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Abstract

We develop a general formalism for treating radiative degrees of freedom near

I +
in theories with an arbitrary Ricci-flat internal space. These radiative modes

are encoded in a generalized news tensor which decomposes into gravitational, elec-

tromagnetic, and scalar components. We find a preferred gauge which simplifies the

asymptotic analysis of the full nonlinear Einstein equations and makes the asymp-

totic symmetry group transparent. This asymptotic symmetry group extends the

BMS group to include angle-dependent isometries of the internal space. We apply

this formalism to study memory e↵ects, which are expected to be observed in future

experiments, that arise from bursts of higher-dimensional gravitational radiation. We

outline how measurements made by gravitational wave observatories might probe

properties of the compact extra dimensions.
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1 Introduction

Perhaps the most robust prediction of string theory is the existence of extra spatial dimen-

sions. Perturbative string theory requires ten spacetime dimensions while non-perturbative

string theory predicts an eleventh dimension. In this era of gravitational wave astronomy, it

is exciting to explore ways of probing the extra dimensions found in either string theory, or

other theories of higher-dimensional gravity. Gravitational wave observatories, like LIGO,

measure features of the gravitational radiation produced by mergers of compact objects

like black holes, neutron stars or even more exotic possibilities. The goal of this work is to

begin to explore which features of the internal compactification space might be accessible

through gravitational signatures. Probing the structure of compactified dimensions usually

requires high energies. Unlike our usual intuition from particle physics correlating high

energy with small wavelengths, gravity o↵ers potential probes of short distance physics via

black holes, where higher energy means larger objects.

The goal of this work is two-fold: first we will describe how LIGO and future gravita-

tional wave observatories can see universal signatures of new physics at very low frequencies.

By new physics we mean sources of stress-energy which can be treated as e↵ectively null;

for example, highly energetic low mass particles. At zero frequency, there is an observ-

able called gravitational memory which is sensitive to new sources of stress-energy. Future

experiments have a reasonable likelihood of measuring the memory e↵ect [1–3]. This is

certainly not the only potential observable of interest! The gravitational waveform itself

encodes more data about new physics, including any potential extra dimensions. How-

ever, analyzing the full waveform typically requires more model-dependent inputs and a

numerical study.

The second goal is defining gravitational radiation in a reasonably precise way in com-

pactified spacetimes. Defining gravitational radiation is a non-trivial exercise which was

solved in four-dimensional asymptotically flat spacetime in classic work of Bondi, Metzner

and Sachs [4–6]. One of the outcomes of that work was the enlargement of the asymp-

totic Poincaré group to the infinite-dimensional BMS group that includes supertransla-

tions, which we will review shortly.1 A complete analysis of gravitational radiation in

all non-compact spacetime dimensions appears in [7], building on the earlier work of [8, 9].

Somewhat surprisingly, gravitational radiation for spacetimes with compact dimensions has

not yet been studied beyond linearized gravity, or in the special case of a circle compacti-

1
These supertranslations have no connection to supersymmetry. This is just an unfortunate clash of

nomenclature.
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fication [10–12]. As in the non-compact case, a full nonlinear analysis is needed to define a

notion of radiated power per unit angle, which gives energy-momentum loss as well as the

null memory contribution to the total memory e↵ect [13].

The simplest compactified space we might imagine is a circle or a torus. From that

example studied in section 6.2 we will unify scalar [14], electromagnetic [15–17] and grav-

itational [13, 18] notions of memory in the spirit of Kaluza and Klein. In section 6.3 we

sketch how this approach can be used to derive memory for non-abelian gauge theories,

discussed for example in [19], from a higher-dimensional gravity theory compactified on

a space with a non-abelian isometry group. String theory suggests a richer class of com-

pactification spaces, described below in section 1.2, with a first generalization from tori

to Ricci-flat spaces. In their full glory, however, the vacuum solutions are quite intricate

warped spacetimes. In this analysis we largely focus on the case of unwarped Ricci-flat

spacetimes where the analysis is more tractable. Well-known examples of this type in-

clude manifolds of special holonomy like G2 manifolds used in M-theory compactifications

and Calabi-Yau 3-folds used in string compactifications. However we are not restricting

to supersymmetric vacuum configurations in this analysis. We consider general Ricci-flat

compactifications, which do not necessarily have special holonomy. For a recent discussion

about Ricci-flat spaces which do not have special holonomy, see [20].2 For warped com-

pactifications where four-dimensional e↵ective field theory still makes sense, we expect a

qualitatively similar picture to the Ricci-flat case with a suitable change in the e↵ective

null stress-energy generated from the compact dimensions.

To introduce the memory observable, consider 3 + 1 spacetime dimensions and pure

Einstein-Hilbert gravity with no additional sources of stress-energy:

S =
1

16⇡G

Z
d4x

p
�gR. (1.1)

An asymptotically flat metric is conveniently written in terms of Bondi coordinates (u, r, ✓)

adapted to outgoing null directions. This coordinate system is depicted in figure 1. The

2
While less familiar than the special holonomy Ricci-flat spaces which preserve supersymmetry, it is not

hard to construct non-supersymmetric examples along the following lines: take a K3 surface that admits an

involution which does not preserve the holomorphic 2-form and may have fixed points. Consider the space

(K3 ⇥ Tk
)/G where the quotient group G acts on the K3 surface as just described, and simultaneously

on the torus by translations so that G is freely acting. Similar examples can be constructed without tori,

sometimes at the expense of the spin structure, by taking special holonomy spaces that admit fixed-point

free involutions and considering the resulting quotient space; the Enriques surface, constructed as a Z2

quotient of a K3 surface, is of that type.
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✓A are coordinates for the two-sphere at null infinity with unit round metric qAB. In Bondi

gauge, grr = grA = 0 and @r{det(gAB)} = 0. The metric with signature (�,+,+,+) then

takes the form

ds2 =

(
⌘µ⌫ +

X

n

h(n)
µ⌫

rn

)
dxµdx⌫ ,

=� du2 � 2dudr + qABe
AeB +

2mB(u, ✓)

r
du2 +

h(1)
AB(u, ✓)

r
eAeB +O

✓
1

r2

◆
, (1.2)

where eA = rd✓A and mB is the Bondi mass aspect. The radiative degrees are encapsulated

by the “news” tensor which is given by

NAB(u, ✓) =

✓
qA

CqB
D � 1

2
qABq

CD

◆
@uh

(1)
CD(u, ✓). (1.3)

Memory can be viewed as the displacement of an array of freely floating test masses located

near null infinity created by the passage of a gravitational wave. The full memory e↵ect is

given in terms of the news tensor:

�AB(✓) ⌘
1

2

Z 1

�1
du0NAB(u

0, ✓). (1.4)

Memory can be decomposed into two contributions [21]: the first is an “ordinary” con-

tribution produced by the change in the mass multipole moments of the radiation source;

for example, a black hole binary merger. This contribution can be seen in a weak field

linearized gravity approximation [18]. There is also a more subtle “null” memory e↵ect

produced by the energy flux that reaches null infinity [13].

Figure 1: A depiction of Bondi coordinates.
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1.1 Four-dimensional e↵ective field theory

The first question we might ask is how a gravitational wave detector might see a sign of

new physics. Let us suppose that far away from sources and near the detector, the vacuum

Einstein equations are applicable. On the one hand, the memory e↵ect is given by the news

tensor via (1.4). Let us model the detector as a collection of test particles near null infinity.

At leading order in 1
r , the displacement of the test particles in the angular directions is

given by

⇠A = ⇠(0)A (✓) +
⇠(1)A (u, ✓)

r
+O

✓
1

r2

◆
, (1.5)

where the initial positions are given by ⇠(0)A . Near null infinity, ⇠(1)A (u, ✓) is determined by

the geodesic deviation equation which implies that the relative accelerations of the test

particles with respect to retarded time is given by:

@2⇠(1)A

@u2
= �R(1)

uAuB⇠
B
(0). (1.6)

This component of the Riemann tensor at leading order in 1
r can be expressed in terms of

the Bondi news giving the relation,

@2⇠(1)A

@u2
=

1

2
@uNAB(u, ✓)⇠

B
(0)(✓). (1.7)

An elementary derivation of this formula can be found in section 6. The displacement of

the “arms” of the detector as a function of retarded time is

�⇠(1)A (u, ✓) =
1

2

Z u

�1
du0 NAB(u

0, ✓)⇠B(0)(✓). (1.8)

For convergence of this integral for all retarded time, we assume the news tensor decays in

the far past/future as NAB ⇠ O
⇣

1
|u|1+✏

⌘
for ✏ > 0. The memory e↵ect is given by,

lim
u!1

�⇠(1)A (u, ✓) = �AB(✓)⇠
B
(0)(✓). (1.9)

On the other hand, assuming the vacuum Einstein equations one finds that

DADB�AB = 2�mB(✓) +
1

4

Z 1

�1
duNAB(u, ✓)N

AB(u, ✓), (1.10)

where DA is the covariant derivative on the unit 2-sphere. In principle this formula can be

inverted to get the memory tensor �AB. The first term on the right hand side of (1.10) is
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the change in the Bondi mass aspect, which captures the ordinary memory contribution. In

principle, the ordinary memory can be determined from data by comparison with simulated

wave-forms. The second term is the null memory contribution. This is proportional to the

power radiated per unit angle. For a binary black hole merger the contribution of the

null memory is roughly ⇠ 103 times larger than the ordinary memory [22]. Therefore, the

dominant contribution to eq. (1.10) is the null memory term.

The upshot is that the news can be extracted from the arm motion via (1.8) and then

used for a second evaluation of the expected memory using (1.10), which assumes the

vacuum Einstein equations. If this computation of the memory disagrees with observation,

there must be some other physics a↵ecting the detector.

Minimally-coupled stress-energy

First imagine a situation with a single distinguished metric, namely the Einstein-frame

metric g, and some matter stress-energy Tµ⌫ which might, for example, be governed by an

action SM coupled to this metric:

S =
1

16⇡G

Z
d4x

p
�gR + SM(g). (1.11)

As usual, the Hilbert stress tensor is given by Tµ⌫ = �
⇣

2p
�g

⌘
�SM
�gµ⌫ . In this situation, (1.10)

is augmented by a contribution from null stress-energy given below,

DADB�AB(✓) = 2�mB(✓) + 8⇡

Z 1

�1
du

✓
T (2)
uu +

1

32⇡
NABNAB

◆
, (1.12)

where T (2)
uu (u, ✓) ⌘ lim

r!1
r2 Tuu(u, r, ✓). In addition to (3.4), the derivation of (1.12) assumes

that the stress-tensor decays like O
�

1
r2

�
and obeys the dominant energy condition: namely,

that Tµ⌫v⌫ is time-like or null for any time-like or null vector vµ. This modified relation has

been proposed as a way of detecting the contribution of neutrino radiation to the memory

e↵ect [23].

Jordan-frame stress-energy

The other case of interest to us is the situation where there are scalar fields, collectively

denoted �, and the matter sector couples to a Jordan-frame metric g(J) distinct from the

Einstein metric. We can model this situation by the action,

S =
1

16⇡G

Z
d4x

p
�gR +

Z
d4x

✓
�1

2
@µ�@µ�� V (�)

◆
+ SM(g(J)), (1.13)
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where g(J)µ⌫ = e!(�)gµ⌫ and !(�) is a scale factor that depends on the scalar fields �. For

example, Brans-Dicke theory is of this type with a single scalar field �, and a function !

proportional to �; a nice discussion of memory and asymptotically-flat solutions for Brans-

Dicke theories can be found in [24]. The choice of Jordan frame metric is ambiguous up to

a shift of the scale factor ! by a constant. For convenience we will choose this constant so

that !(�) vanishes as r ! 1.

It is worth commenting on masses at this point. Any real detector is obviously not

located at I + so a su�ciently energetic flux of low mass particles will e↵ectively behave

like null stress-energy. With this caveat in mind, our analysis will usually assume an

idealized situation where the detector lives near I + and we can treat particles near I +

as massless. To derive an expression for memory, we again assume that the stress tensor

obeys the dominant energy condition with O( 1
r2 ) decay for large r. Similarly any scalar

field � has the following expansion near I +,

� ⇠ �(0) +
�(1)(u, ✓)

r
+O

✓
1

r2

◆
, (1.14)

where �(0) is a constant. Our detector is constructed from the matter sector governed by

SM(g(J)). Geodesic deviation determines how the detector reacts to a burst of gravitational

radiation. For stationary test particles situated near I +, the geodesic deviation is again

described by
@2⇠(1;J)A

@u2
= �R(1;J)

uAuB ⇠
B
(0;J). (1.15)

Here the two superscripts denote the power in the 1/r expansion and Jordan-frame. Al-

though the Jordan-frame metric is not in Bondi gauge described in eq. (3.4), it is still

true that h(1;J)
rr and h(1;J)

rA vanish. For metrics of this form, the relevant component of the

Riemann tensor takes the form

R(1;J)
uAuB = �1

2
@2uh

(1;J)
AB

= �1

2
@2u

⇣
h(1)
AB + !(1)qAB

⌘

= �1

2
@u

�
NAB + @u!

(1)qAB

�
, (1.16)

where in the last line we used the fact that qABh(1)
AB = 0 in Bondi gauge. The arm displace-

ment is now given by

�⇠(1;J)A (u, ✓) =
1

2

Z u

�1
du0 �NAB(u

0, ✓) + @u!
(1)qAB

�
⇠B(0;J)(✓). (1.17)
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Equation (1.17) gives the motion of the arms of the detector moving on a geodesic of the

Jordan frame metric. This motion has a transverse piece due to the contribution of NAB

and a longitudinal piece due to the contribution of the conformal mode @u!(1). This extra

piece is also known as the breathing mode of the gravitational radiation.

If the scalar charge, defined by !(1)(u, ✓) in analogy with (1.14), does not change then

the second term in eq. (1.17) vanishes. In Jordan frame, the memory e↵ect is again given

by:

lim
u!1

�⇠(1;J)A (u, ✓) = �(J)
AB(✓)⇠

B
(0;J)(✓). (1.18)

The news tensor appearing in (1.17) can again be related to the square of the news tensor

via Einstein’s equations,

DADB�(J)
AB = 2�m(J)(✓) + 8⇡

Z 1

�1
du

✓
T (2)
uu (u, ✓) +

1

32⇡
N2(u, ✓)

◆
, (1.19)

where T (2)
uu (u, ✓) is again defined by lim

r!1
r2 Tuu(u, r, ✓) and m(J)(✓) = mB(✓) +

1
2D

2!(1).

The frame-dependence can therefore contribute to the memory in competition with null

stress-energy as long as the associated scalar fields can be treated as massless.

Higher-derivative interactions

Any e↵ective description for a theory of quantum gravity will have higher derivative in-

teractions. These interactions are crucial for constructing vacuum solutions with flux in

string theory, which we will discuss in section 1.2. In this work, we will not take into

account higher derivative interactions in the full higher-dimensional theory. That is a very

di�cult problem to address. Rather we will consider higher derivative interactions in the

four-dimensional e↵ective theory. As long as we can reduce to an e↵ective four-dimensional

description, this should cover any possible observable e↵ects from these couplings.

Let us consider purely gravitational corrections to the Einstein-Hilbert action, which

take the schematic form:

S =
1

16⇡G

Z
d4x

�p
�gR +O(R2) +O(R3) + . . .

�
. (1.20)

The higher derivative corrections are suppressed by some scale. We want to answer the

question: which combinations of curvatures could possibly a↵ect memory? Memory is

determined by terms that decay at O( 1
r2 ) near I +. The Riemann tensor for the metric (3.4)

decays like 1
r . Any contractions of Riemann with metrics will also decay at O(1r ) or faster.

This means that terms of O(R3) are already decaying too fast to a↵ect memory. On the

other hand, terms of O(R2) deserve further investigation.
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At the four derivative order there are two topological couplings, the Pontryagin density

and the Euler density, proportional to
Z

Tr
⇣
R̂ ^ R̂

⌘
,

Z
Tr

⇣
R̂ ^ ⇤R̂

⌘
, (1.21)

where R̂ is the curvature 2-form. These terms do not a↵ect either the equations of motion,

or memory. One might imagine adding an axion coupling of the sort
R
�̂Tr

⇣
R̂ ^ R̂

⌘
for

an axion �̂, but such a coupling decays at O( 1
r3 ) because the non-constant behavior of the

axion is O(1r ). That leaves the combinations

Z p
�gR2,

Z p
�gRµ⌫R

µ⌫ ,

Z p
�gRµ⌫�⇢R

µ⌫�⇢. (1.22)

However the first two terms can be field redefined away. The third term is related to the

Euler density, which is proportional to R2� 4Rµ⌫Rµ⌫ +Rµ⌫�⇢Rµ⌫�⇢, and therefore the third

term can also be ignored. Based on this discussion, it appears that memory is insensitive

to higher derivative corrections.

1.2 Compactified spacetimes

There are really three separate facets to the question of exploring compactified dimensions

using gravitational radiation. The first question one might ask is what class of spacetimes

should we consider? The simplest Kaluza-Klein spacetime is higher-dimensional Minkowski

space compactified on a torus; for example, five-dimensional Minkowski space compactified

on a circle of radius R. This is a very useful example for exploring basic phenomena encoun-

tered in higher dimensions. String theory, however, suggests a richer class of spacetimes

used in the construction of the string landscape. While there is much debate about the

string landscape, we will stick with elements of the underlying string constructions that are

most likely to survive in the future.

The main surprise that string theory o↵ers to a general relativist interested in radi-

ation is the need to consider warped compactifications to four dimensions with vacuum

configurations of the form,

ds2 = e�'(y)⌘ + e'(y)ds2Mint
(y), (1.23)

where ⌘ is the D = 4 Minkowski metric, ds2Mint
is the metric for a Ricci-flat internal

space Mint with coordinates y, and '(y) is the warp factor [25]. There are also higher

form flux fields that thread both the internal space and spacetime, which can be viewed

9



as conventional sources of stress-energy. Gravitational waves in warped backgrounds of

this type have been studied in [26, 27]. For a compact Mint, this metric does not solve

the spacetime Einstein equations without the inclusion of exotic ingredients like orientifold

planes and higher derivative interactions. These ingredients exist in string theory. At higher

orders in the derivative expansion of the spacetime e↵ective action, the conformally Ricci-

flat form of the internal space metric (1.23) is not preserved, but this form is a su�ciently

good approximation for our discussion of radiation.

Without some additional quantum ingredient, the semi-classical background (1.23) is

part of a family of solutions obtained by rescaling the internal space ds2Mint
! � ds2Mint

for

any � > 0 with an accompanying change in the warp factor. So there is a large volume limit

for the internal space when � is large. In this limit, the warp factor approaches a constant,

and the higher-dimensional spacetime approaches a product manifold. It is important to

note, however, that the warp factor can still have regions of large variation in Mint.

The most tractable and heavily studied backgrounds M preserve spacetime supersym-

metry. The expectation is that spacetime supersymmetry is spontaneously broken below

the compactification scale. For a set of examples of this type, Mint is obtained from the

geometry of a Calabi-Yau 4-fold with some additional structure. Such spaces are complex

Kähler Ricci-flat manifolds with potentially many shape and size parameters, which corre-

spond to massless scalar fields in spacetime. The scalar fields that determine the complex

structure of Mint typically get a mass from the fluxes that thread the space [25].3 This mass

scale, Mflux, can be significantly lighter than the Kaluza-Klein scale of the compactification,

denoted MKK .

Let us get a rough feel for the numbers involved. If we assume an upper bound on the size

of any compact dimension of roughly order microns, or equivalently eV, from gravitational

bounds [29] to approximately 10�18 m or a TeV from collider bounds [30], and six compact

dimensions then the ten-dimensional Planck scale takes the rangeMD=10
p ⇠ 10 keV�10TeV.

Of course, the size of any compact dimensions might be much smaller than this upper bound.

We expect scalars from the complex structure moduli to get masses of order

Mflux ⇠
(MKK)

3

M2
s

, (1.24)

where Ms is the string scale. For a string coupling of order one, the string scale and Planck

3
See [28] for evidence that this might not be generically true for all the complex structure moduli when

the number of such moduli is large.
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scale are comparable: Ms ⇠ MD=10
p . In this case,

Mflux ⇠
(MKK)

3/2

M1/2
p

, (1.25)

whereMp is the observed four-dimensional Planck scale. The scalars then have a mass in the

range of 10�14�104 eV for a Kaluza-Klein scale ranging from 1 eV�1TeV.4 This is a huge

range of masses but it certainly includes masses light enough that we can simply ignore the

mass and treat the scalar as massless for the purposes of detection by a gravitational wave

detector. The last point to mention about the complex structure moduli is the number of

such moduli. From known constructions of Calabi-Yau 4-fold geometries, there are examples

with of O(105) such moduli [34, 35].5

There is one other notable feature of the flux compactifications described by (1.23).

Namely they are warped compactifications with a warp factor e'(y) which can have a very

large variation. Such compactifications can look very asymmetric because of the presence

of strongly warped throats in the geometry [38]. The primary reason for interest in such

throats is to generate small scales from the Planck scale to solve the hierarchy problem

in the spirit of the Randall-Sundrum model [39], although in the context of an actual

compactification from string theory.

In addition to generating hierarchies in the four-dimensional e↵ective theory, this has

potentially interesting consequences for exotic compact objects, specifically objects local-

ized in higher dimensions. There is no complete understanding of how large the warp

factor might become in flux vacua, largely because it is very di�cult to find semi-classical

compact flux solutions, which are necessarily supersymmetric backgrounds. However, it is

reasonable to expect a variation in the warp factor at least large enough to account for the

O(1016) hierarchy between weak scale physics of O(103)GeV and Planck scale physics of

O(1019)GeV. In principle, the variation of the warp factor could be much larger because

the D3-brane tadpole found in F-theory on a Calabi-Yau 4-fold [40, 41], which determines

the maximum amount of background flux, can be as large as O(104) in known examples.

The background flux, together with gravitational curvature terms, source the harmonic

equation satisfied by the warp factor.

4
Masses at the very low end of this range will be constrained by bounds from superradiant instabilities

from spinning black holes. This lower bound is in the range of 10
�11

eV; see, for example [31, 32]. For a

recent discussion of superradiance in string theory, see [33].

5
The currently largest known value of the Hodge number, h3,1

, which determines the number of complex

structure moduli for a Calabi-Yau 4-fold is 303148 found in [36, 37]. We would like thank Wati Taylor and

Jim Halverson for discussions on moduli bounds.
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The upshot of this stringy top down look at compactified extra dimensions is that there

can be many scalar fields with masses potentially below the Kaluza-Klein scale. We now

turn to what kinds of compact objects might be sensitive to either these scalar fields, or

directly to the existence of additional dimensions.

1.3 Compact objects in higher dimensions

Delocalized Compact Objects

In this work we want to study dynamical spacetimes which arise from the motion of compact

objects. These objects might be stars or black holes in manifolds with compact extra

dimensions. At a coarse level, there are two distinct categories of compact object we

might study. The first are objects constructed strictly from the light degrees of freedom

with masses below the Kaluza-Klein scale; for example, from the potentially light scalars

discussed in section 1.2. This class of compact object is essentially delocalized in the internal

dimensions. We should be able to study the physics of these modes in four-dimensional

e↵ective field theory discussed in section 1.1.

Surprisingly, even in this setting there are exotic compact objects that can support scalar

hair, which is our basic signature of extra dimensions. The first are Bose stars reviewed

in [42]: no particularly exotic ingredients are needed to construct Bose stars other than

a complex scalar field. The scalar field is not static but the associated spacetime metric

is static. It is interesting to note that the moduli scalar fields that arise in most string

compactifications are naturally complex scalar fields because most such vacua give a low-

energy supergravity theory. Gravitational radiation from binary boson star systems has

been studied in [43].

Closely related to Bose stars are gravitational atoms and molecules, which are clouds of

scalar fields or massive vector fields surrounding a black hole, or a black hole binary [44, 45].

Included in these configurations are Kerr black holes with scalar hair, which interpolate

between Kerr black holes and rotating Bose stars [46]. This is already a rich phenomenology

of exotic compact objects, which are sensitive to light scalar fields.

Circle compactification

The second category of compact object is at least partially localized in the internal di-

rections. Our basic intuition follows from compactification on a circle of radius R. Black

hole uniqueness theorems are considerably weaker above four dimensions, and it is useful
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to characterize the black objects we wish to study based on their localization properties. A

black string solution is simply a D = 4 black hole which knows nothing about the internal

space. It is a delocalized solution admitting a space-like Killing vector generating rotations

of the S1.

The other extreme is a black hole which is highly localized on the internal space, breaking

the U(1) isometry. Black holes with a size small compared to R look locally like a D = 5

Myers-Perry solution [47]. Solutions with mass M are dynamically stable only for a certain

range of the ratio M/R because of the Gregory-Laflamme instability [48]. The entropy

serves as a thermodynamic diagnostic for stability. For a fixed mass M , black strings have

an entropy that scales like SBS ⇠ M2 while D = 5 black holes have an entropy that scales

like SBH ⇠ M2
p

R/M [49]. For large R, the localized black hole configuration is the

preferred solution.

Astrophysical black hole mergers detectable by LIGO have constituent masses of roughly

O(10) solar masses, which corresponds to a distance scale of O(104)m. This is ten orders

of magnitude larger than the best upper bound on the Kaluza-Klein scale. M is clearly

much greater than the range of Kaluza-Klein scales discussed in section 1.2, and therefore

one should expect that the generic compact object will be delocalized.

For circle compactifications, the binary merger of black holes localized at a point was

studied in [50, 51] using a point particle approximation. With no other ingredients, the

massless degrees of freedom in four dimensions are a graviton, a Kaluza-Klein scalar and a

graviphoton. The luminosity of gravitational waves released in the merger process is about

20% less than the merger of four-dimensional black holes mainly because of scalar radiation

produced in the merger.

To see this consider R4 ⇥ S1 with coordinates (t, x1, x2, x3, y) and flat metric ds2 =

⌘µ⌫dxµdx⌫ + dy2, where y ⇠ y + 2⇡R. In linearized gravity, the stress-energy for a point

particle of mass m and world-line given by XM(⌧) with a�ne parameter ⌧ is given by:

TMN(X) = m

Z
d⌧ẊMẊN�(5)(X �X(⌧)). (1.26)

The indices (M,N, . . .) run over all the spacetime dimensions while (µ, ⌫, . . .) run over four-

dimensional quantities in accord with the conventions spelled out later in section 1.5. For

a particle moving only in R4, Ẋy(⌧) = 0.

The massless scalar field in four dimensions is the zero mode of �gyy = hyy where gMN

is the full spacetime metric. By this we mean Fourier expand the fluctuation hyy in the y

direction and restrict to the zero mode. We will denote the zero mode by a barred quantity
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hyy. In linearized gravity, this is sourced by the zero mode of the stress tensor,

⇤⌘hyy = �8⇡

✓
T yy � ⌘µ⌫T µ⌫

◆
, (1.27)

where ⇤⌘ = ⌘µ⌫@µ@⌫ . For the stress-tensor given in (1.26), T yy = 0 and the right hand side

of (1.27) is non-zero, leading to the mismatch with experiment. The situation gets worse

with more compact dimensions. Taken at face value, this would seem to rule out this simple

model of compact extra dimensions.

However, we do not expect astrophysical black holes to be localized in a model like this

because of the Gregory-Laflamme instability: the black holes are much larger than any

extra dimension. Much more likely is a completely delocalized black string wrapping the

y direction. For a string with induced metric �ab = @aXM@bXNgMN and tension µ, the

stress-energy tensor is given by

TMN = µ

Z
d� d⌧

p
�� �ab@aXM@bX

N �(5)(X �X(�, ⌧)) . (1.28)

Choosing gµ⌫ = ⌘µ⌫ and fixing static gauge for the wrapped string (� ⇠ y, ⌧ ⇠ t) gives

T yy = 2⇡µR

Z
d⌧ �(4)(X �X(⌧)) , (1.29)

with 2⇡µR = m. This makes the right hand side of (1.27) vanish as we expect for a model

that replicates a standard D = 4 black hole.

Using this observation we can actually construct a model for a D = 4 particle, at the

level of hydrodynamics, which interpolates between the black string and the completely

localized black hole. Consider the stress tensor with a�ne parameter ⌧ given by,

T µ⌫(X) = m

Z
d⌧ẊµẊ⌫�(5)(X �X(⌧)) , T yy

✏ (x) = ✏m

Z
d⌧ �(4)(X �X(⌧)). (1.30)

This is conserved. It is a hybrid of a D = 5 point particle with a uniform stress on the

y circle. For ✏ = 0, this is the D = 5 point particle while for ✏ = 1, the right hand side

of (1.27) vanishes and the zero mode of T µ⌫(X) coincides with the black string (1.28). For

intermediate ✏, this will result in a D = 4 particle with some scalar charge that will generate

some scalar radiation. However, the amount is tunable. We would expect more complicated

stress-energy distributions in the y direction for configurations corresponding to arrays of

D = 5 black holes and non-uniform black strings. The upshot is that there are many

potential stress tensors that could describe black objects in R4 ⇥ S1 with varying amounts
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of scalar charge from the D = 4 perspective, whose dynamics can be made consistent with

current observation.

The circle is a very special example of a compactification. For the more general warped

backgrounds described in section 1.2, there is an exciting possibility of novel phenomena.

One might imagine localized black objects, analogous to theD = 5 black hole just discussed,

which are globally unstable because of a Gregory-Laflamme type argument, but which

are nonetheless long lived because of the local behavior of the warp factor. It would be

interesting to explore this possibility further.

1.4 Signatures of compact dimensions

In Section 1.1 we saw that memory can be used to detect new physics. More precisely,

given a particular model of the stress-energy in a theory, gravitational observatories can

make independent measurements of arm motion and of gravitational memory, and then

compare these measurements; disagreement indicates a missing contribution to the stress-

energy. Such a missing contribution could come from various sources, including additional

light fields in the theory or a matter coupling to a Jordan frame metric which di↵ers from

the Einstein frame metric. However, for the purposes of the current work, we are most

interested in the possibility that a discrepancy in these measurements could arise from the

presence of compact extra dimensions.

In a theory with extra dimensions, we will show that the radiative degrees of freedom

near I + are encoded in a generalized news tensor written as Nab, where the indices a, b now

run over both the the asymptotic 2-sphere S2 and the internal space Mint. The components

NAB will encode the familiar Bondi news contribution NAB as well as an additional scalar

breathing mode N which give rise to gravitational radiation in the non-compact directions.

However, we will see that a generic internal manifold will support additional radiative

modes encoded in NAm and Nmn, which involve fluctuations in the directions of the internal

manifold Mint. Viewed from the perspective of a macroscopic observer in R4, the additional

modes in NAm and Nmn are precisely the radiative degrees of freedom for electromagnetic

gauge-fields and light scalars, respectively. This implies that there is an electromagnetic

memory e↵ect and a scalar memory e↵ect associated with these additional modes.

In theories with these extra modes arising from compact dimensions, the null stress
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energy appearing in equation (1.12) receives additional contributions; one now has

DADB�AB = 2�m(✓) + 8⇡

Z 1

�1
du

✓
T (2)
uu (u, ✓) +

1

32⇡
NABN

AB

◆
,

T (2)
uu (u, ✓) ⌘ T (2)

uu (u, ✓) +
1

32⇡

�
NAmNAm +NmnNmn +N2

�
. (1.31)

Here N is associated with a breathing mode of the internal space which is a scalar degree

of freedom. Therefore, for a particular model for the null stress energy T (2)
uu that should

contribute to memory, the presence of extra compact dimensions will generate a discrepancy

between the predicted and measured memory e↵ects. This discrepancy is captured in the

four-dimensional e↵ective stress tensor T (2)
uu , which includes the electromagnetic and scalar

contributions from the higher-dimensional gravity modes.

We can extract more data about these contributions from a di↵erent class of measure-

ments. The ordinary electromagnetic and scalar memory e↵ects generate a velocity kick

for a suitable charged test particle. Even without any abelian charge or extra dimensions,

gravity generates a similar velocity kick for a test particle. Likewise, in theories with extra

dimensions, a particle with velocity in the internal directions will experience a velocity kick

in R4 because of the passage of gravitational radiation in the internal space.

Measuring these velocity kicks requires a di↵erent experimental design than is typical

for current gravitational observatories, which study geodesic deviation for pairs of point

particles. Instead, if one can measure the trajectory of point particles – even a single

point particle – undergoing geodesic motion, relative to a lab frame which is stationary

in an appropriate sense, then one can in principle extract all of NAm and a part of Nmn

described in section 6. These additional sources of news are the primary signatures of extra

dimensions we might hope to see with memory measurements alone.

1.5 Conventions

Unless otherwise specified, we work in units where G = c = ~ = 1, and follow the con-

ventions of [52]. Our metric signature is mostly positive and our sign convention for cur-

vature is such that the scalar curvature of the round sphere metric is positive. The full

D-dimensional spacetime manifold, denoted M , has the topology M = R4 ⇥ Mint where

R4 is a four-dimensional Lorentzian manifold and Mint is a (D � 4)-dimensional compact

Riemannian manifold. Our index conventions are listed below:

• Indices (M,N,L, . . . ) run over the full spacetime manifoldM with metric gMN and co-

variant derivative rM . The Riemann tensor associated to the metric gMN is RMNP
Q.
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• Indices (µ, ⌫, �, . . . ) run over R4, and are raised and lowered with the asymptotic

Minkowski metric ⌘µ⌫ . We denote the covariant derivative compatible with ⌘µ⌫ by @µ.

• Indices (m,n, l, . . . ) run over Mint, and are raised and lowered with metric ĝmn. The

covariant derivative compatible with ĝmn is Dm. The Riemann tensor of ĝmn is Rmnp
q

which has vanishing Ricci: ĝmpRmnp
q = 0.6

• Indices (A,B,C, . . . ) run over S2, and are raised and lowered with the round metric

qAB. The covariant derivative compatible with qAB is DA.

• Lastly indices (a, b, c, . . . ) run over S2 ⇥ Mint, and are raised and lowered with the

product metric qab given by q = q � ĝ.

Indices for tensors on M are raised and lowed with the asymptotic Ricci-flat product metric

which we denote by a hat,

ĝMNdx
MdxN = ⌘µ⌫dx

µdx⌫ + ĝmn(y)dy
mdyn, (1.32)

where xM = {xµ, ym} are arbitrary coordinates on R4 and Mint, respectively. We also

use these conventions to denote coordinates on submanifolds like S2 or S2 ⇥Mint, as well

as components in a coordinate basis. We will use the same index notation for tensors

which are intrinsic to a submanifold and the components of an ambient tensor along a

submanifold; for example, the tensor TMN defined on the full spacetime M has angular

components TAB(x, y) while the intrinsic tensor tAB(✓) lives on S2. We do not feel the

potential confusion that might arise from doing this justifies introducing a new alphabet.

To simplify keeping track of powers of 1
r , we will expand tensors in a normalized basis,

which in Bondi coordinates is {du, dr, eA = rd✓A, dym}. This is a little di↵erent from the

more common convention found in [24, 53–55]. As an explicit example consider the one-form

on the sphere with coordinates ✓A,

Vµ dx
µ = vA(✓) d✓

A =

✓
vA(✓)

r

◆ �
r d✓A

�
, (1.33)

for some vA(✓). With this choice of basis, the O(1r ) term V (1)
A = vA(✓) is non-zero. When

we perform asymptotic expansions near I +, as in eq. (3.4), we will use a superscript to

indicate a term at a given order in 1
r , keeping in mind the preceding convention for angular

6
That ĝmn is Ricci-flat follows from our fall-o↵ ansatz given in eq. (3.5) and the Einstein equations.

17



directions. For example, a scalar field � would be expanded as follows,

� =
1X

n=0

�(n)

rn
. (1.34)

Lastly, given a tensor on Mint we can expand in eigenmodes of the appropriate Lapla-

cian. It will be useful to denote the zero mode in such a harmonic expansion by a bar.

For example, given a function t(xµ, ym) on M the zero mode is denoted by t(x). This zero

mode solves D2t = 0 where D2 ⌘ ĝmnDmDn is the scalar Laplacian on Mint. Similarly

for a 1-form tM(x, y) we denote the zero modes by (tµ(x, y), tm(x, y)), while the zero modes

of a symmetric 2-tensor tMN(x, y) are denoted (tµ⌫(x, y), tµm(x, y), tmn(x, y)). For Ricci-

flat manifolds, this kind of harmonic decomposition simplifies considerably as we review in

section 2.

2 Review of Linearized Dimensional Reduction

The topics under discussion in this work are of potential interest to multiple communities,

including string theorists, general relativists, quantum field theorists and gravitational wave

astronomers. To make the work as self-contained as possible, we will review techniques that

are more familiar to a specific community.

The usual procedure of dimensional reduction is to start with a vacuum configuration

which we take to be a D-dimensional product manifold,

M = R4 ⇥Mint, (2.1)

where R4 is the non-compact Lorentzian spacetime, and Mint is the (D � 4)-dimensional

compact Riemannian internal space. We will also take Mint to be connected and closed

(i.e. compact without boundary). M is equipped with the product metric

ĝMNdx
MdxN = ⌘µ⌫dx

µdx⌫ + ĝmn(y)dy
mdyn, (2.2)

where ⌘µ⌫ is the Minkowski metric, ĝmn(y) is a Ricci-flat metric on Mint and xM = {xµ, ym}
are coordinates on R4 and Mint, respectively. Our discussion does not involve fermions so

we will not worry about issues like a spin structure.

Let us consider pure gravity with the Einstein-Hilbert action on the total spacetime

manifold M :

S =
1

2

Z

M

dDx
p
�g R. (2.3)
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The supergravity theories that describe low-energy limits of string theory have additional

fields, which we will ignore for the moment, to focus on the graviton. We will discuss

dimensional reduction for linearized metric perturbations, which is the usual approach.

This should be contrasted with our later discussion in subsection 4.1 near I +, which is for

the full nonlinear theory.

Consider a linearized perturbation of ĝMN denoted hMN . Let r̂M be the covariant

derivative operator compatible with ĝMN . Imposing the gauge conditions7

r̂MhMN = 0 and ĝMNhMN = 0 (2.4)

yields the linearized Einstein equation in Lorenz gauge:

⇤ĝhMN + 2R̂M
P
N

QhPQ = 0. (2.5)

Here ⇤ĝ ⌘ ĝMNr̂Mr̂N , R̂MPN
Q is the Riemann tensor of the background metric ĝMN , and

indices are raised and lowered with the background metric. The residual gauge freedom

that preserves (2.4) is given by

hMN ! hMN + r̂(M⇠N) where ⇤ĝ⇠M = 0 , r̂M⇠M = 0. (2.6)

Note that the exact (not asymptotic) symmetry group of eq. (2.2) is trivially the direct

product of the Poincaré group (P) and the isometry group (I) of (Mint, ĝmn):

P ⇥ I. (2.7)

For background metric eq. (2.2), the only non-vanishing components of the Riemann ten-

sor are the internal components; therefore the Riemann tensor is equivalent to Rmnp
q on

(ĝmn,Mint).

Consider the projection of eq. (2.5) into R4 and rewrite ⇤ĝ in terms of the derivative

operator @µ compatible with ⌘µ⌫ , and the covariant derivative operatorDm compatible with

ĝmn. This yields

D2hµ⌫ +⇤⌘hµ⌫ = 0, (2.8)

7
Equation (2.4) is a special case of the Lorenz gauge. While Lorenz gauge is useful in studying radiation

in linearized gravity with no null sources, we note that it is incompatible with the
1
r fall-o↵ of the metric

in asymptotically null directions in a general radiating spacetime [7]. The proof of [7] shows that harmonic

gauge, which is the nonlinear generalization of Lorenz gauge, is incompatible with the fall-o↵ conditions in

D-dimensional non-compact spacetimes, but the proof straightforwardly generalizes to cases with compact

extra dimensions using the techniques and formulae in this paper.
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where D2 ⌘ ĝmnDmDn and ⇤⌘ ⌘ ⌘µ⌫@µ@⌫ . Expanding hµ⌫ in terms of eigenfunctions of

the Laplacian on Mint, eq. (2.8) yields an infinite tower of massive modes (one for each

eigenvalue). The mass scale is set by the size of the compact extra dimensions. Since the

goal of this paper is to study radiation with compact extra dimensions we are interested in

either massless fields, or fields with masses below the Kaluza-Klein scale; see the discussion

in section 1.2.

The massless modes hµ⌫ are annihilated by the Laplacian and correspondingly satisfy a

massless wave equation in R4:

D2hµ⌫ = 0 =) ⇤⌘hµ⌫ = 0. (2.9)

The zero-mode hµ⌫ is harmonic on Mint and therefore independent of the internal coordi-

nates y. Projecting both indices of eq. (2.6) into R4 shows that di↵eomorphisms act on the

zero mode hµ⌫ by

hµ⌫(x
µ) ! hµ⌫(x

µ) + @(µ⇠⌫)(x
µ) where ⇤⌘⇠µ = 0, @µ⇠µ = 0, (2.10)

and ⇠µ is the zero-mode of the projection of ⇠M into R4. The massless spin-2 graviton

arising from this reduction is hµ⌫ .

2.1 Vector modes

Analogously, we can study the vector perturbation hµm using the linearized Einstein equa-

tion (2.5). We again collect results here on the massless mode hµm which satisfies

D2hµm = 0. (2.11)

Viewing hµm as a one-form on Mint, we note that solutions to eq. (2.11) are spanned by

the space of one-forms V m on Mint that satisfy

D2V m = 0. (2.12)

Equation (2.12) is a condition on V m in terms of the coordinate Laplacian D2. For any

compact manifold, the coordinate Laplacian on a one-form Vm is related to the Hodge

Laplacian (�(H)) on Vm by the well known Weitzenböck identity for one-forms:

D2Vm = ��(H)Vm + ĝpnRmpVn. (2.13)

Here Vm is a one-form on Mint and Rmp is the Ricci tensor of (ĝmn,Mint). Therefore on

any Ricci-flat manifold, the coordinate Laplacian can be replaced by (minus) the Hodge
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Laplacian when acting on one-forms. Solutions to eq. (2.12) are harmonic one-forms. We

now investigate the properties of solutions to eq. (2.12). First recall the well-known Hodge

decomposition of a one-form.

Proposition 1. Let (Mint, ĝmn) be a compact Riemannian manifold. Any globally defined

one-form Vm can be uniquely decomposed as follows,

Vm = DmS + vm, (2.14)

where Dmvm = 0. We refer to vm and S as the vector and scalar parts of Vm, respectively.

If Vm is harmonic then S must be a constant and consequently, Vm is divergence free.

Further a harmonic V m = ĝmnVn is a Killing vector if Mint is Ricci-flat. To see this, let ⇠n

be a Killing vector on Mint i.e. ⇠m = ĝmn⇠n satisfies D(m⇠n) = 0. Applying Dm to Killing’s

equation and commuting the derivatives yields,

D2⇠m +DmD
n⇠n �Rm

n⇠n = 0. (2.15)

The second and third terms of eq. (2.15) both vanish since Rmn = 0 and ⇠m is divergence

free by Killing’s equation. Therefore if ĝmn⇠n is a Killing vector then ⇠m is indeed harmonic.

To complete the correspondence we now show that if a one-form V m is harmonic then

ĝmnV n is also a Killing vector [56]. Contracting eq. (2.12) with V
m

and integrating over

Mint gives, Z

Mint

DmV
n
DmV n = 0 =) DmV n = 0. (2.16)

Consequently, solutions to eq. (2.12) are covariantly constant and therefore Killing. The

space of solutions to eq. (2.12) is therefore the space of Killing vectors onMint. The number

of linearly independent harmonic one-forms on Mint is counted by the first Betti number,

b1, which is a topological invariant. The preceding observations can be summarized in the

following lemma [56]:

Lemma 1 (Bochner). Let (Mint, ĝmn) be a compact Ricci-flat Riemannian manifold. The

space of harmonic one-forms is then in one-to-one correspondence with the space of Killing

vectors, which are covariantly constant. The dimension of the space of Killing vectors is

b1(Mint).

In the case where b1 > 0, the Ricci-flat space Mint of dimension D � 4 can be written

as a free quotient of Tk ⇥ fMD�4�k
int where fMD�4�k

int is also Ricci-flat [57]. We can now give
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the general solution to eq. (2.11),

hµm(x
µ, ym) =

b1X

i=1

A(i)
µ (xµ)⌦ V

(i)
m (ym), (2.17)

where {V (i)
m } are the b1 linearly independent Killing vectors. The coe�cients A(i)

µ (x) define

a set of b1 graviphoton vector fields on R4. Furthermore, it follows from eqs. (2.4) and (2.5)

that each vector field A(i)
µ (xµ) satisfies the wave equation and is divergence free on R4:

⇤⌘A
(i)
µ = 0 and @µA(i)

µ = 0. (2.18)

Projecting one index of eq. (2.6) into R4 and one index into Mint, and using (2.11) implies

that the gauge freedom of hµm is

hµm �! hµm +
b1X

i=1

[@µ�
(i)(xµ)]V

(i)
m (ym), (2.19)

where �(xµ) is a smooth function on R4, which satisfies the wave equation. This is equivalent

to an abelian gauge transformation on A(i)
µ ,

A(i)
µ (xµ) ! A(i)

µ (xµ) + @µ�
(i)(xµ), ⇤⌘�

(i) = 0. (2.20)

The Lie algebra for these spin-1 massless gauge-fields is determined by the isometry group

of Mint. The isometry group is clearly abelian for Ricci-flat Mint since, by Lemma 1, any

Killing vector is also covariantly constant and therefore the commutator of any two Killing

vectors vanishes.

2.2 Scalar modes

We finally consider the perturbations hmn which satisfy

D2hmn + 2Rm
p
n
qhpq +⇤⌘hmn = 0. (2.21)

Therefore massless perturbations hmn are spanned by the tensor fields on Tmn(ym) which

satisfy

D2Tmn + 2Rm
p
n
qT pq = 0 . (2.22)

The operator acting on Tmn in eq. (2.22) is the Lichnerowicz Laplacian. Equation (2.4)

implies a further constraint on the allowed solutions to eq. (2.22). Expanding the divergence

of hMN in terms of harmonic one-forms implies that

DmTmn = 0. (2.23)
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The space of solutions to eqs. (2.22) and (2.23) is the moduli space of infinitesimal defor-

mations that preserve the vanishing of the Ricci tensor. This moduli space is known to be

finite-dimensional [58].

To further investigate the implications of eqs. (2.22) and (2.23), we first recall a well

known result about the decomposition of symmetric tensors [59]:

Proposition 2. Let (Mint, ĝmn) be a compact Riemannian Einstein space with dimension

D� 4, i.e., Rmn = cĝmn, for some constant c, which includes the Ricci-flat case. Then any

second rank, symmetric tensor field Tmn can be uniquely decomposed as

Tmn = tmn +D(mWn) +

✓
DmDn �

1

D � 4
ĝmnD

2

◆
S +

1

D � 4
ĝmnU, (2.24)

where Dmtmn = 0 = ĝmntmn, DmWm = 0 and U ⌘ ĝpqTpq. We refer to tmn, Wm and (S, U)

as the tensor, vector and scalar parts of Tmn, respectively.

In keeping with our notation, we denote the tensor, vector and scalar parts of Tmn as

tmn, Wm, S and U . This is in accord with our prior notation of denoting harmonic functions

and harmonic one-forms with a bar since, as we shall see, the scalar and vector parts of

Tmn are indeed harmonic. Taking the trace of eq. (2.22) yields

D2U = 0, (2.25)

which implies that U is a constant. Taking the divergence of eq. (2.24) using eqs. (2.23)

and (2.25) then gives
1

2
D2W n =

D � 5

D � 4
DnD

2S. (2.26)

Taking another divergence of eq. (2.26) and using the fact that Wn is divergence-free gives,

(D � 5)D4S = 0. (2.27)

The case D = 5 corresponds to a 1-dimensional Ricci-flat compact space, namely S1. In

this case, tmn = W n = S = 0 and the only modulus is a rescaling of the metric. If D > 5

then eq. (2.27) implies that S is a constant. Equation (2.26) then requires that Wn be

harmonic and, by Lemma 1, it is therefore also Killing. Consequently, Tmn has no vector

part. In addition, its scalar part is constant and determined by its trace. Any solution to

eqs. (2.22) and (2.23) can be uniquely decomposed in the form,

Tmn = tmn +
1

D � 4
ĝmnU, (2.28)

23



where U is a constant while tmn is both trace-free and satisfies eqs. (2.22) and (2.23). The

mode U is the overall breathing mode of the space. The tmn are the volume-preserving

moduli.

Finally, we note the enormous simplification for the case of a torus where Mint = TD�4.

In this case, the Riemann tensor Rmnp
q vanishes and the Tmn are constant. Including the

overall volume modulus, there are 1
2(D � 4)(D � 3) metric moduli. We summarize these

statements about the moduli space of Ricci-flat Riemannian manifolds in the following

lemma:

Lemma 2. Let (Mint, ĝmn) be a compact, Ricci-flat Riemannian manifold. The solutions

Tmn to eq. (2.22) can be uniquely decomposed as in eq. (2.28) where U is a constant and

tmn satisfies Dmtmn = 0 = ĝmntmn. If Mint = TD�4 then tmn is constant.

Therefore, the space of massless linearized perturbations hmn can be decomposed into

a set of dL + 1 scalar fields

hmn =
ĝmn

D � 4
�(x) +

dLX

i=1

�(i)(x)t(i)mn(y), (2.29)

where the scalar field �(x) is associated to the volume mode or breathing mode U , and dL

is the dimension of the moduli space of volume preserving deformations. It is important to

stress that these modes are guaranteed to be massless only in the linearized approximation

with the exception of the volume mode � which is exactly massless.

Finally, the linearized Einstein equations imply that the scalars � and �(i) satisfy the

massless wave equation,

⇤⌘� = 0 and ⇤⌘�
(i) = 0. (2.30)

Di↵eomorphisms of hmn can only be generated by one-forms ⇠m which change the perturba-

tion by D(m⇠n). Using proposition 1, we decompose ⇠m = ⌘m+Dm⇠ with Dn⌘n = 0, which

shows that ⌘m can only a↵ect Wm of (2.24). Similarly, ⇠ cannot a↵ect the zero mode of U .

Consequently the scalar fields � and �(i) in eq. (2.29) have no di↵eomorphism freedom.

The preceding discussion is a general analysis of the moduli space of linearized defor-

mations of Mint. However, the precise enumeration of solutions to eqs. (2.22) and (2.23)

must be treated on a case-by-case basis for each choice of Mint. In many cases of interest in

string theory, Mint has special holonomy and one can say more about the count of solutions

to eqs. (2.22) and (2.23). For example, if the internal manifold Mint is Calabi-Yau, one can

use Kähler geometry to compute the dimension of the moduli space of metric deformations

in terms of the Hodge numbers hp,q of Mint; specifically h1,1 and h
D�6
2 ,1.
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There is a separate question of whether infinitesimal deformations can be promoted to

finite deformations. For Calabi-Yau, G2 and Spin(7) spaces, all zero modes seen in a linear

analysis survive to the full nonlinear theory [60]. In this work, we only need the existence of

a finite number of solutions for eqs. (2.22) and (2.23); we make no additional assumptions

about (Mint, ĝmn) besides Ricci-flatness. For general Ricci-flat Mint, it is hard to determine

whether the zero modes found at linear order remain massless in a fully nonlinear analysis.

To either reach I + or the actual physical location of the detector, a scalar mode must be

either exactly massless or of su�ciently light mass and high-energy that we can approximate

the mode as massless. For our analysis, we will need to use the condition that Rmn(ĝ +

h) = 0 to third order in h where we only fluctuate the internal metric. This plays a

role in Appendix A for the asymptotic expansion of the solution in powers of 1
r near I +.

However, it is important to note that the asymptotic expansion is only applicable for metric

fluctuations that are unobstructed and correspond to exactly massless fields. Let us denote

the number of exactly massless volume-preserving scalar modes by d̂L in contrast with the

number of massless modes dL in the linearized approximation.

3 Compactified Isolated Systems

We first need to define the class of Lorentzian spacetimes that we will study. Although

we are motivated by string theory, we do not restrict to 10 or 11-dimensional spacetimes.

Rather we consider D-dimensional spacetimes with 4 non-compact spacetime dimensions

and D � 4 compact Riemannian extra dimensions, which represent ‘gravitational lumps’

or localized metric configurations whose curvature grows weak in asymptotic null direc-

tions. Following standard terminology in the general relativity community, we refer to such

spacetimes as compactified isolated systems, or simply as isolated systems. As discussed

in section 1.2, this class of metrics describes string compactifications on Ricci-flat spaces

and approximates warped compactifications in the limit of large internal volume where the

warping becomes small.

First note that any metric gMN on M = R4 ⇥Mint is of the form

ds2 = gµ⌫(x, y)dx
µdx⌫ + 2Aµn(x, y)dx

µdyn + 'mn(x, y)dy
mdyn, (3.1)

where xµ and ym are arbitrary local coordinates on R4 and Mint, respectively. We define

the notion of an isolated system on a manifold M = R4 ⇥Mint by introducing a geometric

gauge in coordinates adapted to outgoing null hypersurfaces. In these coordinates, we

define a class of metrics which suitably tend to ĝMN in asymptotically large null directions.

25



These coordinates are defined in a manner analogous to the standard Bondi coordinates in

four-dimensional asymptotically flat spacetimes. Since these coordinates are essential for

the analysis of gravitational radiation, we briefly review their construction here.

The Bondi coordinates are denoted (u, r, ✓A, ym). In Bondi gauge u is a function on

spacetime such that surfaces of constant u are outgoing null hypersurfaces. The coordinates

✓A are two arbitrary angular coordinates on S2, and the ym are D�4 arbitrary coordinates

on Mint. In Bondi gauge, the normal co-vector rMu is null gMN(rMu)(rNu) = 0 and we

define the corresponding future directed null vector KM ⌘ �gMNrNu. The r coordinate is

a ‘radial’ coordinate which varies along the null rays. Note this is not a space-like coordinate

but a null coordinate! In this gauge, the tangent to the null rays corresponds to the radial

coordinate vector field. In summary,

KM ⌘ �rMu, KM =

✓
@

@r

◆M

and gMNK
MKN = 0. (Bondi gauge) (3.2)

The angular coordinates ✓A and the internal coordinates yM are both chosen to be con-

stant along these outgoing null rays so that KMrM✓A = �gMN(rMu)(rN✓) = 0 and

KMrMym = �gMN(rMu)(rNym) = 0. These Bondi gauge conditions imply that the

metric gMN satisfies:

grr = 0, grA = 0 and Arm = 0, (3.3)

where Aµn is defined in eq. (3.1). The metric gMN in these coordinates is adapted to out-

going null hypersurfaces. Now we define an isolated system with compact extra dimensions

which tends to the Ricci-flat metric (2.2). In coordinates (u, r, ✓A, ym) adapted to outgoing

null directions, the asymptotic metric is given by

ĝMNdx
MdxN = ⌘µ⌫dx

µdx⌫ + ĝmndy
mdyn,

= �du2 � 2dudr + r2qABd✓
Ad✓B + ĝmndy

mdyn. (3.4)

We define an isolated system as a metric gMN given by eq. (3.1) which, in coordinates

xµ = (u, r, ✓) and ym, approaches the flat metric ĝMN given by eq. (3.4) in powers of 1
r in

the orthonormal frame described in section 1.5:

gµ⌫ ⇠ ⌘µ⌫ +
1X

n=1

r�nh(n)
µ⌫ , Aµn ⇠

1X

n=1

r�nA(n)
µn and 'mn ⇠ ĝmn +

1X

n=1

r�n'(n)
mn. (3.5)
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This is gauge-equivalent to the Bondi gauge choice8

h(n)
rr = 0, h(n)

rA = 0 and A(n)
rm = 0, (3.6)

for all n. The symbol “⇠” in eq. (3.5) denotes an asymptotic expansion. For convenience

we have assumed an asymptotic expansion in 1
r to all orders with the upper limit of the

sums in eq. (3.5) taken to be 1. This is not strictly necessary for most of this analysis. The

results obtained in sections 4.1 to 4.3 require only that eq. (3.5) be valid at order n = 1.

The results obtained in section 5.1 require that eq. (3.5) be valid up to order n = 3.

A full analysis of the validity of this ansatz would require examining global stability for

a suitable class of initial data. Such an analysis was undertaken in [61, 62] where stability

was proven in the case of supersymmetric compactifications. It would be interesting to

study the asymptotic behavior of such solutions near null infinity and compare with the

ansatz assumed here.

As noted in section 1.5, our conventions for expanding the metric coe�cients in powers

of 1
r di↵ers from more common conventions. Usually the expansion coe�cients refer to

the powers of 1
r which arise from the components of gMN in a coordinate basis. In our

conventions spelled out in section 1.5, the metric expansion coe�cients g(k)µ⌫ , A
(k)
µm and '(k)

mn

all contribute to the physical fall-o↵ rate of the metric gMN at order 1
rk , as seen in any

orthonormal frame. From the preceding discussion, Bondi gauge has a preferred geometric

status in constructing the notion of an isolated system. We shall see, however, that Bondi

gauge does not appear to be the preferred gauge when asymptotically solving the leading

order Einstein equations with compact spatial directions, studied in sections 4.2 and 5.1.

We also need to specify the asymptotic fall-o↵ of the stress-energy tensor. The inclu-

sion of massive sources is straightforward since their stress-energy vanishes near I +. For

massless sources, we demand that

TMN =
1X

n=2

r�nT (n)
MN , (3.7)

where the non-vanishing component of the leading order stress tensor are T (2)
uu , T

(2)
um and

T (2)
mn. This is consistent with the dominant energy condition. As we will see, the fall-o↵ of

Tµ⌫ and Tµm ensure finiteness of the energy flux and charge-current flux to I +. The fall-o↵

of Tmn agrees with the intuition from Kaluza-Klein reduction.

8
The original Bondi gauge conditions also impose that the “radial” coordinate correspond to an areal

coordinate which imposes that @r(det(gAB)). Additionally, the fall-o↵ gur in Bondi gauge is such that g(1)ur

vanishes. We shall not impose these conditions in the general fall-o↵ given by eq. (3.5)
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There is one further condition we will impose, which turns out to be easily satisfied by

the most common forms of stress-energy. From our ansatz (3.5) and the analysis found in

Appendix A, we see that
R
Mint

ĝmnG(2)
mn = 0. This turns out to be surprisingly nontrivial to

demonstrate. Einstein’s equations then imply that the zero mode,
R
Mint

ĝmnT (2)
mn, vanishes.

In fact, G(2)
mn is orthogonal to every exactly massless scalar fluctuation tmn, not just the

breathing mode of Mint. Similarly, we will impose a stronger condition on the stress-

energy tensor that
R
Mint

tmnT (2)
mn vanishes for every exactly massless scalar fluctuation tmn.

This stronger version is also motivated from the analysis found in Appendix A.

We can see whether this is a reasonable condition by examining a few typical sources of

stress-energy. If one considers a D-dimensional scalar field � with stress-tensor

TMN = rM�rN�� 1

2
gMNrP�rP�, (3.8)

and

� = �(0) +
�(1)(u, ✓, y)

r
+ . . . , (3.9)

then in this simple case, �(1) is harmonic on Mint and therefore constant in y. The lead-

ing non-vanishing stress-tensor component is then T (2)
uu = (@u�(1))2 and T (2)

mn = 0. If one

generalizes this case by considering a p-form field strength F with D-dimensional action

�
R
M

1
2(p!) FM1...MpF

M1...Mp , the stress-tensor takes the form:

TMN =
1

2(p� 1)!

✓
FMM1...Mp�1F

M1...Mp�1

N � 1

2p
gMNFM1...MpF

M1...Mp

◆
. (3.10)

In Kaluza-Klein reduction near I , F = dA gives rise to massless spacetime fields associated

to harmonic forms on Mint as

A(1)
M1...Mp�1

(u, ✓, y) = �(1)
µ1...µq

(u, ✓)!mq+1...mp�1(y), (3.11)

where ! 2 Hp�q�1(Mint,R) is a harmonic representative of the cohomology class. The field

strength F (1) = d�(1) ^ !, where at this order d�(1) = �@u�(1) ^ K and the one-form K

is defined in (3.2). As noted in (3.2), K is null with respect to the asymptotic metric so

T (2)
mn = 0 again as in the case of the scalar field. For these sources of stress-energy commonly

found in string theory, we see a much stronger constraint on the asymptotic stress tensor

than we assume; namely that

T (2)
MN =

1

2(p� 1)!

�
@u�

(1)
�2

KMKN · |!|2, (3.12)
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where |!|2 = !mq+1...mp�1!
mq+1...mp�1 . Although in these cases of physical interest the stress

tensor satisfies stronger conditions, in the body of this work we will only use the weaker

assumptions of fall-o↵ given by eq. (3.7).

Finally while we have defined isolated systems in the case where the spacetime is a

product manifold, one can straightforwardly extend this definition to include a wider class

of fibered metrics, including some gravitational instantons. For example, we could consider

R ⇥ TN where TN refers the multi-Taub-NUT metric and R is time. This example is

a particularly nice generalization of the circle compactification, which we will discuss in

section 6.2. The total space M is topologically R5, but the TN metric at spatial infinity

is a Hopf fibration S1 ,! S3 ! S2. The Chern number of the fibration corresponds

to the magnetic charge for the Kaluza-Klein gauge-field found from reducing the metric

on the asymptotic S1. The picture under Kaluza-Klein reduction on the asymptotic S1

is a collection of particles located at the NUT singularities of the TN metric, which are

magnetically-charged under the Kaluza-Klein gauge-field. While in this construction, TN

appears only in the spatial metric and time is completely factorized, there have been studies

of asymptotic symmetries and dual supertranslations where TN appears with the fibered

S1 identified with time [63].

While we will primarily focus on the case of product manifolds, many of our results

only require that the metric satisfy eq. (3.5) locally in some neighborhood of null infinity.

In particular, our results about the asymptotic dimensional reduction of the Weyl tensor,

the local constraints on the radiative order metric and asymptotic symmetries, found in

sections 4.1 to 4.3, remain valid as long as the metric asymptotes to ĝMN at I +. On

the other hand, arguments that involve inversion of elliptic operators on the sphere or

integrating Einstein’s equations over retarded time, found in Sections 5.1 and 6, will need

to be modified in the fibered case. In order to extend these results to the fibered case,

it is more useful to work with manifestly gauge invariant quantities. In Appendix B, we

provide an alternative, manifestly gauge invariant derivation of our results in linearized

gravity using the Bianchi identity.

4 Asymptotics near Null Infinity

In this section we will analyze the asymptotic behavior of the spacetime for an isolated

system near null infinity. We first collect some results regarding the asymptotic behavior of

the Weyl tensor for any isolated system without imposing decay conditions. Unless stated

otherwise, we consider a metric gMN which satisfies the asymptotic expansion eq. (3.5) near
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null infinity and obeys Einstein’s equations:

RMN � 1

2
gMNR = 8⇡TMN . (4.1)

In section 4.1 we show that the Bianchi identity implies that the ‘electric’ part of the Weyl

tensor, defined in eq. (4.9), at order 1
r admits a dimensional reduction in a manner exactly

analogous to the dimensional reduction given in section 2. In sections 4.2 and 5.1 we

examine, in detail, the change in the metric caused by a ‘burst’ of gravitational radiation.

We characterize this ‘burst’ by requiring that the metric be stationary at asymptotically

early and late times. In section 4.2, we analyze Einstein’s equations during the radiative

epoch. In section 5.1, we investigate the implications of Einstein’s equations during the

stationary eras.

4.1 Asymptotic reduction in nonlinear gravity

As shown in Section 2, linearized metric perturbations in Lorenz gauge with background

metric (2.2) reduce to a collection of gravitons, graviphotons and scalars. In the full nonlin-

ear theory, we will show that the leading order electric Weyl tensor for any isolated system

at null infinity admits a harmonic decomposition in a way analogous to linearized Kaluza-

Klein analysis. This provides a gauge invariant description of radiation, Kaluza-Klein

decomposed into spin-0, spin-1 and spin-2 components, in full nonlinear general relativity.

We remind the reader that the Weyl tensor is related to the Riemann tensor,

CMNPQ = RMNPQ � 2g[M [PSQ]N ], (4.2)

where SMN is the Schouten tensor which, in terms of the Ricci tensor, is given by:

SMN =
2

D � 2
RMN � 1

(D � 1)(D � 2)
gMNR. (4.3)

Since the Einstein tensor is divergence free, the Schouten tensor satisfies rMSMN = rNS

where S ⌘ gMNSMN . The uncontracted Bianchi identity is

r[MCNP ]QR = �2g[Q[NrMSP ]R]. (4.4)

The nested notation appearing on the right hand side of (4.4) means antisymmetrize over

(N,M,P ) and antisymmetrize over (Q,R) separately. We will use this notation below.

Contracting over M and Q and using the tracelessness of the Weyl tensor yields

rMCMPQR = (D � 3)r[QSR]P . (4.5)
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Applying gMTrT to eq. (4.4), commuting the derivatives and using eqs. (4.2) and (4.5)

implies

⇤gCNPQR = 2(D � 2)r[Nr[QSR]P ] � 2g[Q[N⇤gSP ]R] + 2gMTg[Q[Nr|T |rP ]SR]M

� (D � 2)gTMST [NCP ]MQR + 2gTMST [QCR][NP ]M � 2gOMgRTSORg[Q[NCP ]|M |R]T

+
1

2
gMTSMTCNPQR + 2gMTSM [NCP ][QR]T + 2gMOgTKCM [NP ]TCOKQR

+ 4gMOgTKCM [Q[N |T |CP ]|K|R]O, (4.6)

where ⇤g ⌘ gMNrMrN . Therefore in any spacetime, the Weyl tensor satisfies the wave

equation with source given by terms that are either products of the Weyl tensor, products

of the Weyl tensor with the Schouten tensor or derivatives of the Schouten tensor. The

asymptotic expansion of the metric given by (3.5) implies the 1
r expansion for the Weyl

tensor:

CNPQR ⇠
1X

n=0

C(n)
NPQR

rn
. (4.7)

After imposing Einstein’s equations the only non-vanishing components of C(0)
NPQR is the

Riemann tensor Rnpqr of the Ricci-flat asymptotic internal space Mint with metric ĝmn.

Further, the Schouten tensor is defined in terms of the Ricci tensor in eq. (4.3) which, in

turn, can be written in terms of the stress energy tensor by Einstein’s equation eq. (4.1).

The asymptotic fall-o↵ condition on the stress-tensor is given in eq. (3.7). This stress

tensor fall-o↵ directly implies an asymptotic expansion of the Schouten tensor,

SMN ⇠
1X

n=2

S(n)
MN

rn
, (4.8)

where the sum starts at O( 1
r2 ) and S(2)

MN = 2
D�2T

(2)
MN . We now show that eqs. (4.5) and (4.6)

place strong constraints on the asymptotic behavior of the ‘electric part’ of the Weyl tensor

near null infinity. In particular, the leading order electric part of the Weyl tensor can be

dimensionally-reduced in exactly the same manner as reviewed in section 2, but now in the

full nonlinear theory. The electric part of the Weyl tensor is defined as

EPR ⌘ CNPQR nNnQ, (4.9)

where nM ⌘ (@/@u)M . The properties of the Weyl tensor imply that the electric Weyl

tensor is symmetric, tracefree and that its u-components vanish:

EMN = ENM , gMNEMN = 0 and EuN = 0. (4.10)
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We note that lim
r!1

EMN vanishes at fixed u, ✓A and ym, and therefore the leading order

electric Weyl tensor given by,

EMN(u, ✓
A, ym) ⌘ lim

r!1
rEMN(r, u, ✓

A, ym), (4.11)

is gauge invariant. From the above relations, we now prove the following key lemma re-

garding the asymptotic dimensional reduction of EMN .

Lemma 3 (Asymptotic reduction of electric Weyl). Let (M, g) be an isolated system whose

metric gMN has an asymptotic expansion given by eq. (3.5) and let EMN be the leading order,

electric Weyl tensor defined by eqs. (4.9) and (4.11). EMN satisfies the following properties:

1. The components EuM and ErM vanish for any isolated system.

2. The nonvanishing components satisfy

EAB = EAB(u, ✓), EAm =
b1X

i=1

E (i)
A (u, ✓)⌦ V

(i)
m (ym), (4.12)

Emn = � ĝmn

D � 4
qABEAB(u, ✓) +

dLX

i=1

E (i)(u, ✓)t
(i)
mn(y

m).

The V
(i)
m are a basis for the b1 harmonic 1-forms on Mint, where b1 is the first Betti

number of Mint. The t
(i)
mn are a basis of the dL symmetric, rank 2 tensors which satisfy

the Lichnerowicz equation on Mint and Dmt
(i)
mn = ĝmnt

(i)
mn = 0, where dL + 1 is the

dimension of the moduli space.

Proof. That EuM vanishes follows directly from the definition and properties of the electric

Weyl tensor given in eqs. (4.9) and (4.10). To prove that ErM vanishes we note that

contracting eq. (4.6) on the N and Q indices with nN and nQ gives the following equations

for the electric Weyl tensor at order 1
r :

D2Eµ⌫ = 0, D2Eµn = 0 and D2Emn + 2Rm
p
n
qEpq = 0. (4.13)

Since EMN is gauge invariant we assume, without loss of generality, that the metric gMN

is in a gauge such that the metric expansion coe�cents h(1)
rr , h

(1)
rA and h(1)

rm all vanish. A

straightforward calculation of the electric Weyl tensor using the metric in Bondi gauge

implies that,

ErA = 0, Err = 0 and Erm = 0. (4.14)
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Since EMN is gauge invariant we conclude that ErM vanishes for any isolated system. Ap-

plying nP and nR to the P and R components of eq. (4.5) at order 1
r and using the fact

that ErM vanishes gives

DnEAn = 0 and DmEmn = 0. (4.15)

Equations (4.13) and (4.15) together with Lemmas 1 and 2 imply that EAB and ĝmnEmn are

harmonic on Mint, EAm is spanned by harmonic 1-forms V
(i)
m on Mint, and the trace-free

part of Emn is spanned by t
(i)
mn. Finally we note that

ĝmnEmn = �qABEAB, (4.16)

which follows from the tracelessness of EMN as well as the vanishing of EuM and ErM .

Lemma 3 implies that the non-vanishing components of the leading order electric Weyl

tensor, EMN , can be viewed as a tensor on S2 ⇥ Mint. Let qab be a (D � 2)-dimensional

product metric on S2 ⇥Mint which, for arbitrary coordinates xa = {✓A, ym} on S2 ⇥Mint,

is defined by9

qab dx
a dxb = qAB d✓A d✓B + ĝmn dy

m dyn. (4.17)

It is convenient to define a ‘news tensor’ on S2 ⇥Mint which we denote Nab,

Nab ⌘ lim
r!1

r

✓
qa

cqb
d � 1

D � 2
qabq

cd

◆
@ugcd, (4.18)

where gab is the zero mode of gMN along the S2 ⇥Mint directions. The components of Nab

satisfy

D2NAB = 0, D2NAm = 0, D2Nmn + 2Rm
p
n
qNpq = 0, ĝmnNmn = �qABNAB, (4.19)

and the news therefore admits the decomposition,

NAB = NAB(u, ✓) +
1

2
qABN(u, ✓), NAm =

b1X

i=1

N (i)
A ⌦ V (i)

m (ym), (4.20)

Nmn = � ĝmn

D � 4
N(u, ✓) +

d̂LX

j=1

N (j)(u, ✓) t
(j)
mn(y

m), (4.21)

9
We faced an unfortunate choice in labeling combined coordinates for the sphere and the internal space.

Either introduce a new letter or use xa
, which we hope the reader will not confuse with xµ

. We hope this

choice is the lesser of two evils. All conventions are spelled out in section 1.5.
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where NAB is the trace-free projection of NAB(u, ✓) and N is the trace of NAB on S2 given

by:

NAB =

✓
qA

CqB
D � 1

2
qABq

CD

◆
NCD(u, ✓) and N = qABNAB(u, ✓). (4.22)

Equations (4.20) and (4.21) give a decomposition of radiation in the full spacetime M into

spin-2, spin-1 and spin-0 components. The four-dimensional Bondi news is related to the

trace-free part NAB, but note that NAB here is computed in D-dimensional Einstein frame.

In section 6.4, we will discuss how the news and related observables are a↵ected by the

choice of frame.

The decomposition of the radiative modes given by eq. (4.21) corresponds to the exactly

massless modes arising from Mint. The decomposition given by Lemma 3 is a consequence

of the leading order Bianchi identity and Einstein’s equations. However, as we have spelled

out in section 2.2, the space of truly massless modes is a subset of the modes enumerated in

Lemma 3. The spin-2 mode, spin-1 modes and the scalar volume mode are truly massless.

However, the number of truly massless volume-preserving scalars are d̂L  dL. Therefore

in eq. (4.21), we replaced dL with d̂L. As we show in Appendix A, if we had not done this

truncation then our ansatz would not be consistent with Einstein’s equations.

Finally, a direct calculation of EMN in terms of the metric implies that the non-vanishing

components of EMN can be compactly expressed in terms of Nab:

Eab = �1

2
@uNab. (4.23)

We refer to Nab as the ‘news’ tensor which is analogous to the Bondi news tensor in four

dimensional asymptotically flat spacetimes. In such spacetimes, the null memory e↵ect is

determined by the squared Bondi news tensor integrated over retarded time, as discussed

in section 1.1. In Section 6, we prove that analogous statements hold for isolated systems

with compact extra dimensions.

4.2 Asymptotic analysis of the metric

We now analyze the leading order solution of Einstein’s equations in the neighborhood

of null infinity. We assume that the metric is initially in Bondi gauge which implies, in

particular,

h(1)
rr = 0, h(1)

rA = 0 and A(1)
rm = 0, (4.24)
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where Arm is defined in (3.1). Einstein’s equation at leading order in 1
r gives the following

constraints:

(uu; 1) D2h(1)
uu + 2@uD

mA(1)
mu � @2u(q

ABh(1)
AB + ĝmn'(1)

mn) = 0, (4.25)

(ur; 1) D2h(1)
ur = 0, (4.26)

(uA; 1) D2h(1)
uA + @uD

mA(1)
Am = 0, (4.27)

(AB; 1) D2h(1)
AB = 0, (4.28)

(um; 1) D2A(1)
um �DmD

nA(1)
un + @uD

n'(1)
nm + @uDm(h

(1)
ur � qABh(1)

AB) (4.29)

� @uDmĝ
pq'(1)

pq = 0,

(Am; 1) D2A(1)
Am �DmD

nA(1)
An = 0, (4.30)

(mn; 1) D2'(1)
mn + 2Rm

p
n
q'(1)

pq � 2D(mD
p'(1)

n)p � 2DmDnh
(1)
ur (4.31)

+DmDn(q
ABh(1)

AB + ĝpq'(1)
pq ) = 0.

The notation on the left hand side (MN ; k) refers to the MN components of Einstein’s

equations at order 1
rk . To solve these equations we want to find gauge choices, in a manner

compatible with eq. (3.5), so that the following equations are true:

DmA(1)
um = 0, DmA(1)

Am = 0 and '(1)
mn = �mn+

✓
DmDn�

ĝmn

D � 4
D2

◆
 +

ĝmn

D � 4
�, (4.32)

where Dm�mn = 0 = ĝmn�mn, and �(u, ✓) is constant on Mint. We want to construct a

di↵eomorphism, specified by a vector-field, that preserves our asymptotic fall-o↵ conditions

and implements (4.32). So we assume that the vector field has the form,

⇠M ⇠ ⇠(1)M (u, ✓, y)

r
+O

✓
1

r2

◆
, (4.33)

where we assume no O(r0) term in ⇠M . Under this di↵eomorphism, the metric shifts

by gMN ! gMN + 2r(M⇠N). In order to achieve the gauge conditions of eq. (4.32) the

components of ⇠(1)M must satisfy

Dm⇠
(1)
A = �A(1)

Am , �@u⇠(1)m +Dm⇠
(1)
u = �A(1)

um , D(m⇠
(1)
n) = �1

2
'(1)
mn. (4.34)

To ensure that we preserve the Bondi gauge conditions at leading order, we set ⇠(1)r = 0. The

first equation in (4.34) implies that D2⇠(1)A = �DmA(1)
Am. The right side of this equation has

no zero mode, and so we can solve for ⇠(1)A . Next, using Proposition 2, we can decompose

'(1)
mn into tensor, vector and scalar parts:

'(1)
mn = �mn +D(m⇣n) +

✓
DmDn �

1

D � 4
ĝmnD

2

◆
 +

ĝmn

D � 4
� , (4.35)
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where ĝmn�mn = Dm�mn = 0 and Dm⇣m = 0. Using proposition 1, ⇠(1)m = Dm⇠+⌘m where

Dm⌘m = 0. Using these decompositions and taking the trace of the third equation in (4.34)

gives D2⇠ = �1
2�. The zero-mode of � is the obstruction to solving for ⇠. Subtracting out

the zero mode, we can solve D2⇠ = �1
2(� � �). With this choice of ⇠, we can replace

� by �̄(u, ✓). Furthermore, we can choose ⌘m = �1
2⇣m, which eliminates the vector part

of '(1)
mn. Finally, we consider the divergence of the second equation in (4.34), D2⇠(1)u =

�DmA(1)
um + @uD2⇠. Since the right side of this equation has no zero mode, we can solve

for ⇠(1)u . This completes the specification of the di↵eomorphism which implements (4.32).

The leading order Einstein equation (eqs. (4.25) to (4.31)) can now be directly solved.

In this gauge, eqs. (4.26) to (4.28) imply that h(1)
ur , h

(1)
uA and h(1)

AB are constant on Mint.

Therefore,

h(1)
ur = h

(1)
ur (u, ✓), h(1)

uA = h
(1)
uA(u, ✓), h(1)

AB = h
(1)
AB(u, ✓). (4.36)

Equations (4.32) and (4.36) imply that eq. (4.25), which takes the form

D2h(1)
uu = @2u(q

ABh
(1)
AB + �), (4.37)

can be directly solved. Since the right hand side of eq. (4.37) is in the kernel of the Laplacian

D2, the left and right hand sides must both vanish implying

h(1)
uu = h

(1)
uu (u, ✓) and @2u(q

ABh
(1)
AB + �) = 0. (4.38)

Applying ĝmn to eq. (4.31) and using eqs. (4.32) and (4.36) yields

(D � 5)D4 = 0, (4.39)

which, by Proposition 2, implies that the trace-free scalar part of �mn vanishes.10 Using our

gauge conditions, harmonicity of the spacetime components h(1)
µ⌫ and that eq. (4.39) implies

Dm'(1)
mn = 0, the (um; 1) and (Am; 1) components of Einstein’s equation imply that A(1)

um

and A(1)
Am are harmonic with decomposition

A(1)
um =

b1X

i=1

A(1;i)
u (u, ✓)⌦ V

(i)
m (ym) and A(1)

Am =
b1X

i=1

A(1;i)
A (u, ✓)⌦ V

(i)
m (ym), (4.40)

where V
(i)
m are a basis for harmonic one-forms onMint. Finally, eqs. (4.32), (4.36) and (4.39)

imply that

D2�mn + 2Rm
p
n
q�pq = 0 =) �mn =

d̂LX

i=1

�(i)(u, ✓)t
(i)
mn(y

m), (4.41)

10
Equation (4.39) looks unconstrained for D = 5 but that case is very special since the internal space is

S1
and the only term in (4.35) is proportional to �.
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where t
(i)
mn are the d̂L trace-free, divergence-free, unobstructed deformations of Mint. Finally

eq. (4.38) implies that the sum qABhAB+� can have, at most, linear-dependence on retarded

time u. Einstein’s equations at order 1
r2 , however, place a stronger constraint on the time-

dependence of this quantity. In particular, a direct calculation of qAB applied to the zero

mode of the trace-reversed Einstein equations implies that

@u(q
ABh

(1)
AB + �) = 0. (4.42)

We summarize our findings on the asymptotic behavior of the metric in the following lemma:

Lemma 4. Let (M, g) be an isolated system in a gauge which satisfies our ansatz eq. (3.5).

There exists a unique di↵eomorphism which preserves our ansatz such that the leading order

expansion coe�cients of the metric have the following properties:

1. The R4 metric components are harmonic on Mint and therefore satisfy

h(1)
uu = h

(1)
uu (u, ✓), h(1)

ur = h
(1)
ur (u, ✓), h(1)

uA = h
(1)
uA(u, ✓), h(1)

AB = h
(1)
AB(u, ✓), (4.43)

and the h(1)
rr , h

(1)
rA components vanish.

2. The components A(1)
um and A(1)

Am admit the decomposition

A(1)
um =

b1X

i=1

A(1;i)
u (u, ✓)⌦ V

(i)
m (ym), A(1)

Am =
b1X

i=1

A(1;i)
A (u, ✓)⌦ V

(i)
m (ym), (4.44)

and A(1)
rm vanishes. The V

(i)
m are a complete basis of b1 linearly independent Killing

vectors of Mint where b1 is the first Betti number of Mint.

3. The components '(1)
mn satisfy

'(1)
mn =

ĝmn

D � 4
�(u, ✓) +

d̂LX

i=1

�(i)(u, ✓)t
(i)
mn(y

m), (4.45)

where � ⌘ ĝmn'(1)
mn and the t

(i)
mn are a complete basis of d̂L symmetric, rank 2 tensor

fields which satisfy Dmt
(i)
mn = 0, ĝmnt

(i)
mn = 0 and eq. (2.22). Furthermore, the metric

satisfies @u(qABh(1)
AB + �) = 0.

Without loss of generality, we will assume this gauge in the remainder of this work.

This gauge choice dramatically simplifies the analysis of the higher-dimensional Einstein

equations by gauging away higher harmonics in the internal space. We note that any metric
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which admits an asymptotic expansion (3.5), and which satisfies the Einstein equations, can

be put into this gauge. In this sense, our gauge choice is not an additional assumption but

actually a consequence of the fall-o↵ conditions and equations of motion.

In this gauge the news tensor, defined in (4.18), is very nicely related to the leading

order metric by:

Nab = @uh
(1)
ab . (4.46)

This expression for the news tensor identifies the gauge-invariant radiative degrees of free-

dom of the leading order metric, and manifestly satisfies the relations spelled out in (4.19).

4.3 Asymptotic symmetries of compactified spacetimes

In this section we investigate the asymptotic symmetries of spacetimes with compact extra

dimensions. Before doing so, it will be convenient to further refine the gauge choice of

Lemma 4. Note that the trace qABh(1)
AB is constrained by eq. (4.42) so that qABh(1)

AB(u, ✓) =

��(u, ✓)+c(✓). We now show that there exists a residual gauge transformation, compatible

with Lemma 4, which allows us to set c = 0. Performing a di↵eomorphism parameterized

by ⇠M = c(✓)KM , where KM is defined in eq. (3.2), we see that the metric changes by

h(1)
AB ! h(1)

AB + 2c(✓)qAB , h(1)
uA ! h(1)

uA + DAc(✓) , (4.47)

where DA is the covariant derivative compatible with qAB, defined in section 1.5. The shift

in h(1)
uA does not a↵ect the gauge fixed in Lemma 4, while the change in hAB is exactly of

the form needed to eliminate c(✓). Fixing this gauge, we may now assume that c(✓) = 0

and therefore qABh(1)
AB has no further di↵eomorphism freedom.

For an arbitrary dynamical spacetime the metric will not, generically, have any exact

symmetries. However for given asymptotics, the spacetime will admit an asymptotic sym-

metry group. We define this group as the group of di↵eomorphisms which preserve the

gauge conditions in Lemma 4 along with qABh(1)
AB = ��. Since in this gauge, the metric

decomposes into spin-2, spin-1 and spin-0 degrees of freedom there is a corresponding de-

composition of the asymptotic symmetry group. The upshot of this is that we can consider

the asymptotic symmetries of spin-2, spin-1 and spin-0 degrees of freedom separately.

To find the symmetry group of the spin-2 modes, we note that the R4 components of the

leading order metric h(1)
µ⌫ are e↵ectively in a Bondi-type gauge. The original Bondi gauge

conditions on the leading order metric are h(1)
rr = h(1)

rA = qABh(1)
AB = 0. It then follows from

Bondi’s original analysis that the symmetry group that preserves these gauge conditions is

the BMS group B which we shall review shortly. We note that our gauge conditions also
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imply h(1)
rr = h(1)

rA = 0. Additionally, we imposed qABh(1)
AB = ��. Since � has no residual

gauge freedom this fixes qABh(1)
AB. Therefore, the asymptotic symmetry group of the spin-2

degrees of freedom is the BMS group B.

At this point as promised, we should recall some properties of the BMS group. The

Lie algebra (bms) of B contains an infinite-dimensional normal Lie subalgebra t, which

contains the supertranslations. Explicitly, the elements of t are

⇠M = �T (✓)

✓
@

@u

◆M

� 1

2
D2T (✓)

✓
@

@r

◆M

+
1

r
qABDBT (✓)

✓
@

@✓A

◆M

+ . . . , (4.48)

where the “. . . ” denotes vector fields that vanish as r ! 1 at fixed u, ✓A and ym. The

function T (✓) is smooth on the asymptotic 2-sphere. If T (✓) is an ` = 0 spherical har-

monic then eq. (4.48) is an asymptotic time translation. If T (✓) is a linear combination

of ` = 1 spherical harmonics then eq. (4.48) is an asymptotic spatial translation. If T (✓)

is orthogonal to the ` = 0, 1 spherical harmonics then (4.48) is called a supertranslation

and, asymptotically, corresponds to the action of an infinitesimal, angle-dependent time

translation. The quotient bms/t = so(3, 1) is the Lorentz Lie algebra, which correspond

to conformal Killing vectors of S2. At the level of group structure, the BMS group (B)

is therefore the semi-direct product of the restricted Lorentz group (L) and the infinite-

dimensional supertranslation group (T ):

B = Ln T . (4.49)

We now turn to the spin-1 degrees of freedom. The di↵eomorphisms that act on A(1)
µm

and preserve our metric asymptotics (3.5) are generated by ⇠(0)m (✓), which cannot depend

on u. To preserve Lemma 4, ⇠(0)m must be harmonic on Mint. Any such ⇠(0)m is a smooth

function S(✓) multiplied by a Killing vector V m(y) on Mint,

⇠M = S(✓)V m(y)

✓
@

@ym

◆M

+ . . . , (4.50)

where the omitted terms again vanish as r ! 1. There are b1 Killing vectors on Mint.

In the limit as r ! 1, the commutator of any two ⇠M of the form (4.50) vanishes so the

asymptotic symmetry group generated by these vector fields is abelian. Let us denote this

group of angle-dependent internal isometries by C. We note that elements of this group do

not commute with Lorentz transformations in L.
The remaining degrees of freedom are the spin-0 modes of (4.35) given by the tensor

modes �mn describing the volume-preserving moduli, and the scalar mode � which is the
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volume mode. There is no choice of asymptotic vector field which preserves our asymptotic

conditions and the gauge conditions given in Lemma 4 that can a↵ect either �mn or �. The

only asymptotic di↵eomorphism that can a↵ect '(1)
mn is of the form ⇠

(1)
m

r + . . . , but all of this

gauge freedom has already been used to implement the gauge of Lemma 4. Thus there is

no remaining di↵eomorphism freedom for these modes.

Therefore, the enlarged asymptotic symmetry group (G) is the semi-direct product of

B with the abelian group C:

G = Bn C. (4.51)

We note that this asymptotic symmetry group is identical to the asymptotic symmetry

group of asymptotically flat Einstein-Maxwell-scalar theory where C is replaced with the

asymptotic symmetries of the electromagnetic field [64]. Therefore, C has the natural

interpretation as the asymptotic symmetry group of the graviphotons.

Finally we will give the action of elements of G on I +, which has the topology of

R ⇥ S2 ⇥Mint. An element of this asymptotic symmetry group moves a point (u, ✓, y) to

(ũ, ✓̃, ỹ) as

ũ = !(✓)[u+ T (✓)] , (4.52)

✓̃A = �(✓) , (4.53)

ỹm = ⇢(y, ✓) , (4.54)

where � : S2 ! S2 acts by a conformal isometry of the 2-sphere given by �⇤qAB = !2qAB.

Similarly, at each fixed angle, the map ⇢(·, ✓) : Mint ! Mint acts as an isometry of the

internal space: ⇢⇤ĝmn = ĝmn. An illustration of the combined action of a supertranslation

with an angle-dependent internal isometry is given in figure 2. Finally we note that, in

terms of the leading order metric h(1)
MN , the infinitesimal action of the composition of a

supertranslation and an angle-dependent internal isometry is

h(1)
AB(u, ✓, y) ! h(1)

AB(u, ✓, y) + T (✓)NAB(u, ✓) +

✓
DADB � 1

2
qABD2

◆
T (✓), (4.55)

A(1)
Am(u, ✓, y) ! A(1)

Am(u, ✓, y) + DAS(✓)⌦ V m(y). (4.56)

So the composition of a supertranslation and an angle-dependent isometry only a↵ects the

zero-modes of the leading order metric.
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Figure 2: The figure illustrates the action of a supertranslation and an angle-dependent

internal isometry on the asymptotic sphere. We choseMint = S1 for simplicity. Null infinity

is an incoming null surface with topology R⇥S2⇥S1 whose cross sections are asymptotically

large spheres. A point in R ⇥ S2 (highlighted in black) and a point on Mint = S1, where

the S1 is represented by a circle, specifies a point on null infinity. At leading order in 1
r

supertranslations only act on R4 while angle-dependent internal isometries act only onMint.

Given a constant u cut of null infinity, labeled ⌃0, a supertranslation acts by u ! u+T (✓)

and an angle-dependent internal isometry acts by y ! y + S(✓). The composition of these

group actions takes the cut ⌃0 into the cut ⌃1.

5 Bursts of Radiation

Building on our discussion of the radiative degrees of freedom and the corresponding asymp-

totic symmetries in section 4, we now examine the response of the asymptotic spacetime

metric to a burst of radiation. We study the metric near I + by analyzing Einstein’s equa-

tion in a 1
r expansion. We consider spacetimes which are stationary at early times, undergo

a period where there is a significant amount of gravitational radiation for a finite range of

retarded time, and then approach stationarity at asymptotically late times. It was pointed

out in [7], at early or late times, that the metric corresponding to a collection of inertially
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moving massive bodies is stationary at order 1
r , but will generically be non-stationary at

higher orders in 1
r . In particular, it was shown quite generally, that the behavior of the `-th

multipole moment for the metric of a static compact object at some time t = u+ r behaves

as

hMN ⇠ (u+ r)`

r`+1
⇠ 1

r
+
`u

r2
+ . . . (5.1)

near I + where gMN = ⌘MN + hMN and the behavior in the internal space has been

suppressed. Therefore a generic, boosted compact object will be stationary at leading

order in 1/r but will generically be non-stationary at subleading orders in 1/r. This non-

stationarity for ` = 1 can be removed by boosting to the center of mass frame where the

matter is at rest. However, hMN is generically non-stationary at sub-leading orders in 1/r

if one has incoming or outgoing compact objects at early or late times.

However, for simplicity, we will investigate null memory e↵ects caused entirely by the

flux and scattering of incoming and outgoing gravitational radiation, and no ordinary mem-

ory. To impose this condition we assume the stronger stationarity conditions of [7]. Specif-

ically we assume there exists a gauge in which the metric satisfies the following stationarity

conditions at asymptotically early and late times:

@uh
(n)
MN ! 0 as u ! ±1 for all n � 1. (5.2)

We will further require that the stress energy vanish in a neighborhood of null infinity at

early and late times at the following orders:

T (n)
MN ! 0 as u ! ±1 for all n  3. (5.3)

This is not terribly restrictive: the condition includes all stress-energy with compact support

and most isolated systems studied in the literature.

This section is laid out as follows: in section 5.1 we examine the constraints from Ein-

stein’s equation on the metric in the stationary eras. In section 5.2, we use our results from

sections 4.2 and 5.1 to integrate Einstein’s equations to obtain gauge invariant informa-

tion about the change in the metric between the stationary eras caused by the passage of

gravitational radiation to I +. As we shall see, certain components of the change in the met-

ric correspond precisely to the composition of a supertranslation with an angle-dependent

isometry.

5.1 Stationary eras

We first investigate the behavior of the metric in a stationary era. Our stationarity condi-

tions turn out to imply constraints on the angular behavior of the metric at leading order
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in 1
r . It is useful to note that Proposition 1 applies to any closed Riemannian manifold and

Proposition 2 applies to any compact Riemannian Einstein space, and therefore they both

apply to the 2-sphere equipped with the round metric qAB.

Remark 1. Propositions 1 and 2 apply to any compact Riemannian manifold. For example

with the round metric qAB on the 2-sphere then (S2, qAB) is a compact Riemannian Einstein

space with c = 1. Therefore, Propositions 1 and 2 apply to both a one form VA and a second

rank, symmetric tensor field TAB on S2. Therefore, VA and TAB can be both be decomposed

uniquely as in eqs. (2.14) and (2.24) where the covariant derivative is now the derivative

operator DA compatible with metric qAB. There is no ‘tensor part’ since there are no

divergence-free, trace-free tensors on S2. Furthermore, any divergence free vector vA on S2

can be written as the ‘curl’ of a scalar function P , i.e., vA = ✏ABDBP . This is sometimes

called the ‘magnetic parity’ or ‘parity odd’ part of the vector. Finally, any rotationally

invariant operator (such as D2 ⌘ qABDADB) acting on a one-form or a symmetric tensor

preserves this decomposition.

Given Remark 1, we now determine the metric constraints from Einstein’s equations in

a stationary era. We adopt the gauge described in Lemma 4. The analysis of Einstein’s

equations in a stationary era is greatly simplified by further fixing the gauge of the metric

at O( 1
r2 ). In Appendix A, we prove that one can put the metric in a gauge compatible with

the stationarity conditions (5.2) and (5.3) and the gauge of Lemma 4 so that Einstein’s

equations imply that

h(2)
µ⌫ = h

(2)
µ⌫ (✓), A(2)

µm =
b1X

i=1

A(2;i)
µ (✓)⌦ V

(i)
m (ym), (5.4)

and

'(2)
mn = �(2)

mn(✓, y) +

✓
DmDn �

ĝmn

D � 4
D2

◆
 (2)(✓, ym) +

ĝmn

D � 4
�
(2)
(✓). (5.5)

Aside from special cases like Mint = Tk, neither  (2) nor �(2)
mn are zero modes on Mint.

We now analyze Einstein’s equations in a stationary era in the gauge of Lemma 4 with

the constraints (5.4) and (5.5) imposed. The zero mode of Einstein’s equations at order 1
r3 ,
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after a lengthy calculation described in Appendix A, yields

(uu; 3) D2h(1)
uu = 0, (5.6)

(ur; 3) D2h(1)
ur = 0, (5.7)

(uA; 3) [D2 � 1]h(1)
uA � DADBh(1)

uB � DA(h
(1)
uu � h(1)

ur ) = 0, (5.8)

(rr; 3) �� 2h(1)
ur = 0, (5.9)

(rA; 3) DAh
(1)
ur � DA�

(1) = 0, (5.10)

(AB; 3) [D2 � 2]h(1)
AB � 2D(ADCh(1)

B)C + 2DCh(1)
CuqAB + DADBq

CDh(1)
CD

+ qABq
CDh(1)

CD + [DADB � qAB](�� 2h(1)
ur ) = 0, (5.11)

(um; 3) D2A(1;i)
u = 0, (5.12)

(Am; 3) [D2 � 1]A(1;i)
A + DAA

(1;i)
u = 0, (5.13)

(mn; 3) D2� = 0 and D2�(i)
mn = 0, (5.14)

where the coe�cients A(1;i)
u , A(1;i)

A and �(i)
mn are defined in Lemma 4. In eq. (5.14), the �(i)

are the d̂L exactly massless modes as discussed in section 2.2. Additionally, the (rm; 3)

components of Einstein’s equations vanish. Equations (4.29), (5.6), (5.7) and (5.9) imply

that h(1)
uu , h

(1)
ur , �,�

(i)
mn and A(1;i)

u are spherically symmetric and

� = 2h(1)
ur . (5.15)

Consequently, the left hand side of eq. (5.10) vanishes. Using Proposition 2 and Remark 1,

one can write

A(1;i)
A (✓) = DAS

(i)(✓) + ✏A
BDBR

(i)(✓), (5.16)

h(1)
uA(✓) = DAP (✓) + ✏A

BDBF (✓), (5.17)

and

h(1)
AB(✓) = ✏(A

CDB)DCW (✓) +

✓
DADB � qAB

2
D2

◆
T (✓) +

qAB

2
U(✓). (5.18)

Applying ✏CADC to eqs. (5.8), (5.10) and (5.13) yields

D2R(i)(✓) = 0, D2F (✓) = 0 and (D2 + 2)D2W (✓) = 0, (5.19)

and therefore the magnetic parity parts of A(1;i)
A , h(1)

uA and h(1)
AB vanish.11 Applying qAB to

11
The operator (D2

+ 2)D2
annihilates the ` = 0, 1 spherical harmonics. Let W̃ be the projection of

W into the subspace spanned by ` = 0, 1 spherical harmonics. That W̃ is annihilated by the operator in

eq. (5.18) (i.e. ✏(A
CDB)DCW̃ = 0) follows from the fact that any function that is a linear combination of

` = 0, 1 spherical harmonics satisfies DADBW̃ = �qABW̃ .
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eq. (5.11) yields a relation between U(✓), T (✓) and P (✓):

D2U(✓)� D2(D2 + 2)T (✓) + 4D2P (✓) = 0. (5.20)

We summarize the above results in the following lemma:

Lemma 5. Let (M, g) be an isolated system that satisfies both our ansatz (3.5) in a gauge

compatible with Lemma 4 and our stationarity conditions. There exists a unique di↵eomor-

phism which preserves these gauge and stationarity conditions such that the leading order

expansion coe�cients satisfy the following relations:

1. The R4 metric components satisfy:

h(1)
uu = c1, h(1)

ur = c2, h(1)
uA = DAP (✓), (5.21)

h(1)
AB =

✓
DADB � qAB

2
D2

◆
T (✓) +

qAB

2
U(✓), (5.22)

and h(1)
rr = 0 = h(1)

rA. Here c1 and c2 are constants, the functions P (✓), T (✓) and U(✓)

are smooth functions on S2 and are related by,

D2U(✓)� D2(D2 + 2)T (✓) + 4D2P (✓) = 0. (5.23)

2. The A(1)
µm components satisfy:

A(1)
um =

b1X

i=1

Q(i) V
(i)
m (ym), A(1)

Am =
b1X

i=1

DAS
(i)(✓)⌦ V

(i)
m (ym) (5.24)

and A(1)
rm = 0. The Q(i) are constants and the functions S(i)(✓) are smooth functions

on S2.

3. The internal space components satisfy:

'(1)
mn =

ĝmn

D � 4
�+

d̂LX

i=1

�(i) t(i)mn(y
m), (5.25)

where 2c2 = � and the coe�cients �(i) are constants.

This discussion captures the leading order behavior of the metric near I + for stationary

objects in the bulk; for example, stars or black holes with possible scalar hair.
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5.2 Change in the metric coe�cients after the burst of radiation

Now that we have determined the radiative degrees of freedom in Lemma 4, and the metric

component constraints from the requirement of stationarity at asymptotically early and

late times in Lemma 5, we now integrate the leading order Einstein equations to prove the

following theorem:

Theorem 1. Let (M, g) be an isolated system which satisfies our ansatz and stationarity

conditions. Let gMN be in the gauge described by Lemmas 4 and 5 and satisfy Einstein’s

equation with stress energy TMN satisfying eq. (5.3) and the dominant energy condition.

1. The change in the metric coe�cient h(1)
AB is

�h(1)
AB(✓) =

✓
DADB � 1

2
qABD2

◆
T (✓)� 1

2
qAB��, (5.26)

where �� = �
⇣
ĝmn'(1)

mn

⌘
is a constant; specifically, it cannot be a function of ✓. The

function T (✓) is a smooth function on S2 determining an asymptotic supertranslation

(eq. 4.55) which satisfies

D2(D2 + 2)T (✓) = 4�h(1)
uu � 2��� 16⇡F(✓), (5.27)

where �h(1)
uu is a constant, F(✓)  0 is

F(✓) = � 1

Vol(Mint)

Z

R⇥Mint

du dµMint

✓
T (2)
uu (u, ✓, y) +

1

32⇡
N abNab(u, ✓, y)

◆
(5.28)

and dµMint is the volume measure of (ĝmn,Mint).

2. The change in the metric coe�cient A(1)
Am is

�A(1)
Am(✓, y

m) =
b1X

i=1

DAS
(i)(✓)⌦ V

(i)
m (ym) (5.29)

where V
(i)
m are a basis of b1 harmonic one-forms on Mint and the coe�cients S(i)

are a set of smooth functions of S2 which are parameters of an asymptotic internal

isometry and satisfy

D2S(i)(✓) = �Q(i) + 16⇡J (i)(✓), (5.30)

where the Q(i) are constants and

J (i)(✓) =
1

Vol(Mint)

Z

R⇥Mint

dudµMint T
(2)
um(u, ✓, y

m)V
(i)m

(ym). (5.31)
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3. The change in the metric coe�cient '(1)
mn is

�'(1)
mn(y

m) =
ĝmn

d� 4
��+

d̂LX

i=1

��(i) t
(i)
mn(y

m), (5.32)

where �� and ��(i) are constants, and the t
(i)
mn are a basis of d̂L symmetric, divergence

free two tensors on Mint which satisfy the Lichnerowicz equation.

Proof. We assume that the metric gMN is in a gauge compatible with Lemmas 4 and 5. The

‘zero mode’ of the (µ⌫; 2) components Einstein’s equation at order 1
r2 (see Appendix A.1),

yields

(uu; 2) @uD
Ah(1)

Au + @uh
(1)
ur � @uh

(1)
uu = 8⇡T

(2)
uu +

1

4
N abNab �

1

2
@u

✓
h(1)ABNAB (5.33)

+ 2A(1)AmNAm + '(1)mnNmn � @uh
(2)
rr � @uq

ABh(2)
AB � @uĝmn'(2)

mn

◆

(ur; 2) @u�� 2@uh
(1)
ur = @2uh

(2)
rr (5.34)

(uA; 2) @uD
Bh(1)

BA � 2@uh
(1)
uA + @uDAh

(1)
ur = @2uh

(2)
rA (5.35)

and the (rr; 2), (rA; 2) and (AB; 2) components of Einstein’s equation vanishes. Integrating

eq. (5.34) together with our stationarity conditions eq. (5.2) implies that

�� = 2�h(1)
ur (5.36)

which agrees with eq. (5.15). Lemma 5 implies that �� is spherically symmetric. Further-

more we note that, by Lemma 4

@u(q
ABh(1)

AB + �) = 0 =) �� = ��U (5.37)

where U = qABh(1)
AB in the stationary eras. Combining eqs. (5.33) and (5.35) yields

@uD
ADBh(1)

AB = 2@uh
(1)
uu � (D2 + 2)@uh

(1)
ur + 16⇡T (2)

uu +
1

2
N abNab � @uC1, (5.38)

where C1 denotes a collection of terms which vanish in the stationary eras. Integrating

with respect to retarded time, using eq. (5.2) and using the decomposition of h(1)
AB in the

stationary eras given by Lemma 5 yields

D2(D2 + 2)�T (✓) = 4�h(1)
uu � 2��(1) � 16⇡F(✓) (5.39)

where F is the total flux of stress energy and news squared to null infinity given by eq. (5.28).

That F  0 follows from the positivity of T (2)
uu due to the dominant energy condition and

the positivity of N abNab.
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The zero mode of the (µm; 2) components of Einstein’s equation at order 1
r2 can be ex-

tracted by taking the zero mode of the (µm; 2) components contracted with the orthonormal

basis vectors ĝmnV
(i)
n on Mint. The (rm; 2) and (Am; 2) components of Einsteins equation

vanish and the zero mode of the (um; 2) components yield

(um; 2) @uD
AA(1;i)

A � @uA
(1;i)
u =

Z

Mint

�
16⇡T (2)

umV
(i)m

+ @uC2) (5.40)

where A(i)
A (u, ✓) and A(i)

u (u, ✓) are defined in Lemma 4 and C2 vanishes in the stationary

eras. Integrating eq. (5.40) and using eqs. (5.2) and (5.3) and using the decomposition of

A(1)
Am, A

(1)
um in the stationary era given by Lemma 5 as well as the decomposition of '(1)

mn and

Nmn given by Lemma 4 and eq. (4.21) respectively yields the desired relation

D2�S(i)(✓) = �Q(i) + 16⇡J (i)(✓) (5.41)

where the J (i)(✓) are defined by eq. (5.31). Finally, the (mn; 2) components of Einstein’s

equation place no further constrains on the change in '(1)
mn and therefore, Lemmas 4 and 5

imply that �'(1)
mn is given by eq. (5.32).

That T (✓) and the S(i)(✓) generate an asymptotic supertranslation and an asymptotic

angle-dependent internal isometry between the stationary eras follows from Equations (4.55)

and (4.56) and that Nab = 0 in the stationary eras.

We finally consider the spherical harmonic dependence of the change in the metric

coe�cients �h(1)
AB,�h(1)

Am and �'(1)
mn. We first note that, by Lemma 5, �'(1)

mn is clearly

spanned only by ` = 0 spherical harmonics. By Proposition 2, if T (✓) is spanned by ` = 0, 1

spherical harmonics then DADBT (✓) = �qABT (✓). Therefore, it follows that the tracefree

part of �h(1)
AB on S2 is orthogonal to the ` = 0, 1 spherical harmonics. Furthermore, by the

form of eq. (5.29), we have that �A(1)
Am is orthogonal to the ` = 0 spherical harmonics.

6 The Memory E↵ect in Compactified Spacetimes

6.1 Unification of memory e↵ects

We now explore the geometric interpretation of Theorem 1 in terms of the memory e↵ect,

which is an observable quantity. Physically, the memory e↵ect is the permanent relative

displacement of a system of test particles, initially at rest, caused by the passage of a burst

of gravitational radiation. The relative displacement of test particles is governed by the

geodesic deviation equation

(vMrM)2⇠N = �RMPQ
NvMvQ⇠P , (6.1)
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where vM is the tangent vector of the worldline of the particle, ⇠M is the deviation vector

and RMPQ
N is the Riemann tensor. We are interested in the displacement of test particles

located near future null infinity and shall determine the leading order memory e↵ects in a
1
r expansion in a neighborhood of null infinity.

We consider a spacetime where the metric near future null infinity is stationary at

leading order in 1
r , at asymptotically early and late retarded times. In this subsection, we

will simplify and integrate eq. (6.1) to derive an explicit formula for the memory e↵ect. This

discussion is a modification of a similar analysis found in [65]. There are subtle di↵erences

when one considers compact internal manifolds, which makes the argument worth revisiting.

Consider an array of initially stationary test particles in a neighborhood of null infinity,

which we model as a congruence of time-like geodesics whose tangents vA initially point in

the (@/@u)M direction. In a neighborhood of null infinity, the spacetime metric deviates

from the Ricci-flat direct product metric (2.2) at order 1
r . Consequently, the geodesic

equation implies that vM di↵ers from the corresponding integral curve of (@/@u)M only at

order 1
r and therefore u will di↵er from an a�ne parameterization beginning at this order.

For an arbitrary internal manifold, the curvature is generically non-vanishing at infinity.

Nevertheless, these considerations imply that the quantity RMPQ
NvMvQ in eq. (6.1) does

vanish at infinity and is only non-vanishing at order 1
r . Therefore, the deviation of vM from

(@/@u)M in eq. (6.1) can only a↵ect ⇠N at order 1
r2 and faster fall-o↵. Finally, by eq. (4.2),

the Riemann tensor di↵ers from the Weyl tensor at O
�

1
r2

�
since the stress energy falls o↵

like 1
r2 . Since we are only considering the memory e↵ect at leading order in 1

r , we can

replace vM with (@/@u)M and RPML
NvPvL with the electric Weyl tensor EMN (as defined

in eq. (4.11)) in eq. (6.1) which yields

@2

@u2
⇠M = �EM

N⇠
N (6.2)

Indices on the right hand side of eq. (6.2) are raised and lowered with the asymptotic metric

ĝMN . Equation (6.2) implies that ⇠M di↵ers from the integral curve of its initial value ⇠M0
at order 1

r and we may replace ⇠M by its initial value in the right hand side of eq. (6.2).

Thus, at leading order in 1
r , we have

@2

@u2
⇠(1)M = �EM

N⇠
N
(0), (6.3)

where ⇠(1)M is the deviation vector at O
�
1
r

�
. Integrating eq. (6.3) twice, we obtain

⇠(1)M
����
u=1

u=�1
= �M

N⇠
N
(0), (6.4)
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where

�MN ⌘ �
Z 1

�1
du0

Z u0

�1
du00EMN . (6.5)

We refer to �MN as the memory tensor. This characterizes the memory e↵ect as a linear

map on the initial displacement to the change in the relative separation. Further, as noted

in Lemma 3, the only non-vanishing components of EMN are Eab = �1
2@uNab where a, b are

along S2 ⇥Mint. This gives a simpler manifestly gauge-invariant relation for the memory,

�ab(✓, y) ⌘
1

2

Z 1

�1
duNab(u, ✓, y). (6.6)

From (6.6), it follows that

�ab = �ba, qab�ab = qAB�AB + ĝmn�mn = 0, (6.7)

and clearly �ab is time-independent. Additionally from eq. (4.19), we see that

D2�AB = 0, D2�Am = 0, D2�mn + 2Rm
p
n
q�pq = 0. (6.8)

Using arguments identical to those in the proof of Lemma 3, we see that �AB is independent

of internal coordinates ym and �Am and �mn can be uniquely decomposed in a basis of

harmonic 1-forms V
(i)
m and Lichnerowicz zero modes t

(i)
mn, respectively,

�Am =
b1X

i=1

�(i)
A (✓)⌦ V

(i)
m (y) and �mn =

d̂LX

i=1

�(i)(✓)t
(i)
mn(y) +

1

D � 4
ĝmnĝ

pq�pq(✓). (6.9)

The �(i)
A are a collection of b1 1-forms on S2, and the �(i) are smooth functions on S2.

We now provide a geometric interpretation of Theorem 1. In the gauge given in Lemma 4,

the news tensor can be expressed in terms of the leading order metric eq. (4.46). This pro-

vides a direct relation between the change in the h(1)
AB, h

(1)
Am and h(1)

mn before and after the

radiation epochs:

�AB =
1

2
�h(1)

AB, �Am =
1

2
�A(1)

Am and �mn =
1

2
�'(1)

mn . (6.10)

Using the results of Theorem 1 we can now relate the memory to the change in the metric

due to a burst of radiation. We first note that certain metric components appearing in

Theorem 1 can be directly related to definitions of the Bondi mass aspect and electric

charge aspect in R4.

mB ⌘ �1

2
E (3)
rr =

1

2
h(1)
uu and Q(i) ⌘ F (2;i)

ur = A(1;i)
u (in a stationary era), (6.11)
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where F = dA using the exterior derivative on R4 and Aµm is defined in eq. (3.1). Using

the results of Theorem 1 and eq. (6.9) we see that

DADB�AB = 2�mB � 1

2
��� 8⇡F(✓), qAB�AB = �1

2
��, (6.12)

DA�(i)
A (✓) =

1

2
�Q(i) + 8⇡J (i)(✓), (6.13)

�(i) =
1

2
��(i) and ĝmn�mn =

1

2
��. (6.14)

In analogy with the decomposition of the news in eqs. (4.20) and (4.21) we can decompose

the flux F(✓) into gravitational, electromagnetic and scalar contributions to the flux:

F(✓) = FGR(✓) + FEM(✓) + FS(✓), (6.15)

where

FGR(✓) =�
Z

R
du

✓
T (2)
uu +

1

32⇡
NABNAB

◆
, (6.16)

FEM(✓) =�
b1X

i=1

Z

R
duN (i)AN (i)

A , (6.17)

FS(✓) =� 2

Z

R
du N2 �

d̂LX

j=1

Z

R
du (N (j))2. (6.18)

From the point of view of reduction, eq. (6.16) corresponds to the flux of four-dimensional

gravitational radiation energy as well as null stress energy. Equation (6.17) corresponds to

the flux of electromagnetic energy and eq. (6.18) is the flux of scalar energy where the first

term is the contribution from the volume mode and second term is the contribution from

the volume-preserving moduli.

We can give a physical interpretation to these relations, which express memory in terms

of fluxes. First consider eq. (6.12). The spherically symmetric part of the left hand side

vanishes. The right hand side defines a change in the spherically symmetric part of the

mass aspect. It is reasonable to view

m = mB � 1

4
� (in a stationary era) , (6.19)

as the mass since the change in this quantity is determined by the energy flux to I + in

analogy with the four-dimensional result (1.12). Similarly, Q(i) is the electric charge for each

asymptotic gauge-field A(i;1)
µ since �Q(i) is determined by the charge flux to I +. Via (6.14),

scalar memory is defined by the change in the scalar charge, given by the coe�cient of the
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1
r term in the expansion of the field near I +, between early and late times. In this case,

there is no integrated flux term.

The memory e↵ect �AB corresponds to the permanent relative angular displacement of

a pair of freely falling test masses. �Am corresponds to the displacement in the internal

space directions (i.e. along Killing directions) for a pair of test masses that are initially

angularly displaced. If the test masses had some initial displacement in the internal space

then, due to a change in scalar charge, the relative displacement in the internal space will

change by an amount �mn. Physically, the internal space is small and therefore relative

displacements of test masses into the internal space are undetectable. Nevertheless, the

four-dimensional scalar and electromagnetic memory e↵ects are usually described in terms

of velocity kicks [14, 15]. We should be able to recover this way of observing memory from

the higher-dimensional gravitational picture.

To see how this emerges, consider the geodesic motion of a test particle with velocity

vM

vMrMvN = 0, (6.20)

which follows from varying the point-particle action

S = �m

Z p
�ĝMN(x) dxM dxN . (6.21)

This equation of motion eq. (6.20) describes the motion of a point particle following a

timelike geodesic. We consider the case where the tangent vM , initially vM(0), is of the form

vM(0) ⌘ c1

✓
@

@u

◆M

+ c2V
m
(y)

✓
@

@ym

◆M

, (6.22)

c21 =
1 +

p
1 + 4q2

2
, c22 =

�1 +
p
1 + 4q2

2
, (6.23)

where V
m
(y) is a unit normalized Killing vector, which is automatically geodesic on Mint:

V
m
DmV

n
= 0 and ĝmnV mV n = 1. (6.24)

This characterizes an initially stationary test particle with charge q determined by the

velocity in the internal direction at some early time u = u0. The vector field V
m

must

be Killing to ensure the test particle is constructed from zero modes of the internal space.

Since our discussion is purely classical, we will not worry about quantization conditions on

the internal momentum, which force such momenta to be of order the Kaluza-Klein scale.

52



We are interested in the velocity kick of this test particle relative to a preferred class

of asymptotic, stationary observers, which will define our lab frame. To define a time-like

vector field vlabM , we Lie-transport the tangent vector v(0)M , so that vlabM in our coordinates

agrees with the trivial extension v(0)M for all u > u0. We note that this is an accelerated

reference frame, which implies that it di↵ers from geodesic evolution of v(0)M at order 1
r :

vM = vlabM +
v(1)M (u, ✓, y)

r
+O

✓
1

r2

◆
. (6.25)

Expanding eq. (6.20) in powers of 1
r and integrating the geodesic equation a straightforward

computation yields in the gauge described by Lemma 4 that the non-vanishing components

of the velocity kick are �vA(1) and �vr(1).

�v(1)A (u, ✓) = c21

Z u

�1
du0@u0h(1)

uA +
q

2

Z u

�1
du0NAmV

m
. (6.26)

The first term on the right hand side of (6.26) is not proportional to the charge! Rather

it is finite as q ! 0 and corresponds to a purely gravitational velocity kick. This e↵ect

actually has nothing to do with the compact internal space and is present in just R4. It

would be very interesting to explore the potential observability of this e↵ect. The second

term is the electromagnetic kick we expect. Note that NAmV
m
is independent of y because

of eq. (4.20). Similarly, the radial velocity kick

�vr(1)(u, ✓) =
c22
2

Z u

�1
du0NmnV

m
V

n
, (6.27)

is sensitive to radiation from the specific scalar zero modes associated to the torus compo-

nent in the decomposition theorem of [57].

The total velocity kicks in the angular and radial directions, respectively, are given by

�vA(✓) ⌘ lim
u!1

�v(1)A (u, ✓) , (6.28)

�vr(✓) ⌘ lim
u!1

�vr(1)(u, ✓) . (6.29)

Using eq. (5.35) we find that the integrand of the first term in eq. (6.26) can be expressed

in terms of an integral of the news:

@uh
(1)
uA =

1

2
DBNBA +

1

4
DAN +

1

2
DAh

(1)
ur � 1

2
@2uh

(2)
rA. (6.30)

Integrating eq. (6.30) and using eq. (5.36) implies that

�h(1)
uA(✓) =

1

2

Z

R
duDBNBA. (6.31)
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Using eq. (6.6) yields the total velocity kick in terms of the memory

�vA(✓) =c21D
B�BA + q�AmV

m
, (6.32)

�vr(✓) =c22�mnV
m
V

n
. (6.33)

This leaves the question of how to detect radiation for moduli associated to the simply-

connected component of Mint. It appears that directly detecting such radiation requires a

more sophisticated detector, but we can make one comment on this issue. In principle, a

detector can measure NAB,NAm and the torus contribution to Nmn by the motion of the

arms of a LIGO-like detector and the motion of a charged test particle. Squaring these

contributions gives us all of eq. (6.15) except any unknown null stress-energy, including

contributions from additional moduli. We can use the measured fluxes to compute what

should be the dominant contribution to the right hand side of eq. (6.12). Assuming the

size of the ordinary memory e↵ect compared with the radiation contribution is still small,

and there is a sizeable discrepancy between the observed gravitational memory and the flux

computation, we can place upper bounds on the possible contribution of any additional

moduli.

6.2 The circle case

The original beauty of Kaluza-Klein theory was a unification of electromagnetism, gravity

and scalar field theory in a single 5-dimensional theory of gravity compactified on a circle.

Let us revisit this beautiful and simple example to unify the separately studied notions

of memory for gravity [13, 18], electromagnetism [15–17] and scalar theories [14] in the

framework of 5-dimensional gravity using the discussion of section 6.1.

Let us take a spacetime metric with an exact U(1) isometry,

ĝMNdx
MdxN = gµ⌫dx

µdx⌫ + e2'(x)(dy + Aµ(x)dx
µ)2, (6.34)

where y ⇠ y+2⇡L and '! 0 at infinity. Reducing the D = 5 Einstein-Hilbert action with

zero cosmological constant on y gives the 4-dimensional action,

S =
1

16⇡G

Z
d4x e'(x)

p
g

✓
R� 1

4
e2'Fµ⌫F

µ⌫ + @µ'@
µ'

◆
, (6.35)

where F = dA. This is a special case of Mint that we studied earlier in the frame we have

assumed in our discussion so far, which is not Einstein frame! The 1
r terms in the expansion

of Aµ and e2'(x) can be identified with A(1)
µy and '(1)

yy defined in eq. (3.1) and discussed in

the preceding sections.
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Specializing eq. (6.21) to the case of a R4 ⇥ S1 gives the geodesic equation,

d2xM

d⌧ 2
+ �M

NP

dxN

d⌧

dxP

d⌧
= 0 , (6.36)

with the Christo↵el symbols given to leading order in 1
r by

�C
uu = qCD@uh

(1)
uD , �C

uy =
1

2
qCD@uA

(1)
D , �r

yy =
1

2
@u�

(1), (6.37)

where �(1) = 2'(1). Assuming an initial vM(0) of the form eq. (6.22) gives the following leading

order equations of motion,

@uv
M(1) = �c21�

M
uu � 2q�M

uy � c22K
M�r

yy, (6.38)

where KM ⌘
�

@
@r

�M
. In this case, the time-dependent behavior of the angular and radial

velocity kicks for a particle with charge q, which might vanish, is determined using

@uv
C;(1) = �c21q

CD@uh
(1)
uD � qF (1)

uA , @uv
r;(1) = �c22

2
@u�

(1). (6.39)

Using the analysis of section 6.1, the total velocity kick from the far past (u ! �1) to the

far future (u ! +1) is given by

�vA = c21D
B�BA + q�Ay , �vr = c22�yy, (6.40)

where �BA,�By and �yy are found in eq. (6.10).

One final comment: in the context of subleading soft photon theorems, there are pro-

posals to permit gauge transformations in abelian gauge theory that grow linearly with r

near I + [66, 67]. This is an interesting possibility, although the asymptotic behavior of the

gauge parameter no longer defines a U(1) group element. In the Kaluza-Klein context, al-

lowing such gauge transformations becomes a statement about higher-dimensional gravity,

which would generalize the class of di↵eomorphisms normally permitted, assuming such a

generalization is sensible. It would be interesting to explore this embedding further.

6.3 Color memory

While most of the analysis in this paper assumes a Ricci-flatMint, we cannot resist sketching

how color memory studied in [19, 55] should also emerge from Kaluza-Klein reduction. The

starting point is a higher-dimensional gravity theory which admits a space with non-abelian

isometries. We will assume a D � 4 sphere for simplicity. Let us take an action,

S =
1

22D

Z
dDx

p
�g

�
R� 2⇤� |FD�4|2

�
, (6.41)
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where FD�4 is a D� 4-form field strength. Compactifying this theory on SD�4 with radius

L gives an e↵ective four-dimensional potential for the radius L of the form:

Ve↵ =
2⇤

LD�4
� (D � 4)(D � 5)

LD�2
+

N2

L3(D�4)
. (6.42)

Here we assume the sphere metric is L2ds2SD�4 , where ds2SD�4 is the metric for a sphere

of unit volume. The parameter N is proportional to the amount of quantized FD�4 flux

through the sphere. Since this is a classical gravity theory, we can chose ⇤ conveniently to

ensure the resulting spacetime is flat Minkowski. Under this condition, the potential has

a minimum with L growing with N . This is all we need. We have engineered Minkwoski

spacetime from a compactification with non-abelian isometries. In this case, the identity

component of the isometry group is SO(D � 3).

Let us return to the geodesic equation eq. (6.36) for a test particle with velocity along

the sphere. The novelty in this case, by comparison with the Ricci-flat case, is that the

internal velocity vector can rotate as higher-dimensional gravitational radiation passes by.

In the Ricci-flat case, the Christo↵el symbols along Killing directions vanish. For spaces

with non-abelian isometry groups, like the sphere, this is no longer true. From a four-

dimensional perspective, the color charge would therefore appear to change because of a

burst of radiation, in agreement with [19].

6.4 Frames

The final issue we need to address is the choice of frames. As illustrated in the circle

example of section 6.2, the natural four-dimensional frame that corresponds to studying

radiation in terms of the D-dimensional metric is not Einstein frame. Let us parametrize

the volume mode or breathing mode of the internal metric in analogy with the circle case,

ds2Mint
= e2'(x)ĝmndy

mdyn, (6.43)

where '! 0 at infinity. To connect with our earlier discussion, note that � = 2(D� 4)'(1)

where � is defined in Lemma 4. Reducing to four dimensions gives an e↵ective action of

the form,

S =
1

16⇡G

Z
d4x e(D�4)'p�gR + . . . , (6.44)

where the omitted terms involve scalar and vector fields whose kinetic terms typically

depend on '. Our analysis in terms of ĝ gives formulae for memory in this frame. To

convert to Einstein frame with a canonical Einstein-Hilbert action, we need to perform one
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conformal transformation and use the relations described in section 1.1. The Einstein frame

metric is defined by

g(E)
µ⌫ = e(D�4)' gµ⌫ ,

=

✓
1 + (D � 4)

'(1)

r
+ · · ·

◆
gµ⌫ = ⌘µ⌫ +

h(1)
µ⌫

r
+ (D � 4)

'(1)

r
⌘µ⌫ + . . . , (6.45)

= ⌘µ⌫ +
h(1)
µ⌫

r
+

1

2

�

r
⌘µ⌫ + . . . . (6.46)

Therefore the leading order metric in Einstein frame is

h(1;E)
µ⌫ = h(1)

µ⌫ +
1

2
�⌘µ⌫ (6.47)

and so the Einstein news tensor is

N (E)
AB = NAB � 1

2
NqAB = NAB. (6.48)

Thus the Einstein news tensor is equivalent to the trace-free Bondi news tensor – an Ein-

stein frame observer is insensitive to the overall breathing mode as we expect [24]. The

components of electromagnetic and scalar radiative degrees of freedom are unchanged:

N (E)
Am = NAm and N (E)

mn = Nmn. (6.49)

The memory e↵ects as viewed by such an Einstein frame observer are then given by

�(E)
AB = �AB � 1

2
qAB

�
qCD�CD

�
, �(E)

Am = �Am and �(E)
mn = �mn. (6.50)
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A Asymptotic Expansion of Einstein’s Equations

In this Appendix, we collect some technical results regarding the asymptotic Einstein equa-

tions and the decay of certain components of the Ricci tensor that will be used ubiquitously

in this paper. To simplify our analysis we assume that the metric is in the gauge described

by Lemma 4.

A.1 Constraints on the asymptotic expansion

It is more convenient for our analysis to examine the trace-reversed Einstein equations given

by,

RMN = 8⇡TMN , (A.1)

where TMN is the trace-reversed stress tensor:

TMN = TMN � 1

D � 2
gMN

�
gPQTPQ

�
. (A.2)

It is useful to split the Ricci tensor into a linear and nonlinear part using the metric split

ĝMN + hMN for some chosen ĝ. We define the nonlinear part of the Ricci tensor as

RMN ⌘ RMN � eRMN , (A.3)

where RMN is the Ricci tensor and eRMN is the linearized Ricci tensor defined below:

eRMN ⌘ �1

2

⇣
⇤ĝhMN + 2R̂M

P
N

QhPQ � 2r̂(Mr̂PhN)P + r̂Mr̂Nh
⌘
. (A.4)

On the right hand side, all di↵erential operators along with Riemann are defined with

respect to ĝ. In the Appendices, we will denote the linearized version of objects with a

tilde, just as eRMN is the linear part of RMN .

In our analysis we defined ĝ in (3.4) while hMN is given by the collection of functions

(hµ⌫ , Aµn, 'mn) appearing in (3.5). We will expand (A.1) to find a series of recursion

relations of the form: (linearized Ricci) = (stress-energy) - (non-linear Ricci). We find the

following relations:

[D2 + (n� 1)(n� 2)]h(n�1)
uu + 2(n� 1)@uh

(n)
uu +D2h(n+1)

uu + @2u(h
(n+1) + �(n+1))

� 2@u 
(n+1)
u = �16⇡T (n+1)

uu + 2R(n+1)
uu , (A.5)

[D2 + n(n� 3)]h(n�1)
ur + 2h(n�1)

uu � 2DAh(n�1)
Au + 2(n� 1)@uh

(n)
ur +D2h(n+1)

ur + n (n)
u

� @u 
(n+1)
r � n@u(h

(n) + �(n)) = �16⇡T (n+1)
ru + 2R(n+1)

ur , (A.6)
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[D2 + (n� 1)(n� 2)� 1]h(n�1)
uA � 2DA(h

(n�1)
uu � h(n�1)

ur ) + 2(n� 1)@uh
(n)
uA +D2h(n+1)

uA

� DA 
(n)
u � @u 

(n+1)
A + DA@u(h

(n) + �(n)) = �16⇡T (n+1)
uA + 2R(n+1)

uA , (A.7)

[D2 + (n� 1)(n� 2)� 4]h(n�1)
rr + 4h(n�1)

ur + 2qABh(n�1)
AB � 4DAh(n�1)

Ar + 2(n� 1)@uh
(n)
rr

+D2h(n+1)
rr + 2n (n)

r + n(n� 1)(h(n�1) + �(n�1)) = �16⇡T (n+1)
rr + 2R(n+1)

rr , (A.8)

[D2 + (n� 1)(n� 2)� 5]h(n�1)
rA + 4h(n�1)

uA � 2DA(h
(n�1)
ur � h(n�1)

rr )� 2DBh(n�1)
BA +D2h(n+1)

rA

+ 2(n� 1)@uh
(n)
rA � DA 

(n)
r + n (n)

A � (n� 1)DA(h
(n�1) + �(n�1))

= �16⇡T (n+1)
rA + 2R(n+1)

rA , (A.9)

[D2 + (n� 1)(n� 2)� 2]h(n�1)
AB � 4D(Ah

(n�1)
B)u + 4D(Ah

(n�1)
B)r + 2(n� 1)@uh

(n)
AB +D2h(n+1)

AB

� 2D(A 
(n)
B) � 2( (n)

r �  (n)
u )qAB + (DADB � (n� 1)qAB)(h

(n�1) + �(n�1))

� qAB@u(h
(n) + �(n)) + 2(h(n�1)

rr � 2h(n�1)
ur + h(n�1)

uu )qAB = �16⇡T (n+1)
AB + 2R(n+1)

AB , (A.10)

[D2 + (n� 1)(n� 2)]A(n�1)
um + 2(n� 1)@uA

(n)
um +D2A(n+1)

um �Dm 
(n+1)
u � @u 

(n+1)
m

+Dm@u(h
(n+1) + �(n+1)) = �16⇡T (n+1)

um + 2R(n+1)
um , (A.11)

[D2 + n(n� 3)]A(n�1)
rm + 2A(n�1)

um � 2DAA(n�1)
Am + 2(n� 1)@uA

(n)
rm +D2A(n+1)

rm + n (n)
m

�Dm 
(n+1)
r � nDm(h

(n) + �(n)) = �16⇡T (n+1)
rm + 2R(n+1)

rm , (A.12)

[D2 + (n� 1)(n� 2)� 1]A(n�1)
Am � 2DA(A

(n�1)
um � A(n�1)

rm ) + 2(n� 1)@uA
(n)
Am +D2A(n+1)

Am

� DA 
(n)
m �Dm 

(n+1)
A +DmDA(h

(n) + �(n)) = �16⇡T (n+1)
Am + 2R(n+1)

Am , (A.13)

[D2 + (n� 1)(n� 2)]'(n�1)
mn + 2(n� 1)@u'

(n)
mn +D2'(n+1)

mn + 2Rm
p
n
q'(n+1)

pq � 2D(m 
(n+1)
n)

+DmDn(h
(n+1) + �(n+1)) = �16⇡T (n+1)

mn + 2R(n+1)
mn . (A.14)

Here we have defined

 M ⌘ @NhNM , h(n) ⌘ ⌘µ⌫h(n)
µ⌫ , �(n) ⌘ ĝmn'(n)

mn, (A.15)

so that

 (n)
u = DAh(n�1)

Au + (3� n)(h(n�1)
ur � h(n�1)

uu )� @uh
(n)
ur +DmA(n)

um, (A.16)
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 (n)
r = DAh(n�1)

Ar + (3� n)(h(n�1)
rr � h(n�1)

ur )� qABh(n�1)
AB � @uh

(n)
rr +DmA(n)

rm, (A.17)

 (n)
A = DBh(n�1)

BA + (4� n)(h(n�1)
rA � h(n�1)

uA )� @uh
(n)
rA +DmA(n)

Am, (A.18)

 (n)
m = DAA(n�1)

Am + (3� n)(A(n�1)
rm � A(n�1)

um )� @uA
(n)
rm +Dn'(n)

nm . (A.19)

In the body of this work, we will need the expansion of Einstein’s equations to order 1
r2 ,

and to order 1
r3 for the special case of a stationary era.

A direct calculation of R(2)
MN in the gauge of Lemma 4 shows that the non-vanishing

components of R(2)
MN can be written entirely in terms of the news eq. (4.46). Explicitly the

non-vanishing components of R(2)
MN are given by,

R(2)
uu =� 1

4
N abNab +

1

2
@u
�
h(1)
ab N

ab
�
, (A.20)

R(2)
um =

1

4
(Dm�pq)N pq � 1

2
�pnDpNmn �

1

2(D � 4)
�DnNnm +

1

2
Dm(�

npNnp), (A.21)

R(2)
mn =� 1

4
(D(m�

pq)(Dn)�pq) + (Dp�q
m)(D[p�q]n) +

1

2
�pqDpDq�mn (A.22)

+
1

2(D � 4)
�D2�mn +

1

4
DmDn(�

pq�pq),

where the product in eq. (A.20) is explicitly given by

h(1)
ab N

ab = h(1)
ABNAB + A(1)

AmNAm + �mnNmn +
1

D � 4
� ĝmnNmn, (A.23)

and the scalars �mn(u, ✓, y) and �(u, ✓) are defined in Lemma 4. The remaining components

of R(2)
MN vanish. In Section 5.2, the zero modes of the nonlinear parts of the Ricci tensor

appear as “flux” terms for the change in metric. More precisley, we find that the zero

modes of R(2)
uu and R(2)

um determine the change in the metric due to a burst of radiation.

The zero mode of eq. (A.20) is manifestly non-vanishing unless Nab = 0. To determine the

zero mode of R(2)
um we contract with a Killing vector V

m
of (Mint, ĝmn) and integrate over

Mint:
Z

Mint

RumV
m
=
1

4

Z

Mint


N pq(V

m
Dm�pq)

� 2Dp

✓
�pnNmnV

m
+
�N p

mV
m

D � 4
� V

p
�mnNmn

◆�
, (A.24)

=
1

4

Z

Mint

Nmn£V̄�mn, (A.25)

where in the first line we used the fact that �pq is divergence free, � is constant on Mint

and that V̄ m is covariantly constant to write the last three terms in eq. (A.21) as a total
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derivative. In the second line we used the fact that V̄ m is covariantly constant to write the

directional derivative in terms of the Lie derivative. However the decomposition theorem

of [57] states thatMint is a free quotient of a Riemannian product of a torus and a connected

Ricci-flat space with vanishing b1. For such a product, £V�mn = 0 since V is one of the

torus isometries.

At this stage, we want to check whether our ansatz (3.5) of an expansion in powers of
1
r makes sense as an asymptotic expansion. This might seem fairly reasonable because in

both pure gravity and Maxwell-Einstein, there exists a large class of solutions which are

smooth at I + in a particular gauge [68].12 However, this is not the case for a scalar field in

four dimensions with null sources [65]. A scalar field � in Minkowski spacetime satisfying

⇤⌘� = J, (A.26)

where J is a source, does not admit a 1
r expansion near I + when J ⇠ 1

r2 , which is a

configuration with finite flux through I +. Rather one must include log(r)
rn terms in the

expansion. This is without dynamical gravity.

In our case, there is a general obstruction to integrating in from I +. Namely, if a

specific scalar fluctuation of Mint is obstructed, or equivalently gets a mass at some order

beyond the linearized approximation, then our ansatz is simply not valid for that mode.

The mode could never propagate to I +, which we implicitly assume in our ansatz. We can

see this obstruction emerge in the 1
r expansion. Consider the mn component of the vacuum

Einstein’s equations at order 1
r2 , i.e., eq. (A.14) for n = 1 and T (2)

mn = 0:

D2'(2)
mn + 2Rm

p
n
q'(2)

pq � 2D(m 
(3)
n) +DmDn(h

(3) + �(3)) = 2R(2)
mn. (A.27)

After contracting both sides with a tensor field tmn(y) which is annihilated by Lichnerowicz,

it is straightforward to check that the right hand side vanishes. We therefore get the

following nonlinear obstruction to our ansatz,
Z

Mint

tmnR(2)
mn = 0. (A.28)

It is straightforward to check that the volume mode, as expected, is unobstructed. Letting

tmn = ĝmn(y) in eq. (A.28) and using eq. (A.22) gives

ĝmnR(2)
mn =

✓
1

4
Dm�pqDm�pq �

1

2
Dp�qmDq�pm +

1

4
D2�2

◆
, (A.29)

12
Note that starting with smooth initial data on a Cauchy surface and evolving that data does not

generically lead to a solution with an analytic expansion in
1
r near I +

. Rather log(r) terms can be

generated at subleading orders in
1
r even in pure gravity [69]. However, there exists a class of initial data

in pure gravity that guarantee Ck
di↵erentiability at I +

for any k [68].
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where �2 = �mn�mn. Integrating over Mint,

Z

Mint

ĝmnR(2)
mn =

1

2

Z

Mint

✓
1

2
Dm�pqDm�pq �Dp�qmDq�pm

◆
, (A.30)

=
1

2

Z

Mint

✓
� 1

2
�pqD2�pq + �

qmDpDq�pm

◆
, (A.31)

=
1

2

Z

Mint

✓
Rmpnq�mn�pq �Rmpnq�mn�pq + �

qmDqD
p�pm

◆
, (A.32)

= 0, (A.33)

where we have used

D2�mn + 2Rm
p
n
q�pq = 0,

and that �mn is divergence-free. As we spelled out in section 2.2, the space of exactly

massless modes d̂L  dL is smaller than the kernel of Lichnerowicz. The exactly massless

volume-preserving moduli satisfy eq. (A.28). Thus, as in Lemma 4, we truncate the lin-

earized massless moduli to exactly massless moduli and obtain a solution consistent with

our ansatz and Einstein’s equations at order 1
r2 . As we will see in section A.3, this trun-

cation also ensures that our ansatz is consistent with Einstein’s equations at order 1
r3 . We

fully expect that restricting to exactly massless modes is necessary to obtain a solution to

Einstein’s equations to all orders in 1
r , however we have not attempted to show this here.

Note that this discussion motivates our imposing a similar condition on T (2)
mn; namely, that

T (2)
mn be orthogonal to the d̂L + 1 exactly massless scalar modes.

A.2 Going to the stationary era gauge

We now want to show that a metric in the gauge of Lemma 4 can be further restricted at

order 1
r2 in a stationary era. Specifically,

h(2)
µ⌫ = h

(2)
µ⌫ (✓), A(2)

µm =
b1X

i=1

A(2;i)
µ (✓)⌦ V

(i)
m (ym) (A.34)

and

'(2)
mn = �(2)

mn(✓
A, ym) +

✓
DmDn �

ĝmn

d� 4
D2

◆
 (2)(✓A, ym) +

ĝmn

d� 4
�
(2)
(✓). (A.35)

Note that '(2)
mn is missing a vector term shown in Proposition 2, and �

(2)
is constant on

Mint. To achieve this gauge we first make a gauge transformation that is compatible with
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our ansatz (3.5), stationarity conditions and Lemma 4. We choose a gauge vector field of

the form,

⇠M ⇠ ⇠(2)M (✓, y)

r2
+O

✓
1

r3

◆
, (A.36)

where ⇠M is a u-independent gauge transformation. By an analysis similar to the proof of

Lemma 4 we see that DmA(2)
µm = 0 is divergence free and '(2)

mn admits the decomposition

given in eq. (A.35). In a stationary era, R(2)
µ⌫ = R(2)

µn and T (2)
MN = 0. Therefore:

(µ⌫; 2) D2h(2)
µ⌫ = 0, (A.37)

(µm; 2) D2A(2)
µm = 0, (A.38)

(mn; 2) D2'(2)
mn + 2Rm

p
n
q'(2)

pq +DmDn(�2h(2)
ur + h(2)

rr + qABh(2)
AB) (A.39)

� 2D(mD
p'(2)

n)p = 2R(2)
mn.

We conclude that

h(2)
µ⌫ = h

(2)
µ⌫ (u, ✓) and A(2)

µm =
b1X

i=1

A(2)
µ (u, ✓)⌦ V m(y). (A.40)

Using these relations we now study (mn; 2). Taking the trace of (mn; 2) gives13

� 2DmDn'(2)
mn =

1

2
Dm�pqDm�pq �Dm�pqDp�mq +

1

2
D2(�pq�pq), (A.41)

which yields the following equation for  (2):
✓
D � 5

D � 4

◆
D4 (2) = �1

4
Dm�pqDm�pq +

1

2
Dm�pqDp�mq �

1

4
D2(�pq�pq). (A.42)

We note that the above analysis implies that the right hand side has no zero modes and

therefore, we can solve for  (2) in terms of �mn. After solving for  (2) we can then solve

for �(2)
mn:

L[�(2)
mn] = �L[Dmn 

(2)] + 2

✓
D � 5

D � 4

◆
DmDnD

2 (2) � 1

4
(D(m�

pq)(Dn)�pq) (A.43)

+ (Dp�q
m)(D[p�q]n) +

1

2
�pqDpDq�mn +

1

4
DmDn(�

pq�pq) +
�D2�mn

2(D � 4)
.

Here L[·] is the Lichnerowicz operator and Dmn ⌘
�
DmDn� ĝmn

D�4D
2
�
. As in our discussion

of section A.1, we again truncate to exactly massless scalar fluctuations for which the right

hand side of eq. (A.43) has no Lichnerowicz zero modes. This guarantees solvability of

13
Just to remind the reader, �mn without a superscript denotes the leading order term as in (4.32).
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eq. (A.43). On a generic Ricci flat manifold,  (2) will not be harmonic and �(2)
mn does not

satisfy the Lichnerowicz equation. In the special case of Mint = Tk, we see that Dm�pq = 0

and

D2 (2) = 0 =) D2�(2)
mn + 2Rm

p
n
q�(2)

pq = 0 for Mint = Tk. (A.44)

A.3 Ricci in a stationary era

The last result we want to record is the behavior of the nonlinear part of the Ricci tensor

at order 1
r3 . By a lengthy but straightforward calculation, the following components of the

nonlinear part of the Ricci tensor vanish in a stationary era and in our gauge at order 1
r3 :

R(3)
µ⌫ = 0 and R(3)

um = 0 in a stationary era, (A.45)

and the nonvanishing components are

R(3)
rm = �Dm(�

pq�pq) +
1

2
Dp(�

pq�qm) in a stationary era, (A.46)

R(3)
Am =

1

4
DmDA(�

pq�pq)�
1

2
Dp(�

pqDA�mq) in a stationary era. (A.47)

Finally, the R(3)
mn component is given by

R(3)
mn =� 1

2
D(m�

pqDn)'
(2)
pq + (Dp�q

(m)(D|p|'
(2)
n)q) +

1

2
DmDn(�pq'

(2)pq) (A.48)

�Dp(�
pqD(m'

(2)
n)q) +

1

2
Dp(�

pqDq'
(2)
mn) +

1

2
Ds

⇥
�s

P�
Pq⌅mnq

⇤

� 1

2
Dm

⇥
�s

P�
Pq⌅nsq

⇤
� 1

2
ĝkq�ls⌅msq⌅kls +

1

2
ĝkq�ls⌅lnq⌅kms

+ non-zero modes,

where ⌅mrq ⌘ 2D(m�r)q � Dq�mr and ‘non-zero modes’ refers to modes orthogonal to

the Lichnerowicz zero modes. Again this obstruction to solving Einstein’s equations is

generically non-trivial for a Ricci-flat space, but
R
Mint

tmnR(3)
mn = 0 if tmn is an exactly

massless fluctuation, and hence the obstruction vanishes. Note that for the special case of

Mint = Tk, R(3)
mn = 0.

B A Gauge Invariant Derivation of Memory in Linearized Grav-

ity with Compact Extra Dimensions

In this section we will derive the memory e↵ect in linearized gravity for isolated systems

with compact extra dimensions using the Bianchi identity. In particular we shall assume,
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in any neighborhood of null infinity, there exists a gauge in which the metric admits an

asymptotic expansion of the form (3.5). We now derive the memory e↵ect in a manifestly

gauge invariant way using the Bianchi identity for the asymptotic Weyl tensor. Since we

shall be working with gauge invariant quantities, we shall only need that the expansion

(3.5) is valid in any local neighborhood of null infinity.

We denote the linearized Weyl tensor by eCMNPQ. The linearized Bianchi identity is

@[M eCNP ]QR = 0. (B.1)

The linearized electric Weyl tensor is defined as

eEPR ⌘ eCNPQRn
NnQ, (B.2)

where nN ⌘ (@/@u)N . Lemma 3 applies to the leading order linearized electric Weyl

tensor, which has non-vanishing components eEAB and eEAm that are harmonic on Mint. The

component eEmn satisfies the Lichnerowicz equation on Mint. Finally, we again have that

qAB eEAB = ĝmn eEmn.

We now compute the memory e↵ect from the Bianchi identity. We recall that

e�MN =

Z 1

�1
du0

Z u0

�1
du00 eEMN . (B.3)

We start with the scalar memory e↵ect. Since e�mn satisfies the Lichnerowicz equation we

can expand e�mn as

e�mn =
dLX

i=1

e�(i)T (i)
mn +

1

D � 4
ĝmnĝ

pq e�pq, (B.4)

in terms of dL trace-free, divergence-free symmetric tensors T (i)
mn which satisfy the Lichnerow-

icz equation. Note that ĝ is defined in (1.32). We note that ��(i) and �� in Theorem 1

are actually gauge invariant quantities and therefore, the derivation of scalar memory is

exactly analogous to the derivation in the nonlinear theory:

e�(i) =
1

2
��(i) and ĝmn e�mn =

1

2
��. (B.5)

For the scalar case, working with gauge invariant variables does not buy us much.

To derive the electromagnetic memory e↵ect, we note that an explicit computation using

the linearized metric yields

eCµ⌫⇢m =
b1X

i=1

@⇢F
(i)
⌫µ (x

µ)⌦ V (i)
m (ym), (B.6)
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where the bar on the left hand side denotes a projection to zero modes as described in

section 1.5. Viewing the left hand side as a 1-form in the internal space, this means

projecting to harmonic 1-forms on Mint in agreement with the expression on the right

hand side. F (i)
µ⌫ is the field strength for the graviphoton associated to V (i)

m . This field

strength is now gauge invariant and @µ is the derivative operator compatible with the flat

metric ⌘µ⌫ .

Since the Weyl tensor is trace-free and satisfies the first Bianchi identity, it follows that

F (i)
µ⌫ satisfies

@µF (i)
µ⌫ = 0 and @[µF

(i)
⌫�] = 0 (B.7)

for all i. We then expand F (i)
µ⌫ in powers of 1

r near null infinity as given by eq. (3.5). Using

Lemma 4, the the only non-vanishing component of F (i)
µ⌫ at order 1

r is F (i;1)
uA which, by

eq. (B.6), is directly related to eEAm in the following way,

eEAm = �
b1X

i=1

@uF
(i;1)
uA (u, ✓)⌦ V

(i)
m (ym). (B.8)

The divergence equation for F (i)
µ⌫ at order 1

r2 constrains the angular divergence of F (i;1)
uA ,

DAF (i;1)
uA = @uF

(i;2)
ur . (B.9)

Similarly, applying ✏AB the Bianchi identity for F (i)
µ⌫ at order 1

r2 yields

✏ABDAF
(i;1)
uB = @u✏

ABF (2;i)
AB . (B.10)

Therefore, using eqs. (B.3) and (B.8) we find that

✏ABDA
e�(i)

B = �
⇣
✏ABF (2;i)

AB

⌘
and DA e�(i)

A = �
�
F (2;i)
ur

�
. (B.11)

On the right hand side, � means the change in the quantity from u = �1 to u = +1.

Finally we turn to the gravitational memory e↵ect arising from asymptotic dimensional

reduction. Using the fact that the Weyl tensor is divergence-free and satisfies the homoge-

neous wave equation one can show that the zero mode of eCµ⌫⇢� satisfies

@[µ eC⌫⇢]� = 0. (B.12)

We first focus on the relevant equations for eEµ⌫ . By analogous manipulations that led to

eqs. (4.5) and (4.6) we find that

@µ eEµ⌫ = 0 and ⇤⌘
eEµ⌫ = 0. (B.13)
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Therefore, the R4 components of the linearized electric Weyl tensor satisfy the same equa-

tions as the components of the linearized electric Weyl tensor in flat spacetime. One major

di↵erence is that, when one has compact extra dimensions, ⌘µ⌫ eEµ⌫ is non-vanishing. In flat

spacetime this quantity does vanish but, in the presence of compact extra dimensions, the

tracelessness of the Weyl tensor implies that ⌘µ⌫ eEµ⌫ vanishes if only if ĝmn eEmn vanishes.

This is a crucial di↵erence that leads to contributions from the breathing mode of Mint to

the observed gravitational memory in this frame. We will discuss the choice of frame in

section 6. Because of this subtlety we shall explicitly derive the memory e↵ects implied by

the system of equations given in eq. (B.13).

We now expand eEµ⌫ in powers of 1
r . The explicit recursion relations relating Weyl tensor

components order by order in 1
r can be found in [65]. By Lemma 4 the only non-vanishing

component of eEµ⌫ is eEAB. Since the trace qAB eEAB is equivalent to �ĝmn eEmn we shall focus

on the trace-free part of eEAB on the 2-sphere. Applying qCADA to the angle component of

the divergence equation in eq. (B.13) at order 1
r2 yields

DADBTF
⇥eEAB

⇤
= �1

2
D2qAB eEAB + @uD

A eE(2)
Ar , (B.14)

where TF
⇥
·
⇤
takes a symmetric 2-tensor on S2 and projects out the trace: TAB ! TAB �

1
2qAB

�
qCDTCD

�
.

The r-component of the divergence equation in eq. (B.13) at order 1
r3 gives,

DA eE(2)
Ar = qAB eE(2)

AB + @u eE(3)
rr . (B.15)

Finally applying qAB to the angle-angle components of the wave equation in eq. (B.13) at

order 1
r3 gives

[D2 � 2]qAB eEAB + 2@uq
AB eE(2)

AB = 0. (B.16)

Equations (B.14) to (B.16) imply that

DADBTF
⇥eEAB

⇤
= [D2 � 1]ĝmn eEmn + @2u eE

(3)
rr , (B.17)

where we used that fact that qAB eEAB = �ĝmn eEmn.

Equation (B.17) constrains the scalar part of TF[eEAB] on the 2-sphere. We now consider

the vector part. The vector part of the angle-angle components of memory are determined

by the magnetic Weyl tensor on R4 given by,

eBµ⌫ ⌘ 1

2
✏⇢�µ eC⇢�⌫u, (B.18)
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where ✏µ⌫⇢ is the spatial volume form on R4 which is related to the volume element on

R4 by ✏µ⌫⇢ = ✏uµ⌫⇢; indices are raised with the background flat metric ⌘µ⌫ . The magnetic

Weyl tensor is symmetric, has vanishing u-components and, by the first Bianchi identity,

is traceless:
eBu⌫ = 0, eBµ⌫ = eB⌫µ and ⌘µ⌫ eBµ⌫ = 0. (B.19)

Furthermore, the linearized Bianchi identity and the fact that all components of the lin-

earized tensor satisfies the wave equation implies that

@µ eBµ⌫ = 0 and ⇤ eBµ⌫ = 0. (B.20)

Therefore, the linearized magnetic Weyl tensor satisfies the same relations as the linearized

magnetic Weyl tensor in flat spacetime. In contrast to the R4 components of the linearized

electric Weyl tensor, the magnetic Weyl tensor is traceless. The system of equations given

by eq. (B.20) are therefore identical to their analogous equations in flat spacetime. The

derivation of the vector part of memory for perturbations in flat spacetime has been treated

previously in [53]. Since these computations are identical to the derivation of the vector

part of e�AB, we will not repeat this analysis here. Equation (B.20) implies the following

fall-o↵ for the magnetic Weyl tensor components:

eBAB ⇠ O

✓
1

r

◆
, eBrµ ⇠ O

✓
1

r2

◆
, eBrr ⇠ O

✓
1

r3

◆
. (B.21)

The final result from analyzing eq. (B.20) together with eq. (B.21) is

DADB eB(1)
AB = @2u eB(3)

rr , (B.22)

where eB(1)
AB = �

�
1
2

�
✏AC eECB and, explicitly, eB(3)

rr =
�
1
2

�
✏AB eC(3)

ABru.

After integrating eqs. (B.17) and (B.22) and using the fact that qAB e�AB = �ĝmn e�mn

we find that

DADBTF[e�AB] =
1

2
[D2 � 1]����

⇣
eE(3)
rr

⌘
, (B.23)

✏CADCDB e�AB = ��
⇣
eB(3)
rr

⌘
and qAB e�AB = �1

2
��. (B.24)

Equations (B.23) and (B.24) are consistent with the linearized form of eq. (6.12) since, by

Lemma 5, �
⇣
eB(3)
rr

⌘
vanishes and �� is spherically symmetric under the strong stationarity

conditions we imposed.
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[10] D. Andriot and G. Lucena Gómez, “Signatures of extra dimensions in gravitational

waves,” JCAP 06 (2017) 048, 1704.07392. [Erratum: JCAP 05, E01 (2019)].
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