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ARTICLE INFO ABSTRACT
Keywords: Mobile edge computing (MEC) is an effective computing paradigm for mobile devices in the 5G era to reduce
Mobile edge computing computing delay and energy consumption. However, in a multi-user resource competition environment, the

Deep reinforcement learning
Computation offloading
Delay

Energy consumption

revenue-driven behavior of edge servers will cause some users to increase delays or fail tasks. Considering this
situation, we take the success rate of computation offloading as the trust value of the edge server, and build a
system model from the user’s perspective, taking delay and energy consumption as the multi-objective task of
joint optimization. In the optimization goal, we consider three factors: offloading delay, energy consumption,
and queuing delay. Simultaneously minimizing energy consumption and delay is a contradiction problem.
Therefore, we solve the problem based on the principle of reducing energy consumption as much as possible
when the offload success rate (decreasing delay) is prioritized. Further, we build the problem as a Markov
decision problem (MDP) with multi-factor reward value, and treat the trust value as a state of the system.
Finally, we use an extended deep deterministic policy gradient (DDPG) algorithm (a DDPG algorithm with
multi-objective reward) to work around this problem. Experimental results show that our proposed scheme can
better reduce the delay and energy consumption in computation offloading of mobile users (MUs) significantly
better than the baseline schemes. The advantages of our proposed scheme are more obvious in an environment
where computing resources are tight.

1. Introduction The popularization of 5G networks has laid the foundation for
the Internet of Everything, which will also spawn more and more

In recent years, with the popularization of mobile terminals such computing-intensive mobile applications [4]. As an excellent solution

as smart phones and wearable smart devices, more and more new for 5G networks, MEC has received extensive attention and research [5,
intensive computing applications are executed on mobile terminals, 6]. With the popularity of 5G, edge servers (ESs) will be deployed in
such as augmented reality (AR), virtual reality (VR), etc. However, places with high population flow (such as stadium, hospital, shopping
due to the limitations of its own computing power and battery power, mall, etc.) [7]. MUs and ESs are selfish and rational. Generally, the edge

mobile users (MUs) cannot quickly execute these applications or work
continuously for a long time. Therefore, service delays and energy
consumption will affect the normal use of users. In order to address
these bottlenecks, computation offloading has become an effective
solution [1]. However, offloading computation task to the cloud server
will bring high delay and bandwidth costs [2]. In order to process
computation tasks in time, it is proposed to migrate servers to the edge
of the network to provide computation offloading services for MUs to

avoid high transmission delay, which is called mobile edge computing -
(MEC) [3]. a large number of offload tasks need to be queued, an unconstrained

service is provided in a pay-as-you-go method, that is, the user pays
the service fee for computation offloading to the edge service provider.
Edge computing services has also become an area where many com-
puting service providers compete [8]. In a real-world edge computing
scenario, there are often multiple edge service providers [9]. From the
service provider’s point of view, each ES should provide more services
in order to increase profit [10,11]. In the scenario of multi-user edge
resource competition, the server has more initiative. In situations where
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ES may prioritize larger data in order to quickly get more revenue.
In this way, some MUs may suffer from unreasonable arrangements.
Since cross-server migration can be more expensive [12], MUs typically
do not deviate from assigned servers. Because of this, when the edge
server does not process tasks according to the order of task submission
in order to obtain more revenue quickly, the quality of service of some
computation offloading tasks of MUs may not be guaranteed. Therefore,
this paper pays attention to the problem of multi-user computation
offloading in edge computing system with resource competition.

Recently, some studies have started to use deep reinforcement
learning (DRL) approaches instead of traditional approaches to solve
the problems of MEC systems [13-15]. Huang et al. [13] paid attention
to the energy consumption of the MEC system, and proposed real-time
reinforcement learning offloading scheme. They uses double Q-learning
to perform computation offloading scheduling for reducing the total
energy consumption of the system. Tang et al. [14] focused on the
computation offloading problem of task indivisible delay constraints,
using long short term memory (LSTM) and double deep-Q network
(DDQN) technology to make offloading decisions, reducing the task
failure rate and average delay. Huan et al. [15] studied the computation
offloading and resource allocation of dynamic multi-user MEC systems,
and used the DDQN algorithm to target delay constraints and resource
requirements to minimize energy consumption. These studies are all
considered from the perspective of service providers, assuming that ESs
follow allocated resources. In fact, ESs belonging to multiple service
providers are all about maximizing their own profits. Therefore, we
build trust values for ESs from the user’s point of view. Similar to
some existing studies [16-19] inducing the device trust value from the
interaction records of the system, we construct the trust value of the
ES based on the success rate of computation offloading. Differing from
these previous studies, we take the trust value as one of the states of
the system environment, and use the agent to interact with the environ-
ment to make decisions to solve the multi-user computation offloading
problem in the resource competition environment. In addition, differing
from studies on the single-objective optimization problem [13-15]
or multi-objective separate optimization problem [20], we regard the
delay and energy of MEC system as a multi-objective problem of joint
optimization. Specifically, we study a multi-objective joint optimiza-
tion problem in a resource-competitive environment with multi-server
and multi-user. The contribution of this article can be summarized as
following:

1. This paper studies a resource competition computation offload-
ing scenario with multi-user and multi-server. In order to ensure
the user’s service quality, we use the server trust value based
on the offloading success rate as one of the system states to
build a multi-objective Markov decision problem (MDP) model
for reducing delay and energy consumption.

2. In order to adapt for the multi-factor reward MDP, we ex-
tend the reward of the traditional deep deterministic policy
gradient (DDPG) algorithm to multi-dimensional, and propose
a new computation offloading method based on the extended
DDPG algorithm. Compared with the deep-Q network (DQN)
algorithm, the DDPG algorithm can adapt to continuous action
space and high-dimensional state space problems. In this paper,
the extended DDPG algorithm is used to obtain the optimal
strategy for user scheduling and resource allocation in the edge
computing system with multi-user resource competition.

3. We conduct extensive simulation experiments. The scheme we
proposed has lower delay and energy consumption than the
baseline schemes. We measure the offloading delay and en-
ergy consumption of servers with different numbers of users
and different computing capabilities and further demonstrate
the superior performance of our proposed scheme. In addition,
compared to greedy strategies with the offloading rate of 0 and
the offloading rate of 1, our scheme can significantly reduce the
average delay.
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The rest of the paper is organized as follows. Section 2 overviews
related work. Section 3 presents system model and formulation of the
model. Section 4 proposes DRL-based computation offload algorithm.
Section 5 shows extensive performance evaluation through a series of
simulation experiments. Section 6 concludes the work.

2. Related work

Reducing delay and energy consumption has always been a hot topic
in edge computing research. Zhou et al. [21] considered microservices
in mobile edge computing environments, took minimizing delay as
a constraint, and proposed a delay-aware approximate algorithm to
reduce the consumption of network resources. Xu et al. [22] consid-
ered the delay tolerance of different offloading tasks and designed
an efficient online algorithm to maximize the number of offloading
requests within a limited allowable time. You et al. [23] studied the
problem of multi-user MEC resource allocation based on time-division
multiple access (TDMA) and orthogonal frequency-division multiple
access (OFDMA), and transformed the resource allocation problem into
a weighted convex optimization problem of minimum mobile energy
consumption. According to the user’s channel gain and the priority of
locally calculated energy consumption, an optimal resource allocation
strategy based on the threshold structure is constructed. Hu et al. [24]
focused on minimizing the total transmission energy of the access point
(AP) under a wireless powered MEC system, considering the “double-
near-far” effect, and designed a low-complexity algorithm to solve the
problem of minimizing the AP’s transmit power.

The above studies have considered the specific constraint model
and expect to obtain an approximate optimal solution. Since there are
many uncertain behaviors of objects in the MEC environment, it has
become popular to use machine learning to solve problems in the MEC
environment. Compared with deep learning, DRL does not need to
manually label samples, and it can adopt an automatic update strategy
for state changes without manual participation. Li et al. [25] proposed
a resource allocation framework for a multi-user wireless MEC sys-
tem, taking the delay cost and energy consumption of the system as
optimization goals, and solving it through a DQN-based solution. Liu
et al. [26] designed an Internet of things (IoT) device offloading scheme
for the MEC system, and solved the optimization problem of system de-
lay and energy consumption through the Q-learning algorithm based on
the greedy strategy. Xu et al. [27] proposed an efficient reinforcement
learning-based resource management algorithm through value itera-
tion and reinforcement learning decomposition to improve the service
quality of renewable energy MEC systems and minimize system energy
and delay costs. Min et al. [28] proposed a DQN-based algorithm to
solve the computation offloading problem of IoT devices with energy
harvesting functions in a dynamic MEC network to reduce energy
consumption, computation delay and packet loss rate. Chu et al. [29]
established a multi-user computation offloading model and proposed
a computation offloading strategy based on DQN, which minimizes
the weighted total overhead of delay and energy consumption as the
optimization objective. Li et al. [30] studied a dynamic offloading prob-
lem of multi-user MEC networks and designed an offloading strategy
based on DQN to ensure system performance with delay and energy
consumption as optimization goals. Since DQN does not adapt to the
problem of continuous action space, Chen et al. [31] proposed a mobile
fog edge computing model, and chose to use DDPG to solve the problem
of fog resource allocation in computation offloading. Wang et al. [32]
proposed to use DDPG-based algorithms in the unmanned aerial vehicle
assisted MEC system to reduce the delay of computation offloading. Xia
et al. [33] used the deep Q-learning algorithm to solve the problem of
location-aware 5G multi-unit mobile task offloading to reduce delay
and energy consumption. Chen et al. [34] studied the computation
offloading problem of the integration of AR and next generation IoT.
They proposed a binary offloading scheme and used an improved DDPG
algorithm to make offloading decisions to reduce delay. Dai et al. [35]
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proposed a joint problem of resource allocation and computation of-
floading with delay constraints under the cloud-side-end collaborative
network, and used the DDPG algorithm to reduce energy consump-
tion. Liu et al. [36] paid attention to the delay and long-term energy
consumption of user computation offloading in a multi-base station
environment, and constructed a MDP to solve it using the DDQN-based
algorithm. Zhu et al. [37] studied a resource management problem
in vehicular edge computing (VEC), adopted an incentive mechanism
to incentivize the VEC server to participate in the resource allocation
process, and proposed a DRL based resource management scheme to
maximize the profits of vehicles and VEC server. Chen et al. [38] stud-
ied a polling-callback energy-saving offloading strategy under a fully
asynchronous offloading system, modeled the time-sharing MEC data
transmission problem as the total energy consumption minimization
model, and proposed an algorithm combining DDQN and distributed
LSTM to improve the ability of processing and predicting time intervals
and delays in time series. Wang et al. [39] designed a framework with
multiple static and vehicle-assisted MEC servers to handle the work-
loads offloaded by wireless users, and adopted an offloading strategy
based on the DDQN algorithm to optimize the system’s energy and
latency costs. Nduwayezu et al. [40] studied the joint offloading and
resource blocks assignment problem in a multi-carrier nonorthogonal
multiple access based MEC system, and developed a two-stage DRL
algorithm to solve the problem of maximizing the sum computation
rate while satisfying delay and energy consumption constraints. By
analyzing the above research background, we can draw the follow-
ing conclusions: (1) [25,26,28,31,33,40] studied the multi-objective
optimization problem based on multi-user and single-server. (2) [32,
34,37,38] studied the optimization problem based on multi-user and
single-server. (3) [35] studied the single-objective optimization prob-
lem based on multi-user and multi-server. (4) [27,36,39] studied the
multi-objective optimization problem based on multi-server (where the
number of mobile devices is unknown). Although [29,30] study the
multi-objective optimization problem based on multi-server and multi-
user, this paper is different from them in that we study a multi-server
and multi-user resource competition scenario, and take the offloading
success rate as the server trust value as a state of the system. Further-
more, we treat energy and delay as a joint multi-objective optimization
task, and adopt an extended DDPG algorithm to optimize the offloading
strategy.

3. System model and problem formulation

In this section, we explain our system model and system com-
munication model, delay and energy model, and the formulation of
problem.

3.1. System model

This article studies a resource contention scenario with multi-user
on multi-server. We assume that N ESs (the servers belong to multiple
service providers) are deployed in a densely populated city center,
where computing resources are usually tight. In the scenario, we as-
sume that there is a management center that provides users with an
application that assists in computation offloading. Note that for users
who access the management center, they will accept the decisions
provided by the management center. We consider an OFDMA-based
scheme, where each edge server that provide computation offloading
services deploys a base station. Using OFDMA in a wireless network
can well suppress interference between devices [35,41]. As shown
in Fig. 1, the management center collects brief offloading demand
information (battery status, location, computation task data size) from
MUs, and provides decision-making information for MUs according to
the status of ESs (servers performance and status information is public).
When MUs have sufficient energy and computation power, tasks can be
computing locally. In order to reduce energy consumption and improve
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Table 1

Symbol description.
Symbol Definitions
i Represents the MU i
Jj Represents the ES j
M Number of MUs
N Number of ESs

e j(x9, yj)) Coordinates of ES j

d(x?, ") Initial coordinates of MU i

d,(x,l, yl') The moved coordinates of MU j (coordinates of the next
time slot).

D; The absolute distance between the ES i and the MU .

0 Task offload rate

ck Offloading task of user i in time slot k

c Channel gain at a distance of one meter

rf‘/. The transmission rate at which mobile user i offloads tasks
to edge server j in time slot k.

@ The link transmission bandwidth of uploaded data for per
MU.

@* Noise power

P,’I Transmission power

0, = Indicates that there is an obstacle

0,=0 Indicates that there are no obstacles

Ty Transmission loss

In CPU frequency of mobile user i

f/.k CPU frequency of edge sever j

Y The number of cycles required by the CPU to process per bit

I Data size of the offload queue

K Impact factor of CPU architecture

£ Delay tolerance

N Weight parameter of offloading delay

1y Weight parameter of energy consumption

3 Weight parameter of queuing delay

computation efficiency, ESs can also be used to perform computation
offloading services. MUs offload the task data to the ESs through the
base station. Similar to [36], we discretize time into a set of equal-
interval time slots with a total set of time slots denoted as Ty = {1...T}}.
The computation task of the MU i in the time slot k is denoted as ka’
k € T,. Similar to [28], the computation task of the MU i can be divided
into parts of different sizes, one part can be selected to be offloaded
to the ES, and the other part can be placed locally for computation.
o € [0,1] is the offloading rate. Specifically, the MU i offloads the
ch-k part of the computation task Cik to the ES for computation, and
the remaining (1 — p)C,." part is computed locally. When ¢ = 0, all
tasks are computed locally of the MU, and when ¢ = 1, all tasks will
be offloaded to the ES. fik and f ]k respectively represent the device
CPU frequency of the MU i and the CPU frequency of the ES j when
processing computation tasks. As with some work focusing on delay
and energy [29,30,35,36], we adopt a widely used delay and energy
model. Table 1 lists the commonly used symbols.

Remark. Similar to [42], we assume that MUs transmit offloading re-
quirements to the management center and receive decision information
through a dedicated channel, which does not affect the performance of
MUs offloading data to ESs. The management center provides an ap-
plication that serves MUs task offloading, and obtains the MUs’ battery
status and location information, the next task data, and the completion
status of the MUs’ previous task offloading ESs on this application,
including the time of task upload and computation complete time. The
computing power of the ESs and the size of the upload bandwidth
allocated by the ESs are publicly available.
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Fig. 1. MEC system computation offloading structure.

3.2. Mobile communication model

Considering that users have a certain mobility in reality, mobility
also leads to changes in data transmission rates. Therefore, we refer
to the mobility model of [32] to calculate the absolute distance of
the MUs to the ESs for each time slot. Similarly, we assume that MUs
are randomly walking in the area at low speed. Similar to [36], for
convenience we assume that the user’s location and communication
conditions remain unchanged during each time slot. Each MU selects an
ES to offload part of the data to the server for computing, and the rest
is placed locally for computation. ESs are fixed locations. We assume
that the coordinates of the ES j is ¢ j(x?, ?). The starting coordinates of
the MU i is d,-(x?, ?), and the coordinate of the end point after moving
is d,(x!, y1). Therefore, the channel gain of the link between the ES j
and the MU i can be expressed as following [32]:

gij:GDi_jzz 11 y 0 042 M
ld;(x;.y;) = ei(x;, ) + h?

Where o represents the channel gain at a distance of one meter, D;;
is defined as the absolute distance between the ES i and the MU j,
and & is the relative height of the base station. The relative height
value is the base station antenna height minus the user antenna height.
Considering that there may be obstacles (such as houses, trees, etc.) di-
rectly between the MU and the ES, this will affect the data transmission
speed between the ES and the MU. According to [32,35,36], the data
transmission rate rl’.‘j between the ES j and the MU i is as following:

k
i e
& + 0y Ltos + Liremyiiy.jren i &t Prjr (D )™

rf.‘j = wlog,(1 +

Where o is the link transmission bandwidth per MU uploading ES. ¢?
is defined as the noise power, and PF is the transmission power from
the MU i to the ES j. O;; defines the obstacles between the MU i and
the ES j. When O, ; is 1, it means there are obstacles, and when O, ; is

0 it means there is no obstacle. I, represents transmission loss. We

assume MUs associated with the same ES are allocated orthogonal spec-
trum, so we only consider the interference among MUs associated with
different ESs [43]. Similar to [35], Xyepr iy jren, () &yt Prjr (D) ™" s
the interference from other ESs. « is the path loss exponent.

3.3. Multi-user computation offloading model

In the computation model, we consider the calculation of task
offloading delay, energy, and server trust value. Similar to [30,35]
since the returned data result is much smaller than the offloaded data,
we ignore the delay and energy consumption caused by returning the
result.

3.3.1. Offloading delay calculation
In time slot k, MU i can offload part of data Ci" to an edge server for

computation, and the remaining (l—g)Ci" data can be computed locally .

According to [30,35], the delay for performing the computation locally

is as following:

. (1-0)ClY

tlocal = —k

fi

3

Y represents the CPU cycles required to compute 1 bit. The delay of
offloading to the edge server can be divided into transmission delay and
offloading computation delay. By formula (2), the transmission delay
can be expressed as following:
k k

. c! c!
1= v =— 4

Pi 1 8ij ) rl.j
®2+0;; Ltos+ Liren /i) 1 en /(7) &t jt Pirjo (Dip j1)™

wlogy(1 +

The offloading computation delay of the ES j is divided into the time
waiting at the server queue (i.e., queuing delay) and the computation
execution time. The expression of queuing delay is as following:
1Y

- ©)
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Where /, is the data size of the ES j queue when offloading data is
offloaded, and the execution computation time is as following:
k
t]e( = jSky ©
J
Combining formula (5),(6) we can get the offloading computation delay
expression as following:

(I, +oChyY
l‘k — -4 i @
edge f]k
From the formula (4) and (7), the delay of offloading the computa-
tion to the edge server is as following:

k
* o = G
of f T Pkg‘j
wlog,(1 + y
22 240, Tutos+ it et /iy en ) &0t Fir jp Dy 1)~ )
k
(g +0CHY o 8)
fk —r edge
J

Since the data offloading computation part and the local execution
computation part are carried out at the same time, the total delay of
the computation offloading is expressed as following:

ko _ k k
Ttatal - max{tlocal’toff} (9)
3.3.2. Energy consumption calculation

From users’ perspective, we only consider the energy consump-

tion of MU. When a MU performs computation offloading, its energy
consumption can be divided into the energy consumption of local
computing and the energy consumption of transmission during the
offloading process. The local execution energy consumption of the MU
is related to the CPU frequency and data size. According to [30,35], the
energy consumption of the local execution data is as following:
EF

local

= k(1= 0 CfY (S} (10)

The size of x depends on the capacitance coefficient of the CPU ar-
chitecture. The transmission energy consumption of MU is related to
transmission power and transmission time. Introducing formula (4), the
energy consumption of mobile devices offloading data to the server is
as following:
. P, Ck

E’ = P,fvgu P
2404 Lotos+ Tt em iy, 7 en /) 8t Pit o Dy 1)~ )

b
~
~ &

1D

wlog,(1 +

During task offloading, MUs may be idle [44]. In this case, MUs
need to wait until the ESs computing is complete. MUs’ idle time will
also generate energy consumption. In our environment, MUs and ESs
compute simultaneously. There are two cases where the ES completes
the computation first and the MU completes the computation first.
When the ES completes the computation first, the MU i is idle and
ik > tf - The idle time of MU i is ¥ e tf .- Therefore, the energy
consumption of MU i idle time is as following:

Eidle = Px(tﬁff - t[oca[) (12)

P, represents idle power. Combining formulas (10) (11) and (12), the
total energy consumption of mobile user for data offloading services is
expressed as following:

Ek — Ek

total — “local

+EN+ Ey, 13)

However, in the scenario where the energy consumption of the received
data needs to be considered, the energy model can be easily extended
by adding the energy consumption of receiving data to the formula
13).
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3.3.3. Trust value calculation

In an environment of resource competition, when the ES wants to
quickly obtain greater benefits, the ES may follow the order of data
processing in tasks from large to small, rather than the order of task
submission time. In this case, the quality of service for MUs with
small data tasks will be low, and it may even lead to the failure of
computation offloading. In view of the revenue-driven behavior of the
server, we add the concept of trust values for the ESs to provide a basis
for MUs computation offloading decisions. The trust values of the ESs
are determined by the success rate of offloading tasks. For the success or
failure of the offloading task, we make the following definitions: When
the real total delay D,,, < min{D,m,,éT,’; . )> the task of offloading
task is successful. ¢ > 1 is the delay tolerance, and D,,., represents
the delay when all tasks are executed locally. We assume that the user
can tolerate a certain amount of delay, and the maximum tolerable
delay is equal to the delay when all tasks are computed locally. In
reality, in order to reduce power consumption, users can accept that the
offloading computation delay is equal to the delay computed locally.
The trust value for the ES is calculated as following:

F.

Y
- Zt'atal (1 4)
J

Where F; is the number of successful offloading computations of ES j,
and ZI’."”” is the number of offloading computations by ES j. Under the
same conditions, MUs will be preferentially select ESs with high trust
values for offloading computations. Therefore, in the case of low trust
value, the ES should pay more attention to the success rate rather than
immediate profit to ensure its long-term interests.

3.4. Problem formulation

In fact, minimizing the energy consumption of MUs and minimizing
the offloading delay is a contradictory problem. Based on the above
model, we pay attention to the tradeoff between delay and energy,
and ensure that the delay cannot exceed the maximum tolerable delay
of the user when performing the offloading task, and also reduce the
energy consumption of the MU as much as possible. In addition, ESs are
not executed in the order of submission as shown in Fig. 2, which will
cause a lot of wait time. Obviously, when the ESs prioritize processing
large data tasks, the queuing delay of the system will increase. There-
fore, queuing delay is an important factor in measuring the success
of offloading computations. We take the weighted sum of offloading
delay, energy consumption, and queuing delay as the joint optimization
objective when considering server trust value, user location in each
time slot, and obstruction, in order to optimize offloading decisions for
reducing total delay and energy consumption. Our final optimization
goal is expressed as following:

T, M
) 1Y% k k Kk
P Gobjecr = mmF z Z 'IlTi—noml + '12Ei—>mral + M oral 1s)
s k=1 i=1

Where #,,7,,n;3 € [0,1] and n, + 1, + 13 = 1. Tl’; rora) TEPTESENLS the total
delay for MU i to complete the offloading computation task in time slot
k, E,."_» 1o TEDTESENLS the energy consumed by MU i in completing the
computation task of time slot k, and tﬁ.‘_} roras TEPTESENLS the time that MU

i needs to wait in the queue when offloading tasks in time slot k.
4. DRL for computation offloading

In this section, we describe our model for the computation offload-
ing problem as a MDP with multi-objective rewards and define the state
space, action space, and reward function in detail. We also present a
computation offloading scheme based on an extended DDPG and the
implementation algorithm.
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s

Queue order of task execution

Edge sever

Fig. 2. Edge servers prioritize larger data tasks.

4.1. MDP modeling

According to the mode discussed in the previous section, each
mobile user selects action a in the state s by relying on the strategy
7 in time slot k. To construct a MDP model, three basic elements, State
Space, Action Space, and Reward Function, are included.

4.1.1. State space

S = {B Dlocanon C;;f, j’ k ri—mlas’ o
r])(\,[N’ FM—mlos}-

B; represents the battery status of MU i at the time slot %, D“’“’”‘”’
represents the location of MU i, C!~¥ represents the size of the data
processed by MU i at the time slot k, ¥; represents the trust value of
ES j, rf.‘/. represents the data transmission rate from the ES j to the MU i
at the time slot &, I_,,,, represents the obstacles when MU i chooses to
offload a task to the ES, and I;_,,,,, = | represents there are obstacles.
T, = 0 means there are no obstacles, where i € {1,2...M}, and

i—nlos

€ {1,2.N}.

/ i —k
Dﬂolcmlon’ BM? C IPN’

size

4.1. 2 Action space
= (zid xoff id of f
={z il—>/ i—j ...’H;WﬂN’XM*?N}
~’d ; represents the ID of the ES j that MU i chooses to offload, and
X7 of f represents the portion of the data that MU i chooses to offload on
the ES Jj. At time slot k, after an action A, is taken, the system computes

an immediate reward R before updating state .S to the next state .S, ;.

4.1.3. Reward function

The ultimate goal of the MDP is to have an optimal decision-making
action A for each state S to minimize offloading delay and energy
consumption. Therefore, different from a single reward for a single
objective optimization problem, we generalize the multiple rewards
for multiple objectives into an objective function with parameters.
The reward function is closely related to the objective function and
constraint conditions discussed in the previous section. We formulate
the reward function as following:

R =—cln, x—>10ml(s a)+ an:—ﬂotal(S a)+ "3tt—>toral(s’a)]

¢ is to adjust the value of reward close to —1, which is more
conducive to algorithm learning.

4.2. DRL-based computation offloading algorithm

Reinforcement learning is one of the traditional methods for solving
the MDP. Due to the low efficiency of traditional reinforcement learn-
ing algorithms, the current reinforcement learning based on the deep
neural network (DNN) adopts the method of constant approximation
to improve efficiency. It has become more and more popular in dealing
with complex MDP. Here we give a brief introduction to the Q-learning
algorithm. Basically, its process is based on the state .S}, using the

Algorithm 1 Computation offloading scheme based on the extended

DDPG

1: Initialize:

2: Randomly initialize Actor network parameters 6# and Critic
network parameters 69;

’
3: Initialize Actor target network parameters ¢* and target value

network QQ/;

4: Initialize experience replay pool R,;

5: for each episode ¢,=1 to e,,, do

6: Reset parameters of multi-user edge computing offload environ-
ment;

7: Initial state random noise N and ;

8: Randomly generate initial state s; for each user i € M and extract
its feature vector w(s);

9: for each time slot k =1 to T, do

10: Select action a; = u(w(s)|0*) + N according to the policy of
Actor network and the exploration noise;

11: Perform action g, get reward r; and the next state s;,; from
the environment;

12: Store (w(sy), ax, Iy, @(s41)) in the experience replay pool R,;

13: Randomly sample a small batch of Q2 experiences
(w(s,), ay, rp w(s,,1)) from R,;

14 Computing y,, ¥, = ¢n'r+70Q (5,41, 9,1, |0Q/ );

15: Use the minimized loss function J(#2) = é Z;":l W, —
O(w(s,), a,|09))* to update all the parameters of the Critic
network 69.;

16: Update all the parameters of the Actor network 6# using the
sampled policy gradient:

17: J(0") T2,V 006,al09ls = s.a =
H(s|0DIN 0¥ u(s|69)]s = s, ;

18: Update the target network with a soft update strategy:

19: GQ, ~ 702 +(1 - T)GQ,

20: 9“/ — 70" +(1 - 7)0”, 5

21: end for

22: end for

greedy method to select the action A, and enter the next state S, .,
and get the reward R, use (S, 4, R, S") to update the Q table.

When updating the Q table, the greedy strategy is used to select A’,
A" = max!Q(S’,d’) based on the state S,,,. The action a is selected
to maximize the value of Q as A’ to update the value function. Since
the Q table needs to store all the action values of each state, it will
be extremely difficult to store and search when a large number of
continuous states occur. DQN uses a neural network to replace the
Q table, and solves the problem of excessive storage and excessive
searching due to the excessive number of states in the continuous state
space. The objective function is y, = r + ymax/ Q*(s',d’|9), that is, the
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Fig. 3. Overall schematic framework diagram based on the extended DDPG.

next state uses the max function to select an action Q that maximizes
the objective function, and y is the discount factor. Since it is necessary
to calculate the Q value of all actions, it becomes extremely difficult to
exhaust all possibilities when the action space is continuous. Therefore,
DON cannot directly deal with the problem of continuous action space.
DDPG overcomes the shortcomings of DQN’s inability to adapt to the
continuous action space.

Based on the above, we propose a computation offloading algorithm
based on an extended DDPG. The DDPG separates the exploration of
the action strategy from the learning update of the action strategy,
and only changes the strategy to be learned to a deterministic strategy.
By borrowing the actor—critic architecture, the policy network and the
value network are separated, and experience reuse of DQN is used
for non-policy training to minimize the relationship between samples.
DDPG also uses normalized batch processing to prevent gradient explo-
sions. DDPG defines deterministic behavior strategy u, and each step of
action can be calculated by a; = u(s;). DDPG uses a DNN to simulate
u to become a strategy network with a parameter of 6%, and uses
another DNN to simulate the Q function to become a value network
with a parameter of 2. Silver [45] proved that u’s gradient strategy
is equivalent to the Q function gradient strategy, and its calculation
formula is as following:

Voud = EplN 10y ar|09)s = s, a = u(s|09)IN 0% u(s10")]s = 5]
(16)

As shown in Fig. 3, the framework of the extend DDPG algorithm
includes four networks, namely actor network, actor target network,
critic network, and critic target network, respectively. Two actor net-
work structures are the same, and the two critic network structures
are the same. The actor network is responsible for the iterative update
of the policy network parameters 6#, and selects the current action a,
according to the current state s,, which is used to interact with the en-
vironment to generate the next state s, ; and reward r. And the multi-
objective r is a three-dimensional vector, r = [T/‘_} mml,Ei"_} mml,tl’; rorat)
The actor target network is responsible for selecting the best next action
a' based on the next state s’ sampled in the experience replay pool.
The network parameters 0¥ are regularly copied from 6#. The critic
network is responsible for the iterative update of the value network
parameters 6/ and calculates the current Q value Q(s, a|#?). The calcu-
lated target Q value function is y = ¢cq” r+yQ'(s",d'102), § = [n,. 1. 13]-
The critic target network is responsible for calculating the Q'(s", a’|62")

part of the target Q value, and the network parameters 69 are regularly
copied from 69.

The training method for the target network is different from that of
the DQN. The soft update method is adopted during the training, and
the formula of the soft update strategy is as following:

09" « 709 + (1 — 1)9¢

! ’ (17)
0" — 70" + (1 — 7)0*
7 is the update coefficient, = € [0, 1]. For the randomness of the learning

process and to explore potentially better learning strategies, noise N is
added to action A, which is expressed as following:

A=7xu(s)+ N (18)

The loss function of critic network is similar to DQN, and the mean
square error is used. The expression of the loss function is as following:

IO = 5 Y 0, - 06,,0,09) 19)
v=1

The purpose of actor network is to hope that critic network will
feedback a large Q value. When the obtained Q value is larger, the
loss will be smaller, and when the Q value is smaller, the loss will
be greater. Therefore, the loss gradient of the actor network can be
expressed as following:

0" = 5 3 V,006,,0,09)]s = 5.0 = u(s109) V0 u(510)]s = 5,
v=1

(20)

We summarize the process multi-user computation offloading as Algo-
rithm 1. The complexity of the algorithm is related to the structure of
the deep neural network. The computational complexity of deep neural
networks comes from the matrix calculation between layers and the
calculation of activation functions at each layer. Therefore, the time
complexity can be calculated as [46] H =V, % u, + Z:ZIL uu,,;, where u,
means the unit number in the :th layer, V, means the corresponding pa-
rameters are determined by the type of activation function. Suppose the
actor network contains ¢ fully connected layers, and the critic network
contains A fully connected layers. Therefore, the time complexity of the
actor network is H,.,. and the time complexity of the critic network
is H,,;.. Since the main network and the target network have the
same structure, the training complexity of the algorithm is estimated
as O(emax * Ts(Hactar + Hcritic))'
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Table 2 Table 3
Explanations of parameter default values. n of different parameters values.
Parameter Definitions Default (11,12, 113) Average Average energy Average
values delay (s) consumption (J) offload rate

C["' The size of the data offloaded by MU i at time (1.5, 3) Mbit (0.7,0.2,0.1) 1.66 1.23 0.52
slot k (0.65,0.25,0.1) 1.67 1.15 0.55

Y The number of cycles required by the CPU to (900, 1100) (0.6,0.3,0.1) 1.65 1.05 0.60
process per bit cycles/bit (0.6,0.25,0.15) 1.69 1.26 0.53

c Channel gain at a distance of one meter —50 dB [32] Egis()(fgzo)l) ;Z(z) (1)23 gsg

@ The link transmission bandwidth of uploaded 1 MHz
data for per MU

1k CPU frequency of MUs 1 GHz 35

ff CPU frequency of ESs 4 GHz 5

K Impact factor of CPU architecture le-27 o

h Relative height of users and base stations 8.5 m )

& Delay tolerance 1.1 . -

n Weight parameter of offloading delay 0.6 S T TMRAT e T T T T

;12 Weight parameter of energy consumption 0.3 & 60 I — Ap=102, o102 Are10 103 ]

3 Weight parameter of queuing delay 0.1 65 F — Ap=10"2, =103 |___ Ap=10, =104

I3 adjustable parameter le-5 okl — A0 =102 | 04 cpm10S

Alr Actor network learning rate 1074 — 102, C=102 —— Ap=10"5, =104

Clr Critic network learning rate 1074 L e s B it T L I

y Discount factor 0.99 =0 0 ; ; Ix :1 ; t‘» ; éli ‘Ii 10x10°

T Soft update factor 0.01 Episodes

5. Performance evaluation

In this section, we introduce simulation settings and baselines,
and compare convergence performance, delay, and energy consump-
tion from many aspects to evaluate the performance of our proposed
scheme. The simulation experiment environment we used is Tensor-
Flow 1.14.0 with python 3.6. The parameters set in the experiment and
their default values are shown in Table 2.

5.1. Experimental settings

In order to verify the multi-server environment, we set up four ESs
in an area of 300 x 300 m?, the coordinates of which are fixed at
[100,1001, [100,200], [200,100], [200,200]. Similar to [35], we set 20
MUs randomly distributed in the area. In order to simulate the volatility
of the computing process and tasks, the task data size and the required
CPU cycles per bit of data are uniformly distributed similar to [47].
In order to reflect the mobility of MUs, we set its random movement
speed to 1 m/s. Note that for the convenience of processing, we assume
that the location of the mobile user does not change during each time
slot. According to 3GPP TR 38.901 [48], the relative height of the base
station is 8.5 m. The base station antenna height and user antenna
height are 10 m and 1.5 m, respectively. The transmission power and
idle power of UEs are 0.5 W and 0.1 W, respectively [44]. The link
transmission bandwidth of per MU uploading data is set to 1 MHz [41].
The path loss exponent a is —2 [49]. The noise power adopts the 3GPP
standard [35], the noise power is 10~!! mW, and the transmission loss
is —20 dbm [50]. We have performed parameter tuning # many times.
Under the requirement of delay, we firstly performed coarse-grained
traversal of the value of # from 0.1-0.9 and then selected the value of
n after fine-grained (0.05) traversal. When #, is around 0.6 and #, is
around 0.3, the delay and energy consumption have reached a lower
state (If #, is too large, the offload rate will decrease, and the local
computation delay will be too large. If #, is too large, the offload rate
will be too large, and the computing delay of offload to the server will
increase.). n; mainly adjusts the queuing delay weight, and its value is
small (The queuing delay is included in the delay model.). Such as the
part results of a traversal in Table 3.

For the construction of DNNs, we choose two different networks.
Actor has two hidden layers, and the number of neurons is 100 and

Fig. 4. Convergence performance of different learning rate.

24, respectively. The critic network has three hidden layers, and the
number of neurons is 200, 60, and 24, respectively. All hidden layers
are fully connected and activated through the tanh function. We set the
batch size to 64, and the experience reply pool size to 1e4. During the
training process, we set the maximum number of episodes to 10 000,
and the maximum time slot of each episode to 50.

Three baseline schemes we conducted experimental comparisons
are as following:

1. The offloading scheme based on DQN [30] algorithm.

2. The DDPG-based offloading scheme that does not consider the
trust value of edge servers (No_trust).

3. The DDPG-based offloading scheme that consider the trust value
of edge servers and does not add the wait time of mobile devices
in the queue to the optimization goal (No_wait).

The DQN-based offloading scheme is designed using the discretization
of the continuous action space. In addition, we test the effect of our
proposed scheme with different parameters. We also compared the
delays of offloading rates of 0 and 1 in greedy mode to test the
performance of offloading schemes based on DRL algorithms.

5.2. Performance analysis

We evaluated the impact of different learning rates on the perfor-
mance of the proposed algorithm. Fig. 4 shows the convergence trend
of the learning rate A;, of the actor network and the learning rate C;,
of the critic network from 102 to 107>, When {A4,, = 1072,C, = 1072},
(A, = 1072,C,, = 1073}, {A;, = 1073,C), = 107%}, {4,, = 107%,C}, =
104} and {4, = 107,C,, = 107}, our proposed algorithm can
converge faster. This converges to the maximum reward when {4, =
1074, C;, = 107*}. When {A,, = 1073,C;, = 1072} and {4,, = 107°,C,, =
10~*}, the reward of our proposed algorithm can be slowly converged,
but both fall into suboptimal solutions. When {A4,, = 1072,C,, = 1072},
{4, = 107%,C,, = 1073}, {A,, = 1074,C,, = 1073}, the reward of our
proposed algorithm fluctuates greatly, cannot be converged.

Table 4 shows the average delay and average energy consumption
when the number of MUs varies. As the number of MUs increases,
the data task queue will increase, which will result in an increase for
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Fig. 5. Average delay, average energy consumption, and average offload rate of different numbers of MUs when computation offloading under ESs with different CPU frequencies.

Table 4
The average delay and average energy consumption of task offloading with different
numbers of MUs.

Average performance M=5 M=10 M=15 M=20 M=25
Average delay (J) 0.95 1.27 1.45 1.65 1.89
Average energy consumption (s) 0.72 0.88 0.96 1.05 1.22
Average offload rate 0.82 0.72 0.69 0.6 0.53

Reward

Episodes

Fig. 6. Convergence performance of time-varying bandwidth.

queuing delay and idle energy consumption. On the other hand, as the
number of users increases, the offloading rate of mobile user tasks will
decrease, which will also increase the delay and energy consumption
of MUs.

Fig. 5 shows the average delay and energy consumption of different
numbers of MUs computation offloading under different CPU frequen-
cies of the ESs. As shown in Fig. 5(a), when the number of MUs remains
the same, as the computing power of the ESs increases, the average
delay of MUs computation offloading decreases. When the computing
frequency of the ESs are fixed, as the number of MUs increases, the av-
erage delay of computation offloading increases. As shown in Fig. 5(b),
when the computing frequency of the ESs are fixed, the number of MUs
increases, and the average energy consumption of MUs is increasing.
When the number of MUs is fixed and the computing power of the ESs
increases, the average energy consumption is decreasing. The change
in average delay and energy consumption is largely due to the MUs
changing the offload rate. Fig. 5(c) can confirm this point. As shown in
Fig. 5(c), when the ESs’ CPU frequency is fixed, as the number of MUs
increases, the offload rate of MUs decreases. This is to avoid excessive
waiting, and MUs reduce the offload rate. On the whole, our proposed
scheme can get good performance.

To quickly evaluate the effect of time-varying bandwidth for the
proposed algorithm, we change the environment to ten MUs and four
ESs. After running the algorithm to 5000 episodes, we expand the
bandwidth by five times. Fig. 6 shows that the proposed algorithm runs
to around 1000 episodes and the reward value converges to about —36.
At 5000 episodes, the bandwidth is changed to 5SMHz, at which time

the reward value increases sharply to around —25 and continues to
converge stably. The experiment results have shown that our proposed
algorithm can automatically adjust the policy and quickly converge to
a new optimal solution in a time-varying bandwidth environment. In
other words, our proposed algorithm scheme can properly adapt to the
time-varying bandwidth environment.

5.3. Performance comparison

Fig. 7 shows the delay, energy consumption, and offload rate of
our proposed scheme and the baseline scheme under different numbers
of MUs. Fig. 7(a) shows that our proposed scheme is significantly
better than the DQN-based scheme for reducing delay. The scheme that
considers the trust value has a better effect on reducing the average
delay than the No_trust scheme, and this will become more obvious as
the number of MUs increases. Since the reward function adds queuing
delay, our proposed scheme can reduce the average delay better than
the No_wait scheme. In terms of energy consumption, as shown in
Fig. 7(b), the average energy consumption of the DDPG-based scheme
is less than that of the DQN-based scheme, and our proposed scheme
is also slightly better than the No_trust and No_wait schemes. Fig. 7(c)
shows the changes in the offload rate of different numbers of MUs. Our
proposed scheme has a higher offload rate compared with the baseline
scheme. As the number of MUs increases and the computing resources
are tighter, the advantages of our proposed scheme are more evident.

Fig. 8 shows the average delay, energy consumption, and offload
rate of ESs with different CPU frequencies compared with the baseline
schemes. As shown in Fig. 8, as the computing powers of the ESs
increases, the average delay and energy consumption are decreasing,
and the corresponding MUs offload rate is increasing. As shown in
Fig. 8(a) and (b), our proposed scheme has more obvious advantages
in reducing delay and energy consumption when computing resources
are tight. With the increase of the computing powers of the ESs, the
performance advantage of the proposed scheme decreases with that of
the No_wait scheme and the No_trust scheme, but it is still significantly
better than the DQN-based scheme. This is also reflected in the trend
in Fig. 8(c).

We compare the delays based on the greedy strategy with an offload
rate of O (completely computed locally) and an offload rate of 1 (com-
pletely offloaded to the edge server). (Since we only focus on the energy
consumption of MUs, there is no comparative value in the case of an
offload rate of 1 with an energy consumption of 0, so we only compared
the delay situation.) Fig. 9 shows the average delay of the offloading
scheme based on the deep reinforcement learning algorithm and the
offload rate based on the greedy strategy of 0 and 1, respectively. As
the number of MUs increases, there will be an increase in queue tasks.
Therefore, the average delay of completely offloading to the edge server
becomes greater. As can be seen overall, the computation offloading
scheme based on deep reinforcement learning has lower delay than the
offloading rate of 0 or 1 under the greedy strategy, and our proposed
scheme is better than the DQN-based scheme.
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In order to verify the effectiveness of our proposed scheme, we
compared the training performance of the baseline scheme. As shown
in Fig. 10, our proposed scheme can get a higher reward value. The
convergence effect of our proposed scheme is obviously better than the
baseline schemes. DQN-based scheme can converge quickly, but falls

Frequency of CPUs (GHz)

(b)

10

3.0 3.5 1.0
Frequency of CPUs (GHz)

©)

average offload rate compared to the baseline schemes under ESs with different CPU frequencies.

into a sub-optimal solution. In the high-complexity state space and con-
tinuous action space scenarios, our proposed scheme is obviously better
than the DQN-based scheme. Comparing the No_wait and No_trust
schemes, our proposed scheme can converge to the optimal solution
more quickly. Since the No_trust scheme does not consider the trust
values of ESs, it has the worst convergence effect in an environment of
resource competition.

6. Conclusion

In this paper, we consider the problem of multi-user computation
offloading in an environment where edge computing resources are
competitive. We propose to establish the trust values of the ESs based
on the success rate of offload, and regard reducing energy and delay
as a multi-objective optimization problem. Then, we build a MDP
model with offloading delay, energy consumption and queuing delay as
multiple reward factors, and use an extended DDPG algorithm to solve
it. We execute a series of experiments to verify the effectiveness of the
scheme. The results show that our proposed scheme can reduce delay
and energy consumption better than the baseline scheme in a multi-user
resource competition environment. However, this article still has some
shortcomings, such as not considering the price model of ESs computing
resources. In future work, we intend to study the pricing model of
server computation offloading in a resource-competitive environment.
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