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ABSTRACT

Insertion of hardware Trojans (HTs) in integrated circuits is a perni-
cious threat. Since HTs are activated under rare trigger conditions,
detecting them using random logic simulations is infeasible. In this
work, we design a reinforcement learning (RL) agent that circum-
vents the exponential search space and returns a minimal set of
patterns that is most likely to detect HTs. Experimental results on
a variety of benchmarks demonstrate the efficacy and scalability of
our RL agent, which obtains a significant reduction (169x) in the
number of test patterns required while maintaining or improving
coverage (95.75%) compared to the state-of-the-art techniques.
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1 INTRODUCTION

Reinforcement learning (RL) helps a computing system (a.k.a agent)
to learn by its own experience through exploring and exploiting
the underlying environment. Over time, the agent takes optimal
actions in sequence, even with limited or no knowledge regarding
the environment. From a cybersecurity perspective, such RL agents
are attractive as they can generate optimal defense techniques in
an unknown adversarial environment. Given the latest improve-
ments in RL algorithms, these agents can efficiently navigate high-
dimensional search space to find optimal actions. Hence, researchers
have used RL agents to develop promising approaches for several
security problems, including intrusion detection [3], fuzzing [2, 6],
and developing secure cyber-physical systems [1, 4, 16]. However,
research in hardware security is still in its infancy to reap the power
of RL in developing optimal defenses in adversarial environments.
In this work, we showcase how RL can be used to efficiently detect
hardware Trojans (HTs). Out of the many problems in hardware
security, the HT detection problem presents significant computa-
tional challenges to the defender in detecting them in an unknown
environment (i.e., HT-infected design).

The increasing cost of integrated circuit (IC) manufacturing has
forced semiconductor companies to send their designs to untrusted,
off-shore foundries. Malicious components known as HTs inserted
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Figure 1: Example of an HT in a design with 150 rare nets.

during the fabrication stage can leak secret information, degrade
performance, or cause a denial of service.

1.1 Hardware Trojans

An HT consists of two components: trigger and payload. When the
trigger is activated, the payload causes a malicious effect in the
design. Figure 1 illustrates an HT that flips an output upon trigger
activation. The trigger comprises multiple nets, called select nets,
in the design. For instance, the adversary can choose the select
nets so that the trigger gets activated only under extremely rare
conditions. This is achieved by determining a rareness threshold!
and constructing the trigger using the corresponding rare nets.

Detecting HTs is difficult since they are designed to be stealthy [7].
Consider the example in Figure 1 with 150 rare nets. Four of them
are used for the trigger. Thus, the defender needs to check up to
150C4 ~ 20 x 10° different combinations of rare nets, which is ex-
tremely challenging. Such a large space makes it difficult even for
conventional automatic test pattern generation (ATPG) tools [20]
to activate the trigger.

1.2 Hardware Trojan Detection Techniques

One can classify the HT detection techniques under two broad
categories: logic testing and side-channel analysis. Logic testing
involves the application of test patterns to the HT-infected design
to activate the trigger [8, 15, 18]. However, activating an extremely
rare trigger is challenging because the possible combinations of
rare nets are extensive. On the other hand, side-channel-based
detection techniques detect HTs based on the differences in the
side-channel measurements (such as power or timing) between the
golden (i.e., HT-free) design and an HT-infected design [9, 11, 12, 14].
However, since HTs have an extremely small footprint compared to
the overall size of the design, their impact on side-channel metrics
is usually negligible and concealed under process variation and
environmental effects [19]. We refer interested readers to [7] for a
detailed survey on HTs and HT detection techniques.

Note that activating the trigger is not only essential for logic
testing techniques but also helpful for side-channel-based tech-
niques because activating the trigger leads to an increase in the
side-channel footprint of the HT, making it easier to detect [15].

IRareness threshold is the probability below which nets are classified as rare nets.
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Although activating the trigger is critical, it is difficult to do so
efficiently. Consider Figure 1; the defender needs up to 20 x 10°
test patterns to guarantee trigger activation because the defender
does not know which rare nets make the trigger. Next, we outline
the ideal characteristics required from any technique for activat-
ing the trigger. (1) High trigger activation rate: The technique
should activate a large number of trigger conditions to detect HTs
successfully. (2) Small test generation time: The time required
to generate the test patterns should not be large; otherwise, the
technique will not be scalable to larger designs. (3) Compact set of
test patterns: The number of test patterns required to activate the
trigger conditions should be small. A large number of test patterns
affect the testing cost adversely. (4) Feedback-guided approach:
The technique should analyze the test patterns and their impact on
the circuit to generate new test patterns, thereby reducing the test
generation time and the size of the test set.

1.3 Prior Works and Their Limitations

MERO generates test patterns that activate each rare net N times [8].

The hypothesis is that if all the rare nets are activated N times, the
test patterns are likely to activate the trigger. The algorithm starts
with a large pool of random test patterns and iteratively performs
circuit simulation to keep track of the number of rare nets that get
activated. While MERO provides moderate performance for small
benchmarks, it fails for large benchmarks. For instance, the trigger
coverage of MERO for the MIPS processor is only 0.2% [15], as it
violates the characteristics (1), (2), (3), and (4) mentioned above.
TARMAC overcomes the limitations of MERO by transforming the
problem of test pattern generation into a clique cover problem [15].
It iteratively finds maximal cliques of rare nets that satisfy their
rare values. By not relying on brute force, TARMAC outperforms
MERO by a factor of 71X on average. However, the performance of
TARMAC is sensitive to randomness since the algorithm relies on
randomly sampled cliques. Although the test generation time for
TARMALC is short, it violates characteristics (3) and (4).

TGRL uses RL along with a combination of rareness and testabil-
ity measures to overcome the limitations of TARMAC [18]. TGRL
achieves better coverage than TARMAC and MERO while reduc-
ing the run-time. However, it still violates characteristic (3), as
evidenced by our results in Section 4.

1.4 Our Contributions

As discussed above, all existing techniques for trigger activation fall
short on one or more fronts. In this work, we propose a new tech-
nique that is designed to satisfy all four ideal characteristics. We
model the test generation problem for HT detection as an RL prob-
lem because test generation involves searching a large space to find
an optimal set of test patterns. This is exactly what RL algorithms
do: they navigate large search spaces to find optimal solutions.
However, there are several challenges that need to be overcome to
realize a practical and scalable RL agent, such as (i) large amount
of training time required for large designs, (ii) the agent needs
to be efficient while choosing actions, and (iii) some challenging
benchmarks require smart fine-tuning. We provide further details
on how we overcome these challenges in Section 3. The primary
contributions of our work are as follows.
e We develop an RL technique that is efficient in activating rare
trigger conditions, thereby addressing the limitations of the state-
of-the-art HT detection techniques.

2Trigger activation rate, i.e., the proportion of trigger conditions activated by a set of
test patterns, is also called trigger coverage.
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e We overcome several challenges to make our technique scalable
to a large design like the MIPS processor.

e We perform an extensive evaluation on diverse benchmarks and

demonstrate the capability of our technique, which outperforms

the state-of-the-art logic-testing techniques on all benchmarks.

Our technique provides two orders of magnitude (169x) reduction

in the size of the test set compared to existing techniques.

Our technique maintains similar trigger coverage (< 2% drop)

with increasing number of rare nets, whereas the state-of-the-art

technique’s performance drops to 0%.

Our technique maintains similar trigger coverage (< 2% drop)

for at least 64X more potential trigger conditions.

e We release our benchmarks and test patterns [13].

2 ASSUMPTIONS AND BACKGROUND
2.1 Threat Model

We assume the standard threat model used in logic testing-based
HT detection [8, 15, 18]. We assume that the adversary inserts HTs
in rare nets of the design to remain stealthy. The defender’s (i.e.,
our) objective is to generate a minimal set of test patterns that
activate unknown trigger conditions. We generate test patterns
using only the golden (i.e., HT-free) netlist.

2.2 Reinforcement Learning

RL is a machine learning methodology where an intelligent agent
learns to navigate an environment to maximize a cumulative reward.
It is formalized as a Markov decision process. An RL agent interacts
with the environment in discrete time steps. At each step, the agent
receives the current state and the reward, and it chooses the action
which is sent to the environment. The environment moves the
agent to a new state and provides a reward corresponding to the
state transition and action. The aim of the RL agent is to learn
a policy 7 that maximizes the expected cumulative reward. The
policy maps state-action pairs to probabilities of taking that action
in a given state. The agent learns the optimal or near-optimal policy
in a trial-and-error method by interacting with the environment.

3 DETERRENT: DETECTING TROJANS USING
REINFORCEMENT LEARNING

We now formulate the trigger activation problem as an RL problem,
but it suffers from challenges related to scalability, efficiency, and
poor performance. We then address these challenges and devise a
final RL agent that outperforms all existing techniques.

3.1 A Simple Formulation

As shown in Figure 1, to activate the trigger, the defender has to
apply an input pattern that forces all four rare nets to take their
rare values simultaneously, but the defender does not know which
four rare nets constitute the trigger. A naive solution is to generate
one input pattern for each combination of four rare nets. Such an
approach would require up to "Cy test patterns (r is the total num-
ber of rare nets), which would be infeasible to employ in practice.
However, one input pattern can activate multiple different combina-
tions of rare nets simultaneously. So, we need to find a minimal set
of input patterns that can collectively activate all combinations of
rare nets. This problem is a variant of the set-cover problem, which
is NP-complete [10]. We call a set of rare nets compatible if there
exists an input pattern that can activate all the rare nets in the set

3For the sake of conciseness, henceforth, we shall use the phrase “activate the rare
nets” instead of “force the rare nets to take their rare values.”
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simultaneously. Thus, our objective is to develop an RL agent that
generates maximal sets of compatible rare nets.

We now map the trigger activation problem into an RL problem
by formulating it as a Markov decision process.

e States S is the set of all subsets of the rare nets. An individual
state s; represents the set of compatible rare nets at time t.

e Actions A is the set of all rare nets. An individual action ay is
the rare net chosen by the agent at time t.

o State transition P(ss41|a;, s¢) is the probability that action a; in
state s; leads to the state s;+1. In our case, if the chosen rare net
(i.e., the action) is compatible with the current set of rare nets
(i.e., the current state), we add the chosen rare net to the set of
compatible rare nets (i.e., the next state). Otherwise, next state
remains the same as the current state. Thus, in our case, the state
transition is deterministic, as shown below.

{as} Us;, if a; is compatible with s;
St+1 = :
{st, otherwise

o Reward function R(s;, a;) is equal to the square of the size of
the next state for compatible states, and 0 otherwise.

Har} Usel? = [seaal? ifaris compatible with s;

X otherwise

R(st,at) = {

The reward is designed so that the agent tries to maximize the
size of the state, i.e., the number of compatible rare nets. We
square the reward at each step, but any power greater than 1
would be appropriate since we want the reward function to be
convex to account for the fact that as the size of the state grows,
the difficulty of finding a new compatible rare net increases.

e Discount factor y (0 < y < 1) indicates the importance of
future rewards relative to the current reward.

The initial state sg is a singleton set containing a randomly cho-
sen rare net. At each step ¢, the agent in state s; chooses an action a,
arrives in the next state sy41 according to the state transition rules,
and receives a reward r;. This cycle of state, action, reward, and
next state is repeated T times, and this constitutes one episode. At
the end of each episode, the state of the agent reflects the rare nets
that are compatible.* Since the state and action spaces are discrete,
we train our agent using the Proximal Policy Optimization (PPO)
algorithm with default parameters unless specified otherwise [5].

Once the agent returns the maximal sets of compatible rare nets
after training, we pick the k largest distinct sets and generate the test
patterns corresponding to those sets using a Boolean satisfiability
(SAT) solver. k is a hyperparameter of our technique.

Our experiments indicate that this simple agent performs well
on small benchmarks. But, for larger benchmarks like the MIPS pro-
cessor from OpenCores [17] we obtain low trigger coverage (~70%
after training for 12 hours). We analyzed the basic architecture in
detail, and it faces certain challenges which are presented next.

3.2 End-of-Episode Reward Computation

Challenge 1: Large training time. The basic architecture requires
computing the reward for each time step, which involves checking
if the selected action is compatible with the current state or not. For
a large benchmark like the MIPS processor, the check takes a few
seconds (because of the large number of gates in the benchmark)
each time, and the agent requires millions of steps to learn. Hence,
the training time becomes prohibitively large.

4For software implementation, we represent the states (which are defined as sets) as
binary vectors, with each element on the vector indicating whether the corresponding
rare net is present in the state or not.
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Solution 1. To address challenge 1, we reduce the frequency of
reward computation by computing it only at the end of the episode.
At all intermediate steps, the reward is set to 0. While this approach
speeds up the training by a factor of ~ 86X, the rewards become
sparse, and it affects the performance of our agent. However, the
impact on performance is only 5.6%, as shown in Table 1.

Table 1: Comparison of training rates for the reward methods
for the MIPS benchmark: all steps vs. end-of-episode.

L # i
Method Max com}t)atlble Rate
rare nets (steps/min)  (eps./min)
Reward at all steps 53 108 0.72
End-of-episode reward 50 9387 63
Improvement -5.6% 86.91x 87.5%

3.3 Masking Actions for Efficiency

Challenge 2: Wasted efforts in choosing actions. Another chal-
lenge that the basic architecture suffers from is inefficiency in choos-
ing actions. At each step, the actions available to the agent remain
the same, irrespective of the state of the agent. This leads to sit-
uations where the agent chooses an action that has already been
chosen in the past, or that is known to be not compatible with at
least one of the rare nets in the current state. Hence, the time spent
by the agent on such steps is wasted.

Solution 2. To increase the efficiency of the agent in choosing
actions, we mask the actions available to the agent based on the
state at any given time step. This ensures that at each time step,
the agent only chooses actions that lead it to a new state. Addition-
ally, reward computation also becomes less sparse because episode
lengths reduce due to masking (episode ends when there are no
available actions). Since we are eliminating actions from the state
space, one may wonder if this approach may eliminate optimal
actions. We now prove that this is not possible for our problem
formulation.
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Figure 4: Architecture of DETERRENT.

Craim 1. Masking actions does not prevent our agent from learning
anything that it could have learned otherwise.

Proor. Let £’ and P denote an agent that masks and does not
mask actions, respectively. Suppose both # and # are in state s.
Let A denote the complete set of actions, and A denote the set of
masked actions for state s. So, As = {i|i is compatible with s and i ¢
s} and As € A. If P chooses an action a € A \ As (i.e., an action
in the set difference), then # will stay in the same state because
the rare net corresponding to such an action a would either be
incompatible with s or it would already be in s. On the other hand,
for any action a’ € Ay chosen by P, agent P’ can also choose the
same action a’ since it is in A. Hence, masking does not prevent
our agent from learning anything that the corresponding unmasked
agent could have learned. O

To enable masking, we compute pairwise compatibility of all
rare nets using a SAT solver before training. Since the compatibility
computation for each unique pair is independent, we parallelize it
across 64 processes to reduce the runtime. During training, for a
given state s (i.e., set of compatible rare nets at the current step),
all actions (i.e., rare nets) that are not compatible with any of the
rare nets in s are masked off, and hence, are not chosen.

To design the best architecture, we implemented agents with all
combinations of reward methods (at all steps and end-of-episode)
and masking (with and without). The results in Figure 2 demonstrate
that to obtain the maximum number of compatible rare nets, the
optimal architecture should mask actions based on state and provide
rewards at each time step.

3.4 Boosting Exploration

Challenge 3: Convergence to local optima. Since the agent’s
objective is to generate maximal sets of rare nets, for certain bench-
marks (for instance, c2670), the agent gets stuck in local optima. In
other words, the agent quickly learns to capitalize on sub-optimal
sets of compatible rare nets, thereby missing out on the diversity of
the sets of compatible rare nets, resulting in poor trigger coverage.
Solution 3. To force the agent to explore, we (1) include an entropy
term in the loss function of the agent and (2) control the smoothing
parameter that affects the variance of the loss calculation.

To implement (1), we modify the total loss function to I = I; +
Ce X le + ¢y X Iy, where [ is the total loss, I; is the loss of the policy
network, [ is the entropy loss, [, is the value loss, and ¢ and ¢,
are the coefficients for the entropy and value losses, respectively.
We set c¢e = 1. The entropy loss is inversely proportional to the
randomness in the choice of actions. To implement (2), we set the

parameter A for policy loss I; in PPO to 0.99. This leads to variance
in the loss calculation and hence in the actions chosen by the agent.

Thus, we penalize the agent for having less variance in its choice
of actions. Hence, the agent is forced to explore more and is likely
to converge to a better state, i.e., a state with more compatible rare
nets. Figure 3 shows that by modifying the loss function and the
smoothing parameter in PPO, the loss does not become 0 quickly,
forcing the agent to explore more.

3.5 Putting it All Together

The final architecture of DETERRENT is illustrated in Figure 4. In
an offline phase, we find the rare nets of the design and generate
pairwise compatibility information for them in a parallelized man-
ner. Then, for each episode, the agent starts with a random rare
net and takes an action according to the policy (a neural network)
and the action mask. The masked action is evaluated to produce a
reward for the agent, and the agent moves to the next state. This
procedure repeats for T steps (i.e., an episode). Internally, after a
certain number of episodes, the PPO algorithm translates the re-
wards into losses (depending on the output of the policy network,
which generates actions, and the value network, which predicts
the expected reward of the action), which are used to update the
parameters of the policy and value networks. Eventually, when the
agent has learned the task, the losses become negligible, and the
reward saturates. Once the RL agent gives us the maximal sets of
compatible rare nets, we pick the k largest distinct sets and generate
the test patterns, one for each of those sets, using a SAT solver.

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup

We implemented our RL agent using PyTorch1.6 and trained it using
a Linux machine with Intel 2.4 GHz CPUs and an NVIDIA Tesla
K80 GPU. We used the SAT solver provided in the pycosat library.
We implemented the parallelized version of TARMAC in Python 3.6.
We used Synopsys VCS for logic simulations and for evaluating test
patterns on HT-infected netlists. Similar to prior works (TARMAC
and TGRL), for sequential circuits, we assume full scan access. To
enable a fair comparison, we implemented and evaluated all the
techniques on the same benchmarks as TARMAC and TGRL, which
were provided to us by the authors of TGRL. They also provided
us with the TGRL test patterns. We also performed experiments on
the MIPS processor from OpenCores [17] to demonstrate scalability.
For MIPS, we use vectorized environment with 16 parallel processes
to speed up the training. For evaluation, we randomly inserted
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Table 2: Comparison of trigger coverage (Cov. (%)) and test length of DETERRENT with random simulations, Synopsys
TestMAX [20], TARMAC [15], and TGRL [18]. Evaluation is done on 100 random four-width triggered HT-infected netlists.

Number Random TestMAX [20] TARMAC [15]  TGRL [18] DETERRENT (this work)
Design ofrare " Gates Test Cov. Test Cov. Test Cov. Test Cov. Test Patterns Red./ Cov.
nets Length (%) Length (%) Length (%) Length (%) Length TARMAC & TGRL (%)
c2670 43 775 5306 10 89 27 5306 100 5306 96 8 663.25% 100
c5315 165 2307 8066 37 103 5 8066 61 8066 94 1585 5.08x 99
c6288 186 2416 3205 54 38 4 3205 100 3205 85 2096 1.52% 99
c7552 282 3513 9357 10 137 4 9357 73 9357 71 5910 1.58% 85
s13207 604 1801 9659 3 106 4 9659 80 9659 5 9600 1.01x 80
s15850 649 2412 9512 3 110 3 9512 79 9512 8 6197 1.53%x 81
535932 1151 4736 3083 99 37 68 3083 100 3083 58 6 513.83% 100
MIPS 1005 23511 25000 0 796 0 25000 100 — — 1304 19.17x 97
Avg. 511 5184 6884 27757 8857 107 6884  83.57 6884 8657 3628.85 169.68x* 95.75"
TThe coverages are averaged over c2670, c5315, 6288, and c7552. *The reduction is averaged over all except MIPS.
100 HTs in each benchmark and verified them to be valid using a & 100 == o——__ —"
cach be @ Ny BRI G -
Boolean satisfiability check. 5 .
3 3 N -® DETERRENT
4.2 Trigger Coverage Performance ; £ 50 % -¥- TGRL
In this sectiqn, we compare the trig.g.er coverage provided by dif- 8 \\' _____ 4.
ferent techniques (Table 2). In addition to TARMAC and TGRL, = 0 ; —
we also compare the performance of DETERRENT with random 2 4 6 8 10 12
test patterns and patterns generated from an industry-standard Trigger width

tool, Synopsys TestMAX [20]. We used the number of patterns from
TGRL as a reference for the random test patterns and TARMAC to
enable a fair comparison. For TestMAX, the number of patterns is
determined by the tool in the default setting (run_atpg).

Note that for s13207, s15850, and s35932, the netlists corre-
sponding to the test patterns provided by the authors of TGRL were
not available to us at the time of writing the manuscript. Hence, we
could only evaluate the TGRL test patterns for those circuits on our
benchmarks. Due to this, the trigger coverage of TGRL for these
benchmarks is low. Additionally, TGRL does not evaluate on the
MIPS benchmark. Hence the corresponding cells in the table are
empty. To enable a fair comparison, we have not included s13207,
s15850, and s35932 in the average test length, as well as MIPS in
the average trigger coverages for all techniques in Table 2.

The results demonstrate that DETERRENT achieves better trig-
ger coverage than all other techniques while reducing the number
of test patterns. On average, DETERRENT improves the coverage
over random patterns (68%), TestMAX (85.75%), TARMAC (12.25%),
and TGRL (9.25%), and achieves two orders of magnitude reduction
in the number of test patterns over TARMAC and TGRL (169X).

4.3 Impact of Trigger Width

Trigger width, i.e., the number of rare nets that constitute the trigger,
directly affects the stealth of the HT. As the trigger width increases,
the difficulty to activate the trigger increases exponentially. For
example, for a rareness threshold of 0.1, if the trigger width is 4,
the probability of activating the trigger through random simula-
tion is 107%. Whereas, if the trigger width is 12, the probability
reduces to 10712, Thus, it is necessary to maintain the performance
with increasing trigger width. Figure 5 illustrates the results for
c6288; we chose this benchmark as TGRL provides a good trigger
coverage. With increasing trigger width, the performance of TGRL
drops drastically. DETERRENT maintains a steady trigger coverage,

Figure 5: Impact of trigger width on the trigger coverage of
TGRL [18] and DETERRENT for c6288.

S 2670  — DETERRENT  --- TGRL 6288
0 10— .

o y o

3 504/ 1

e | i
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= 0 1000 2000 © 1000 2000 3000

Number of test patterns Number of test patterns

Figure 6: Trigger coverage vs. test patterns comparison.
demonstrating that it can activate extremely rare trigger conditions.

4.4 Trigger Coverage vs. Number of Patterns

We now investigate the marginal impact of test patterns on trigger
coverage. To do so, we analyze the increase in trigger coverage
provided by each test pattern for DETERRENT and TGRL. Fig-
ure 6 demonstrates that DETERRENT obtains the maximum trigger
coverage with very few patterns as opposed to TGRL.

4.5 Impact of Rareness Threshold

Rareness threshold is the probability below which nets are classified
asrare, i.e., the logic values of these nets are strongly biased towards
0 or 1. For a given trigger width (), as the rareness threshold
increases, the number of rare nets increases (say by a factor of f),
and so, the number of combinations possible for constructing the
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Figure 7: Impact of rareness threshold on the number of rare
nets and the trigger coverage of DETERRENT for c6288.

trigger increases by a factor of %, making it much more difficult to
activate. Figure 7 shows that the number of rare nets increases with
increasing threshold (leading to up to 64X more potential trigger
combinations), but DETERRENT is still able to achieve similar
trigger coverage (< 2% drop) with less than 2500 patterns.’

In another experiment, we trained the agent using rare nets for
a threshold of 0.14 and evaluated the generated test patterns on
rare nets with threshold of 0.1—the trigger coverage is 99%. This
hints that we can train the agent for a large set of rare nets and use
it to generate patterns for a subset of rare nets.

5 DISCUSSION AND FUTURE WORK

Comparison with TGRL [18]. Our RL agent architecture is en-
tirely different from TGRL. TGRL maximizes a heuristic based on
the rareness and testability of nets. In contrast, we identify the prob-
lem of trigger activation to be a set-cover problem and find maximal
sets of compatible rare nets. Moreover, TGRL states and actions are
test patterns generated by flipping bits probabilistically, whereas
our agent’s efforts are more directed by generating maximal sets
of compatible rare nets. Due to our formulation, we achieve better
coverage but with orders of magnitude fewer test patterns than
TGRL (see Section 4).

Feasibility of using a SAT solver. We use a SAT solver for the
compatibility check during training and for generating test patterns
from the maximal sets of compatible rare nets provided by the RL
agent. Nevertheless, our technique is scalable for larger designs (as
evidenced by our results) because: (i) During training, we reduce
the runtime of using the SAT solver as we generate a dictionary
containing the compatibility information offline in a parallelized
manner. (ii) When generating the test patterns, we only require
invoking the SAT solver T times, where T is the required number
of test patterns. Hence, even for large benchmarks like MIPS, we
can generate test patterns that outperform all the HT detection
techniques in less than 12 hours.

Meta-learning. We generated test patterns for individual bench-
marks using separate agents. Since the training time of our agents
for all benchmarks is less than 12 hours, it is practical to use our
technique. As part of future work, we would like to explore the
principles of designing a standalone agent that can be trained on a
corpus of benchmarks once and be used to generate test patterns
for unseen benchmarks. To that end, we plan to extend the current
framework by using principles from meta-learning.

5The authors of TGRL did not provide us the test patterns for thresholds other than
0.1. Hence, we do not compare with TGRL for other threshold values.
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6 CONCLUSION

Prior works on trigger activation for HT detection have shown
reasonable trigger coverage, but they are ineffective, not scalable,
or require a large number of test patterns. To address these limita-
tions, we develop an RL agent to guide the search for optimal test
patterns. However, in order to design the agent, we face several
challenges like inefficiency and lack of scalability. We overcome
these challenges using different features like masking and boosting
exploration of the agent. As a result, the final architecture generates
a compact set of test patterns for designs of all sizes, including the
MIPS processor. Experimental results demonstrate that our agent
reduces the number of test patterns by 169X on average while im-
proving trigger coverage. Further evaluations show that our agent
is robust against increasing complexity. Our agent maintains steady
trigger coverage for different trigger widths, whereas the state-of-
the-art technique’s performance drops drastically. Our agent also
maintains performance against the increasing number of possible
trigger combinations. Although this work demonstrates the power
of RL for trigger activation, the challenges related to scalability
and efficiency are not specific to the current problem. The ways in
which we overcame the challenges can be used to develop better
defenses for other hardware security problems.
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