can also unfold the functions themselves into strategies
𝜓0 :

(
2𝐼0

)+
→ 2𝑂0 and𝜓1 :

(
2𝐼1

)+
→ 2𝑂1 implementing the archi-

tecture A. Note that strategies are defined for all input sequences,
even those violating the yield behavior encoded in 𝑃𝑈 . These vio-
lating traces do not correspond to traces in the folded system. As
such, we say the strategies𝜓0 and𝜓1 are an unfolding of obf and
inf if

unfold(𝑇𝑟 (obf, inf)) = 𝑇𝑟 (𝜓0,𝜓1) ∩ 𝑃𝑈 . (16)
As obfuscation policies can only insert a finite sequence of outputs,
we should only consider strategies𝜓0 that always eventually yield,
i.e.,

∀𝑖 ∈
(
2𝐼0

)+
, ∃𝑣

(
2𝐼0

)+
: yield ∈ 𝜓0 (𝑖𝑣) . (17)

In this case we have the following results.

Theorem 4.2.
Unfolding: Every obfuscation policy obf and inference policy inf
has an unfolding in the sense of (16) given by strategies 𝜓0 and 𝜓1
where𝜓0 always eventually yields and𝜓1 = inf .
Folding: For every strategy 𝜓0 that always eventually yields and
strategy𝜓1, there exists a unique obfuscation policy obf and inference
policy inf such that𝜓0 and𝜓1 are an unfolding in the sense of (16)
of obf and inf with𝜓1 = inf .

Proof. See appendix. □

This result shows that we can transform between policies over
the folded system and strategies implementing the unfolded dis-
tributed pipeline architectureA as in Figure 2. Similar to strategies,
the obfuscation policy can be represented by a transducer, and when
this transducer is finite we say the policy is finite. As unfolding and
folding preserve 𝜔-regularity, this theorem implies that a solution
to Problem 2 is finite if and only if it has an unfolding that is finite.

4.2 Unfolding the Specifications
In order to perform distributed synthesis on the unfolded system,
we must map specifications for the folded system onto the unfolded
one. To do this, we observe that private safety of the obfuscation
policy obf and the correctness of the inference policy inf can be
expressed as properties over the traces 𝑇𝑟 (obf, inf). Then by un-
folding these traces, we can express these requirements as𝜔-regular
properties over the traces𝑇𝑟 (𝜓0,𝜓1) where𝜓0 and𝜓1 are an unfold-
ing of obf and inf . We define the properties of the folded system
representing the plant behavior, private safety, and correct infer-
ences, respectively, by

𝑃𝐸 = {(𝑒 𝑗 , 𝑎 𝑗 )∞𝑗=0 ∈ 𝐹𝜔 | 𝑒0𝑒1 · · · ∈ lim𝐿𝐸 }
𝑃NS = {(𝑒 𝑗 , 𝑎 𝑗 )∞𝑗=0 ∈ 𝐹𝜔 | 𝑎0𝑎1 · · ·|𝑂obf ∈ lim𝐿NS}
𝑃inf = {(𝑒 𝑗 , 𝑎 𝑗 )∞𝑗=0 ∈ 𝐹𝜔 | ∀𝑗 ∈ N : 𝑎 𝑗 |𝑂inf = data(𝑒 𝑗 ) · · · data(𝑒 𝑗 )︸                     ︷︷                     ︸

|𝑎 𝑗 | times

} .

Next, we construct Büchi automata that accept the unfolding of
each of these properties.

To unfold the plant behavior, we recall that in the unfolded
system the plant only progresses after the outputs have yielded and
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outputs ∅ otherwise. As 𝐿𝐸 satisfies the conditions of Lemma 2.1,
there exists a finite Büchi automaton 𝐻𝐸 = (𝑄𝐸 , 2𝑂𝐸 , 𝛿𝐸 , 𝑄𝐸,0, 𝑄𝐸 )
accepting lim𝐿𝐸 . Let𝐻 ′

𝐸
= (𝑄 ′

𝐸
, 2𝑉 (A) , 𝛿 ′

𝐸
, 𝑄 ′

𝐸,0, 𝑄
′
𝐸,𝑚

) where𝑄 ′
𝐸
=

𝑄𝐸 × {0, 1}, 𝑄 ′
𝐸,0 = 𝑄𝐸,0 × {0}, 𝑄 ′

𝐸,𝑚
= 𝑄𝐸 × {0}, and

𝛿 ′𝐸 ((𝑞,𝑏), 𝑣) =



𝛿𝐸 (𝑞, 𝑣 |𝑂𝐸
) × {0}, 𝑏 = 0 ∧ yield ∈ 𝑣

𝛿𝐸 (𝑞, 𝑣 |𝑂𝐸
) × {1}, 𝑏 = 0 ∧ yield ∉ 𝑣

{(𝑞, 0)}, 𝑏 = 1 ∧ yield ∈ 𝑣 ∧ 𝑣 |𝑂𝐸
= ∅

{(𝑞, 1)}, 𝑏 = 1 ∧ yield ∉ 𝑣 ∧ 𝑣 |𝑂𝐸
= ∅

∅, otherwise

The first component 𝑞 of the states of𝐻 ′
𝐸
follows a stuttered path of

the plant automaton𝐻𝐸 , repeating the current plant state until yield
has occurred. This occurrence is tracked by the second component
𝑏 of the states of 𝐻 ′

𝐸
, where 𝑏 = 0 indicates that yield has occurred

and the plant can transition. Only the states with 𝑏 = 0 are ac-
cepting as the obfuscation policy only outputs finite sequences, i.e.,
yield occurs infinitely often. By construction unfold(𝑃𝐸 ) = L(𝐻 ′

𝐸
).

Furthermore, if 𝐻𝐸 is deterministic then 𝐻 ′
𝐸
is as well and the size

of 𝐻 ′
𝐸
is polynomial in the size of 𝐻𝐸 .

Next, we unfold behavior representing private safety. As 𝐿NS
satisfies the conditions of Lemma 2.1, there exists a finite Büchi
automaton

𝐻NS = (𝑄NS, 2𝑂obf , 𝛿NS, 𝑄NS,0, 𝑄NS) (18)

accepting lim𝐿NS. Let𝐻 ′
NS = (𝑄 ′

NS, 2
𝑉 (A) , 𝛿 ′NS, 𝑄

′
NS,0, 𝑄

′
NS,𝑚)where

𝑄 ′
NS = 𝑄NS, 𝑄 ′

NS,0 = 𝑄NS,0, 𝑄 ′
NS,𝑚 = 𝑄NS, and

𝛿 ′NS (𝑞, 𝑣) = 𝛿NS (𝑞, 𝑣 |𝑂obf ) . (19)

The automaton 𝐻 ′
NS simply accepts traces of the unfolded system

whose restriction to the obfuscation outputs 𝑂obf are in 𝐿NS. As
unfolding does not alter these outputs, it holds that unfold(𝑃NS) =
𝑃𝑈 ∩ L(𝐻 ′

NS). Also, clearly 𝐻
′
NS has the same number of states as

𝐻NS.
Finally, we unfold behavior representing correct inferences, i.e,

the inferred output is equal to the data function of the current
plant output. In the unfolded system, the “current” plant output
corresponds to the value of the variables 𝑂𝐸 after the most recent
yield (or the initial value). So we construct 𝐻 ′

inf accepting these
traces as follows. Let 𝐻 ′

inf = (𝑄 ′
inf , 2

𝑉 (A) , 𝛿 ′inf , 𝑄
′
inf,0 , 𝑄

′
inf,𝑚)

where 𝑄 ′
inf = {𝑞0} ∪ 2𝑂inf , 𝑄 ′

inf,0 = {𝑞0}, 𝑄 ′
inf,𝑚 = 𝑄 ′

inf , and

𝛿 ′inf (𝑞, 𝑣) =


𝑣 |𝑂inf , yield ∉ 𝑣 ∧ 𝑣 |𝑂inf = 𝑞

𝑣 |𝑂inf , yield ∉ 𝑣 ∧ 𝑞 = 𝑞0 ∧ 𝑣 |𝑂inf = data(𝑣 |𝑂inf )
𝑞0, yield ∈ 𝑣 ∧ 𝑣 |𝑂inf = 𝑞

𝑞0, yield ∈ 𝑣 ∧ 𝑞 = 𝑞0 ∧ 𝑣 |𝑂inf = data(𝑣 |𝑂inf )

The state of automaton 𝐻 ′
inf tracks the “current” plant output until

yield, and the automaton accepts only traces with inferences match-
ing this output. Then it holds that unfold(𝑃inf) = 𝑃𝑈 ∩ L(𝐻 ′

inf).
Also we note that the size of 𝐻 ′

inf is polynomial in the number of
possible inferences.

Additionally, we express the requirement of finite output se-
quences, represented by always eventually yielding as in (17) in
the unfolded system, with a finite Büchi automaton 𝐻 ′

yield. Let

𝐻 ′
yield = (𝑄 ′

yield, 2
𝑉 (A) , 𝛿 ′yield, 𝑄

′
yield,0, 𝑄

′
yield,𝑚) where 𝑄 ′

yield =

{0, 1}, 𝑄 ′
yield,0 = {0}, 𝑄 ′

yield,𝑚 = {0} and

𝛿 ′yield (𝑞, 𝑣) =
{
0, yield ∈ 𝑣
1, yield ∉ 𝑣 .

(20)

Then

L(𝐻 ′
yield) = {𝑡 ∈

(
2𝑉 (A)

)𝜔
| ∀𝑗 ∈ N, ∃𝑘 ≥ 𝑗 : yield ∈ 𝑡𝑘 } . (21)

Also note 𝐻 ′
yield has two states. We combine these properties to cre-

ate an specification capturing the desired behavior of the unfolded
system

𝜑 = L(𝐻 ′
yield) ∩ (L(𝐻 ′

𝐸 )
𝑐 ∪ (L(𝐻 ′

NS) ∩ L(𝐻 ′
inf))) . (22)

Using standard constructions for the union, product, and comple-
ment of Büchi automata [1], we can construct a finite Büchi au-
tomaton that accepts this specification. Assuming the automaton
generating the plant behavior 𝐿𝐸 is deterministic, the size of the
specification automaton is polynomial in the size of the automata
generating the plant behavior 𝐿𝐸 , nonsecret behavior 𝐿NS, and num-
ber of possible inferences. With this specification we present our
main results.

Theorem 4.3. Consider an obfuscation policy obf and inference
policy inf with an unfolding given by 𝜓0 and 𝜓1 where 𝜓0 always
eventually yields in the sense of (17). Then obf and inf are solutions
to Problem 2 with respect to 𝐿𝐸 , 𝐿NS, and data if and only if𝜓0 and
𝜓1 are solutions to Problem 1 for the architecture A and specification
𝜑 .

Proof. From Definitions 3.3 and 3.2, we see that obf enforces
private safety and inf is correct with respect to 𝐿𝐸 , 𝐿𝑁𝑆 , and data
if and only if

𝑇𝑟 (obf, inf) ∩ 𝑃𝐸 ⊆ 𝑃inf ∩ 𝑃NS . (23)

As𝑇𝑟 (obf, inf), 𝑃𝐸 , 𝑃inf, and 𝑃NS are all closed, equation (1) shows
this is equivalent to the infinite trace inclusion

𝑇𝑟 (obf, inf) ∩ 𝑃𝐸 ⊆ 𝑃inf ∩ 𝑃NS . (24)

As unfold is a bijection, we can unfold each side of this inclusion.
So by assumption as unfold(𝑇𝑟 (obf, inf)) = 𝑃𝑈 ∩𝑇𝑟 (𝜓0,𝜓1), the
inclusion is equivalent to

𝑇𝑟 (𝜓0,𝜓1)∩𝑃𝑈 ∩unfold(𝑃𝐸 ) ⊆ unfold(𝑃NS)∩unfold(𝑃inf) . (25)

In turn by the definitions of 𝐻𝐸 , 𝐻NS, 𝐻inf, this inclusion is equiva-
lent to

𝑇𝑟 (𝜓0,𝜓1) ∩ 𝑃𝑈 ∩ L(𝐻𝐸 ) ⊆ 𝑃𝑈 ∩ L(𝐻NS) ∩ L(𝐻inf) . (26)

Rearranging terms and using the fact that L(𝐻𝐸 ) ⊆ 𝑃𝑈 , this is
equivalent to

𝑇𝑟 (𝜓0,𝜓1) ⊆ L(𝐻inf) ∩ L(𝐻NS) ∪ L(𝐻𝐸 )𝑐 . (27)

By assumption as 𝜓0 always eventually yields, it must be that
𝑇𝑟 (𝜓0,𝜓1) ⊆ L(𝐻yield). Hence by the definition of 𝜑 , the inclu-
sion is equivalent to 𝑇𝑟 (𝜓0,𝜓1) ⊆ 𝜑 . □
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Figure 4: The solution to the obfuscation problem described
in Example 3.1 given by transducers representing the obfus-
cation policy (left) and inference policy (right).

Applying the results of Theorem 4.2, we see if there is a solution
to Problem 2 then there must be an unfolding that is a solution
to Problem 1. Conversely, if there is a solution to Problem 1 the
synthesis method [10] finds a finite solution. Applying the results
of Theorem 4.2 that this solution can be folded into a solution to
Problem 2 that is also finite. Hence if the obfuscation synthesis
problem has a solution, finite obfuscation and inference policies
solving the problem can be found by solving the corresponding
pipeline synthesis problem and folding the result. Applying this ap-
proach to the problem from Example 3.1 yields the policies depicted
in Figure 4. Assuming the automaton generating the plant behavior
𝐿𝐸 is deterministic, the size of this solution is double-exponential
in the size of the automata generating 𝐿𝐸 and 𝐿NS and number of
possible inferences.

5 CASE STUDY: CONTACT TRACING
In this section, we demonstrate how our framework can be used in
the context of smartphone apps developed for contact tracing. We
model apps that record proximity between users to a centralized
server. These apps raise a variety of privacy concerns as described
in [3, 19], including the disclosure of user location information due
to unsecured networks. Our synthesis method provides solutions
that enforce location privacy from the malicious actors while main-
taining utility for public health by providing professionals with
relevant contact information. We demonstrate this approach on
small model similar to the one developed in [24] where a malicious
user has gained access to the app. Our presentation of this model is
condensed. More detail on the construction can be found in [24].

5.1 Modeling
In our model, we consider a number of normal users and one user
that is malicious. As in Example 1.1, their movement is constrained
by a graph 𝛤 = (V, E) depicted in Figure 5 representing the layout
of their city. The users’ smart devices would report their approx-
imate location given by their current region in a partition 𝑃 of
the graph 𝛤 similar to the model proposed in [26]. As such, we
define region : V → 𝑃 so that for 𝑣 ∈ V , region(𝑣) is the region
containing 𝑣 . We assume the malicious user has compromised the
users’ location-based service apps and has access to the reported
regions, and also knows their own location exactly. We further
assume that this user has compromised the contact tracing app
which reports which users are in contact with each other, i.e., share
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Figure 5: The graph 𝛤 that represents the locations and the
physical paths between them. Regions 𝑃 = {R,T } represent
the approximate locations reported by smart phones. Loca-
tion 5 is considered to be secret.
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Figure 6: The automaton G1, representing the movement of
the malicious user 1.

the same location. As a privacy measure, the app does not report
the location of the contact.

We suppose that there are 𝑛 = 3 users and consider any user
visiting the secret location 5 as secret in the plant. Using 𝛤 , we first
construct themap automatonG = (V, E,Δ,V0), whereV is the set
of states, E is the set of events, Δ : V × E → 2V is the transition
function, and V0 is the set of initial states. We define V0 = V ,
E = {𝜏}, and Δ(𝑣, 𝜏) = {𝑣} ∪ {𝑢 ∈ V : (𝑢, 𝑣) ∈ ℰ} for all 𝑣 ∈ V .For
each user denoted 𝑖 ∈ {1, 2, . . . , 𝑛}, we construct an automaton G𝑖

modeling their movement. We let user 1 denote the malicious user
and construct G1 from G by removing the secret location (if the
malicious user can enter the secret location, the problem trivially
has no solution). For users 𝑖 > 1, we let G𝑖 = G as their movements
are unrestricted. For example, the individual automatonG1 is shown
in Figure 6. The synchronous movement of all the users is then
described by the product automatonH = G1×G2× · · · ×G𝑛 . Using
the product construction,H has states 𝑥 = (𝑣1, ..., 𝑣𝑛) ∈ V𝑛 where
𝑣𝑖 represents the current location of user 𝑖 .

Given a state 𝑥 ∈ V𝑛 , we define

𝛼 (𝑥) = (𝛼1, ..., 𝛼𝑛) (28)

where for each 𝑖 ,

𝛼𝑖 =

{
𝑣1, 𝑖 = 1
region(𝑣𝑖 ), 𝑖 > 1.

(29)

When the system enters state 𝑥 , the malicious user observes the
information in 𝛼 (𝑥), i.e, their own location and the regions of other
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users. We also define the set

𝛽 (𝑥) = {(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑣𝑖 = 𝑣 𝑗 } , (30)

which represents the contact information of the users at state 𝑥 , i.e.
the pairs of users that share the same location. To put this model
into the setting of synthesis, we consider Boolean encodings of the
outputs of 𝛼 and 𝛽 denoted by 𝛼𝑏 and 𝛽𝑏 , respectively. Finally, we
construct an automaton 𝐺𝐸 from H by labeling each transition to
a state 𝑥 with the variables 𝛼𝑏 (𝑥) ∪ 𝛽𝑏 (𝑥). In order to construct
the specification 𝜑 , we also determinize 𝐺𝐸 using the powerset
construction. The automaton𝐺𝐸 generates the plant behavior 𝐿𝐸 =

L(𝐺𝐸 ) which satisfies the conditions of Lemma 2.1, i.e.,𝐺𝐸 is finite
and has no deadlocked states. Recall for privacy, the malicious user
must not determine users are at the secret location, i.e., if in the
current state of𝐺𝐸 any user is in the secret location which we call a
secret state. As such we define the malicious user’s nonsecret plant
model 𝐿′

𝐸,NS as the language generated by the automaton 𝐺𝐸 after
removal of the secret states. As we assume they are not aware of
obfuscation, their class of possible obfuscation policies Θ is just the
identity map. Finally, as the contact information represented by 𝛽𝑏
should be inferred, we define the function data for the plant output
𝑒 = 𝛼 (𝑥)𝑏 ∪𝛽𝑏 (𝑥) by data(𝑒) = 𝛽𝑏 (𝑥), where 𝛽𝑏 (𝑥) is a copy of the
variables in 𝛽𝑏 (𝑥) (to ensure variables are disjoint). Together these
components define an instance of Problem 2 which by Theorem
4.3 can be transformed into a corresponding instance of Problem 1.
In this form, we also add the additional 𝜔-regular constraint that
the obfuscation policy cannot alter the location of the malicious
user encoded in 𝛼𝑏 as this would alert them to the existence of
obfuscation.

5.2 Implementation and Results
While the pipeline synthesis problem can be solved directly using
automata theoretic methods, due to a lack of available tools and to
take advantage of the performance of bounded synthesis methods,
we use a different approach. There is a straightforward reduction
of a distributed synthesis problem to a decidable hyperproperty
satisfiability problem [8, 9]. Hyperproperties are properties of a
system quantified over multiple traces of the system. The key idea
of the reduction is to encode the variable dependence induced
by the distributed architecture into a hyperproperty. Specifically,
this hyperproperty ensures that any traces of the system with
the same input up to a point must have the same output. Using
this reformulation, we have implemented our synthesis method
using the bounded synthesis tool BoSy 4. We construct the Büchi
automaton accepting the specification 𝜑 from (22), and perform
minimization to reduce the number of states of this automaton
while maintaining the specification language in order to improve
performance. We then provide the tool with this automaton as well
as the pipeline architecture encoded in HyperLTL, a temporal logic
for hyperproperties. When a solution exists, the tool returns the
smallest solution encoded as a finite automaton, otherwise the tool
asserts unrealizability. Again, strategies for the obfuscation policy
and the inference policy represented as transducers are readily

4https://www.react.uni-saarland.de/tools/bosy/

extracted from this monolithic automaton. The implementation of
this synthesis method is available in the M-DESops library5.

The automaton 𝐺𝐸 representing the plant behavior consists of
60 states after minimization. From this, we construct the Büchi
automaton accepting the specification 𝜑 which has 968 states. With
this automaton as input, the tool was able to synthesize a solution
within 25 minutes on a machine with typical specs. As an automa-
ton encoding both the obfuscation and inference policies, the solu-
tion mirrors the structure of the plant automaton 𝐺𝐸 , possessing
a corresponding 60 states. After extraction from the solution, the
obfuscation and inference policies constructed guarantee privacy
in the form of private safety while maintaining utility in the form
of providing correct contact information.

6 CONCLUSION
Balancing privacy and utility within a networked dynamic system
presents an interesting challenge. To achieve this, we propose a
framework of obfuscation with an inference policy that allows in-
tended recipients to interpret obfuscated information. We present a
method for automatically designing both obfuscation and inference
policies using techniques from distributed synthesis. This approach
allows for a variety of specifications for utility and privacy in the
form of temporal logic. We also developed a software implementa-
tion of this approach and demonstrate its effectiveness in enforcing
privacy on a contact-tracing system model.

We remark that our proposed obfuscation framework is orthog-
onal to cryptographic methods for network privacy. While cryp-
tography achieves privacy by ensuring outputs appear arbitrary,
obfuscation achieves privacy by deception, i.e., ensuring outputs
are consistent with a recipient’s model of nonsecret behavior. In
this way our obfuscation framework is similar to the notion of net-
work steganography [17]. Additionally, our approach can be applied
in cases where encryption cannot. While in this work we assumed
the ability to output arbitrary messages, this approach could be ap-
plied in the setting where outputs are subject to additional dynamic
constraints.

There are many directions for future work using this framework.
For example, in this work we consider current-state opacity to hide
a user’s current location. More general notions like in [5] or 𝐾-
step opacity [21] consider secrets that are time-sensitive. Dual to
this, one might also consider requirements to infer information
within a given number of steps. These notions may be expressed in
temporal logic in our framework. Additionally, while in this work
we consider a single intended recipient on the network, systems
may have multiple recipients who need to infer heterogeneous
domains of information. In this case multiple inference policies
must be designed and must not reveal information outside of the
recipients domain. Finally, while we consider unintended recipients
that do not know how the obfuscation is designed, systems may
require that security hold even when the synthesis method is public
knowledge.

5https://gitlab.eecs.umich.edu/M-DES-tools/desops
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A UNFOLDING AND FOLDING STRATEGIES
Proof of Theorem 4.2 (Unfolding). For convenience, wemake

the following definition. Given a folded trace 𝑓 = 𝑓0 𝑓1 · · · ∈ 𝐹𝜔

and its unfolding 𝑡 = 𝑡0𝑡1 · · · = unfold(𝑓 ), we say step 𝑛 in 𝑓 corre-
sponds to step 𝑗 in 𝑡 if |unfold(𝑓0 · · · 𝑓𝑛−1) | < 𝑗 ≤ |unfold(𝑓0 · · · 𝑓𝑛) |.

Consider an obfuscation policy obf :
(
2𝐼obf

)+
→

(
2𝑂obf

)+
and

inference policy inf :
(
2𝐼inf

)+
→ 2𝑂inf . Given two folded traces

𝑓 , 𝑓 ′ ∈ 𝑇𝑟 (obf, inf) let 𝑡 = unfold(𝑓 ) and 𝑡 ′ = unfold(𝑓 ′). Sup-
pose that at some point, the outputs in 𝑂0 differ between 𝑡 and
𝑡 ′ so 𝑗 = min{𝑘 ∈ N | 𝑡𝑘 |𝑂0 ≠ 𝑡 ′

𝑘
|𝑂0 } exists. Let 𝑛 denote the

corresponding step in the 𝑓 and 𝑓 ′. If yield differs in 𝑡 𝑗 and 𝑡 ′𝑗 , then
the length of the outputs in 𝑓𝑛 and 𝑓 ′𝑛 differ. Otherwise if the out-
puts in 𝑂obf differ in 𝑡 𝑗 and 𝑡 ′𝑗 , then the outputs themselves differ
in 𝑓𝑛 and 𝑓 ′𝑛 . Hence the inputs of 𝐼obf must differ in 𝑓 and 𝑓 ′ at
some step 𝑛′ ≤ 𝑛 as they result from the deterministic obfuscation
policy obf . Let 𝑗 ′ = |unfold(𝑓0 · · · 𝑓𝑛′−1) | + 1 be the first step in 𝑡
corresponding to 𝑛′ in 𝑓 . By definition of unfold, the inputs of 𝐼0
in 𝑡 𝑗 ′ and 𝑡 ′𝑗 ′ are given by the inputs in 𝑓𝑛′ and 𝑓 ′𝑛′ . So 𝑡 𝑗 ′ |𝐼0 ≠ 𝑡

′
𝑗 ′ |𝐼0 .

By contrapositive, we have the following result

∀𝑝, 𝑝 ′ ∈ unfold(𝑇𝑟 (obf, inf)) : 𝑡 |𝐼0 = 𝑡
′ |𝐼0 ⇒ 𝑝 |𝑂0 = 𝑝

′ |𝑂0 .

(31)
So given 𝑖 ∈

(
2𝐼0

)+
, if

∃𝑝 = 𝑝0 · · · 𝑝𝑛 ∈ unfold(𝑇𝑟 (obf, inf)) : 𝑝 |𝐼0 = 𝑖 , (32)

we can uniquely define 𝜓0 (𝑖) = 𝑝𝑛 |𝑂0 , and otherwise we define
𝜓0 (𝑖) = {yield}. Because inf is already synchronous, we simply
define𝜓1 = inf . Then by construction we see that

unfold(𝑇𝑟 (obf, inf)) ⊆ 𝑃𝑈 ∩𝑇𝑟 (𝜓0,𝜓1) .
Conversely, consider a trace 𝑡 ∈ 𝑃𝑈 but 𝑡 ∉ unfold(𝑇𝑟 (obf, inf)).

Then as unfold is bijective onto 𝑃𝑈 , this means that 𝑡 = unfold(𝑓 )
for some 𝑓 ∉ 𝑇𝑟 (obf, inf). As obf is defined for all inputs, there
exists a trace 𝑓 ′ ∈ 𝑇𝑟 (obf, inf) with the same inputs in 𝐼obf as
𝑓 . Let 𝑡 ′ = unfold(𝑓 ′) and define 𝑗 = min{𝑘 | 𝑡𝑘 ≠ 𝑡 ′

𝑘
} which
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must exist as 𝑡 ≠ 𝑡 ′. Let 𝑛 denote the corresponding step in the
folded system. If yield ∉ 𝑡 𝑗−1 = 𝑡 ′

𝑗−1 then as 𝑡, 𝑡 ′ ∈ 𝑃𝑈 it must
hold that 𝑡 𝑗 |𝐼0 = 𝑡 ′

𝑗
|𝐼0 = ∅ by the definition of unfold. Otherwise

if yield ∈ 𝑡 𝑗−1 = 𝑡 ′
𝑗−1 then 𝑡 𝑗 |𝐼0 and 𝑡 ′

𝑗
|𝐼0 must be given by the

corresponding inputs in 𝑓𝑛 and 𝑓 ′𝑛 , respectively. But by assumption,
these inputs are equal so 𝑡 𝑗 |𝐼0 = 𝑡 ′

𝑗
|𝐼0 . In either case the inputs in

𝐼0 of 𝑡 and 𝑡 ′ are equal up to step 𝑗 , but the outputs in 𝑂0 ∪ 𝑂1
are unequal. As 𝑡 ′ ∈ 𝑇𝑟 (𝜓0,𝜓1), this implies 𝑡 ∉ 𝑇𝑟 (𝜓0,𝜓1). This
implies that unfold(𝑇𝑟 (obf, inf)) ⊇ 𝑈𝜔 ∩𝑇𝑟 (𝜓0,𝜓1).

Finally, by definition, traces in 𝑃𝑈 always eventually yield and
traces outside of 𝑃𝑈 must not satisfy the condition of (32) at some
point, after which they must always yield by construction. In either
case𝜓0 always eventually yields. □

Proof of Theorem 4.2 (Folding). Let 𝜓0 :
(
2𝐼0

)+
→ 2𝑂0 and

𝜓1 :
(
2𝐼1

)+
→ 2𝑂1 be strategies such that 𝜓0 always eventually

yields in the sense of (17). As 𝜓0 always eventually yields and is
defined for all inputs, for every 𝑒 = 𝑒0𝑒1 · · · ∈

(
2𝑂𝐸

)𝜔
, we can

inductively construct a trace 𝑡 ∈ 𝑇𝑟 (𝜓0,𝜓1) so that

𝑡 |𝑂𝐸
= 𝑒0∅𝑘0−1𝑒1∅𝑘1−1 · · · ,

for some 𝑘 𝑗 > 0 so that the partial sums
∑𝑛

𝑗=0 𝑘 𝑗 is the index
of the 𝑛𝑡ℎ occurrence of yield in 𝑡 . For example 𝑘0 = min{𝑘 |
yield ∈ 𝜓0 (𝑒0∅𝑘−1)}. This trace 𝑡 is unique as it results from the
deterministic strategies 𝜓0 and 𝜓1. Note that 𝑡 follows the yield
behavior, i.e., 𝑡 ∈ 𝑃𝑈 , so there exists 𝑓 = 𝑓0 𝑓1 · · · ∈ 𝐹𝜔 such that
𝑡 = unfold(𝑓 ). Additionally, by the construction of 𝑡 , we see that
the plant outputs in 𝑂𝐸 of 𝑓 are exactly 𝑒 . Furthermore, similar to
the proof of the unfolding case, if 𝑓 ′ is constructed for plant outputs
𝑒 ′ as detailed above, where 𝑒 ′ has a common prefix with 𝑒 , then 𝑓 ′
has a corresponding common prefix with 𝑓 . Hence, we can define
the obfuscation policy obf (𝑒0 · · · 𝑒𝑛) = 𝑓𝑛 |𝑂obf and inference policy
inf = 𝜓1 so that unfold(𝑇𝑟 (obf, inf)) ⊆ 𝑇𝑟 (𝜓0,𝜓1) ∩ 𝑃𝑈 .

Also similar to the proof of the unfolding case, given a trace
𝑡 ∈ 𝑇𝑟 (𝜓0,𝜓1 that is not constructed as above, at some point 𝑡
must violate the yield behavior so that 𝑡 ∉ 𝑃𝑈 . Hence we also have
unfold(𝑇𝑟 (obf, inf)) ⊇ 𝑇𝑟 (𝜓0,𝜓1) ∩ 𝑃𝑈 . Thus 𝜓0 and 𝜓1 are an
unfolding of obf and inf . □
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