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ABSTRACT
Insertion of hardware Trojans (HTs) in integrated circuits is a perni-

cious threat. Since HTs are activated under rare trigger conditions,

detecting them using random logic simulations is infeasible. In this

work, we design a reinforcement learning (RL) agent that circum-

vents the exponential search space and returns a minimal set of

patterns that is most likely to detect HTs. Experimental results on

a variety of benchmarks demonstrate the efficacy and scalability of

our RL agent, which obtains a significant reduction (169×) in the

number of test patterns required while maintaining or improving

coverage (95.75%) compared to the state-of-the-art techniques.
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1 INTRODUCTION
Reinforcement learning (RL) helps a computing system (a.k.a agent)

to learn by its own experience through exploring and exploiting

the underlying environment. Over time, the agent takes optimal

actions in sequence, even with limited or no knowledge regarding

the environment. From a cybersecurity perspective, such RL agents

are attractive as they can generate optimal defense techniques in

an unknown adversarial environment. Given the latest improve-

ments in RL algorithms, these agents can efficiently navigate high-

dimensional search space to find optimal actions. Hence, researchers

have used RL agents to develop promising approaches for several

security problems, including intrusion detection [3], fuzzing [2, 6],

and developing secure cyber-physical systems [1, 4, 16]. However,

research in hardware security is still in its infancy to reap the power

of RL in developing optimal defenses in adversarial environments.

In this work, we showcase how RL can be used to efficiently detect

hardware Trojans (HTs). Out of the many problems in hardware

security, the HT detection problem presents significant computa-

tional challenges to the defender in detecting them in an unknown

environment (i.e., HT-infected design).

The increasing cost of integrated circuit (IC) manufacturing has

forced semiconductor companies to send their designs to untrusted,

off-shore foundries. Malicious components known as HTs inserted
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Figure 1: Example of an HT in a design with 150 rare nets.

during the fabrication stage can leak secret information, degrade

performance, or cause a denial of service.

1.1 Hardware Trojans
An HT consists of two components: trigger and payload. When the

trigger is activated, the payload causes a malicious effect in the

design. Figure 1 illustrates an HT that flips an output upon trigger

activation. The trigger comprises multiple nets, called select nets,
in the design. For instance, the adversary can choose the select

nets so that the trigger gets activated only under extremely rare

conditions. This is achieved by determining a rareness threshold1
and constructing the trigger using the corresponding rare nets.

DetectingHTs is difficult since they are designed to be stealthy [7].

Consider the example in Figure 1 with 150 rare nets. Four of them

are used for the trigger. Thus, the defender needs to check up to

150𝐶4 ≈ 20 × 10
6
different combinations of rare nets, which is ex-

tremely challenging. Such a large space makes it difficult even for

conventional automatic test pattern generation (ATPG) tools [20]

to activate the trigger.

1.2 Hardware Trojan Detection Techniques
One can classify the HT detection techniques under two broad

categories: logic testing and side-channel analysis. Logic testing

involves the application of test patterns to the HT-infected design

to activate the trigger [8, 15, 18]. However, activating an extremely

rare trigger is challenging because the possible combinations of

rare nets are extensive. On the other hand, side-channel-based

detection techniques detect HTs based on the differences in the

side-channel measurements (such as power or timing) between the

golden (i.e., HT-free) design and anHT-infected design [9, 11, 12, 14].

However, since HTs have an extremely small footprint compared to

the overall size of the design, their impact on side-channel metrics

is usually negligible and concealed under process variation and

environmental effects [19]. We refer interested readers to [7] for a

detailed survey on HTs and HT detection techniques.

Note that activating the trigger is not only essential for logic

testing techniques but also helpful for side-channel-based tech-

niques because activating the trigger leads to an increase in the

side-channel footprint of the HT, making it easier to detect [15].

1
Rareness threshold is the probability below which nets are classified as rare nets.
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Although activating the trigger is critical, it is difficult to do so

efficiently. Consider Figure 1; the defender needs up to 20 × 10
6

test patterns to guarantee trigger activation because the defender

does not know which rare nets make the trigger. Next, we outline

the ideal characteristics required from any technique for activat-

ing the trigger. (1) High trigger activation rate: The technique
should activate a large number of trigger conditions to detect HTs

successfully.
2 (2) Small test generation time: The time required

to generate the test patterns should not be large; otherwise, the

technique will not be scalable to larger designs. (3) Compact set of
test patterns: The number of test patterns required to activate the

trigger conditions should be small. A large number of test patterns

affect the testing cost adversely. (4) Feedback-guided approach:
The technique should analyze the test patterns and their impact on

the circuit to generate new test patterns, thereby reducing the test

generation time and the size of the test set.

1.3 Prior Works and Their Limitations
MERO generates test patterns that activate each rare net𝑁 times [8].

The hypothesis is that if all the rare nets are activated 𝑁 times, the

test patterns are likely to activate the trigger. The algorithm starts

with a large pool of random test patterns and iteratively performs

circuit simulation to keep track of the number of rare nets that get

activated. While MERO provides moderate performance for small

benchmarks, it fails for large benchmarks. For instance, the trigger

coverage of MERO for the MIPS processor is only 0.2% [15], as it

violates the characteristics (1), (2), (3), and (4) mentioned above.

TARMAC overcomes the limitations of MERO by transforming the

problem of test pattern generation into a clique cover problem [15].

It iteratively finds maximal cliques of rare nets that satisfy their

rare values. By not relying on brute force, TARMAC outperforms

MERO by a factor of 71× on average. However, the performance of

TARMAC is sensitive to randomness since the algorithm relies on

randomly sampled cliques. Although the test generation time for

TARMAC is short, it violates characteristics (3) and (4).

TGRL uses RL along with a combination of rareness and testabil-

ity measures to overcome the limitations of TARMAC [18]. TGRL

achieves better coverage than TARMAC and MERO while reduc-

ing the run-time. However, it still violates characteristic (3), as

evidenced by our results in Section 4.

1.4 Our Contributions
As discussed above, all existing techniques for trigger activation fall

short on one or more fronts. In this work, we propose a new tech-

nique that is designed to satisfy all four ideal characteristics. We

model the test generation problem for HT detection as an RL prob-

lem because test generation involves searching a large space to find

an optimal set of test patterns. This is exactly what RL algorithms

do: they navigate large search spaces to find optimal solutions.

However, there are several challenges that need to be overcome to

realize a practical and scalable RL agent, such as (i) large amount

of training time required for large designs, (ii) the agent needs

to be efficient while choosing actions, and (iii) some challenging

benchmarks require smart fine-tuning. We provide further details

on how we overcome these challenges in Section 3. The primary

contributions of our work are as follows.

• We develop an RL technique that is efficient in activating rare

trigger conditions, thereby addressing the limitations of the state-

of-the-art HT detection techniques.

2
Trigger activation rate, i.e., the proportion of trigger conditions activated by a set of

test patterns, is also called trigger coverage.

• We overcome several challenges to make our technique scalable

to a large design like the MIPS processor.

• We perform an extensive evaluation on diverse benchmarks and

demonstrate the capability of our technique, which outperforms

the state-of-the-art logic-testing techniques on all benchmarks.

• Our technique provides two orders ofmagnitude (169×) reduction
in the size of the test set compared to existing techniques.

• Our technique maintains similar trigger coverage (≤ 2% drop)

with increasing number of rare nets, whereas the state-of-the-art

technique’s performance drops to 0%.

• Our technique maintains similar trigger coverage (≤ 2% drop)

for at least 64× more potential trigger conditions.

• We release our benchmarks and test patterns [13].

2 ASSUMPTIONS AND BACKGROUND
2.1 Threat Model
We assume the standard threat model used in logic testing-based

HT detection [8, 15, 18]. We assume that the adversary inserts HTs

in rare nets of the design to remain stealthy. The defender’s (i.e.,

our) objective is to generate a minimal set of test patterns that

activate unknown trigger conditions. We generate test patterns

using only the golden (i.e., HT-free) netlist.

2.2 Reinforcement Learning
RL is a machine learning methodology where an intelligent agent

learns to navigate an environment tomaximize a cumulative reward.

It is formalized as a Markov decision process. An RL agent interacts

with the environment in discrete time steps. At each step, the agent

receives the current state and the reward, and it chooses the action

which is sent to the environment. The environment moves the

agent to a new state and provides a reward corresponding to the

state transition and action. The aim of the RL agent is to learn

a policy 𝜋 that maximizes the expected cumulative reward. The

policy maps state-action pairs to probabilities of taking that action

in a given state. The agent learns the optimal or near-optimal policy

in a trial-and-error method by interacting with the environment.

3 DETERRENT: DETECTING TROJANS USING
REINFORCEMENT LEARNING

We now formulate the trigger activation problem as an RL problem,

but it suffers from challenges related to scalability, efficiency, and

poor performance. We then address these challenges and devise a

final RL agent that outperforms all existing techniques.

3.1 A Simple Formulation
As shown in Figure 1, to activate the trigger, the defender has to

apply an input pattern that forces all four rare nets to take their

rare values simultaneously,
3
but the defender does not know which

four rare nets constitute the trigger. A naïve solution is to generate

one input pattern for each combination of four rare nets. Such an

approach would require up to
𝑟𝐶4 test patterns (𝑟 is the total num-

ber of rare nets), which would be infeasible to employ in practice.

However, one input pattern can activate multiple different combina-

tions of rare nets simultaneously. So, we need to find a minimal set

of input patterns that can collectively activate all combinations of

rare nets. This problem is a variant of the set-cover problem, which

is NP-complete [10]. We call a set of rare nets compatible if there
exists an input pattern that can activate all the rare nets in the set

3
For the sake of conciseness, henceforth, we shall use the phrase “activate the rare

nets” instead of “force the rare nets to take their rare values.”
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simultaneously. Thus, our objective is to develop an RL agent that

generates maximal sets of compatible rare nets.

We now map the trigger activation problem into an RL problem

by formulating it as a Markov decision process.

• States S is the set of all subsets of the rare nets. An individual

state 𝑠𝑡 represents the set of compatible rare nets at time 𝑡 .

• Actions A is the set of all rare nets. An individual action 𝑎𝑡 is

the rare net chosen by the agent at time 𝑡 .

• State transition 𝑃 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 ) is the probability that action 𝑎𝑡 in
state 𝑠𝑡 leads to the state 𝑠𝑡+1. In our case, if the chosen rare net

(i.e., the action) is compatible with the current set of rare nets

(i.e., the current state), we add the chosen rare net to the set of

compatible rare nets (i.e., the next state). Otherwise, next state

remains the same as the current state. Thus, in our case, the state

transition is deterministic, as shown below.

𝑠𝑡+1 =
{{𝑎𝑡 } ∪ 𝑠𝑡 , if 𝑎𝑡 is compatible with 𝑠𝑡

𝑠𝑡 , otherwise

• Reward function 𝑅(𝑠𝑡 , 𝑎𝑡 ) is equal to the square of the size of

the next state for compatible states, and 0 otherwise.

𝑅(𝑠𝑡 , 𝑎𝑡 ) =
{
|{𝑎𝑡 } ∪ 𝑠𝑡 |2 = |𝑠𝑡+1 |2, if 𝑎𝑡 is compatible with 𝑠𝑡

0, otherwise

The reward is designed so that the agent tries to maximize the

size of the state, i.e., the number of compatible rare nets. We

square the reward at each step, but any power greater than 1

would be appropriate since we want the reward function to be

convex to account for the fact that as the size of the state grows,

the difficulty of finding a new compatible rare net increases.

• Discount factor 𝛾 (0 ≤ 𝛾 ≤ 1) indicates the importance of

future rewards relative to the current reward.

The initial state 𝑠0 is a singleton set containing a randomly cho-

sen rare net. At each step 𝑡 , the agent in state 𝑠𝑡 chooses an action 𝑎𝑡 ,

arrives in the next state 𝑠𝑡+1 according to the state transition rules,

and receives a reward 𝑟𝑡 . This cycle of state, action, reward, and

next state is repeated 𝑇 times, and this constitutes one episode. At
the end of each episode, the state of the agent reflects the rare nets

that are compatible.
4
Since the state and action spaces are discrete,

we train our agent using the Proximal Policy Optimization (PPO)

algorithm with default parameters unless specified otherwise [5].

Once the agent returns the maximal sets of compatible rare nets

after training, we pick the𝑘 largest distinct sets and generate the test

patterns corresponding to those sets using a Boolean satisfiability

(SAT) solver. 𝑘 is a hyperparameter of our technique.

Our experiments indicate that this simple agent performs well

on small benchmarks. But, for larger benchmarks like the MIPS pro-
cessor from OpenCores [17] we obtain low trigger coverage (≈70%
after training for 12 hours). We analyzed the basic architecture in

detail, and it faces certain challenges which are presented next.

3.2 End-of-Episode Reward Computation
Challenge 1: Large training time. The basic architecture requires
computing the reward for each time step, which involves checking

if the selected action is compatible with the current state or not. For

a large benchmark like the MIPS processor, the check takes a few

seconds (because of the large number of gates in the benchmark)

each time, and the agent requires millions of steps to learn. Hence,

the training time becomes prohibitively large.

4
For software implementation, we represent the states (which are defined as sets) as

binary vectors, with each element on the vector indicating whether the corresponding

rare net is present in the state or not.
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Solution 1. To address challenge 1, we reduce the frequency of

reward computation by computing it only at the end of the episode.

At all intermediate steps, the reward is set to 0. While this approach

speeds up the training by a factor of ≈ 86×, the rewards become

sparse, and it affects the performance of our agent. However, the

impact on performance is only 5.6%, as shown in Table 1.

Table 1: Comparison of training rates for the rewardmethods
for the MIPS benchmark: all steps vs. end-of-episode.

Method

Max. # compatible

rare nets

Rate

(steps/min) (eps./min)

Reward at all steps 53 108 0.72

End-of-episode reward 50 9387 63

Improvement -5.6% 86.91× 87.5×

3.3 Masking Actions for Efficiency
Challenge 2: Wasted efforts in choosing actions. Another chal-
lenge that the basic architecture suffers from is inefficiency in choos-

ing actions. At each step, the actions available to the agent remain

the same, irrespective of the state of the agent. This leads to sit-

uations where the agent chooses an action that has already been

chosen in the past, or that is known to be not compatible with at

least one of the rare nets in the current state. Hence, the time spent

by the agent on such steps is wasted.

Solution 2. To increase the efficiency of the agent in choosing

actions, we mask the actions available to the agent based on the

state at any given time step. This ensures that at each time step,

the agent only chooses actions that lead it to a new state. Addition-

ally, reward computation also becomes less sparse because episode

lengths reduce due to masking (episode ends when there are no

available actions). Since we are eliminating actions from the state

space, one may wonder if this approach may eliminate optimal

actions. We now prove that this is not possible for our problem

formulation.
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Claim 1. Masking actions does not prevent our agent from learning
anything that it could have learned otherwise.

Proof. Let P ′
and P denote an agent that masks and does not

mask actions, respectively. Suppose both P and P ′
are in state 𝑠 .

Let A denote the complete set of actions, and A𝑠 denote the set of

masked actions for state 𝑠 . So,A𝑠 = {𝑖 |𝑖 is compatible with 𝑠 and 𝑖 ∉

𝑠} and A𝑠 ⊆ A. If P chooses an action 𝑎 ∈ A \ A𝑠 (i.e., an action

in the set difference), then P will stay in the same state because

the rare net corresponding to such an action 𝑎 would either be

incompatible with 𝑠 or it would already be in 𝑠 . On the other hand,

for any action 𝑎′ ∈ A𝑠 chosen by P, agent P ′
can also choose the

same action 𝑎′ since it is in A𝑠 . Hence, masking does not prevent

our agent from learning anything that the corresponding unmasked

agent could have learned. □

To enable masking, we compute pairwise compatibility of all

rare nets using a SAT solver before training. Since the compatibility

computation for each unique pair is independent, we parallelize it

across 64 processes to reduce the runtime. During training, for a

given state 𝑠 (i.e., set of compatible rare nets at the current step),

all actions (i.e., rare nets) that are not compatible with any of the

rare nets in 𝑠 are masked off, and hence, are not chosen.

To design the best architecture, we implemented agents with all

combinations of reward methods (at all steps and end-of-episode)

andmasking (with andwithout). The results in Figure 2 demonstrate

that to obtain the maximum number of compatible rare nets, the

optimal architecture shouldmask actions based on state and provide

rewards at each time step.

3.4 Boosting Exploration
Challenge 3: Convergence to local optima. Since the agent’s
objective is to generate maximal sets of rare nets, for certain bench-

marks (for instance, c2670), the agent gets stuck in local optima. In

other words, the agent quickly learns to capitalize on sub-optimal

sets of compatible rare nets, thereby missing out on the diversity of

the sets of compatible rare nets, resulting in poor trigger coverage.

Solution 3. To force the agent to explore, we (1) include an entropy

term in the loss function of the agent and (2) control the smoothing

parameter that affects the variance of the loss calculation.

To implement (1), we modify the total loss function to 𝑙 = 𝑙𝜋 +
𝑐𝜖 × 𝑙𝜖 + 𝑐𝑣 × 𝑙𝑣 , where 𝑙 is the total loss, 𝑙𝜋 is the loss of the policy

network, 𝑙𝜖 is the entropy loss, 𝑙𝑣 is the value loss, and 𝑐𝜖 and 𝑐𝑣
are the coefficients for the entropy and value losses, respectively.

We set 𝑐𝜖 = 1. The entropy loss is inversely proportional to the

randomness in the choice of actions. To implement (2), we set the

parameter 𝜆 for policy loss 𝑙𝜋 in PPO to 0.99. This leads to variance

in the loss calculation and hence in the actions chosen by the agent.

Thus, we penalize the agent for having less variance in its choice

of actions. Hence, the agent is forced to explore more and is likely

to converge to a better state, i.e., a state with more compatible rare

nets. Figure 3 shows that by modifying the loss function and the

smoothing parameter in PPO, the loss does not become 0 quickly,

forcing the agent to explore more.

3.5 Putting it All Together
The final architecture of DETERRENT is illustrated in Figure 4. In

an offline phase, we find the rare nets of the design and generate

pairwise compatibility information for them in a parallelized man-

ner. Then, for each episode, the agent starts with a random rare

net and takes an action according to the policy (a neural network)

and the action mask. The masked action is evaluated to produce a

reward for the agent, and the agent moves to the next state. This

procedure repeats for 𝑇 steps (i.e., an episode). Internally, after a

certain number of episodes, the PPO algorithm translates the re-

wards into losses (depending on the output of the policy network,

which generates actions, and the value network, which predicts

the expected reward of the action), which are used to update the

parameters of the policy and value networks. Eventually, when the

agent has learned the task, the losses become negligible, and the

reward saturates. Once the RL agent gives us the maximal sets of

compatible rare nets, we pick the 𝑘 largest distinct sets and generate

the test patterns, one for each of those sets, using a SAT solver.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Setup
We implemented our RL agent using PyTorch1.6 and trained it using
a Linux machine with Intel 2.4 GHz CPUs and an NVIDIA Tesla

K80 GPU. We used the SAT solver provided in the pycosat library.
We implemented the parallelized version of TARMAC in Python 3.6.
We used Synopsys VCS for logic simulations and for evaluating test

patterns on HT-infected netlists. Similar to prior works (TARMAC

and TGRL), for sequential circuits, we assume full scan access. To

enable a fair comparison, we implemented and evaluated all the

techniques on the same benchmarks as TARMAC and TGRL, which

were provided to us by the authors of TGRL. They also provided

us with the TGRL test patterns. We also performed experiments on

the MIPS processor from OpenCores [17] to demonstrate scalability.

For MIPS, we use vectorized environment with 16 parallel processes

to speed up the training. For evaluation, we randomly inserted
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Table 2: Comparison of trigger coverage (Cov. (%)) and test length of DETERRENT with random simulations, Synopsys
TestMAX [20], TARMAC [15], and TGRL [18]. Evaluation is done on 100 random four-width triggered HT-infected netlists.

Design

Number

# Gates

Random TestMAX [20] TARMAC [15] TGRL [18] DETERRENT (this work)

of rare Test Cov. Test Cov. Test Cov. Test Cov. Test Patterns Red./ Cov.

nets Length (%) Length (%) Length (%) Length (%) Length TARMAC & TGRL (%)

c2670 43 775 5306 10 89 27 5306 100 5306 96 8 663.25× 100

c5315 165 2307 8066 37 103 5 8066 61 8066 94 1585 5.08× 99

c6288 186 2416 3205 54 38 4 3205 100 3205 85 2096 1.52× 99

c7552 282 3513 9357 10 137 4 9357 73 9357 71 5910 1.58× 85

s13207 604 1801 9659 3 106 4 9659 80 9659 5 9600 1.01× 80

s15850 649 2412 9512 3 110 3 9512 79 9512 8 6197 1.53× 81

s35932 1151 4736 3083 99 37 68 3083 100 3083 58 6 513.83× 100

MIPS 1005 23511 25000 0 796 0 25000 100 — — 1304 19.17× 97

Avg. 511 5184 6884 27.75
†

88.57 10
†

6884 83.5
†

6884 86.5
†

3628.85 169.68×‡ 95.75†

†
The coverages are averaged over c2670, c5315, c6288, and c7552. ‡The reduction is averaged over all except MIPS.

100 HTs in each benchmark and verified them to be valid using a

Boolean satisfiability check.

4.2 Trigger Coverage Performance
In this section, we compare the trigger coverage provided by dif-

ferent techniques (Table 2). In addition to TARMAC and TGRL,

we also compare the performance of DETERRENT with random

test patterns and patterns generated from an industry-standard

tool, Synopsys TestMAX [20]. We used the number of patterns from

TGRL as a reference for the random test patterns and TARMAC to

enable a fair comparison. For TestMAX, the number of patterns is

determined by the tool in the default setting (run_atpg).
Note that for s13207, s15850, and s35932, the netlists corre-

sponding to the test patterns provided by the authors of TGRL were

not available to us at the time of writing the manuscript. Hence, we

could only evaluate the TGRL test patterns for those circuits on our

benchmarks. Due to this, the trigger coverage of TGRL for these

benchmarks is low. Additionally, TGRL does not evaluate on the

MIPS benchmark. Hence the corresponding cells in the table are

empty. To enable a fair comparison, we have not included s13207,
s15850, and s35932 in the average test length, as well as MIPS in
the average trigger coverages for all techniques in Table 2.

The results demonstrate that DETERRENT achieves better trig-

ger coverage than all other techniques while reducing the number

of test patterns. On average, DETERRENT improves the coverage

over random patterns (68%), TestMAX (85.75%), TARMAC (12.25%),

and TGRL (9.25%), and achieves two orders of magnitude reduction

in the number of test patterns over TARMAC and TGRL (169×).

4.3 Impact of Trigger Width
Triggerwidth, i.e., the number of rare nets that constitute the trigger,

directly affects the stealth of the HT. As the trigger width increases,

the difficulty to activate the trigger increases exponentially. For

example, for a rareness threshold of 0.1, if the trigger width is 4,

the probability of activating the trigger through random simula-

tion is 10
−4
. Whereas, if the trigger width is 12, the probability

reduces to 10
−12

. Thus, it is necessary to maintain the performance

with increasing trigger width. Figure 5 illustrates the results for

c6288; we chose this benchmark as TGRL provides a good trigger

coverage. With increasing trigger width, the performance of TGRL

drops drastically. DETERRENT maintains a steady trigger coverage,
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Figure 5: Impact of trigger width on the trigger coverage of
TGRL [18] and DETERRENT for c6288.
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Figure 6: Trigger coverage vs. test patterns comparison.

demonstrating that it can activate extremely rare trigger conditions.

4.4 Trigger Coverage vs. Number of Patterns
We now investigate the marginal impact of test patterns on trigger

coverage. To do so, we analyze the increase in trigger coverage

provided by each test pattern for DETERRENT and TGRL. Fig-

ure 6 demonstrates that DETERRENT obtains the maximum trigger

coverage with very few patterns as opposed to TGRL.

4.5 Impact of Rareness Threshold
Rareness threshold is the probability belowwhich nets are classified

as rare, i.e., the logic values of these nets are strongly biased towards

0 or 1. For a given trigger width (𝛼), as the rareness threshold

increases, the number of rare nets increases (say by a factor of 𝛽),

and so, the number of combinations possible for constructing the
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Figure 7: Impact of rareness threshold on the number of rare
nets and the trigger coverage of DETERRENT for c6288.

trigger increases by a factor of 𝛽𝛼 , making it much more difficult to

activate. Figure 7 shows that the number of rare nets increases with

increasing threshold (leading to up to 64× more potential trigger

combinations), but DETERRENT is still able to achieve similar

trigger coverage (≤ 2% drop) with less than 2500 patterns.
5

In another experiment, we trained the agent using rare nets for

a threshold of 0.14 and evaluated the generated test patterns on

rare nets with threshold of 0.1—the trigger coverage is 99%. This

hints that we can train the agent for a large set of rare nets and use

it to generate patterns for a subset of rare nets.

5 DISCUSSION AND FUTURE WORK
Comparison with TGRL [18]. Our RL agent architecture is en-

tirely different from TGRL. TGRL maximizes a heuristic based on

the rareness and testability of nets. In contrast, we identify the prob-

lem of trigger activation to be a set-cover problem and find maximal

sets of compatible rare nets. Moreover, TGRL states and actions are

test patterns generated by flipping bits probabilistically, whereas

our agent’s efforts are more directed by generating maximal sets

of compatible rare nets. Due to our formulation, we achieve better

coverage but with orders of magnitude fewer test patterns than

TGRL (see Section 4).

Feasibility of using a SAT solver. We use a SAT solver for the

compatibility check during training and for generating test patterns

from the maximal sets of compatible rare nets provided by the RL

agent. Nevertheless, our technique is scalable for larger designs (as

evidenced by our results) because: (i) During training, we reduce

the runtime of using the SAT solver as we generate a dictionary

containing the compatibility information offline in a parallelized

manner. (ii) When generating the test patterns, we only require

invoking the SAT solver 𝑇 times, where 𝑇 is the required number

of test patterns. Hence, even for large benchmarks like MIPS, we
can generate test patterns that outperform all the HT detection

techniques in less than 12 hours.

Meta-learning.We generated test patterns for individual bench-

marks using separate agents. Since the training time of our agents

for all benchmarks is less than 12 hours, it is practical to use our

technique. As part of future work, we would like to explore the

principles of designing a standalone agent that can be trained on a

corpus of benchmarks once and be used to generate test patterns

for unseen benchmarks. To that end, we plan to extend the current

framework by using principles from meta-learning.

5
The authors of TGRL did not provide us the test patterns for thresholds other than

0.1. Hence, we do not compare with TGRL for other threshold values.

6 CONCLUSION
Prior works on trigger activation for HT detection have shown

reasonable trigger coverage, but they are ineffective, not scalable,

or require a large number of test patterns. To address these limita-

tions, we develop an RL agent to guide the search for optimal test

patterns. However, in order to design the agent, we face several

challenges like inefficiency and lack of scalability. We overcome

these challenges using different features like masking and boosting

exploration of the agent. As a result, the final architecture generates

a compact set of test patterns for designs of all sizes, including the

MIPS processor. Experimental results demonstrate that our agent

reduces the number of test patterns by 169× on average while im-

proving trigger coverage. Further evaluations show that our agent

is robust against increasing complexity. Our agent maintains steady

trigger coverage for different trigger widths, whereas the state-of-

the-art technique’s performance drops drastically. Our agent also

maintains performance against the increasing number of possible

trigger combinations. Although this work demonstrates the power

of RL for trigger activation, the challenges related to scalability

and efficiency are not specific to the current problem. The ways in

which we overcame the challenges can be used to develop better

defenses for other hardware security problems.
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