
Computer Networks 215 (2022) 109181

A
1

a

b

c

d

V
e

h
R

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Resource allocation for MEC systemwithmulti-users resource competition
based on deep reinforcement learning approach
Bin Qu a,b, Yan Bai c, Yul Chu d, Li-e Wang a,b, Feng Yu a,b,e, Xianxian Li a,b,∗
Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, 541004, China
School of Computer Science and Engineering, Guangxi Normal University, Guilin, 541004, China
School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA 98402, USA
Department of Electrical/Computer Engineering, College of Engineering and Computer Science, The University of Texas Rio Grande
alley, Edinburg, TX 78541, USA
Laboratory of Computer Network and Information Integration, Southeast University, Nanjing, China

A R T I C L E I N F O

Keywords:
Mobile edge computing
Deep reinforcement learning
Computation offloading
Delay
Energy consumption

A B S T R A C T

Mobile edge computing (MEC) is an effective computing paradigm for mobile devices in the 5G era to reduce
computing delay and energy consumption. However, in a multi-user resource competition environment, the
revenue-driven behavior of edge servers will cause some users to increase delays or fail tasks. Considering this
situation, we take the success rate of computation offloading as the trust value of the edge server, and build a
system model from the user’s perspective, taking delay and energy consumption as the multi-objective task of
joint optimization. In the optimization goal, we consider three factors: offloading delay, energy consumption,
and queuing delay. Simultaneously minimizing energy consumption and delay is a contradiction problem.
Therefore, we solve the problem based on the principle of reducing energy consumption as much as possible
when the offload success rate (decreasing delay) is prioritized. Further, we build the problem as a Markov
decision problem (MDP) with multi-factor reward value, and treat the trust value as a state of the system.
Finally, we use an extended deep deterministic policy gradient (DDPG) algorithm (a DDPG algorithm with
multi-objective reward) to work around this problem. Experimental results show that our proposed scheme can
better reduce the delay and energy consumption in computation offloading of mobile users (MUs) significantly
better than the baseline schemes. The advantages of our proposed scheme are more obvious in an environment
where computing resources are tight.
1. Introduction

In recent years, with the popularization of mobile terminals such
as smart phones and wearable smart devices, more and more new
intensive computing applications are executed on mobile terminals,
such as augmented reality (AR), virtual reality (VR), etc. However,
due to the limitations of its own computing power and battery power,
mobile users (MUs) cannot quickly execute these applications or work
continuously for a long time. Therefore, service delays and energy
consumption will affect the normal use of users. In order to address
these bottlenecks, computation offloading has become an effective
solution [1]. However, offloading computation task to the cloud server
will bring high delay and bandwidth costs [2]. In order to process
computation tasks in time, it is proposed to migrate servers to the edge
of the network to provide computation offloading services for MUs to
avoid high transmission delay, which is called mobile edge computing
(MEC) [3].

∗ Corresponding author.
E-mail address: lixx@gxnu.edu.cn (X. Li).

The popularization of 5G networks has laid the foundation for
the Internet of Everything, which will also spawn more and more
computing-intensive mobile applications [4]. As an excellent solution
for 5G networks, MEC has received extensive attention and research [5,
6]. With the popularity of 5G, edge servers (ESs) will be deployed in
places with high population flow (such as stadium, hospital, shopping
mall, etc.) [7]. MUs and ESs are selfish and rational. Generally, the edge
service is provided in a pay-as-you-go method, that is, the user pays
the service fee for computation offloading to the edge service provider.
Edge computing services has also become an area where many com-
puting service providers compete [8]. In a real-world edge computing
scenario, there are often multiple edge service providers [9]. From the
service provider’s point of view, each ES should provide more services
in order to increase profit [10,11]. In the scenario of multi-user edge
resource competition, the server has more initiative. In situations where
a large number of offload tasks need to be queued, an unconstrained
vailable online 18 July 2022
389-1286/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.comnet.2022.109181
eceived 8 January 2022; Received in revised form 22 June 2022; Accepted 9 July
 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:lixx@gxnu.edu.cn
https://doi.org/10.1016/j.comnet.2022.109181
https://doi.org/10.1016/j.comnet.2022.109181
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109181&domain=pdf

Computer Networks 215 (2022) 109181B. Qu et al.

2

i
i
a
r
e
a
r
p
m
a
a
c
l
s
f
(
n
p

a
m
b
e
m
f
a
t
o
e
f
l
t
l
t
q
a
s
h
c
e
a
t
o
l
b
c
p
f
o
p
a
e
l
a
o
T
a

ES may prioritize larger data in order to quickly get more revenue.
In this way, some MUs may suffer from unreasonable arrangements.
Since cross-server migration can be more expensive [12], MUs typically
do not deviate from assigned servers. Because of this, when the edge
server does not process tasks according to the order of task submission
in order to obtain more revenue quickly, the quality of service of some
computation offloading tasks of MUs may not be guaranteed. Therefore,
this paper pays attention to the problem of multi-user computation
offloading in edge computing system with resource competition.

Recently, some studies have started to use deep reinforcement
learning (DRL) approaches instead of traditional approaches to solve
the problems of MEC systems [13–15]. Huang et al. [13] paid attention
to the energy consumption of the MEC system, and proposed real-time
reinforcement learning offloading scheme. They uses double Q-learning
to perform computation offloading scheduling for reducing the total
energy consumption of the system. Tang et al. [14] focused on the
computation offloading problem of task indivisible delay constraints,
using long short term memory (LSTM) and double deep-Q network
(DDQN) technology to make offloading decisions, reducing the task
failure rate and average delay. Huan et al. [15] studied the computation
offloading and resource allocation of dynamic multi-user MEC systems,
and used the DDQN algorithm to target delay constraints and resource
requirements to minimize energy consumption. These studies are all
considered from the perspective of service providers, assuming that ESs
follow allocated resources. In fact, ESs belonging to multiple service
providers are all about maximizing their own profits. Therefore, we
build trust values for ESs from the user’s point of view. Similar to
some existing studies [16–19] inducing the device trust value from the
interaction records of the system, we construct the trust value of the
ES based on the success rate of computation offloading. Differing from
these previous studies, we take the trust value as one of the states of
the system environment, and use the agent to interact with the environ-
ment to make decisions to solve the multi-user computation offloading
problem in the resource competition environment. In addition, differing
from studies on the single-objective optimization problem [13–15]
or multi-objective separate optimization problem [20], we regard the
delay and energy of MEC system as a multi-objective problem of joint
optimization. Specifically, we study a multi-objective joint optimiza-
tion problem in a resource-competitive environment with multi-server
and multi-user. The contribution of this article can be summarized as
following:

1. This paper studies a resource competition computation offload-
ing scenario with multi-user and multi-server. In order to ensure
the user’s service quality, we use the server trust value based
on the offloading success rate as one of the system states to
build a multi-objective Markov decision problem (MDP) model
for reducing delay and energy consumption.

2. In order to adapt for the multi-factor reward MDP, we ex-
tend the reward of the traditional deep deterministic policy
gradient (DDPG) algorithm to multi-dimensional, and propose
a new computation offloading method based on the extended
DDPG algorithm. Compared with the deep-Q network (DQN)
algorithm, the DDPG algorithm can adapt to continuous action
space and high-dimensional state space problems. In this paper,
the extended DDPG algorithm is used to obtain the optimal
strategy for user scheduling and resource allocation in the edge
computing system with multi-user resource competition.

3. We conduct extensive simulation experiments. The scheme we
proposed has lower delay and energy consumption than the
baseline schemes. We measure the offloading delay and en-
ergy consumption of servers with different numbers of users
and different computing capabilities and further demonstrate
the superior performance of our proposed scheme. In addition,
compared to greedy strategies with the offloading rate of 0 and
the offloading rate of 1, our scheme can significantly reduce the
average delay.
2

The rest of the paper is organized as follows. Section 2 overviews
related work. Section 3 presents system model and formulation of the
model. Section 4 proposes DRL-based computation offload algorithm.
Section 5 shows extensive performance evaluation through a series of
simulation experiments. Section 6 concludes the work.

. Related work

Reducing delay and energy consumption has always been a hot topic
n edge computing research. Zhou et al. [21] considered microservices
n mobile edge computing environments, took minimizing delay as
constraint, and proposed a delay-aware approximate algorithm to
educe the consumption of network resources. Xu et al. [22] consid-
red the delay tolerance of different offloading tasks and designed
n efficient online algorithm to maximize the number of offloading
equests within a limited allowable time. You et al. [23] studied the
roblem of multi-user MEC resource allocation based on time-division
ultiple access (TDMA) and orthogonal frequency-division multiple
ccess (OFDMA), and transformed the resource allocation problem into
weighted convex optimization problem of minimum mobile energy
onsumption. According to the user’s channel gain and the priority of
ocally calculated energy consumption, an optimal resource allocation
trategy based on the threshold structure is constructed. Hu et al. [24]
ocused on minimizing the total transmission energy of the access point
AP) under a wireless powered MEC system, considering the ‘‘double-
ear-far’’ effect, and designed a low-complexity algorithm to solve the
roblem of minimizing the AP’s transmit power.
The above studies have considered the specific constraint model

nd expect to obtain an approximate optimal solution. Since there are
any uncertain behaviors of objects in the MEC environment, it has
ecome popular to use machine learning to solve problems in the MEC
nvironment. Compared with deep learning, DRL does not need to
anually label samples, and it can adopt an automatic update strategy
or state changes without manual participation. Li et al. [25] proposed
resource allocation framework for a multi-user wireless MEC sys-
em, taking the delay cost and energy consumption of the system as
ptimization goals, and solving it through a DQN-based solution. Liu
t al. [26] designed an Internet of things (IoT) device offloading scheme
or the MEC system, and solved the optimization problem of system de-
ay and energy consumption through the Q-learning algorithm based on
he greedy strategy. Xu et al. [27] proposed an efficient reinforcement
earning-based resource management algorithm through value itera-
ion and reinforcement learning decomposition to improve the service
uality of renewable energy MEC systems and minimize system energy
nd delay costs. Min et al. [28] proposed a DQN-based algorithm to
olve the computation offloading problem of IoT devices with energy
arvesting functions in a dynamic MEC network to reduce energy
onsumption, computation delay and packet loss rate. Chu et al. [29]
stablished a multi-user computation offloading model and proposed
computation offloading strategy based on DQN, which minimizes
he weighted total overhead of delay and energy consumption as the
ptimization objective. Li et al. [30] studied a dynamic offloading prob-
em of multi-user MEC networks and designed an offloading strategy
ased on DQN to ensure system performance with delay and energy
onsumption as optimization goals. Since DQN does not adapt to the
roblem of continuous action space, Chen et al. [31] proposed a mobile
og edge computing model, and chose to use DDPG to solve the problem
f fog resource allocation in computation offloading. Wang et al. [32]
roposed to use DDPG-based algorithms in the unmanned aerial vehicle
ssisted MEC system to reduce the delay of computation offloading. Xia
t al. [33] used the deep Q-learning algorithm to solve the problem of
ocation-aware 5G multi-unit mobile task offloading to reduce delay
nd energy consumption. Chen et al. [34] studied the computation
ffloading problem of the integration of AR and next generation IoT.
hey proposed a binary offloading scheme and used an improved DDPG
lgorithm to make offloading decisions to reduce delay. Dai et al. [35]

Computer Networks 215 (2022) 109181B. Qu et al.

𝑘
i
t
𝜚
𝜚
t

proposed a joint problem of resource allocation and computation of-
floading with delay constraints under the cloud-side-end collaborative
network, and used the DDPG algorithm to reduce energy consump-
tion. Liu et al. [36] paid attention to the delay and long-term energy
consumption of user computation offloading in a multi-base station
environment, and constructed a MDP to solve it using the DDQN-based
algorithm. Zhu et al. [37] studied a resource management problem
in vehicular edge computing (VEC), adopted an incentive mechanism
to incentivize the VEC server to participate in the resource allocation
process, and proposed a DRL based resource management scheme to
maximize the profits of vehicles and VEC server. Chen et al. [38] stud-
ied a polling-callback energy-saving offloading strategy under a fully
asynchronous offloading system, modeled the time-sharing MEC data
transmission problem as the total energy consumption minimization
model, and proposed an algorithm combining DDQN and distributed
LSTM to improve the ability of processing and predicting time intervals
and delays in time series. Wang et al. [39] designed a framework with
multiple static and vehicle-assisted MEC servers to handle the work-
loads offloaded by wireless users, and adopted an offloading strategy
based on the DDQN algorithm to optimize the system’s energy and
latency costs. Nduwayezu et al. [40] studied the joint offloading and
resource blocks assignment problem in a multi-carrier nonorthogonal
multiple access based MEC system, and developed a two-stage DRL
algorithm to solve the problem of maximizing the sum computation
rate while satisfying delay and energy consumption constraints. By
analyzing the above research background, we can draw the follow-
ing conclusions: (1) [25,26,28,31,33,40] studied the multi-objective
optimization problem based on multi-user and single-server. (2) [32,
34,37,38] studied the optimization problem based on multi-user and
single-server. (3) [35] studied the single-objective optimization prob-
lem based on multi-user and multi-server. (4) [27,36,39] studied the
multi-objective optimization problem based on multi-server (where the
number of mobile devices is unknown). Although [29,30] study the
multi-objective optimization problem based on multi-server and multi-
user, this paper is different from them in that we study a multi-server
and multi-user resource competition scenario, and take the offloading
success rate as the server trust value as a state of the system. Further-
more, we treat energy and delay as a joint multi-objective optimization
task, and adopt an extended DDPG algorithm to optimize the offloading
strategy.

3. System model and problem formulation

In this section, we explain our system model and system com-
munication model, delay and energy model, and the formulation of
problem.

3.1. System model

This article studies a resource contention scenario with multi-user
on multi-server. We assume that 𝑁 ESs (the servers belong to multiple
service providers) are deployed in a densely populated city center,
where computing resources are usually tight. In the scenario, we as-
sume that there is a management center that provides users with an
application that assists in computation offloading. Note that for users
who access the management center, they will accept the decisions
provided by the management center. We consider an OFDMA-based
scheme, where each edge server that provide computation offloading
services deploys a base station. Using OFDMA in a wireless network
can well suppress interference between devices [35,41]. As shown
in Fig. 1, the management center collects brief offloading demand
information (battery status, location, computation task data size) from
MUs, and provides decision-making information for MUs according to
the status of ESs (servers performance and status information is public).
When MUs have sufficient energy and computation power, tasks can be
computing locally. In order to reduce energy consumption and improve
3

Table 1
Symbol description.
Symbol Definitions

𝑖 Represents the MU 𝑖

𝑗 Represents the ES 𝑗

𝑀 Number of MUs
𝑁 Number of ESs
𝑒𝑗 (𝑥0𝑗 , 𝑦

0
𝑗) Coordinates of ES 𝑗

𝑑𝑖(𝑥0𝑖 , 𝑦
0
𝑖) Initial coordinates of MU 𝑖

𝑑𝑖(𝑥1𝑖 , 𝑦
1
𝑖) The moved coordinates of MU j (coordinates of the next

time slot).
𝐷𝑖𝑗 The absolute distance between the ES 𝑖 and the MU 𝑗.
𝜚 Task offload rate
𝐶𝑘
𝑖 Offloading task of user 𝑖 in time slot k

𝜎 Channel gain at a distance of one meter
𝑟𝑘𝑖𝑗 The transmission rate at which mobile user 𝑖 offloads tasks

to edge server 𝑗 in time slot k.
𝜔 The link transmission bandwidth of uploaded data for per

MU.
𝜙2 Noise power
𝑃 𝑡
𝑖𝑗 Transmission power

𝑂𝑖𝑗 = 1 Indicates that there is an obstacle
𝑂𝑖𝑗 = 0 Indicates that there are no obstacles
𝛤𝑛𝑙𝑜𝑠 Transmission loss
𝑓 𝑘
𝑖 CPU frequency of mobile user 𝑖

𝑓 𝑘
𝑗 CPU frequency of edge sever 𝑗

𝑌 The number of cycles required by the CPU to process per bit
𝑙𝑞 Data size of the offload queue
𝜅 Impact factor of CPU architecture
𝜉 Delay tolerance
𝜂1 Weight parameter of offloading delay
𝜂2 Weight parameter of energy consumption
𝜂3 Weight parameter of queuing delay

computation efficiency, ESs can also be used to perform computation
offloading services. MUs offload the task data to the ESs through the
base station. Similar to [36], we discretize time into a set of equal-
interval time slots with a total set of time slots denoted as 𝑻 𝒔 = {1...𝑇𝑠}.
The computation task of the MU 𝑖 in the time slot 𝑘 is denoted as 𝐶𝑘

𝑖 ,
∈ 𝑻 𝒔. Similar to [28], the computation task of the MU 𝑖 can be divided
nto parts of different sizes, one part can be selected to be offloaded
o the ES, and the other part can be placed locally for computation.
∈ [0, 1] is the offloading rate. Specifically, the MU 𝑖 offloads the

𝐶𝑘
𝑖 part of the computation task 𝐶𝑘

𝑖 to the ES for computation, and
he remaining (1 − 𝜚)𝐶𝑘

𝑖 part is computed locally. When 𝜚 = 0, all
tasks are computed locally of the MU, and when 𝜚 = 1, all tasks will
be offloaded to the ES. 𝑓𝑘

𝑖 and 𝑓𝑘
𝑗 respectively represent the device

CPU frequency of the MU 𝑖 and the CPU frequency of the ES 𝑗 when
processing computation tasks. As with some work focusing on delay
and energy [29,30,35,36], we adopt a widely used delay and energy
model. Table 1 lists the commonly used symbols.

Remark. Similar to [42], we assume that MUs transmit offloading re-
quirements to the management center and receive decision information
through a dedicated channel, which does not affect the performance of
MUs offloading data to ESs. The management center provides an ap-
plication that serves MUs task offloading, and obtains the MUs’ battery
status and location information, the next task data, and the completion
status of the MUs’ previous task offloading ESs on this application,
including the time of task upload and computation complete time. The
computing power of the ESs and the size of the upload bandwidth
allocated by the ESs are publicly available.

Computer Networks 215 (2022) 109181B. Qu et al.

3

a
t
t
a
c
c
E
i
t
t
i
a

W
i
a
v
C
r
s

Fig. 1. MEC system computation offloading structure.
c

𝑡

.2. Mobile communication model

Considering that users have a certain mobility in reality, mobility
lso leads to changes in data transmission rates. Therefore, we refer
o the mobility model of [32] to calculate the absolute distance of
he MUs to the ESs for each time slot. Similarly, we assume that MUs
re randomly walking in the area at low speed. Similar to [36], for
onvenience we assume that the user’s location and communication
onditions remain unchanged during each time slot. Each MU selects an
S to offload part of the data to the server for computing, and the rest
s placed locally for computation. ESs are fixed locations. We assume
hat the coordinates of the ES 𝑗 is 𝑒𝑗 (𝑥0𝑗 , 𝑦

0
𝑗). The starting coordinates of

he MU 𝑖 is 𝑑𝑖(𝑥0𝑖 , 𝑦
0
𝑖), and the coordinate of the end point after moving

s 𝑑𝑖(𝑥1𝑖 , 𝑦
1
𝑖). Therefore, the channel gain of the link between the ES 𝑗

nd the MU 𝑖 can be expressed as following [32]:

𝑔𝑖𝑗 = 𝜎𝐷−2
𝑖𝑗 = 𝜎

|𝑑𝑗 (𝑥1𝑗 , 𝑦
1
𝑗) − 𝑒𝑖(𝑥0𝑖 , 𝑦

0
𝑖)|

2 + ℎ2
(1)

here 𝜎 represents the channel gain at a distance of one meter, 𝐷𝑖𝑗
s defined as the absolute distance between the ES 𝑖 and the MU 𝑗,
nd ℎ is the relative height of the base station. The relative height
alue is the base station antenna height minus the user antenna height.
onsidering that there may be obstacles (such as houses, trees, etc.) di-
ectly between the MU and the ES, this will affect the data transmission
peed between the ES and the MU. According to [32,35,36], the data
transmission rate 𝑟𝑘𝑖𝑗 between the ES 𝑗 and the MU 𝑖 is as following:

𝑟𝑘𝑖𝑗 = 𝜔𝑙𝑜𝑔2(1 +
𝑃 𝑘
𝑖𝑗𝑔𝑖𝑗

𝜙2 + 𝑂𝑖𝑗𝛤𝑛𝑙𝑜𝑠 +
∑

𝑖′∈𝑀∕{𝑖},𝑗′∈𝑁∕{𝑗} 𝑔𝑖′𝑗′𝑃𝑖′𝑗′ (𝐷𝑖′𝑗′)−𝛼
) (2)

Where 𝜔 is the link transmission bandwidth per MU uploading ES. 𝜙2

is defined as the noise power, and 𝑃 𝑘
𝑖𝑗 is the transmission power from

the MU 𝑖 to the ES 𝑗. 𝑂𝑖𝑗 defines the obstacles between the MU 𝑖 and
the ES 𝑗. When 𝑂𝑖𝑗 is 1, it means there are obstacles, and when 𝑂𝑖𝑗 is
4

0 it means there is no obstacle. 𝛤𝑛𝑙𝑜𝑠 represents transmission loss. We
assume MUs associated with the same ES are allocated orthogonal spec-
trum, so we only consider the interference among MUs associated with
different ESs [43]. Similar to [35], ∑𝑖′∈𝑀∕{𝑖},𝑗′∈𝑁∕{𝑗} 𝑔𝑖′𝑗′𝑃𝑖′𝑗′ (𝐷𝑖′𝑗′)−𝛼 is
the interference from other ESs. 𝛼 is the path loss exponent.

3.3. Multi-user computation offloading model

In the computation model, we consider the calculation of task
offloading delay, energy, and server trust value. Similar to [30,35]
since the returned data result is much smaller than the offloaded data,
we ignore the delay and energy consumption caused by returning the
result.

3.3.1. Offloading delay calculation
In time slot 𝑘, MU 𝑖 can offload part of data 𝐶𝑘

𝑖 to an edge server for
computation, and the remaining (1−𝜚)𝐶𝑘

𝑖 data can be computed locally .
According to [30,35], the delay for performing the computation locally
is as following:

𝑡𝑘𝑙𝑜𝑐𝑎𝑙 =
(1 − 𝜚)𝐶𝑘

𝑖 𝑌

𝑓𝑘
𝑖

(3)

𝑌 represents the CPU cycles required to compute 1 bit. The delay of
offloading to the edge server can be divided into transmission delay and
offloading computation delay. By formula (2), the transmission delay
an be expressed as following:

𝑘
𝑟 =

𝐶𝑘
𝑖

𝜔𝑙𝑜𝑔2(1 +
𝑃 𝑘
𝑖𝑗𝑔𝑖𝑗

𝜙2+𝑂𝑖𝑗𝛤𝑛𝑙𝑜𝑠+
∑

𝑖′∈𝑀∕{𝑖},𝑗′∈𝑁∕{𝑗} 𝑔𝑖′𝑗′𝑃𝑖′𝑗′ (𝐷𝑖′𝑗′)−𝛼
)
=

𝐶𝑘
𝑖

𝑟𝑘𝑖𝑗
(4)

The offloading computation delay of the ES 𝑗 is divided into the time
waiting at the server queue (i.e., queuing delay) and the computation
execution time. The expression of queuing delay is as following:

𝑡𝑘𝑤𝑎𝑖𝑡 =
𝑙𝑞𝑌

𝑘 (5)

𝑓𝑗

Computer Networks 215 (2022) 109181B. Qu et al.

t

𝑡

S
c
t

𝑇

3

t
c
c
o
i
e

𝐸

T
c
t
e
a

𝐸

n
a
c
t
W
𝑡
c

𝐸

𝑃
t
e

𝐸

H
d
b
(

3

q
p
s
s
c
s
f
a
f
t
t
t
c
d
r
o
T

𝛹

s
v
v
i

3

t
m
a
o
e
n
c
l
f
o
d
o
t
r
g

𝑃

W
d
𝑘
c
𝑖

4

i
s
c

Where 𝑙𝑞 is the data size of the ES 𝑗 queue when offloading data is
offloaded, and the execution computation time is as following:

𝑡𝑘𝑒 =
𝜚𝐶𝑘

𝑖 𝑌

𝑓𝑘
𝑗

(6)

Combining formula (5),(6) we can get the offloading computation delay
expression as following:

𝑡𝑘𝑒𝑑𝑔𝑒 =
(𝑙𝑞 + 𝜚𝐶𝑘

𝑖)𝑌

𝑓𝑘
𝑗

(7)

From the formula (4) and (7), the delay of offloading the computa-
ion to the edge server is as following:

𝑘
𝑜𝑓𝑓 =

𝐶𝑘
𝑖

𝜔𝑙𝑜𝑔2(1 +
𝑃 𝑘
𝑖𝑗𝑔𝑖𝑗

𝜙2+𝑂𝑖𝑗𝛤𝑛𝑙𝑜𝑠+
∑

𝑖′∈𝑀∕{𝑖},𝑗′∈𝑁∕{𝑗} 𝑔𝑖′𝑗′𝑃𝑖′𝑗′ (𝐷𝑖′𝑗′)−𝛼
)

+
(𝑙𝑞 + 𝜚𝐶𝑘

𝑖)𝑌

𝑓𝑘
𝑗

= 𝑡𝑘𝑟 + 𝑡𝑘𝑒𝑑𝑔𝑒 (8)

ince the data offloading computation part and the local execution
omputation part are carried out at the same time, the total delay of
he computation offloading is expressed as following:

𝑘
𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑎𝑥{𝑡𝑘𝑙𝑜𝑐𝑎𝑙 , 𝑡

𝑘
𝑜𝑓𝑓 } (9)

.3.2. Energy consumption calculation
From users’ perspective, we only consider the energy consump-

ion of MU. When a MU performs computation offloading, its energy
onsumption can be divided into the energy consumption of local
omputing and the energy consumption of transmission during the
ffloading process. The local execution energy consumption of the MU
s related to the CPU frequency and data size. According to [30,35], the
nergy consumption of the local execution data is as following:

𝑘
𝑙𝑜𝑐𝑎𝑙 = 𝜅(1 − 𝜚)𝐶𝑘

𝑖 𝑌 (𝑓
𝑘
𝑖)

2 (10)

he size of 𝜅 depends on the capacitance coefficient of the CPU ar-
hitecture. The transmission energy consumption of MU is related to
ransmission power and transmission time. Introducing formula (4), the
nergy consumption of mobile devices offloading data to the server is
s following:

𝑘
𝑟 =

𝑃𝑖𝑗𝐶𝑘
𝑖

𝜔𝑙𝑜𝑔2(1 +
𝑃 𝑘
𝑖𝑗𝑔𝑖𝑗

𝜙2+𝑂𝑖𝑗𝛤𝑛𝑙𝑜𝑠+
∑

𝑖′∈𝑀∕{𝑖},𝑗′∈𝑁∕{𝑗} 𝑔𝑖′𝑗′𝑃𝑖′𝑗′ (𝐷𝑖′𝑗′)−𝛼
)
= 𝑃 𝑘

𝑖𝑗 𝑡
𝑘
𝑟 (11)

During task offloading, MUs may be idle [44]. In this case, MUs
eed to wait until the ESs computing is complete. MUs’ idle time will
lso generate energy consumption. In our environment, MUs and ESs
ompute simultaneously. There are two cases where the ES completes
he computation first and the MU completes the computation first.
hen the ES completes the computation first, the MU 𝑖 is idle and

𝑘
𝑜𝑓𝑓 > 𝑡𝑘𝑙𝑜𝑐𝑎𝑙. The idle time of MU 𝑖 is 𝑡𝑘𝑜𝑓𝑓 − 𝑡𝑘𝑙𝑜𝑐𝑎𝑙. Therefore, the energy
onsumption of MU 𝑖 idle time is as following:

𝑖𝑑𝑙𝑒 = 𝑃𝑥(𝑡𝑘𝑜𝑓𝑓 − 𝑡𝑙𝑜𝑐𝑎𝑙) (12)

𝑥 represents idle power. Combining formulas (10) (11) and (12), the
otal energy consumption of mobile user for data offloading services is
xpressed as following:

𝑘
𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑘

𝑙𝑜𝑐𝑎𝑙 + 𝐸𝑘
𝑟 + 𝐸𝑖𝑑𝑙𝑒 (13)

owever, in the scenario where the energy consumption of the received
ata needs to be considered, the energy model can be easily extended
y adding the energy consumption of receiving data to the formula
5

13). i
.3.3. Trust value calculation
In an environment of resource competition, when the ES wants to

uickly obtain greater benefits, the ES may follow the order of data
rocessing in tasks from large to small, rather than the order of task
ubmission time. In this case, the quality of service for MUs with
mall data tasks will be low, and it may even lead to the failure of
omputation offloading. In view of the revenue-driven behavior of the
erver, we add the concept of trust values for the ESs to provide a basis
or MUs computation offloading decisions. The trust values of the ESs
re determined by the success rate of offloading tasks. For the success or
ailure of the offloading task, we make the following definitions: When
he real total delay 𝐷𝑟𝑒𝑎𝑙 ⩽ 𝑚𝑖𝑛{𝐷𝑙𝑜𝑐𝑎𝑙 , 𝜉𝑇 𝑘

𝑡𝑜𝑡𝑎𝑙}, the task of offloading
ask is successful. 𝜉 > 1 is the delay tolerance, and 𝐷𝑙𝑜𝑐𝑎𝑙 represents
he delay when all tasks are executed locally. We assume that the user
an tolerate a certain amount of delay, and the maximum tolerable
elay is equal to the delay when all tasks are computed locally. In
eality, in order to reduce power consumption, users can accept that the
ffloading computation delay is equal to the delay computed locally.
he trust value for the ES is calculated as following:

=
𝐹𝑗

𝑍𝑡𝑜𝑡𝑎𝑙
𝑗

(14)

Where 𝐹𝑗 is the number of successful offloading computations of ES 𝑗,
and 𝑍𝑡𝑜𝑡𝑎𝑙

𝑗 is the number of offloading computations by ES 𝑗. Under the
ame conditions, MUs will be preferentially select ESs with high trust
alues for offloading computations. Therefore, in the case of low trust
alue, the ES should pay more attention to the success rate rather than
mmediate profit to ensure its long-term interests.

.4. Problem formulation

In fact, minimizing the energy consumption of MUs and minimizing
he offloading delay is a contradictory problem. Based on the above
odel, we pay attention to the tradeoff between delay and energy,
nd ensure that the delay cannot exceed the maximum tolerable delay
f the user when performing the offloading task, and also reduce the
nergy consumption of the MU as much as possible. In addition, ESs are
ot executed in the order of submission as shown in Fig. 2, which will
ause a lot of wait time. Obviously, when the ESs prioritize processing
arge data tasks, the queuing delay of the system will increase. There-
ore, queuing delay is an important factor in measuring the success
f offloading computations. We take the weighted sum of offloading
elay, energy consumption, and queuing delay as the joint optimization
bjective when considering server trust value, user location in each
ime slot, and obstruction, in order to optimize offloading decisions for
educing total delay and energy consumption. Our final optimization
oal is expressed as following:

1 ∶ 𝐺𝑜𝑏𝑗𝑒𝑐𝑡 = 𝑚𝑖𝑛 1
𝑇𝑠

𝑇𝑠
∑

𝑘=1

𝑀
∑

𝑖=1
𝜂1𝑇

𝑘
𝑖→𝑡𝑜𝑡𝑎𝑙 + 𝜂2𝐸

𝑘
𝑖→𝑡𝑜𝑡𝑎𝑙 + 𝜂3𝑡

𝑘
𝑖→𝑡𝑜𝑡𝑎𝑙 (15)

here 𝜂1, 𝜂2, 𝜂3 ∈ [0, 1] and 𝜂1 + 𝜂2 + 𝜂3 = 1. 𝑇 𝑘
𝑖→𝑡𝑜𝑡𝑎𝑙 represents the total

elay for MU 𝑖 to complete the offloading computation task in time slot
, 𝐸𝑘

𝑖→𝑡𝑜𝑡𝑎𝑙 represents the energy consumed by MU 𝑖 in completing the
omputation task of time slot 𝑘, and 𝑡𝑘𝑖→𝑡𝑜𝑡𝑎𝑙 represents the time that MU
needs to wait in the queue when offloading tasks in time slot 𝑘.

. DRL for computation offloading

In this section, we describe our model for the computation offload-
ng problem as a MDP with multi-objective rewards and define the state
pace, action space, and reward function in detail. We also present a
omputation offloading scheme based on an extended DDPG and the

mplementation algorithm.

Computer Networks 215 (2022) 109181B. Qu et al.

𝑟

r
p
E
a
o
𝛤
𝑗

4

𝑋
t
a

4

a
c
o
f
T
c
t

c

4

t
i
n
t
w
a

Fig. 2. Edge servers prioritize larger data tasks.
1

1

1

1

1
1
2
2
2

4.1. MDP modeling

According to the mode discussed in the previous section, each
mobile user selects action 𝑎 in the state 𝑠 by relying on the strategy
𝜋 in time slot 𝑘. To construct a MDP model, three basic elements, State
Space, Action Space, and Reward Function, are included.

4.1.1. State space
𝑆 = {𝐵𝑖, 𝐷𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑖 , 𝐶 𝑖→𝑘
𝑠𝑖𝑧𝑒 , 𝛹𝑗 , 𝑟𝑘𝑖𝑗 , 𝛤𝑖→𝑛𝑙𝑜𝑠,… , 𝐷𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

𝑀 , 𝐵𝑀 , 𝐶𝑀→𝑘
𝑠𝑖𝑧𝑒 , 𝛹𝑁 ,

𝑘
𝑀𝑁 , 𝛤𝑀→𝑛𝑙𝑜𝑠}.

𝐵𝑖 represents the battery status of MU 𝑖 at the time slot 𝑘, 𝐷𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
𝑖

epresents the location of MU 𝑖, 𝐶 𝑖→𝑘
𝑠𝑖𝑧𝑒 represents the size of the data

rocessed by MU 𝑖 at the time slot 𝑘, 𝛹𝑗 represents the trust value of
S 𝑗, 𝑟𝑘𝑖𝑗 represents the data transmission rate from the ES 𝑗 to the MU 𝑖
t the time slot 𝑘, 𝛤𝑖→𝑛𝑙𝑜𝑠 represents the obstacles when MU 𝑖 chooses to
ffload a task to the ES, and 𝛤𝑖→𝑛𝑙𝑜𝑠 = 1 represents there are obstacles.
𝑖→𝑛𝑙𝑜𝑠 = 0 means there are no obstacles, where 𝑖 ∈ {1, 2...𝑀}, and
∈ {1, 2...𝑁}.

.1.2. Action space
𝐴 = {𝛯 𝑖𝑑

𝑖→𝑗 , 𝑋
𝑜𝑓𝑓
𝑖→𝑗 … , 𝛯 𝑖𝑑

𝑀→𝑁 , 𝑋𝑜𝑓𝑓
𝑀→𝑁}

𝛯 𝑖𝑑
𝑖→𝑗 represents the ID of the ES 𝑗 that MU 𝑖 chooses to offload, and

𝑜𝑓𝑓
𝑖→𝑗 represents the portion of the data that MU 𝑖 chooses to offload on
he ES 𝑗. At time slot 𝑘, after an action 𝐴𝑘 is taken, the system computes
n immediate reward 𝑅 before updating state 𝑆𝑘 to the next state 𝑆𝑘+1.

.1.3. Reward function
The ultimate goal of the MDP is to have an optimal decision-making

ction A for each state S to minimize offloading delay and energy
onsumption. Therefore, different from a single reward for a single
bjective optimization problem, we generalize the multiple rewards
or multiple objectives into an objective function with parameters.
he reward function is closely related to the objective function and
onstraint conditions discussed in the previous section. We formulate
he reward function as following:

𝑅 = −𝜍[𝜂1𝑇 𝑘
𝑖→𝑡𝑜𝑡𝑎𝑙(𝑠, 𝑎) + 𝜂2𝐸𝑘

𝑖→𝑡𝑜𝑡𝑎𝑙(𝑠, 𝑎) + 𝜂3𝑡𝑘𝑖→𝑡𝑜𝑡𝑎𝑙(𝑠, 𝑎)]
𝜍 is to adjust the value of reward close to −1, which is more

onducive to algorithm learning.

.2. DRL-based computation offloading algorithm

Reinforcement learning is one of the traditional methods for solving
he MDP. Due to the low efficiency of traditional reinforcement learn-
ng algorithms, the current reinforcement learning based on the deep
eural network (DNN) adopts the method of constant approximation
o improve efficiency. It has become more and more popular in dealing
ith complex MDP. Here we give a brief introduction to the Q-learning
lgorithm. Basically, its process is based on the state 𝑆 , using the
6

𝑘

Algorithm 1 Computation offloading scheme based on the extended
DDPG
1: Initialize:
2: Randomly initialize Actor network parameters 𝜃𝜇 and Critic
network parameters 𝜃𝑄;

3: Initialize Actor target network parameters 𝜃𝜇
′
and target value

network 𝜃𝑄
′
;

4: Initialize experience replay pool 𝑅𝑝;
5: for each episode 𝑒𝑜=1 to 𝑒𝑚𝑎𝑥 do
6: Reset parameters of multi-user edge computing offload environ-

ment;
7: Initial state random noise  and ;
8: Randomly generate initial state 𝑠𝑖 for each user 𝑖 ∈ 𝑀 and extract

its feature vector 𝜛(𝑠);
9: for each time slot 𝑘 = 1 to 𝑇𝑠 do
0: Select action 𝑎𝑘 = 𝜇(𝜛(𝑠)|𝜃𝜇) +  according to the policy of

Actor network and the exploration noise;
1: Perform action 𝑎𝑘, get reward 𝒓𝑘 and the next state 𝑠𝑘+1 from

the environment;
12: Store (𝜛(𝑠𝑘), 𝑎𝑘, 𝒓𝑘, 𝜛(𝑠𝑘+1)) in the experience replay pool 𝑅𝑝;
13: Randomly sample a small batch of 𝛺 experiences

(𝜛(𝑠𝜐), 𝑎𝜐, 𝑟𝜐, 𝜛(𝑠𝜐+1)) from 𝑅𝑝;
14: Computing 𝑦𝜐, 𝑦𝜐 = 𝜍𝜼𝑇 𝒓 + 𝛾𝑄′ (𝑠𝜐+1, 𝑎𝜐+1|𝜃𝑄

′
);

15: Use the minimized loss function 𝐽 (𝜃𝑄) = 1
𝛺
∑𝑚

𝜐=1(𝑦𝜐 −
𝑄(𝜛(𝑠𝜐), 𝑎𝜐|𝜃𝑄))2 to update all the parameters of the Critic
network 𝜃𝑄.;

6: Update all the parameters of the Actor network 𝜃𝜇 using the
sampled policy gradient:

7: 𝐽 (𝜃𝜇) = 1
𝛺
∑𝛺

𝜐=1 ▽𝑎𝑄(𝑠𝜐, 𝑎𝜐|𝜃𝑄)|𝑠 = 𝑠𝜐, 𝑎 =
𝜇(𝑠|𝜃𝑄)|▽𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠 = 𝑠𝜐 ;

8: Update the target network with a soft update strategy:
9: 𝜃𝑄

′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

0: 𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
;

1: end for
2: end for

greedy method to select the action 𝐴𝑘, and enter the next state 𝑆𝑘+1,
and get the reward 𝑅𝑘, use ⟨𝑆,𝐴,𝑅, 𝑆′

⟩ to update the 𝑄 table.
When updating the 𝑄 table, the greedy strategy is used to select 𝐴′,

𝐴′ = 𝑚𝑎𝑥′𝑎𝑄(𝑆′, 𝑎′) based on the state 𝑆𝑘+1. The action 𝑎 is selected
to maximize the value of Q as 𝐴′ to update the value function. Since
the 𝑄 table needs to store all the action values of each state, it will
be extremely difficult to store and search when a large number of
continuous states occur. DQN uses a neural network to replace the
𝑄 table, and solves the problem of excessive storage and excessive
searching due to the excessive number of states in the continuous state
space. The objective function is 𝑦 = 𝑟 + 𝛾𝑚𝑎𝑥′𝑄∗(𝑠′, 𝑎′|𝜃), that is, the
𝑘 𝑎

Computer Networks 215 (2022) 109181B. Qu et al.
Fig. 3. Overall schematic framework diagram based on the extended DDPG.
T
f
l
b
e

𝐽

W
r
t
n
c
c
m
r
a
c
a
i
s

next state uses the max function to select an action 𝑄 that maximizes
the objective function, and 𝛾 is the discount factor. Since it is necessary
to calculate the 𝑄 value of all actions, it becomes extremely difficult to
exhaust all possibilities when the action space is continuous. Therefore,
DQN cannot directly deal with the problem of continuous action space.
DDPG overcomes the shortcomings of DQN’s inability to adapt to the
continuous action space.

Based on the above, we propose a computation offloading algorithm
based on an extended DDPG. The DDPG separates the exploration of
the action strategy from the learning update of the action strategy,
and only changes the strategy to be learned to a deterministic strategy.
By borrowing the actor–critic architecture, the policy network and the
value network are separated, and experience reuse of DQN is used
for non-policy training to minimize the relationship between samples.
DDPG also uses normalized batch processing to prevent gradient explo-
sions. DDPG defines deterministic behavior strategy 𝜇, and each step of
action can be calculated by 𝑎𝑘 = 𝜇(𝑠𝑘). DDPG uses a DNN to simulate
𝜇 to become a strategy network with a parameter of 𝜃𝜇 , and uses
another DNN to simulate the 𝑄 function to become a value network
with a parameter of 𝜃𝑄. Silver [45] proved that 𝜇’s gradient strategy
is equivalent to the 𝑄 function gradient strategy, and its calculation
formula is as following:

▽𝜃𝜇𝐽 = 𝐸𝜇′ [▽𝑎𝑄(𝑠𝑘, 𝑎𝑘|𝜃𝑄)|𝑠 = 𝑠𝑘, 𝑎 = 𝜇(𝑠|𝜃𝑄)|▽𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠 = 𝑠𝑘]

(16)

As shown in Fig. 3, the framework of the extend DDPG algorithm
includes four networks, namely actor network, actor target network,
critic network, and critic target network, respectively. Two actor net-
work structures are the same, and the two critic network structures
are the same. The actor network is responsible for the iterative update
of the policy network parameters 𝜃𝜇 , and selects the current action 𝑎𝑘
according to the current state 𝑠𝑘, which is used to interact with the en-
vironment to generate the next state 𝑠𝑘+1 and reward 𝒓. And the multi-
objective 𝒓 is a three-dimensional vector, 𝒓 = [𝑇 𝑘

𝑖→𝑡𝑜𝑡𝑎𝑙 , 𝐸
𝑘
𝑖→𝑡𝑜𝑡𝑎𝑙 , 𝑡

𝑘
𝑖→𝑡𝑜𝑡𝑎𝑙].

The actor target network is responsible for selecting the best next action
𝑎′ based on the next state 𝑠′ sampled in the experience replay pool.
The network parameters 𝜃𝜇′ are regularly copied from 𝜃𝜇 . The critic
network is responsible for the iterative update of the value network
parameters 𝜃𝜇 and calculates the current 𝑄 value 𝑄(𝑠, 𝑎|𝜃𝑄). The calcu-
lated target 𝑄 value function is 𝑦 = 𝜍𝜼𝑇 𝒓+𝛾𝑄′(𝑠′, 𝑎′|𝜃𝑄′), 𝜼 = [𝜂1, 𝜂2, 𝜂3].

′ ′ ′ 𝑄′
7

The critic target network is responsible for calculating the 𝑄 (𝑠 , 𝑎 |𝜃) a
part of the target 𝑄 value, and the network parameters 𝜃𝑄′ are regularly
copied from 𝜃𝑄.

The training method for the target network is different from that of
the DQN. The soft update method is adopted during the training, and
the formula of the soft update strategy is as following:

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′

𝜃𝜇
′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′ (17)

𝜏 is the update coefficient, 𝜏 ∈ [0, 1]. For the randomness of the learning
process and to explore potentially better learning strategies, noise  is
added to action 𝐴, which is expressed as following:

𝐴 = 𝜋𝜇(𝑠) + (18)

The loss function of critic network is similar to DQN, and the mean
square error is used. The expression of the loss function is as following:

𝐽 (𝜃𝑄) = 1
𝛺

𝑚
∑

𝜐=1
(𝑦𝜐 −𝑄(𝑠𝜐, 𝑎𝜐|𝜃𝑄))2 (19)

he purpose of actor network is to hope that critic network will
eedback a large 𝑄 value. When the obtained 𝑄 value is larger, the
oss will be smaller, and when the 𝑄 value is smaller, the loss will
e greater. Therefore, the loss gradient of the actor network can be
xpressed as following:

(𝜃𝜇) = 1
𝛺

𝑚
∑

𝜐=1
▽𝑎𝑄(𝑠𝜐, 𝑎𝜐|𝜃𝑄)|𝑠 = 𝑠𝜐, 𝑎 = 𝜇(𝑠|𝜃𝑄)|▽𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠 = 𝑠𝜐

(20)

e summarize the process multi-user computation offloading as Algo-
ithm 1. The complexity of the algorithm is related to the structure of
he deep neural network. The computational complexity of deep neural
etworks comes from the matrix calculation between layers and the
alculation of activation functions at each layer. Therefore, the time
omplexity can be calculated as [46]𝐻 = 𝑉𝑎 ∗ 𝑢𝜄 +

∑𝜄=𝐿
𝜄=1 𝑢𝜄𝑢𝜄+1, where 𝑢𝜄

eans the unit number in the 𝜄th layer, 𝑉𝑎 means the corresponding pa-
ameters are determined by the type of activation function. Suppose the
ctor network contains 𝜖 fully connected layers, and the critic network
ontains 𝜆 fully connected layers. Therefore, the time complexity of the
ctor network is 𝐻𝑎𝑐𝑡𝑜𝑟 and the time complexity of the critic network
s 𝐻𝑐𝑟𝑖𝑡𝑖𝑐 . Since the main network and the target network have the
ame structure, the training complexity of the algorithm is estimated

s 𝑶(𝑒𝑚𝑎𝑥 ∗ 𝑇𝑠(𝐻𝑎𝑐𝑡𝑜𝑟 +𝐻𝑐𝑟𝑖𝑡𝑖𝑐)).

Computer Networks 215 (2022) 109181B. Qu et al.

T
s
i
U
t
𝜂
a
s
c
w
i
s
p

A

2
n
a
b
t
a

a

T
o
p
d
p

5

m
o
o
{
1

1

Table 2
Explanations of parameter default values.
Parameter Definitions Default

values

𝐶𝑘
𝑖 The size of the data offloaded by MU 𝑖 at time

slot 𝑘
(1.5, 3) Mbit

𝑌 The number of cycles required by the CPU to
process per bit

(900, 1100)
cycles/bit

𝜎 Channel gain at a distance of one meter −50 dB [32]
𝜔 The link transmission bandwidth of uploaded

data for per MU
1 MHz

𝑓 𝑘
𝑖 CPU frequency of MUs 1 GHz

𝑓 𝑘
𝑗 CPU frequency of ESs 4 GHz

𝜅 Impact factor of CPU architecture 1e−27
ℎ Relative height of users and base stations 8.5 m
𝜉 Delay tolerance 1.1
𝜂1 Weight parameter of offloading delay 0.6
𝜂2 Weight parameter of energy consumption 0.3
𝜂3 Weight parameter of queuing delay 0.1
𝜍 adjustable parameter 1e−5
A_lr Actor network learning rate 10−4

C_lr Critic network learning rate 10−4

𝛾 Discount factor 0.99
𝜏 Soft update factor 0.01

5. Performance evaluation

In this section, we introduce simulation settings and baselines,
and compare convergence performance, delay, and energy consump-
tion from many aspects to evaluate the performance of our proposed
scheme. The simulation experiment environment we used is Tensor-
Flow 1.14.0 with python 3.6. The parameters set in the experiment and
their default values are shown in Table 2.

5.1. Experimental settings

In order to verify the multi-server environment, we set up four ESs
in an area of 300 × 300 m2, the coordinates of which are fixed at
[100,100], [100,200], [200,100], [200,200]. Similar to [35], we set 20
MUs randomly distributed in the area. In order to simulate the volatility
of the computing process and tasks, the task data size and the required
CPU cycles per bit of data are uniformly distributed similar to [47].
In order to reflect the mobility of MUs, we set its random movement
speed to 1 m/s. Note that for the convenience of processing, we assume
that the location of the mobile user does not change during each time
slot. According to 3GPP TR 38.901 [48], the relative height of the base
station is 8.5 m. The base station antenna height and user antenna
height are 10 m and 1.5 m, respectively. The transmission power and
idle power of UEs are 0.5 W and 0.1 W, respectively [44]. The link
transmission bandwidth of per MU uploading data is set to 1 MHz [41].
he path loss exponent 𝛼 is −2 [49]. The noise power adopts the 3GPP
tandard [35], the noise power is 10−11 mW, and the transmission loss
s −20 dbm [50]. We have performed parameter tuning 𝜂 many times.
nder the requirement of delay, we firstly performed coarse-grained
raversal of the value of 𝜂 from 0.1–0.9 and then selected the value of
after fine-grained (0.05) traversal. When 𝜂1 is around 0.6 and 𝜂2 is
round 0.3, the delay and energy consumption have reached a lower
tate (If 𝜂1 is too large, the offload rate will decrease, and the local
omputation delay will be too large. If 𝜂2 is too large, the offload rate
ill be too large, and the computing delay of offload to the server will
ncrease.). 𝜂3 mainly adjusts the queuing delay weight, and its value is
mall (The queuing delay is included in the delay model.). Such as the
art results of a traversal in Table 3.
For the construction of DNNs, we choose two different networks.
8

ctor has two hidden layers, and the number of neurons is 100 and
Table 3
𝜂 of different parameters values.
(𝜂1 , 𝜂2 , 𝜂3) Average

delay (s)
Average energy
consumption (J)

Average
offload rate

(0.7, 0.2, 0.1) 1.66 1.23 0.52
(0.65, 0.25, 0.1) 1.67 1.15 0.55
(0.6, 0.3, 0.1) 1.65 1.05 0.60
(0.6, 0.25, 0.15) 1.69 1.26 0.53
(0.55, 0.35, 0.1) 1.72 1.02 0.66
(0.4, 0.4, 0.2) 2.10 0.67 0.73

Fig. 4. Convergence performance of different learning rate.

4, respectively. The critic network has three hidden layers, and the
umber of neurons is 200, 60, and 24, respectively. All hidden layers
re fully connected and activated through the tanh function. We set the
atch size to 64, and the experience reply pool size to 1e4. During the
raining process, we set the maximum number of episodes to 10 000,
nd the maximum time slot of each episode to 50.
Three baseline schemes we conducted experimental comparisons

re as following:

1. The offloading scheme based on DQN [30] algorithm.
2. The DDPG-based offloading scheme that does not consider the
trust value of edge servers (No_trust).

3. The DDPG-based offloading scheme that consider the trust value
of edge servers and does not add the wait time of mobile devices
in the queue to the optimization goal (No_wait).

he DQN-based offloading scheme is designed using the discretization
f the continuous action space. In addition, we test the effect of our
roposed scheme with different parameters. We also compared the
elays of offloading rates of 0 and 1 in greedy mode to test the
erformance of offloading schemes based on DRL algorithms.

.2. Performance analysis

We evaluated the impact of different learning rates on the perfor-
ance of the proposed algorithm. Fig. 4 shows the convergence trend
f the learning rate 𝐴𝑙𝑟 of the actor network and the learning rate 𝐶𝑙𝑟
f the critic network from 10−2 to 10−5. When {𝐴𝑙𝑟 = 10−2, 𝐶𝑙𝑟 = 10−2},
𝐴𝑙𝑟 = 10−2, 𝐶𝑙𝑟 = 10−3}, {𝐴𝑙𝑟 = 10−3, 𝐶𝑙𝑟 = 10−4}, {𝐴𝑙𝑟 = 10−4, 𝐶𝑙𝑟 =
0−4} and {𝐴𝑙𝑟 = 10−5, 𝐶𝑙𝑟 = 10−5}, our proposed algorithm can
converge faster. This converges to the maximum reward when {𝐴𝑙𝑟 =
0−4, 𝐶𝑙𝑟 = 10−4}. When {𝐴𝑙𝑟 = 10−3, 𝐶𝑙𝑟 = 10−2} and {𝐴𝑙𝑟 = 10−5, 𝐶𝑙𝑟 =
10−4}, the reward of our proposed algorithm can be slowly converged,
but both fall into suboptimal solutions. When {𝐴𝑙𝑟 = 10−2, 𝐶𝑙𝑟 = 10−2},
{𝐴𝑙𝑟 = 10−4, 𝐶𝑙𝑟 = 10−3}, {𝐴𝑙𝑟 = 10−4, 𝐶𝑙𝑟 = 10−5}, the reward of our
proposed algorithm fluctuates greatly, cannot be converged.

Table 4 shows the average delay and average energy consumption
when the number of MUs varies. As the number of MUs increases,

the data task queue will increase, which will result in an increase for

Computer Networks 215 (2022) 109181B. Qu et al.

q
n
d
o

n
c
t
d
f
e

Fig. 5. Average delay, average energy consumption, and average offload rate of different numbers of MUs when computation offloading under ESs with different CPU frequencies.
s
p
s
a

Table 4
The average delay and average energy consumption of task offloading with different
numbers of MUs.
Average performance M=5 M=10 M=15 M=20 M=25

Average delay (J) 0.95 1.27 1.45 1.65 1.89
Average energy consumption (s) 0.72 0.88 0.96 1.05 1.22
Average offload rate 0.82 0.72 0.69 0.6 0.53

Fig. 6. Convergence performance of time-varying bandwidth.

ueuing delay and idle energy consumption. On the other hand, as the
umber of users increases, the offloading rate of mobile user tasks will
ecrease, which will also increase the delay and energy consumption
f MUs.
Fig. 5 shows the average delay and energy consumption of different

umbers of MUs computation offloading under different CPU frequen-
ies of the ESs. As shown in Fig. 5(a), when the number of MUs remains
he same, as the computing power of the ESs increases, the average
elay of MUs computation offloading decreases. When the computing
requency of the ESs are fixed, as the number of MUs increases, the av-
rage delay of computation offloading increases. As shown in Fig. 5(b),
when the computing frequency of the ESs are fixed, the number of MUs
increases, and the average energy consumption of MUs is increasing.
When the number of MUs is fixed and the computing power of the ESs
increases, the average energy consumption is decreasing. The change
in average delay and energy consumption is largely due to the MUs
changing the offload rate. Fig. 5(c) can confirm this point. As shown in
Fig. 5(c), when the ESs’ CPU frequency is fixed, as the number of MUs
increases, the offload rate of MUs decreases. This is to avoid excessive
waiting, and MUs reduce the offload rate. On the whole, our proposed
scheme can get good performance.

To quickly evaluate the effect of time-varying bandwidth for the
proposed algorithm, we change the environment to ten MUs and four
ESs. After running the algorithm to 5000 episodes, we expand the
bandwidth by five times. Fig. 6 shows that the proposed algorithm runs
to around 1000 episodes and the reward value converges to about −36.
9

At 5000 episodes, the bandwidth is changed to 5MHz, at which time
the reward value increases sharply to around −25 and continues to
converge stably. The experiment results have shown that our proposed
algorithm can automatically adjust the policy and quickly converge to
a new optimal solution in a time-varying bandwidth environment. In
other words, our proposed algorithm scheme can properly adapt to the
time-varying bandwidth environment.

5.3. Performance comparison

Fig. 7 shows the delay, energy consumption, and offload rate of
our proposed scheme and the baseline scheme under different numbers
of MUs. Fig. 7(a) shows that our proposed scheme is significantly
better than the DQN-based scheme for reducing delay. The scheme that
considers the trust value has a better effect on reducing the average
delay than the No_trust scheme, and this will become more obvious as
the number of MUs increases. Since the reward function adds queuing
delay, our proposed scheme can reduce the average delay better than
the No_wait scheme. In terms of energy consumption, as shown in
Fig. 7(b), the average energy consumption of the DDPG-based scheme
is less than that of the DQN-based scheme, and our proposed scheme
is also slightly better than the No_trust and No_wait schemes. Fig. 7(c)
hows the changes in the offload rate of different numbers of MUs. Our
roposed scheme has a higher offload rate compared with the baseline
cheme. As the number of MUs increases and the computing resources
re tighter, the advantages of our proposed scheme are more evident.
Fig. 8 shows the average delay, energy consumption, and offload

rate of ESs with different CPU frequencies compared with the baseline
schemes. As shown in Fig. 8, as the computing powers of the ESs
increases, the average delay and energy consumption are decreasing,
and the corresponding MUs offload rate is increasing. As shown in
Fig. 8(a) and (b), our proposed scheme has more obvious advantages
in reducing delay and energy consumption when computing resources
are tight. With the increase of the computing powers of the ESs, the
performance advantage of the proposed scheme decreases with that of
the No_wait scheme and the No_trust scheme, but it is still significantly
better than the DQN-based scheme. This is also reflected in the trend
in Fig. 8(c).

We compare the delays based on the greedy strategy with an offload
rate of 0 (completely computed locally) and an offload rate of 1 (com-
pletely offloaded to the edge server). (Since we only focus on the energy
consumption of MUs, there is no comparative value in the case of an
offload rate of 1 with an energy consumption of 0, so we only compared
the delay situation.) Fig. 9 shows the average delay of the offloading
scheme based on the deep reinforcement learning algorithm and the
offload rate based on the greedy strategy of 0 and 1, respectively. As
the number of MUs increases, there will be an increase in queue tasks.
Therefore, the average delay of completely offloading to the edge server
becomes greater. As can be seen overall, the computation offloading
scheme based on deep reinforcement learning has lower delay than the
offloading rate of 0 or 1 under the greedy strategy, and our proposed
scheme is better than the DQN-based scheme.

Computer Networks 215 (2022) 109181B. Qu et al.

c
i
c
b

Fig. 7. Average delay, average energy consumption, and average offload rate compared to the baseline schemes under different numbers of MUs.
Fig. 8. Average delay, average energy consumption, and average offload rate compared to the baseline schemes under ESs with different CPU frequencies.
Fig. 9. Compared with the average delay of offload rate of 0 and 1, respectively.

Fig. 10. Performance of offloading algorithm compared with baseline.

In order to verify the effectiveness of our proposed scheme, we
ompared the training performance of the baseline scheme. As shown
n Fig. 10, our proposed scheme can get a higher reward value. The
onvergence effect of our proposed scheme is obviously better than the
aseline schemes. DQN-based scheme can converge quickly, but falls
10
into a sub-optimal solution. In the high-complexity state space and con-
tinuous action space scenarios, our proposed scheme is obviously better
than the DQN-based scheme. Comparing the No_wait and No_trust
schemes, our proposed scheme can converge to the optimal solution
more quickly. Since the No_trust scheme does not consider the trust
values of ESs, it has the worst convergence effect in an environment of
resource competition.

6. Conclusion

In this paper, we consider the problem of multi-user computation
offloading in an environment where edge computing resources are
competitive. We propose to establish the trust values of the ESs based
on the success rate of offload, and regard reducing energy and delay
as a multi-objective optimization problem. Then, we build a MDP
model with offloading delay, energy consumption and queuing delay as
multiple reward factors, and use an extended DDPG algorithm to solve
it. We execute a series of experiments to verify the effectiveness of the
scheme. The results show that our proposed scheme can reduce delay
and energy consumption better than the baseline scheme in a multi-user
resource competition environment. However, this article still has some
shortcomings, such as not considering the price model of ESs computing
resources. In future work, we intend to study the pricing model of
server computation offloading in a resource-competitive environment.

CRediT authorship contribution statement

Bin Qu: Investigation, Methodology, Resources, Visualization, Soft-
ware, Writing – original draft, Writing – review & editing. Yan Bai:
Investigation, Writing – review & editing, Supervision. Yul Chu: In-
vestigation, review & editing, Supervision. Li-e Wang: Investigation,
Writing – review & editing. Feng Yu: English editing and correc-
tion. Xianxian Li: Project administration, Validation, Investigation,

Supervision, Funding acquisition, Writing – review & editing.

Computer Networks 215 (2022) 109181B. Qu et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported in part by the Guangxi ‘‘Bagui Scholar’’
Teams for Innovation and Research Project, China, in part by the
Guangxi Collaborative Innovation Center of Multi-source Information
Integration and Intelligent Processing, China, in part by the Guangxi
Talent Highland Project of Big Data Intelligence and Application,
China, the Guangxi Natural Science Foundation (Nos. 2020GXNS-
FAA297075, 2018JJA170082 and 2019JJA170060), in part by the Re-
search Fund of Guangxi Key Lab of Multi-source Information Mining&
Security (No. 19-A-02-02), in part by the National Science Foundation,
USA Grant (No. 1921576), in part by the National Natural Science
Foundation of China under Grants (No. 62062016), in part by the
Key Laboratory of Computer Network and Information Integration
(Southeast University), China, Ministry of Education-supported Project
(No. K93-9-2020-04), and in part by the Innovation Project of Guangxi
Graduate Education, China (No. JXXYYJSCXXM-2021-014).

References

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646.

[2] D. Huang, P. Wang, D. Niyato, A dynamic offloading algorithm for mobile
computing, IEEE Trans. Wirel. Commun. 11 (6) (2012) 1991–1995.

[3] M.T. Beck, M. Werner, S. Feld, Mobile edge computing: A taxonomy, in: Proc.
of the Sixth International Conference on Advances in Future Internet, Citeseer,
2014, pp. 48–55.

[4] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A survey,
IEEE Internet Things J. 5 (1) (2018) 450–465.

[5] T.X. Tran, A. Hajisami, P. Pandey, D. Pompili, Collaborative mobile edge
computing in 5G networks: New paradigms, scenarios, and challenges, IEEE
Commun. Mag. 55 (4) (2017) 54–61.

[6] Y. Yu, Mobile edge computing towards 5G: Vision, recent progress, and open
challenges, China Commun. 13 (Supplement2) (2016) 89–99.

[7] ETSI MEC ISG, Mobile edge computing-introductory technical white paper, 2014.
[8] T. Zhao, Z. Sheng, X. Guo, Z. Yun, Z. Niu, Pricing policy and computational

resource provisioning for delay-aware mobile edge computing, in: Proc. of the
IEEE/CIC International Conference on Communications in China, 2016.

[9] R.L. Aguiar, A. Sarma, D. Bijwaard, L. Marchetti, P. Pacyna, R. Pascotto,
Pervasiveness in a competitive multi-operator environment: the daidalos project,
IEEE Commun. Mag. 45 (10) (2007) 22–26.

[10] G. Cui, Q. He, F. Chen, Y. Zhang, H. Jin, Y. Yang, Interference-aware game-
theoretic device allocation for mobile edge computing, IEEE Trans. Mob. Comput.
(2021) http://dx.doi.org/10.1109/TMC.2021.3064063.

[11] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, Y. Yang, A game-
theoretical approach for user allocation in edge computing environment, IEEE
Trans. Parallel Distrib. Syst. 31 (3) (2019) 515–529.

[12] A. Mukhopadhyay, M. Ruffini, Learning automata for multi-access edge com-
puting server allocation with minimal service migration, in: IEEE International
Conference on Communications (ICC), IEEE, 2020, pp. 1–6.

[13] H. Huang, Q. Ye, H. Du, Reinforcement learning based offloading for realtime
applications in mobile edge computing, in: Proc. of the IEEE International
Conference on Communications (ICC), IEEE, 2020, pp. 1–6.

[14] M. Tang, V.W. Wong, Deep reinforcement learning for task offloading in mobile
edge computing systems, IEEE Trans. Mob. Comput. (2020) http://dx.doi.org/
10.1109/TMC.2020.3036871.

[15] H. Zhou, K. Jiang, X. Liu, X. Li, V.C.M. Leung, Deep reinforcement learning for
energy-efficient computation offloading in mobile-edge computing, IEEE Internet
Things J. 9 (2) (2022) 1517–1530.

[16] M.B. Mansour, T. Abdelkader, M. Hashem, E.-S.M. El-Horbaty, An integrated
three-tier trust management framework in mobile edge computing using fuzzy
logic, PeerJ. Comput. Sci. 7 (2021) e700.
11
[17] J. Guo, H. Wang, W. Liu, G. Huang, J. Gui, S. Zhang, A lightweight verifiable
trust based data collection approach for sensor–cloud systems, J. Syst. Architect.
119 (2021) 102219.

[18] J. Liang, W. Liu, N.N. Xiong, A. Liu, S. Zhang, An intelligent and trust UAV-
assisted code dissemination 5G system for industrial Internet-of-Things, IEEE
Trans. Industr. Inform. 18 (4) (2021) 2877–2889.

[19] W. Kong, X. Li, L. Hou, J. Yuan, Y. Gao, S. Yu, A reliable and efficient
task offloading strategy based on multi-feedback trust mechanism for IoT edge
computing, IEEE Internet Things J. (2022) http://dx.doi.org/10.1109/JIOT.2022.
3143572.

[20] Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge computing: Partial
computation offloading using dynamic voltage scaling, IEEE Trans. Commun. 64
(10) (2016) 4268–4282.

[21] A. Zhou, S. Wang, S. Wan, LMM: latency-aware micro-service mashup in
mobile edge computing environment, Neural Comput. Appl. 32 (19) (2020)
15411–15425.

[22] Z. Xu, W. Liang, M. Jia, Task offloading with network function requirements
in a mobile edge-cloud network, IEEE Trans. Mob. Comput. 18 (11) (2018)
2672–2685.

[23] C. You, K. Huang, H. Chae, Energy-efficient resource allocation for mobile-edge
computation offloading, IEEE Trans. Wirel. Commun. 16 (3) (2016) 1397–1411.

[24] X. Hu, K.-K. Wong, K. Yang, Wireless powered cooperation-assisted mobile edge
computing, IEEE Trans. Wirel. Commun. 17 (4) (2018) 2375–2388.

[25] J. Li, H. Gao, T. Lv, Deep reinforcement learning based computation offloading
and resource allocation for MEC, in: Proc. of the IEEE Wireless Communications
and Networking Conference, IEEE, 2018, pp. 1–6.

[26] X. Liu, Z. Qin, Y. Gao, Resource allocation for edge computing in iot networks
via reinforcement learning, in: Proc. of the IEEE International Conference on
Communications (ICC), IEEE, 2019, pp. 1–6.

[27] J. Xu, L. Chen, S. Ren, Online learning for offloading and autoscaling in energy
harvesting mobile edge computing, IEEE Trans. Cogn. Commun. Netw. 3 (3)
(2017) 361–373.

[28] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, W. Zhuang, Learning-based
computation offloading for IoT devices with energy harvesting, IEEE Trans. Veh.
Technol. 68 (2) (2019) 1930–1941.

[29] X. Chu, Z. Leng, Multiuser computing offload algorithm based on mobile edge
computing in the internet of things environment, Wirel. Commun. Mob. Comput.
2022 (6107893) (2022) 9.

[30] C. Li, J. Xia, F. Liu, D. Li, L. Fan, G.K. Karagiannidis, A. Nallanathan, Dynamic
offloading for multiuser muti-CAP MEC networks: A deep reinforcement learning
approach, IEEE Trans. Veh. Technol. 70 (3) (2021) 2922–2927.

[31] M. Chen, T. Wang, S. Zhang, A. Liu, Deep reinforcement learning for computation
offloading in mobile edge computing environment, Comput. Commun. 175
(2021) 1–12.

[32] Y. Wang, W. Fang, Y. Ding, N. Xiong, Computation offloading optimization
for UAV-assisted mobile edge computing: a deep deterministic policy gradient
approach, Wirel. Netw. 27 (4) (2021) 2991–3006.

[33] Q. Xia, Z. Lou, W. Xu, Z. Xu, Near-optimal and learning-driven task offloading
in a 5G multi-cell mobile edge cloud, Comput. Netw. 176 (2020) 107276.

[34] M. Chen, W. Liu, T. Wang, A. Liu, Z. Zeng, Edge intelligence computing for
mobile augmented reality with deep reinforcement learning approach, Comput.
Netw. (2021) 108186.

[35] Y. Dai, K. Zhang, S. Maharjan, Y. Zhang, Edge intelligence for energy-efficient
computation offloading and resource allocation in 5G beyond, IEEE Trans. Veh.
Technol. 69 (10) (2020) 12175–12186.

[36] T. Liu, Y. Zhang, Y. Zhu, W. Tong, Y. Yang, Online computation offloading and
resource scheduling in mobile-edge computing, IEEE Int. Things J. 8 (8) (2021)
6649–6664.

[37] X. Zhu, Y. Luo, A. Liu, N.N. Xiong, M. Dong, S. Zhang, A deep reinforcement
learning-based resource management game in vehicular edge computing, IEEE
Trans. Intell. Transp. Syst. 23 (3) (2022) 2422–2433.

[38] M. Chen, W. Liu, T. Wang, S. Zhang, A. Liu, A game-based deep reinforcement
learning approach for energy-efficient computation in MEC systems, Knowl.
Based Syst. 235 (2022) 107660.

[39] J. Wang, H. Ke, X. Liu, H. Wang, Optimization for computational offloading in
multi-access edge computing: A deep reinforcement learning scheme, Comput.
Netw. (2022) 108690.

[40] M. Nduwayezu, J.-H. Yun, Latency and energy aware rate maximization in
MC-NOMA-based multi-access edge computing: A two-stage deep reinforcement
learning approach, Comput. Netw. 207 (2022) 108834.

[41] C. Liu, K. Li, J. Liang, K. Li, COOPER-MATCH: Job offloading with a cooperative
game for guaranteeing strict deadlines in MEC, IEEE Trans. Mob. Comput. (2019)
http://dx.doi.org/10.1109/TMC.2019.2921713.

[42] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, L. Li, Delay-aware and energy-efficient
computation offloading in mobile-edge computing using deep reinforcement
learning, IEEE Trans. Cogn. Commun. Netw. 7 (3) (2021) 881–892.

[43] Y. Dai, D. Xu, S. Maharjan, Y. Zhang, Joint computation offloading and user
association in multi-task mobile edge computing, IEEE Trans. Veh. Technol. 67
(12) (2018) 12313–12325.

http://refhub.elsevier.com/S1389-1286(22)00277-8/sb1
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb1
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb1
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb2
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb2
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb2
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb3
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb3
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb3
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb3
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb3
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb4
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb4
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb4
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb5
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb5
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb5
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb5
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb5
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb6
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb6
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb6
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb7
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb9
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb9
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb9
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb9
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb9
http://dx.doi.org/10.1109/TMC.2021.3064063
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb11
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb11
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb11
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb11
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb11
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb12
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb12
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb12
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb12
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb12
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb13
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb13
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb13
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb13
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb13
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/TMC.2020.3036871
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb15
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb15
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb15
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb15
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb15
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb16
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb16
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb16
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb16
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb16
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb17
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb18
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb18
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb18
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb18
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb18
http://dx.doi.org/10.1109/JIOT.2022.3143572
http://dx.doi.org/10.1109/JIOT.2022.3143572
http://dx.doi.org/10.1109/JIOT.2022.3143572
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb20
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb21
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb22
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb23
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb23
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb23
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb24
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb25
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb25
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb25
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb25
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb25
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb26
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb26
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb26
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb26
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb26
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb27
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb27
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb27
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb27
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb27
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb28
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb28
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb28
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb28
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb28
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb29
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb29
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb29
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb29
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb29
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb30
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb30
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb30
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb30
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb30
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb31
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb31
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb31
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb31
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb31
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb32
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb32
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb32
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb32
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb32
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb33
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb33
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb33
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb34
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb34
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb34
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb34
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb34
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb35
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb35
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb35
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb35
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb35
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb36
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb36
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb36
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb36
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb36
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb37
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb37
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb37
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb37
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb37
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb38
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb38
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb38
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb38
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb38
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb39
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb39
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb39
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb39
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb39
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb40
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb40
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb40
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb40
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb40
http://dx.doi.org/10.1109/TMC.2019.2921713
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb42
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb42
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb42
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb42
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb42
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb43
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb43
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb43
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb43
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb43

Computer Networks 215 (2022) 109181B. Qu et al.
[44] M.S. Hossain, C.I. Nwakanma, J.M. Lee, D.-S. Kim, Edge computational task
offloading scheme using reinforcement learning for IIoT scenario, ICT Express
6 (4) (2020) 291–299.

[45] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deterministic
policy gradient algorithms, in: Proc. of the International Conference on Machine
Learning, PMLR, 2014, pp. 387–395.

[46] C. Qiu, Y. Hu, Y. Chen, B. Zeng, Deep deterministic policy gradient (DDPG)-based
energy harvesting wireless communications, IEEE Internet Things J. 6 (5) (2019)
8577–8588.

[47] C. You, K. Huang, H. Chae, B.-H. Kim, Energy-efficient resource allocation for
mobile-edge computation offloading, IEEE Trans. Wirel. Commun. 16 (3) (2016)
1397–1411.

[48] T.S. Rappaport, Y. Xing, G.R. MacCartney, A.F. Molisch, E. Mellios, J. Zhang,
Overview of millimeter wave communications for fifth-generation (5G) wireless
networks—With a focus on propagation models, IEEE Trans. Antennas Propag.
65 (12) (2017) 6213–6230.

[49] J. Miranda, R. Abrishambaf, T. Gomes, P. Gonçalves, J. Cabral, A. Tavares,
J. Monteiro, Path loss exponent analysis in wireless sensor networks: Experi-
mental evaluation, in: Proc. of 11th IEEE International Conference on Industrial
Informatics, IEEE, 2013, pp. 54–58.

[50] M. Coldrey, J.-E. Berg, L. Manholm, C. Larsson, J. Hansryd, Non-line-of-sight
small cell backhauling using microwave technology, IEEE Commun. Mag. 51 (9)
(2013) 78–84.

Bin Qu is currently pursuing the Ph.D. degree at the College
of Computer Science and Information Engineering, Guangxi
Normal University, China. His research interests include
edge computing, reinforcement learning, Internet of things,
and blockchain system.

Yan Bai is a Professor in the School of Engineering and
Technology, University of Washington Tacoma, USA. Dr. Bai
received her Ph.D. in Electrical and Computer Engineering
from the University of British Columbia, Vancouver, BC,
Canada. Her research interests include computer network-
ing, multimedia communications, cybersecurity and privacy,
eHealth, Internet of Things, blockchain, cloud and edge
computing. She has published over 80 refereed papers in
these areas. She has served as a General Chair/Program
Chair/ Technical Program Committee Member for numerous
IEEE conferences and workshops, and as a Reviewer for a
wide range of high impact research journals and ACM/IEEE
flagship conferences.
12
Yul Chu is a Professor in the Department of Electrical
Engineering at University of Texas Rio Grande Valley, USA.
He received his Ph.D. in Electrical and Computer Engineer-
ing from University of British Columbia, Canada in 2001
and MS in Electrical engineering from Washington State
University in 1995. His current research interests include
high performance computing, parallel processing, cluster
and highavailable architectures, low-power embedded sys-
tems, computer networking, digital system design, etc. He
has published over 60 refereed papers in these areas.

Li-e Wang is an Associate professor and a doctoral candi-
date in the College of Computer Science and Information
Engineering at Guangxi Normal University, China. She re-
ceived her Master degrees in Software Engineering from
Hunan University in 2007, China. Her research interests
mainly include data privacy, computer networking, Health-
care, and distributed system security. She has published
over 20 refereed papers in these areas. She has served as
a reviewer for several high impact research journals and
ACM/IEEE flagship conferences.

Feng Yu is an Associate professor in the College of
Computer Science and Information Engineering at Guangxi
Normal University, China. Her research interests include
trustworthy and controllable network, data security, dis-
tributed system security, and Cloud computing. She has
published over 20 refereed papers in these areas. She has
served as a Technical Program Committee member for
several IEEE conferences and workshops.

Xianxian Li is a Professor in the College of Computer
Science and Information Engineering at Guangxi Nor-
mal University, China. His research interests include data
security, distributed system security, Internet of things,
and software theory. He has published over 60 refereed
papers in these areas. He has served as a Program Co-
Chair/Technical Program Committee member for several
IEEE conferences and workshops.

http://refhub.elsevier.com/S1389-1286(22)00277-8/sb44
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb44
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb44
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb44
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb44
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb45
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb45
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb45
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb45
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb45
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb46
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb46
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb46
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb46
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb46
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb47
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb47
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb47
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb47
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb47
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb48
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb48
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb48
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb48
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb48
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb48
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb48
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb49
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb49
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb49
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb49
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb49
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb49
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb49
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb50
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb50
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb50
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb50
http://refhub.elsevier.com/S1389-1286(22)00277-8/sb50

	Resource allocation for MEC system with multi-users resource competition based on deep reinforcement learning approach
	Introduction
	Related work
	System model and problem formulation
	System model
	Mobile communication model
	Multi-user computation offloading model
	Offloading delay calculation
	Energy consumption calculation
	Trust value calculation

	Problem formulation

	DRL for computation offloading
	MDP modeling
	State space
	Action space
	Reward function

	DRL-based computation offloading algorithm

	Performance evaluation
	Experimental settings
	Performance analysis
	Performance comparison

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

