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Abstract

We develop a general formalism for treating radiative degrees of freedom near
#7 in theories with an arbitrary Ricci-flat internal space. These radiative modes
are encoded in a generalized news tensor which decomposes into gravitational, elec-
tromagnetic, and scalar components. We find a preferred gauge which simplifies the
asymptotic analysis of the full nonlinear Einstein equations and makes the asymp-
totic symmetry group transparent. This asymptotic symmetry group extends the
BMS group to include angle-dependent isometries of the internal space. We apply
this formalism to study memory effects, which are expected to be observed in future
experiments, that arise from bursts of higher-dimensional gravitational radiation. We
outline how measurements made by gravitational wave observatories might probe

properties of the compact extra dimensions.
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1 Introduction

Perhaps the most robust prediction of string theory is the existence of extra spatial dimen-
sions. Perturbative string theory requires ten spacetime dimensions while non-perturbative
string theory predicts an eleventh dimension. In this era of gravitational wave astronomy, it
is exciting to explore ways of probing the extra dimensions found in either string theory, or
other theories of higher-dimensional gravity. Gravitational wave observatories, like LIGO,
measure features of the gravitational radiation produced by mergers of compact objects
like black holes, neutron stars or even more exotic possibilities. The goal of this work is to
begin to explore which features of the internal compactification space might be accessible
through gravitational signatures. Probing the structure of compactified dimensions usually
requires high energies. Unlike our usual intuition from particle physics correlating high
energy with small wavelengths, gravity offers potential probes of short distance physics via
black holes, where higher energy means larger objects.

The goal of this work is two-fold: first we will describe how LIGO and future gravita-
tional wave observatories can see universal signatures of new physics at very low frequencies.
By new physics we mean sources of stress-energy which can be treated as effectively null;
for example, highly energetic low mass particles. At zero frequency, there is an observ-
able called gravitational memory which is sensitive to new sources of stress-energy. Future
experiments have a reasonable likelihood of measuring the memory effect [1-3]. This is
certainly not the only potential observable of interest! The gravitational waveform itself
encodes more data about new physics, including any potential extra dimensions. How-
ever, analyzing the full waveform typically requires more model-dependent inputs and a
numerical study.

The second goal is defining gravitational radiation in a reasonably precise way in com-
pactified spacetimes. Defining gravitational radiation is a non-trivial exercise which was
solved in four-dimensional asymptotically flat spacetime in classic work of Bondi, Metzner
and Sachs [4-6]. One of the outcomes of that work was the enlargement of the asymp-
totic Poincaré group to the infinite-dimensional BMS group that includes supertransla-
tions, which we will review shortly.! A complete analysis of gravitational radiation in
all non-compact spacetime dimensions appears in [7], building on the earlier work of [8, 9].
Somewhat surprisingly, gravitational radiation for spacetimes with compact dimensions has

not yet been studied beyond linearized gravity, or in the special case of a circle compacti-

IThese supertranslations have no connection to supersymmetry. This is just an unfortunate clash of

nomenclature.



fication [10-12]. As in the non-compact case, a full nonlinear analysis is needed to define a
notion of radiated power per unit angle, which gives energy-momentum loss as well as the
null memory contribution to the total memory effect [13].

The simplest compactified space we might imagine is a circle or a torus. From that
example studied in section 6.2 we will unify scalar [14], electromagnetic [15-17] and grav-
itational [13, 18] notions of memory in the spirit of Kaluza and Klein. In section 6.3 we
sketch how this approach can be used to derive memory for non-abelian gauge theories,
discussed for example in [19], from a higher-dimensional gravity theory compactified on
a space with a non-abelian isometry group. String theory suggests a richer class of com-
pactification spaces, described below in section 1.2, with a first generalization from tori
to Ricci-flat spaces. In their full glory, however, the vacuum solutions are quite intricate
warped spacetimes. In this analysis we largely focus on the case of unwarped Ricci-flat
spacetimes where the analysis is more tractable. Well-known examples of this type in-
clude manifolds of special holonomy like G5 manifolds used in M-theory compactifications
and Calabi-Yau 3-folds used in string compactifications. However we are not restricting
to supersymmetric vacuum configurations in this analysis. We consider general Ricci-flat
compactifications, which do not necessarily have special holonomy. For a recent discussion
about Ricci-flat spaces which do not have special holonomy, see [20].? For warped com-
pactifications where four-dimensional effective field theory still makes sense, we expect a
qualitatively similar picture to the Ricci-flat case with a suitable change in the effective
null stress-energy generated from the compact dimensions.

To introduce the memory observable, consider 3 4+ 1 spacetime dimensions and pure

Einstein-Hilbert gravity with no additional sources of stress-energy:

B 1
167G

s / do /=GR, (1.1)

An asymptotically flat metric is conveniently written in terms of Bondi coordinates (u, r, 0)

adapted to outgoing null directions. This coordinate system is depicted in figure 1. The

2While less familiar than the special holonomy Ricci-flat spaces which preserve supersymmetry, it is not
hard to construct non-supersymmetric examples along the following lines: take a K3 surface that admits an
involution which does not preserve the holomorphic 2-form and may have fixed points. Consider the space
(K3 x TF)/G where the quotient group G acts on the K3 surface as just described, and simultaneously
on the torus by translations so that G is freely acting. Similar examples can be constructed without tori,
sometimes at the expense of the spin structure, by taking special holonomy spaces that admit fixed-point
free involutions and considering the resulting quotient space; the Enriques surface, constructed as a Zso

quotient of a K3 surface, is of that type.



94 are coordinates for the two-sphere at null infinity with unit round metric g45. In Bondi
gauge, g = gra = 0 and 0,{det(gap)} = 0. The metric with signature (—,+, +, +) then

takes the form

h(ny) ,
ds* = {nw/ + Z an} dztdx”,

1)
2 1
_ du2 — 2dudr + qABeAeB + Mdiﬂ + MQA@B + 0(7"_2)’ (12)

A

where e = rdf* and mg is the Bondi mass aspect. The radiative degrees are encapsulated

by the “news” tensor which is given by

1
Nag(u,0) = (qACqBD _ §QABCICD) 8uh(01,)3(u> 0). (1.3)

Memory can be viewed as the displacement of an array of freely floating test masses located
near null infinity created by the passage of a gravitational wave. The full memory effect is

given in terms of the news tensor:

Aup(0) = % /_ " Nap (i, 6). (1.4)

o0

Memory can be decomposed into two contributions [21]: the first is an “ordinary” con-
tribution produced by the change in the mass multipole moments of the radiation source;
for example, a black hole binary merger. This contribution can be seen in a weak field
linearized gravity approximation [18]. There is also a more subtle “null” memory effect

produced by the energy flux that reaches null infinity [13].
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Figure 1: A depiction of Bondi coordinates.



1.1 Four-dimensional effective field theory

The first question we might ask is how a gravitational wave detector might see a sign of
new physics. Let us suppose that far away from sources and near the detector, the vacuum
Einstein equations are applicable. On the one hand, the memory effect is given by the news
tensor via (1.4). Let us model the detector as a collection of test particles near null infinity.
At leading order in %, the displacement of the test particles in the angular directions is

given by
(1)
§A=£ES’<9>+M+O<}2), (L)

where the initial positions are given by 5510). Near null infinity, é‘g)(u, 0) is determined by
the geodesic deviation equation which implies that the relative accelerations of the test
particles with respect to retarded time is given by:

¢ W B

2 = Tuausdo (1.6)
This component of the Riemann tensor at leading order in % can be expressed in terms of

the Bondi news giving the relation,

o2 1 B
52 :éguNAB(uae)S(O)(e)' (1.7)

An elementary derivation of this formula can be found in section 6. The displacement of
the “arms” of the detector as a function of retarded time is
1 u
AP (u,0) = 3 / du' Nag(u',0)E05)(0). (1.8)

For convergence of this integral for all retarded time, we assume the news tensor decays in
the far past/future as Nyp ~ O (M%) for € > 0. The memory effect is given by,

lim AL (u,0) = Aap(0)5)(6). (1.9)

U— 00

On the other hand, assuming the vacuum Einstein equations one finds that

P DPA g = 2Amp(0) + }l/ du Nap(u, 0)N4E(u,0), (1.10)

—00

where 9, is the covariant derivative on the unit 2-sphere. In principle this formula can be

inverted to get the memory tensor Ayp. The first term on the right hand side of (1.10) is
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the change in the Bondi mass aspect, which captures the ordinary memory contribution. In
principle, the ordinary memory can be determined from data by comparison with simulated
wave-forms. The second term is the null memory contribution. This is proportional to the
power radiated per unit angle. For a binary black hole merger the contribution of the
null memory is roughly ~ 103 times larger than the ordinary memory [22]. Therefore, the
dominant contribution to eq. (1.10) is the null memory term.

The upshot is that the news can be extracted from the arm motion via (1.8) and then
used for a second evaluation of the expected memory using (1.10), which assumes the
vacuum Einstein equations. If this computation of the memory disagrees with observation,

there must be some other physics affecting the detector.

Minimally-coupled stress-energy

First imagine a situation with a single distinguished metric, namely the Einstein-frame
metric g, and some matter stress-energy 7, which might, for example, be governed by an
action Sy, coupled to this metric:

1
5= 167G

/d4x\/—_gR—l—SM(9). (1.11)

V—g) og¥
is augmented by a contribution from null stress-energy given below,

As usual, the Hilbert stress tensor is given by T}, = — <L> 95M Tn this situation, (1.10)

> 1
DA DPNA B (0) = 2Amp(0) + 87 / du (Tﬁ + 3TNABNAB), (1.12)
T

—00

where T2 (u,0) = limr* T, (u, r,0). In addition to (3.4), the derivation of (1.12) assumes
r—00

that the stress-tensor decays like O (%2) and obeys the dominant energy condition: namely,
that T},,v" is time-like or null for any time-like or null vector v#. This modified relation has
been proposed as a way of detecting the contribution of neutrino radiation to the memory

effect [23].

Jordan-frame stress-enerqgy

The other case of interest to us is the situation where there are scalar fields, collectively
denoted ¢, and the matter sector couples to a Jordan-frame metric ¢g) distinct from the

Einstein metric. We can model this situation by the action,
1 4 4 1 )
S=1eoc | Tevo9R+ [ x| —50"60,0 —V(9) | + Sulg™), (1.13)

6



where gfL‘l],) = e¥(?) g and w(¢) is a scale factor that depends on the scalar fields ¢. For
example, Brans-Dicke theory is of this type with a single scalar field ¢, and a function w
proportional to ¢; a nice discussion of memory and asymptotically-flat solutions for Brans-
Dicke theories can be found in [24]. The choice of Jordan frame metric is ambiguous up to
a shift of the scale factor w by a constant. For convenience we will choose this constant so
that w(¢) vanishes as r — 0.

It is worth commenting on masses at this point. Any real detector is obviously not
located at .#* so a sufficiently energetic flux of low mass particles will effectively behave
like null stress-energy. With this caveat in mind, our analysis will usually assume an
idealized situation where the detector lives near .# " and we can treat particles near .#*
as massless. To derive an expression for memory, we again assume that the stress tensor
obeys the dominant energy condition with O(%) decay for large r. Similarly any scalar
field ¢ has the following expansion near &7,

o~ g0 4 20 )+o<i2), (1.14)

r r
where ¢ is a constant. Our detector is constructed from the matter sector governed by
Sur(g)). Geodesic deviation determines how the detector reacts to a burst of gravitational

radiation. For stationary test particles situated near £, the geodesic deviation is again

described by

826511;‘]) 1) .B
Ou2 = _Ruf,luB S(O;J)‘ (115)

Here the two superscripts denote the power in the 1/r expansion and Jordan-frame. Al-

though the Jordan-frame metric is not in Bondi gauge described in eq. (3.4), it is still
true that hiy”)

Riemann tensor takes the form

and hﬁi‘]) vanish. For metrics of this form, the relevant component of the

1;J 1 (1,0
R( ) ___azhAB)

wAuB T

1
= —565 (hlﬁll)B -+ W(I)QAB)
1
= _Eau (NAB + 8uw(1)QAB) ) (116)

where in the last line we used the fact that qAB A ap = 0 in Bondi gauge. The arm displace-

ment is now given by

AL w,6) = / " (Nap(u,0) + 0,0V qa5) €8, (6). (1.17)

—00



Equation (1.17) gives the motion of the arms of the detector moving on a geodesic of the
Jordan frame metric. This motion has a transverse piece due to the contribution of Nyp
and a longitudinal piece due to the contribution of the conformal mode d,w™. This extra
piece is also known as the breathing mode of the gravitational radiation.

If the scalar charge, defined by w™ (u,#) in analogy with (1.14), does not change then
the second term in eq. (1.17) vanishes. In Jordan frame, the memory effect is again given
by:

lim ALY (u,0) = AT 0)€5,)(0). (1.18)

U— 00

The news tensor appearing in (1.17) can again be related to the square of the news tensor

via Einstein’s equations,

u

> 1
A9, =28 0) + 7 [~ dn (2000 + 5N 0). (119)
T

—0o0

where Tﬁ)(uﬁ) is again defined by limr?T,,(u,r,6) and m)(0) = mp(0) + L1 2%V,
T—>00
The frame-dependence can therefore contribute to the memory in competition with null

stress-energy as long as the associated scalar fields can be treated as massless.

Higher-derivative interactions

Any effective description for a theory of quantum gravity will have higher derivative in-
teractions. These interactions are crucial for constructing vacuum solutions with flux in
string theory, which we will discuss in section 1.2. In this work, we will not take into
account higher derivative interactions in the full higher-dimensional theory. That is a very
difficult problem to address. Rather we will consider higher derivative interactions in the
four-dimensional effective theory. As long as we can reduce to an effective four-dimensional
description, this should cover any possible observable effects from these couplings.

Let us consider purely gravitational corrections to the Einstein-Hilbert action, which

take the schematic form:

= 16er /d4:1: (V=gR+O(R*) + O(R*) +...). (1.20)

The higher derivative corrections are suppressed by some scale. We want to answer the

question: which combinations of curvatures could possibly affect memory? Memory is
determined by terms that decay at O(-5) near .#*. The Riemann tensor for the metric (3.4)
decays like % Any contractions of Riemann with metrics will also decay at O(%) or faster.
This means that terms of O(R?) are already decaying too fast to affect memory. On the

other hand, terms of O(R?) deserve further investigation.
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At the four derivative order there are two topological couplings, the Pontryagin density

and the Euler density, proportional to

/ v (RAR). / T (RA%R). (1.21)
where R is the curvature 2-form. These terms do not affect either the equations of motion,

or memory. One might imagine adding an axion coupling of the sort [ QASTr <}5L A f?) for

an axion é, but such a coupling decays at O(T%) because the non-constant behavior of the

axion is O(2). That leaves the combinations

/ V—gR?, / V—9gR.R", / V=R, R (1.22)

However the first two terms can be field redefined away. The third term is related to the
Euler density, which is proportional to R? —4R,,, R" + Rm,)\pRW’\p , and therefore the third
term can also be ignored. Based on this discussion, it appears that memory is insensitive

to higher derivative corrections.

1.2 Compactified spacetimes

There are really three separate facets to the question of exploring compactified dimensions
using gravitational radiation. The first question one might ask is what class of spacetimes
should we consider? The simplest Kaluza-Klein spacetime is higher-dimensional Minkowski
space compactified on a torus; for example, five-dimensional Minkowski space compactified
on a circle of radius R. This is a very useful example for exploring basic phenomena encoun-
tered in higher dimensions. String theory, however, suggests a richer class of spacetimes
used in the construction of the string landscape. While there is much debate about the
string landscape, we will stick with elements of the underlying string constructions that are
most likely to survive in the future.

The main surprise that string theory offers to a general relativist interested in radi-
ation is the need to consider warped compactifications to four dimensions with vacuum

configurations of the form,
ds? = e~ Wy + e“’(y)dsf\/(im(y), (1.23)

where 7 is the D = 4 Minkowski metric, dsf\,lim is the metric for a Ricci-flat internal
space My, with coordinates y, and ¢(y) is the warp factor [25]. There are also higher

form flux fields that thread both the internal space and spacetime, which can be viewed



as conventional sources of stress-energy. Gravitational waves in warped backgrounds of
this type have been studied in [26, 27]. For a compact Mj,, this metric does not solve
the spacetime Einstein equations without the inclusion of exotic ingredients like orientifold
planes and higher derivative interactions. These ingredients exist in string theory. At higher
orders in the derivative expansion of the spacetime effective action, the conformally Ricci-
flat form of the internal space metric (1.23) is not preserved, but this form is a sufficiently
good approximation for our discussion of radiation.

Without some additional quantum ingredient, the semi-classical background (1.23) is
part of a family of solutions obtained by rescaling the internal space ds%,lim — A als%,tint for
any A > 0 with an accompanying change in the warp factor. So there is a large volume limit
for the internal space when A is large. In this limit, the warp factor approaches a constant,
and the higher-dimensional spacetime approaches a product manifold. It is important to
note, however, that the warp factor can still have regions of large variation in M;.

The most tractable and heavily studied backgrounds M preserve spacetime supersym-
metry. The expectation is that spacetime supersymmetry is spontaneously broken below
the compactification scale. For a set of examples of this type, M, is obtained from the
geometry of a Calabi-Yau 4-fold with some additional structure. Such spaces are complex
Kahler Ricci-flat manifolds with potentially many shape and size parameters, which corre-
spond to massless scalar fields in spacetime. The scalar fields that determine the complex
structure of My typically get a mass from the fluxes that thread the space [25].> This mass
scale, My, can be significantly lighter than the Kaluza-Klein scale of the compactification,
denoted Mg k.

Let us get a rough feel for the numbers involved. If we assume an upper bound on the size
of any compact dimension of roughly order microns, or equivalently eV, from gravitational
bounds [29] to approximately 107 m or a TeV from collider bounds [30], and six compact
dimensions then the ten-dimensional Planck scale takes the range M}? =10~ 10keV—10TeV.
Of course, the size of any compact dimensions might be much smaller than this upper bound.

We expect scalars from the complex structure moduli to get masses of order

(Mkk)’

My ~ ————
Z‘ [2 Y
S

(1.24)

where M is the string scale. For a string coupling of order one, the string scale and Planck

3See [28] for evidence that this might not be generically true for all the complex structure moduli when

the number of such moduli is large.
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scale are comparable: M, ~ MP='0. In this case,

(MKK)3/2

Mﬂux ~
M2

: (1.25)

where M), is the observed four-dimensional Planck scale. The scalars then have a mass in the
range of 107 —10*eV for a Kaluza-Klein scale ranging from 1eV — 1 TeV.* This is a huge
range of masses but it certainly includes masses light enough that we can simply ignore the
mass and treat the scalar as massless for the purposes of detection by a gravitational wave
detector. The last point to mention about the complex structure moduli is the number of
such moduli. From known constructions of Calabi-Yau 4-fold geometries, there are examples
with of O(10°) such moduli [34, 35].°

There is one other notable feature of the flux compactifications described by (1.23).
Namely they are warped compactifications with a warp factor e which can have a very
large variation. Such compactifications can look very asymmetric because of the presence
of strongly warped throats in the geometry [38]. The primary reason for interest in such
throats is to generate small scales from the Planck scale to solve the hierarchy problem
in the spirit of the Randall-Sundrum model [39], although in the context of an actual
compactification from string theory.

In addition to generating hierarchies in the four-dimensional effective theory, this has
potentially interesting consequences for exotic compact objects, specifically objects local-
ized in higher dimensions. There is no complete understanding of how large the warp
factor might become in flux vacua, largely because it is very difficult to find semi-classical
compact flux solutions, which are necessarily supersymmetric backgrounds. However, it is
reasonable to expect a variation in the warp factor at least large enough to account for the
O(10') hierarchy between weak scale physics of O(10%) GeV and Planck scale physics of
O(10') GeV. In principle, the variation of the warp factor could be much larger because
the D3-brane tadpole found in F-theory on a Calabi-Yau 4-fold [40, 41], which determines
the maximum amount of background flux, can be as large as O(10*) in known examples.
The background flux, together with gravitational curvature terms, source the harmonic

equation satisfied by the warp factor.

4Masses at the very low end of this range will be constrained by bounds from superradiant instabilities
from spinning black holes. This lower bound is in the range of 107! eV; see, for example [31, 32]. For a

recent discussion of superradiance in string theory, see [33].
5The currently largest known value of the Hodge number, A1, which determines the number of complex

structure moduli for a Calabi-Yau 4-fold is 303148 found in [36, 37]. We would like thank Wati Taylor and

Jim Halverson for discussions on moduli bounds.
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The upshot of this stringy top down look at compactified extra dimensions is that there
can be many scalar fields with masses potentially below the Kaluza-Klein scale. We now
turn to what kinds of compact objects might be sensitive to either these scalar fields, or

directly to the existence of additional dimensions.

1.3 Compact objects in higher dimensions

Delocalized Compact Objects

In this work we want to study dynamical spacetimes which arise from the motion of compact
objects. These objects might be stars or black holes in manifolds with compact extra
dimensions. At a coarse level, there are two distinct categories of compact object we
might study. The first are objects constructed strictly from the light degrees of freedom
with masses below the Kaluza-Klein scale; for example, from the potentially light scalars
discussed in section 1.2. This class of compact object is essentially delocalized in the internal
dimensions. We should be able to study the physics of these modes in four-dimensional
effective field theory discussed in section 1.1.

Surprisingly, even in this setting there are exotic compact objects that can support scalar
hair, which is our basic signature of extra dimensions. The first are Bose stars reviewed
in [42]: no particularly exotic ingredients are needed to construct Bose stars other than
a complex scalar field. The scalar field is not static but the associated spacetime metric
is static. It is interesting to note that the moduli scalar fields that arise in most string
compactifications are naturally complex scalar fields because most such vacua give a low-
energy supergravity theory. Gravitational radiation from binary boson star systems has
been studied in [43].

Closely related to Bose stars are gravitational atoms and molecules, which are clouds of
scalar fields or massive vector fields surrounding a black hole, or a black hole binary [44, 45].
Included in these configurations are Kerr black holes with scalar hair, which interpolate
between Kerr black holes and rotating Bose stars [46]. This is already a rich phenomenology

of exotic compact objects, which are sensitive to light scalar fields.

Clircle compactification

The second category of compact object is at least partially localized in the internal di-
rections. Our basic intuition follows from compactification on a circle of radius R. Black

hole uniqueness theorems are considerably weaker above four dimensions, and it is useful
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to characterize the black objects we wish to study based on their localization properties. A
black string solution is simply a D = 4 black hole which knows nothing about the internal
space. It is a delocalized solution admitting a space-like Killing vector generating rotations
of the S*.

The other extreme is a black hole which is highly localized on the internal space, breaking
the U(1) isometry. Black holes with a size small compared to R look locally like a D =5
Myers-Perry solution [47]. Solutions with mass M are dynamically stable only for a certain
range of the ratio M/R because of the Gregory-Laflamme instability [48]. The entropy
serves as a thermodynamic diagnostic for stability. For a fixed mass M, black strings have
an entropy that scales like Spg ~ M? while D = 5 black holes have an entropy that scales
like Spy ~ M?\/R/M [49]. For large R, the localized black hole configuration is the
preferred solution.

Astrophysical black hole mergers detectable by LIGO have constituent masses of roughly
O(10) solar masses, which corresponds to a distance scale of O(10%) m. This is ten orders
of magnitude larger than the best upper bound on the Kaluza-Klein scale. M is clearly
much greater than the range of Kaluza-Klein scales discussed in section 1.2, and therefore
one should expect that the generic compact object will be delocalized.

For circle compactifications, the binary merger of black holes localized at a point was
studied in [50, 51] using a point particle approximation. With no other ingredients, the
massless degrees of freedom in four dimensions are a graviton, a Kaluza-Klein scalar and a
graviphoton. The luminosity of gravitational waves released in the merger process is about
20% less than the merger of four-dimensional black holes mainly because of scalar radiation
produced in the merger.

To see this consider R* x S with coordinates (t,z1, 2o, 73,7) and flat metric ds? =
Nuwdxtdz” + dy*, where y ~ y + 27 R. In linearized gravity, the stress-energy for a point

particle of mass m and world-line given by X (7) with affine parameter 7 is given by:
TMY(X) = m / dr XM XN (X — X(7)). (1.26)

The indices (M, N, ...) run over all the spacetime dimensions while (u, v, . ..) run over four-
dimensional quantities in accord with the conventions spelled out later in section 1.5. For
a particle moving only in R*, X¥(7) = 0.

The massless scalar field in four dimensions is the zero mode of dg,, = h,, where gy
is the full spacetime metric. By this we mean Fourier expand the fluctuation h,, in the y

direction and restrict to the zero mode. We will denote the zero mode by a barred quantity
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hyy. In linearized gravity, this is sourced by the zero mode of the stress tensor,

Oyhyy = —8m (Tyy - TIWTW>, (1.27)
where O, = 7*79,0,. For the stress-tensor given in (1.26), T, = 0 and the right hand side
of (1.27) is non-zero, leading to the mismatch with experiment. The situation gets worse
with more compact dimensions. Taken at face value, this would seem to rule out this simple
model of compact extra dimensions.

However, we do not expect astrophysical black holes to be localized in a model like this
because of the Gregory-Laflamme instability: the black holes are much larger than any
extra dimension. Much more likely is a completely delocalized black string wrapping the
y direction. For a string with induced metric v, = 9, XM, X" gyrn and tension u, the

stress-energy tensor is given by
TN — / do dr /=y 7?0, XM9, XN §O(X — X (0,7)) . (1.28)
Choosing g,,, = 1,, and fixing static gauge for the wrapped string (o ~ y, 7 ~ t) gives
T% = 27uR / dr 6W(X — X (1)), (1.29)

with 2ruR = m. This makes the right hand side of (1.27) vanish as we expect for a model
that replicates a standard D = 4 black hole.

Using this observation we can actually construct a model for a D = 4 particle, at the
level of hydrodynamics, which interpolates between the black string and the completely

localized black hole. Consider the stress tensor with affine parameter 7 given by,
T (X) =m / dr X' X"6O(X — X (1)),  T¥(z)=em / dr 6W(X — X (7). (1.30)

This is conserved. It is a hybrid of a D = 5 point particle with a uniform stress on the
y circle. For e = 0, this is the D = 5 point particle while for ¢ = 1, the right hand side
of (1.27) vanishes and the zero mode of T"(X) coincides with the black string (1.28). For
intermediate €, this will result in a D = 4 particle with some scalar charge that will generate
some scalar radiation. However, the amount is tunable. We would expect more complicated
stress-energy distributions in the y direction for configurations corresponding to arrays of
D = 5 black holes and non-uniform black strings. The upshot is that there are many

potential stress tensors that could describe black objects in R* x S! with varying amounts
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of scalar charge from the D = 4 perspective, whose dynamics can be made consistent with
current observation.

The circle is a very special example of a compactification. For the more general warped
backgrounds described in section 1.2, there is an exciting possibility of novel phenomena.
One might imagine localized black objects, analogous to the D = 5 black hole just discussed,
which are globally unstable because of a Gregory-Laflamme type argument, but which
are nonetheless long lived because of the local behavior of the warp factor. It would be

interesting to explore this possibility further.

1.4 Signatures of compact dimensions

In Section 1.1 we saw that memory can be used to detect new physics. More precisely,
given a particular model of the stress-energy in a theory, gravitational observatories can
make independent measurements of arm motion and of gravitational memory, and then
compare these measurements; disagreement indicates a missing contribution to the stress-
energy. Such a missing contribution could come from various sources, including additional
light fields in the theory or a matter coupling to a Jordan frame metric which differs from
the Einstein frame metric. However, for the purposes of the current work, we are most
interested in the possibility that a discrepancy in these measurements could arise from the
presence of compact extra dimensions.

In a theory with extra dimensions, we will show that the radiative degrees of freedom
near .# " are encoded in a generalized news tensor written as Ny, where the indices a, b now
run over both the the asymptotic 2-sphere S? and the internal space Mj,;. The components
N4p will encode the familiar Bondi news contribution N4p as well as an additional scalar
breathing mode N which give rise to gravitational radiation in the non-compact directions.
However, we will see that a generic internal manifold will support additional radiative
modes encoded in Ny, and N,,,,, which involve fluctuations in the directions of the internal
manifold M;,. Viewed from the perspective of a macroscopic observer in R*, the additional
modes in N4, and N,,, are precisely the radiative degrees of freedom for electromagnetic
gauge-fields and light scalars, respectively. This implies that there is an electromagnetic
memory effect and a scalar memory effect associated with these additional modes.

In theories with these extra modes arising from compact dimensions, the null stress
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energy appearing in equation (1.12) receives additional contributions; one now has

& 1
P PP App = 2Am(0) + 87 / du (Tﬁ)(u, 6) + BTNABNAB),
T

—00

T2 (0,0) = T (w,6) + 5 (NanN " + NN 4 N?) (1.31)

Here N is associated with a breathing mode of the internal space which is a scalar degree
of freedom. Therefore, for a particular model for the null stress energy T{? that should
contribute to memory, the presence of extra compact dimensions will generate a discrepancy
between the predicted and measured memory effects. This discrepancy is captured in the
four-dimensional effective stress tensor ’Tu(f), which includes the electromagnetic and scalar
contributions from the higher-dimensional gravity modes.

We can extract more data about these contributions from a different class of measure-
ments. The ordinary electromagnetic and scalar memory effects generate a velocity kick
for a suitable charged test particle. Even without any abelian charge or extra dimensions,
gravity generates a similar velocity kick for a test particle. Likewise, in theories with extra
dimensions, a particle with velocity in the internal directions will experience a velocity kick
in R* because of the passage of gravitational radiation in the internal space.

Measuring these velocity kicks requires a different experimental design than is typical
for current gravitational observatories, which study geodesic deviation for pairs of point
particles. Instead, if one can measure the trajectory of point particles — even a single
point particle — undergoing geodesic motion, relative to a lab frame which is stationary
in an appropriate sense, then one can in principle extract all of Ny, and a part of N,,,
described in section 6. These additional sources of news are the primary signatures of extra

dimensions we might hope to see with memory measurements alone.

1.5 Conventions

Unless otherwise specified, we work in units where G = ¢ = A = 1, and follow the con-
ventions of [52]. Our metric signature is mostly positive and our sign convention for cur-
vature is such that the scalar curvature of the round sphere metric is positive. The full
D-dimensional spacetime manifold, denoted M, has the topology M = R* x M, where
R* is a four-dimensional Lorentzian manifold and My is a (D — 4)-dimensional compact

Riemannian manifold. Our index conventions are listed below:

e Indices (M, N, L,...) run over the full spacetime manifold M with metric gy and co-

variant derivative V,;. The Riemann tensor associated to the metric gyn is Rynp©.
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e Indices (p,v,A,...) run over R and are raised and lowered with the asymptotic

Minkowski metric 7,,,. We denote the covariant derivative compatible with 7,, by ,.

e Indices (m,n,l,...) run over My, and are raised and lowered with metric g,,,,. The
covariant derivative compatible with gy, is D,,. The Riemann tensor of Gy, is Rynp?

which has vanishing Ricci: ™R 7 = 0.°

e Indices (A, B,C,...) run over S?, and are raised and lowered with the round metric

gap- The covariant derivative compatible with g4p is Z4.

e Lastly indices (a,b,c,...) run over S? x My, and are raised and lowered with the

product metric . given by q = ¢ & g.

Indices for tensors on M are raised and lowed with the asymptotic Ricci-flat product metric

which we denote by a hat,

QMNddexN = Ndztdz” + G (y)dy™dy", (1.32)

where M

= {a#,y™} are arbitrary coordinates on R* and My, respectively. We also
use these conventions to denote coordinates on submanifolds like S? or S? x My, as well
as components in a coordinate basis. We will use the same index notation for tensors
which are intrinsic to a submanifold and the components of an ambient tensor along a
submanifold; for example, the tensor 7™ defined on the full spacetime M has angular
components T4B(x,y) while the intrinsic tensor t42(#) lives on S2. We do not feel the
potential confusion that might arise from doing this justifies introducing a new alphabet.
To simplify keeping track of powers of %, we will expand tensors in a normalized basis,
which in Bondi coordinates is {du, dr,e? = rd§#,dy™}. This is a little different from the
more common convention found in [24, 53-55]. As an explicit example consider the one-form

on the sphere with coordinates 4,
0
V, da = v4(0) d6* = (UAT()) (rdo™) (1.33)

for some v4(#). With this choice of basis, the O(2) term Vfgl) = v4(#) is non-zero. When
we perform asymptotic expansions near £t as in eq. (3.4), we will use a superscript to

indicate a term at a given order in %, keeping in mind the preceding convention for angular

SThat Gy is Ricci-flat follows from our fall-off ansatz given in eq. (3.5) and the Einstein equations.
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directions. For example, a scalar field ¢ would be expanded as follows,

= )

¢ = (1.34)

o |

Lastly, given a tensor on M, we can expand in eigenmodes of the appropriate Lapla-
cian. It will be useful to denote the zero mode in such a harmonic expansion by a bar.
For example, given a function ¢(z*,y™) on M the zero mode is denoted by ¢(z). This zero
mode solves D*t = 0 where D? = g™ D,, D, is the scalar Laplacian on Mj,.. Similarly
for a 1-form ¢y/(x,y) we denote the zero modes by (t,(x,y), tm(x,y)), while the zero modes
of a symmetric 2-tensor ¢ty n(z,y) are denoted (¢, (2, v), tum (2, y), tmn(z,y)). For Ricci-
flat manifolds, this kind of harmonic decomposition simplifies considerably as we review in

section 2.

2 Review of Linearized Dimensional Reduction

The topics under discussion in this work are of potential interest to multiple communities,
including string theorists, general relativists, quantum field theorists and gravitational wave
astronomers. To make the work as self-contained as possible, we will review techniques that
are more familiar to a specific community.

The usual procedure of dimensional reduction is to start with a vacuum configuration

which we take to be a D-dimensional product manifold,
M = R4 X Mint; (21)

where R* is the non-compact Lorentzian spacetime, and My is the (D — 4)-dimensional
compact Riemannian internal space. We will also take M;,; to be connected and closed

(i.e. compact without boundary). M is equipped with the product metric
gundz™da™N =, detdx’ + Gun(y)dy™dy", (2.2)

where 7,,, is the Minkowski metric, g, (y) is a Ricci-flat metric on My and 2 = {z#, y™}
are coordinates on R* and My, respectively. Our discussion does not involve fermions so
we will not worry about issues like a spin structure.

Let us consider pure gravity with the Einstein-Hilbert action on the total spacetime
manifold M:

1
S=— [ d°xv/—gR. (2.3)

2/€M
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The supergravity theories that describe low-energy limits of string theory have additional
fields, which we will ignore for the moment, to focus on the graviton. We will discuss
dimensional reduction for linearized metric perturbations, which is the usual approach.
This should be contrasted with our later discussion in subsection 4.1 near .# 1, which is for
the full nonlinear theory.

Consider a linearized perturbation of gp/n denoted hp;y. Let @M be the covariant

derivative operator compatible with §ysx. Imposing the gauge conditions’

VMhyny =0 and  §MVhyn =0 (2.4)
yields the linearized Einstein equation in Lorenz gauge:
Oyharn + 2R N@hpg = 0. (2.5)

Here OJ; = QMN@M@N, Rapn@ is the Riemann tensor of the background metric gy/n, and
indices are raised and lowered with the background metric. The residual gauge freedom

that preserves (2.4) is given by
hMN — hMN + @(Mf]\[) where Dng = 0, @MfM = 0. (26)

Note that the exact (not asymptotic) symmetry group of eq. (2.2) is trivially the direct
product of the Poincaré group (P) and the isometry group (J) of (Mint, Gmn):

P x 7. (2.7)

For background metric eq. (2.2), the only non-vanishing components of the Riemann ten-
sor are the internal components; therefore the Riemann tensor is equivalent to R,,,,? on
(gmna Mint)-

Consider the projection of eq. (2.5) into R* and rewrite [J; in terms of the derivative
operator d,, compatible with 7,,,, and the covariant derivative operator D,,, compatible with
Jmn- This yields

D?hy,, + 0,h,, =0, (2.8)

"Equation (2.4) is a special case of the Lorenz gauge. While Lorenz gauge is useful in studying radiation
in linearized gravity with no null sources, we note that it is incompatible with the % fall-off of the metric
in asymptotically null directions in a general radiating spacetime [7]. The proof of [7] shows that harmonic
gauge, which is the nonlinear generalization of Lorenz gauge, is incompatible with the fall-off conditions in
D-dimensional non-compact spacetimes, but the proof straightforwardly generalizes to cases with compact

extra dimensions using the techniques and formulae in this paper.
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where D? = ¢™D,,D,, and U, = **9,0,. Expanding h,, in terms of eigenfunctions of
the Laplacian on My, eq. (2.8) yields an infinite tower of massive modes (one for each
eigenvalue). The mass scale is set by the size of the compact extra dimensions. Since the
goal of this paper is to study radiation with compact extra dimensions we are interested in
either massless fields, or fields with masses below the Kaluza-Klein scale; see the discussion
in section 1.2.

The massless modes EW are annihilated by the Laplacian and correspondingly satisfy a

massless wave equation in R*:
D*h,, =0 = O,h,, = 0. (2.9)

The zero-mode EW is harmonic on M;,; and therefore independent of the internal coordi-
nates y. Projecting both indices of eq. (2.6) into R* shows that diffeomorphisms act on the

zero mode EW by

Py (1) = Ty () + 0,y (27)  where  [,€, =0, 9", =0, (2.10)
and Eu is the zero-mode of the projection of &, into R*. The massless spin-2 graviton
arising from this reduction is EW.
2.1 Vector modes

Analogously, we can study the vector perturbation A, using the linearized Einstein equa-

tion (2.5). We again collect results here on the massless mode h,,, which satisfies
D?h,,,, = 0. (2.11)

Viewing h,,, as a one-form on M, we note that solutions to eq. (2.11) are spanned by

the space of one-forms V,, on My, that satisfy
D*V,, =0. (2.12)

Equation (2.12) is a condition on V,, in terms of the coordinate Laplacian D?. For any
compact manifold, the coordinate Laplacian on a one-form V,, is related to the Hodge

Laplacian (AU)) on V,, by the well known Weitzenbéck identity for one-forms:
D*V,, = - AWV, 4+ "R, V.. (2.13)

Here V,, is a one-form on My, and R, is the Ricci tensor of (Gmn, Mint). Therefore on

any Ricci-flat manifold, the coordinate Laplacian can be replaced by (minus) the Hodge
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Laplacian when acting on one-forms. Solutions to eq. (2.12) are harmonic one-forms. We
now investigate the properties of solutions to eq. (2.12). First recall the well-known Hodge

decomposition of a one-form.

Proposition 1. Let (M, Gmn) be a compact Riemannian manifold. Any globally defined

one-form V,, can be uniquely decomposed as follows,
Vin = DS + v, (2.14)
where D™v,, = 0. We refer to v, and S as the vector and scalar parts of V,,, respectively.

If V,,, is harmonic then S must be a constant and consequently, V,, is divergence free.
Further a harmonic V™ = ¢g™"V,, is a Killing vector if M, is Ricci-flat. To see this, let "
be a Killing vector on My i.e. &, = gma&" satisfies D(,,&,) = 0. Applying D™ to Killing’s

equation and commuting the derivatives yields,
D*,, + D,,D"¢, — R,,"&, = 0. (2.15)

The second and third terms of eq. (2.15) both vanish since R, = 0 and &, is divergence
free by Killing’s equation. Therefore if g™"¢, is a Killing vector then &, is indeed harmonic.

To complete the correspondence we now show that if a one-form V,, is harmonic then
GV, is also a Killing vector [56]. Contracting eq. (2.12) with V' and integrating over
My gives,

D"V'D,V,=0 — D, V, =0. (2.16)
Mint

Consequently, solutions to eq. (2.12) are covariantly constant and therefore Killing. The
space of solutions to eq. (2.12) is therefore the space of Killing vectors on M,;. The number
of linearly independent harmonic one-forms on M, is counted by the first Betti number,
b1, which is a topological invariant. The preceding observations can be summarized in the

following lemma [56]:

Lemma 1 (Bochner). Let (Mu, Gmn) be a compact Ricci-flat Riemannian manifold. The
space of harmonic one-forms is then in one-to-one correspondence with the space of Killing

vectors, which are covariantly constant. The dimension of the space of Killing vectors is

bl (Mmt) .

In the case where b; > 0, the Ricci-flat space M, of dimension D — 4 can be written

as a free quotient of T x MP=4F where MP4F is also Ricci-flat [57]. We can now give

int int
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the general solution to eq. (2.11),

by .
Ryt y™) = 30 AD (@) @ Vi (y™), (2.17)

i=1

where {VSL)} are the b; linearly independent Killing vectors. The coefficients A,(f) (x) define
a set of b; graviphoton vector fields on R*. Furthermore, it follows from eqs. (2.4) and (2.5)

that each vector field A,(f) (x#) satisfies the wave equation and is divergence free on R*:
0,A% =0 and 0" A = 0. (2.18)

Projecting one index of eq. (2.6) into R* and one index into My, and using (2.11) implies

that the gauge freedom of Eum is
Fryn — T+ 3 (0,20 ()] V2 (5™, (2.19)

where \(2#) is a smooth function on R, which satisfies the wave equation. This is equivalent

to an abelian gauge transformation on AS),
AD() = AP ) + 0,00, O =0, (2.20)

The Lie algebra for these spin-1 massless gauge-fields is determined by the isometry group
of M. The isometry group is clearly abelian for Ricci-flat M, since, by Lemma 1, any
Killing vector is also covariantly constant and therefore the commutator of any two Killing

vectors vanishes.
2.2 Scalar modes
We finally consider the perturbations h,,, which satisfy
D?h 4 2R P g + OB = 0. (2.21)

Therefore massless perturbations h,,, are spanned by the tensor fields on Tmn(ym) which
satisfy
DT + 2R Ty = 0. (2.22)

The operator acting on T, in eq. (2.22) is the Lichnerowicz Laplacian. Equation (2.4)
implies a further constraint on the allowed solutions to eq. (2.22). Expanding the divergence

of hysn in terms of harmonic one-forms implies that
D"T,,, =0. (2.23)
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The space of solutions to egs. (2.22) and (2.23) is the moduli space of infinitesimal defor-
mations that preserve the vanishing of the Ricci tensor. This moduli space is known to be
finite-dimensional [58].

To further investigate the implications of eqs. (2.22) and (2.23), we first recall a well

known result about the decomposition of symmetric tensors [59]:

Proposition 2. Let (M, Gmn) be a compact Riemannian Finstein space with dimension
D —4, i.e., Rypn = Chmn, for some constant ¢, which includes the Ricci-flat case. Then any

second rank, symmetric tensor field T,,, can be uniquely decomposed as

1 1

where D™ty =0 = gmntmn; D"W,, =0 and U = gqupq- We T€f€’l" 10 tmn, Wi and (Sv U)

as the tensor, vector and scalar parts of T,,,, respectively.

In keeping with our notation, we denote the tensor, vector and scalar parts of T,,, as
tmn, W, S and U. This is in accord with our prior notation of denoting harmonic functions
and harmonic one-forms with a bar since, as we shall see, the scalar and vector parts of

Tpmn are indeed harmonic. Taking the trace of eq. (2.22) yields
DU =0, (2.25)

which implies that U is a constant. Taking the divergence of eq. (2.24) using egs. (2.23)
and (2.25) then gives
Ypry, - P=5p prg (2.26)
2 " D47 '

Taking another divergence of eq. (2.26) and using the fact that W, is divergence-free gives,
(D —5)D*S = 0. (2.27)

The case D = 5 corresponds to a 1-dimensional Ricci-flat compact space, namely S!. In
this case, tyn = W, = S = 0 and the only modulus is a rescaling of the metric. If D > 5
then eq. (2.27) implies that S is a constant. Equation (2.26) then requires that W, be
harmonic and, by Lemma 1, it is therefore also Killing. Consequently, T',,, has no vector
part. In addition, its scalar part is constant and determined by its trace. Any solution to

eqs. (2.22) and (2.23) can be uniquely decomposed in the form,

_ _ 1 .
Tmn - tmn Aana 2.28
+ 51 (2.28)
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where U is a constant while 7,,, is both trace-free and satisfies eqs. (2.22) and (2.23). The
mode U is the overall breathing mode of the space. The %,,, are the volume-preserving
moduli.

Finally, we note the enormous simplification for the case of a torus where M, = TP,
In this case, the Riemann tensor R,,,,? vanishes and the T\ are constant. Including the
overall volume modulus, there are 1(D — 4)(D — 3) metric moduli. We summarize these
statements about the moduli space of Ricci-flat Riemannian manifolds in the following

lemma:

Lemma 2. Let (M, Gmn) be a compact, Ricci-flat Riemannian manifold. The solutions
Ton to eq. (2.22) can be uniquely decomposed as in eq. (2.28) where U is a constant and
t t

c
tmn satisfies D™, = 0 = ™t mn. If Mip, = TP~ then t,,, is constant.

Therefore, the space of massless linearized perturbations h,,, can be decomposed into
a set of dy, + 1 scalar fields

Fon = 27 g() + 3 09 ()10, (1), (2.29)

where the scalar field ¢(z) is associated to the volume mode or breathing mode U, and df,
is the dimension of the moduli space of volume preserving deformations. It is important to
stress that these modes are guaranteed to be massless only in the linearized approximation
with the exception of the volume mode ¢ which is exactly massless.
Finally, the linearized Einstein equations imply that the scalars ¢ and &) satisfy the
massless wave equation,
O,6=0 and 0,09 =0. (2.30)

Diffeomorphisms of h,,,, can only be generated by one-forms &, which change the perturba-
tion by D(,,&,). Using proposition 1, we decompose &, = 1, + D,,,§ with D"n, = 0, which
shows that 7, can only affect W, of (2.24). Similarly, £ cannot affect the zero mode of U.
Consequently the scalar fields ¢ and ®@ in eq. (2.29) have no diffeomorphism freedom.

The preceding discussion is a general analysis of the moduli space of linearized defor-
mations of M;,.. However, the precise enumeration of solutions to eqs. (2.22) and (2.23)
must be treated on a case-by-case basis for each choice of M;,;. In many cases of interest in
string theory, M, has special holonomy and one can say more about the count of solutions
to egs. (2.22) and (2.23). For example, if the internal manifold M, is Calabi-Yau, one can
use Kahler geometry to compute the dimension of the moduli space of metric deformations
in terms of the Hodge numbers h?? of My; specifically A™! and et
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There is a separate question of whether infinitesimal deformations can be promoted to
finite deformations. For Calabi-Yau, G5 and Spin(7) spaces, all zero modes seen in a linear
analysis survive to the full nonlinear theory [60]. In this work, we only need the existence of
a finite number of solutions for egs. (2.22) and (2.23); we make no additional assumptions
about (Miug, Gmn) besides Ricci-flatness. For general Ricci-flat My, it is hard to determine
whether the zero modes found at linear order remain massless in a fully nonlinear analysis.

To either reach £ or the actual physical location of the detector, a scalar mode must be
either exactly massless or of sufficiently light mass and high-energy that we can approximate
the mode as massless. For our analysis, we will need to use the condition that R,,,(§ +
h) = 0 to third order in h where we only fluctuate the internal metric. This plays a
role in Appendix A for the asymptotic expansion of the solution in powers of % near .# 7.
However, it is important to note that the asymptotic expansion is only applicable for metric
fluctuations that are unobstructed and correspond to exactly massless fields. Let us denote
the number of exactly massless volume-preserving scalar modes by dy, in contrast with the

number of massless modes d, in the linearized approximation.

3 Compactified Isolated Systems

We first need to define the class of Lorentzian spacetimes that we will study. Although
we are motivated by string theory, we do not restrict to 10 or 11-dimensional spacetimes.
Rather we consider D-dimensional spacetimes with 4 non-compact spacetime dimensions
and D — 4 compact Riemannian extra dimensions, which represent ‘gravitational lumps’
or localized metric configurations whose curvature grows weak in asymptotic null direc-
tions. Following standard terminology in the general relativity community, we refer to such
spacetimes as compactified isolated systems, or simply as isolated systems. As discussed
in section 1.2, this class of metrics describes string compactifications on Ricci-flat spaces
and approximates warped compactifications in the limit of large internal volume where the
warping becomes small.

First note that any metric gp;n on M = R* x My is of the form
ds® = g (@, y)datda” + 2A,, (2, y)dz"dy"™ + Qmn(z,y)dy™dy", (3.1)

where # and y™ are arbitrary local coordinates on R* and My, respectively. We define
the notion of an isolated system on a manifold M = R* x M, by introducing a geometric
gauge in coordinates adapted to outgoing null hypersurfaces. In these coordinates, we

define a class of metrics which suitably tend to g,/ in asymptotically large null directions.
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These coordinates are defined in a manner analogous to the standard Bondi coordinates in
four-dimensional asymptotically flat spacetimes. Since these coordinates are essential for
the analysis of gravitational radiation, we briefly review their construction here.

The Bondi coordinates are denoted (u,r,64,%™). In Bondi gauge u is a function on
spacetime such that surfaces of constant u are outgoing null hypersurfaces. The coordinates
64 are two arbitrary angular coordinates on S2, and the y™ are D — 4 arbitrary coordinates
on Miy. In Bondi gauge, the normal co-vector V yu is null g™ (Vyu)(Vyu) = 0 and we
define the corresponding future directed null vector KM = —¢g™~¥V yu. The r coordinate is
a ‘radial’ coordinate which varies along the null rays. Note this is not a space-like coordinate
but a null coordinate! In this gauge, the tangent to the null rays corresponds to the radial

coordinate vector field. In summary,

M
Ky = -Vyu, KM = (%) and  gunKMKYN =0. (Bondi gauge)  (3.2)

The angular coordinates #4 and the internal coordinates y™ are both chosen to be con-
stant along these outgoing null rays so that KMV 04 = —g"N(Vu)(Vad) = 0 and
KMV yy™ = —gMN(Vyu)(Vay™) = 0. These Bondi gauge conditions imply that the
metric gy satisfies:

gr =0, gra=0 and A, =0, (3.3)

where A, is defined in eq. (3.1). The metric gyn in these coordinates is adapted to out-
going null hypersurfaces. Now we define an isolated system with compact extra dimensions
which tends to the Ricci-flat metric (2.2). In coordinates (u,r, 04, y™) adapted to outgoing

null directions, the asymptotic metric is given by

gMNddexN = Uuudl"“dfﬂy + gmndymdyn>
= —du® — 2dudr + r2qapd0°dOP + Gndy™dy". (3.4)

We define an isolated system as a metric gy y given by eq. (3.1) which, in coordinates
z# = (u,r,0) and y™, approaches the flat metric gy given by eq. (3.4) in powers of % in

the orthonormal frame described in section 1.5:

~ T + Z _nh,(ﬁ,, i~ ZT—NASZL) and O, ~ Gmn + Z ) (3.5)
n=1 n=1
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This is gauge-equivalent to the Bondi gauge choice®

=0, n™ =0 and A" =0, (3.6)

rr

7

for all n. The symbol “~” in eq. (3.5) denotes an asymptotic expansion. For convenience
we have assumed an asymptotic expansion in % to all orders with the upper limit of the
sums in eq. (3.5) taken to be co. This is not strictly necessary for most of this analysis. The
results obtained in sections 4.1 to 4.3 require only that eq. (3.5) be valid at order n = 1.
The results obtained in section 5.1 require that eq. (3.5) be valid up to order n = 3.

A full analysis of the validity of this ansatz would require examining global stability for
a suitable class of initial data. Such an analysis was undertaken in [61, 62] where stability
was proven in the case of supersymmetric compactifications. It would be interesting to
study the asymptotic behavior of such solutions near null infinity and compare with the
ansatz assumed here.

As noted in section 1.5, our conventions for expanding the metric coefficients in powers
of % differs from more common conventions. Usually the expansion coefficients refer to
the powers of % which arise from the components of gp;n in a coordinate basis. In our
conventions spelled out in section 1.5, the metric expansion coefficients g,(fy), Aﬂ% and gpgf,)z
all contribute to the physical fall-off rate of the metric gy at order Tik, as seen in any
orthonormal frame. From the preceding discussion, Bondi gauge has a preferred geometric
status in constructing the notion of an isolated system. We shall see, however, that Bondi
gauge does not appear to be the preferred gauge when asymptotically solving the leading
order Einstein equations with compact spatial directions, studied in sections 4.2 and 5.1.

We also need to specify the asymptotic fall-off of the stress-energy tensor. The inclu-
sion of massive sources is straightforward since their stress-energy vanishes near .#*. For

massless sources, we demand that

TMN = ZT_TLT]E;L])V? (37)
n=2

where the non-vanishing component of the leading order stress tensor are Tqﬁi), T2 and
T'2). This is consistent with the dominant energy condition. As we will see, the fall-off of
T, and T}, ensure finiteness of the energy flux and charge-current flux to #*. The fall-off

of T,,, agrees with the intuition from Kaluza-Klein reduction.

8The original Bondi gauge conditions also impose that the “radial” coordinate correspond to an areal
coordinate which imposes that 9, (det(gap)). Additionally, the fall-off g,, in Bondi gauge is such that g,(}r)

vanishes. We shall not impose these conditions in the general fall-off given by eq. (3.5)
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There is one further condition we will impose, which turns out to be easily satisfied by
the most common forms of stress-energy. From our ansatz (3.5) and the analysis found in
Appendix A, we see that [ Mine gm"GﬁﬁZL = 0. This turns out to be surprisingly nontrivial to
demonstrate. Einstein’s equations then imply that the zero mode, [ M, g, ,%27)1, vanishes.
In fact, G2 s orthogonal to every exactly massless scalar fluctuation ¢™", not just the
breathing mode of M;,. Similarly, we will impose a stronger condition on the stress-
energy tensor that [ M, T2 vanishes for every exactly massless scalar fluctuation ¢t™".
This stronger version is also motivated from the analysis found in Appendix A.

We can see whether this is a reasonable condition by examining a few typical sources of

stress-energy. If one considers a D-dimensional scalar field ¢ with stress-tensor

1
Tun = VuoVno — §QMNVP¢VP¢7 (3.8)

and

then in this simple case, ") is harmonic on My and therefore constant in y. The lead-
ing non-vanishing stress-tensor component is then T = (0,6M)? and T2 = 0. If one
generalizes this case by considering a p-form field strength F' with D-dimensional action
— fM ﬁ FMl_.MpFMl“'MP, the stress-tensor takes the form:

Mi..M,_y 1

<FMM1...MP1FN - _QMNFMl,.,MpFMl'"Mp) . (3.10)

Thrv —
MN 2p

2(p—1)!

In Kaluza-Klein reduction near .#, F' = dA gives rise to massless spacetime fields associated

to harmonic forms on Mj,; as

A a0 0,9) = 6 (1,0) Wiy (Y), (3.11)

where w € HP~971( My, R) is a harmonic representative of the cohomology class. The field
strength F(U = dp™ A w, where at this order dp(!) = —9,6 A K and the one-form K
is defined in (3.2). As noted in (3.2), K is null with respect to the asymptotic metric so
T =0 again as in the case of the scalar field. For these sources of stress-energy commonly
found in string theory, we see a much stronger constraint on the asymptotic stress tensor

than we assume; namely that

1

21 (") Kar - fol (3.12)

2
it -

28



where |cu|2 = Wmngs1.my_ Wt =1 Although in these cases of physical interest the stress
tensor satisfies stronger conditions, in the body of this work we will only use the weaker
assumptions of fall-off given by eq. (3.7).

Finally while we have defined isolated systems in the case where the spacetime is a
product manifold, one can straightforwardly extend this definition to include a wider class
of fibered metrics, including some gravitational instantons. For example, we could consider
R x TN where TN refers the multi-Taub-NUT metric and R is time. This example is
a particularly nice generalization of the circle compactification, which we will discuss in
section 6.2. The total space M is topologically R?, but the TN metric at spatial infinity
is a Hopf fibration S' < S* — S2. The Chern number of the fibration corresponds
to the magnetic charge for the Kaluza-Klein gauge-field found from reducing the metric
on the asymptotic S'. The picture under Kaluza-Klein reduction on the asymptotic S!
is a collection of particles located at the NUT singularities of the TN metric, which are
magnetically-charged under the Kaluza-Klein gauge-field. While in this construction, TN
appears only in the spatial metric and time is completely factorized, there have been studies
of asymptotic symmetries and dual supertranslations where TN appears with the fibered
S* identified with time [63].

While we will primarily focus on the case of product manifolds, many of our results
only require that the metric satisfy eq. (3.5) locally in some neighborhood of null infinity.
In particular, our results about the asymptotic dimensional reduction of the Weyl tensor,
the local constraints on the radiative order metric and asymptotic symmetries, found in
sections 4.1 to 4.3, remain valid as long as the metric asymptotes to gyn at #+. On
the other hand, arguments that involve inversion of elliptic operators on the sphere or
integrating Finstein’s equations over retarded time, found in Sections 5.1 and 6, will need
to be modified in the fibered case. In order to extend these results to the fibered case,
it is more useful to work with manifestly gauge invariant quantities. In Appendix B, we
provide an alternative, manifestly gauge invariant derivation of our results in linearized

gravity using the Bianchi identity.

4 Asymptotics near Null Infinity

In this section we will analyze the asymptotic behavior of the spacetime for an isolated
system near null infinity. We first collect some results regarding the asymptotic behavior of
the Weyl tensor for any isolated system without imposing decay conditions. Unless stated

otherwise, we consider a metric g,y which satisfies the asymptotic expansion eq. (3.5) near
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null infinity and obeys Einstein’s equations:
1
RMN — §gMNR = 87TTMN. (4.1)

In section 4.1 we show that the Bianchi identity implies that the ‘electric’ part of the Weyl
tensor, defined in eq. (4.9), at order % admits a dimensional reduction in a manner exactly
analogous to the dimensional reduction given in section 2. In sections 4.2 and 5.1 we
examine, in detail, the change in the metric caused by a ‘burst’ of gravitational radiation.
We characterize this ‘burst’ by requiring that the metric be stationary at asymptotically
early and late times. In section 4.2, we analyze Einstein’s equations during the radiative
epoch. In section 5.1, we investigate the implications of Einstein’s equations during the

stationary eras.

4.1 Asymptotic reduction in nonlinear gravity

As shown in Section 2, linearized metric perturbations in Lorenz gauge with background
metric (2.2) reduce to a collection of gravitons, graviphotons and scalars. In the full nonlin-
ear theory, we will show that the leading order electric Weyl tensor for any isolated system
at null infinity admits a harmonic decomposition in a way analogous to linearized Kaluza-
Klein analysis. This provides a gauge invariant description of radiation, Kaluza-Klein
decomposed into spin-0, spin-1 and spin-2 components, in full nonlinear general relativity.

We remind the reader that the Weyl tensor is related to the Riemann tensor,

Cyunrg = Runpro — 291mp SN, (4.2)

where Sy is the Schouten tensor which, in terms of the Ricci tensor, is given by:

2 1

Sun = mRMN - (D — 1)(D _ 2)9MNR- (4'3)

Since the Einstein tensor is divergence free, the Schouten tensor satisfies VM Sy n = VS

where S = g™V Sy;n. The uncontracted Bianchi identity is

VinuCnrigr = —291QnV M SPIR)- (4.4)

The nested notation appearing on the right hand side of (4.4) means antisymmetrize over
(N, M, P) and antisymmetrize over (@), R) separately. We will use this notation below.

Contracting over M and () and using the tracelessness of the Weyl tensor yields
VMCuypor = (D — 3)VioSrp- (4.5)
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Applying ¢MTV 1 to eq. (4.4), commuting the derivatives and using eqs. (4.2) and (4.5)

implies

O,Cnrar = 2(D = 2)ViyVigSrp) — 291ivEeSeir + 2™ giaivVir|V e Sri
- (D - 2)QTMST[NCP]MQR + QQTMST[QCR][NP}M - QQOMQRTSORQ[Q[NCPHMW}T

1
+ §9MTSMTCNPQR +2¢M" SyinCriorr + 26M° g™ CrvprCoxor

+ 49MOQTKCM[Q[N\T|CP]|K\R]O, (4.6)

where O, = g™V ), V. Therefore in any spacetime, the Weyl tensor satisfies the wave
equation with source given by terms that are either products of the Weyl tensor, products
of the Weyl tensor with the Schouten tensor or derivatives of the Schouten tensor. The

asymptotic expansion of the metric given by (3.5) implies the % expansion for the Weyl

tensor:
= Civpon
Cnror~ Y o (4.7)
n=0

After imposing Einstein’s equations the only non-vanishing components of C](\%QR is the
Riemann tensor R,,, of the Ricci-flat asymptotic internal space M, with metric G-
Further, the Schouten tensor is defined in terms of the Ricci tensor in eq. (4.3) which, in
turn, can be written in terms of the stress energy tensor by Einstein’s equation eq. (4.1).
The asymptotic fall-off condition on the stress-tensor is given in eq. (3.7). This stress

tensor fall-off directly implies an asymptotic expansion of the Schouten tensor,

r

0 S(")
n=2

where the sum starts at O(=) and S](\E)N = %Tﬁg\,. We now show that egs. (4.5) and (4.6)
place strong constraints on the asymptotic behavior of the ‘electric part’ of the Weyl tensor
near null infinity. In particular, the leading order electric part of the Weyl tensor can be
dimensionally-reduced in exactly the same manner as reviewed in section 2, but now in the

full nonlinear theory. The electric part of the Weyl tensor is defined as
EPR = CNPQR nNnQ, (49)

where n™ = (9/ au)M. The properties of the Weyl tensor imply that the electric Weyl

tensor is symmetric, tracefree and that its u-components vanish:
EMN = ENM, gMNEMN =0 and EuN =0. (410)
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We note that lim Fj;y vanishes at fixed u, 04 and y™, and therefore the leading order

r—00
electric Weyl tensor given by,

Eun(u, 04, y™) = lim rEyy(r,u, 04, y™), (4.11)

r—00

is gauge invariant. From the above relations, we now prove the following key lemma re-

garding the asymptotic dimensional reduction of Fyy.

Lemma 3 (Asymptotic reduction of electric Weyl). Let (M, g) be an isolated system whose
metric gy n has an asymptotic expansion given by eq. (3.5) and let Eyrn be the leading order,

electric Weyl tensor defined by egs. (4.9) and (4.11). Enn satisfies the following properties:
1. The components E,pr and E,pp vanish for any isolated system.

2. The nonvanishing components satisfy

Eap = Eaplu,0), Zs (u,0) @V (y™), (4.12)

~

_ Imn AB (4)
Enn =~ 550" a5 (u,0) +;5 (u, )T (y™).
The 77(:3 are a basis for the by harmonic 1-forms on M., where by is the first Betti
number of M,;. The t( are a basis of the dy, symmetric, rank 2 tensors which satisfy
the Lichnerowicz equatwn on My and Dmtgn)n = gmntﬁn’n = 0, where di, + 1 1s the

dimension of the moduli space.

Proof. That &£, vanishes follows directly from the definition and properties of the electric
Weyl tensor given in eqgs. (4.9) and (4.10). To prove that &.p; vanishes we note that
contracting eq. (4.6) on the N and Q indices with n”¥ and n? gives the following equations

for the electric Weyl tensor at order %:
D?*¢, =0, D*,,=0 and D?%,,+2R,","E,, =0. (4.13)

Since Eyy is gauge invariant we assume, without loss of generality, that the metric gp/n
is in a gauge such that the metric expansion coefficents hg), hSA and AL all vanish. A
straightforward calculation of the electric Weyl tensor using the metric in Bondi gauge
implies that,

Ea=0, &,=0 and ¢&,.,=0. (4.14)

32



Since &y is gauge invariant we conclude that &), vanishes for any isolated system. Ap-
plying n” and n* to the P and R components of eq. (4.5) at order  and using the fact

that &.5; vanishes gives
D"€4,=0 and D™E,, =0. (4.15)

Equations (4.13) and (4.15) together with Lemmas 1 and 2 imply that 45 and §™"E,,, are
harmonic on My, €4, is spanned by harmonic 1-forms V,(fl) on M., and the trace-free

part of &,,, is spanned by 7

mn®

Finally we note that
" E i = —q BEAB, (4.16)
which follows from the tracelessness of £y, as well as the vanishing of £, and &,p;. [

Lemma 3 implies that the non-vanishing components of the leading order electric Weyl
tensor, Eyrn, can be viewed as a tensor on S? X M. Let g be a (D — 2)-dimensional
product metric on S? x My, which, for arbitrary coordinates x@ = {4, 4™} on S? x Miy,
is defined by’

Qap dz® dzb = qap d0* dOP + Gy dy™ dy™. (4.17)

It is convenient to define a ‘news tensor’ on S? x M, which we denote N,

. . 1 ¢ _
Nap = lim r(qa 9’ = 55 dard d) Ouled: (4.18)

where g, is the zero mode of gy;n along the S? x My, directions. The components of Ny,

satisfy
D2NAB = 07 DQNAm = 07 D2Nmn + 2Rmpnquq = 07 gmnNmn = _qABNABa (419)

and the news therefore admits the decomposition,

b1
1 7 7 m
Nap = Nap(u,0) + 544N (u, 0), Nam = SN @ v ym), (4.20)
i=1
g & )
= — mn (4) b m
Non = =5 N(u,0) + ;N (u,0) T2 (y™), (4.21)

9We faced an unfortunate choice in labeling combined coordinates for the sphere and the internal space.
Either introduce a new letter or use x%, which we hope the reader will not confuse with x*#. We hope this

choice is the lesser of two evils. All conventions are spelled out in section 1.5.
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where N4p is the trace-free projection of Nap(u, ) and N is the trace of Aap on S? given
by:

1
]WB=<%QMD_§MmmﬁA@M%@ and N = ¢""Nap(u,0). (4.22)

Equations (4.20) and (4.21) give a decomposition of radiation in the full spacetime M into
spin-2, spin-1 and spin-0 components. The four-dimensional Bondi news is related to the
trace-free part N4 p, but note that N4 here is computed in D-dimensional Einstein frame.
In section 6.4, we will discuss how the news and related observables are affected by the
choice of frame.

The decomposition of the radiative modes given by eq. (4.21) corresponds to the exactly
massless modes arising from M. The decomposition given by Lemma 3 is a consequence
of the leading order Bianchi identity and Einstein’s equations. However, as we have spelled
out in section 2.2, the space of truly massless modes is a subset of the modes enumerated in
Lemma 3. The spin-2 mode, spin-1 modes and the scalar volume mode are truly massless.
However, the number of truly massless volume-preserving scalars are di, < dy,. Therefore
in eq. (4.21), we replaced dj, with dp.. As we show in Appendix A, if we had not done this
truncation then our ansatz would not be consistent with Einstein’s equations.

Finally, a direct calculation of £y, in terms of the metric implies that the non-vanishing

components of &y can be compactly expressed in terms of Ny:
1
gab = _§8uNab- (423)

We refer to N, as the ‘news’ tensor which is analogous to the Bondi news tensor in four
dimensional asymptotically flat spacetimes. In such spacetimes, the null memory effect is
determined by the squared Bondi news tensor integrated over retarded time, as discussed
in section 1.1. In Section 6, we prove that analogous statements hold for isolated systems

with compact extra dimensions.

4.2 Asymptotic analysis of the metric

We now analyze the leading order solution of Einstein’s equations in the neighborhood
of null infinity. We assume that the metric is initially in Bondi gauge which implies, in
particular,

B =0, AlN=0 and AL =0, (4.24)
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where A,,, is defined in (3.1). Einstein’s equation at leading order in % gives the following

constraints:
(uu; 1) D?hY) + 20, D™ AN — 92(¢APRY) 4 gy = 0, (4.25)
(ur;1) D?plt) =0, (4.26)
(uA; 1) D*h) +0,DmAY) =0, (4.27)
(AB;1) DY) =0, (4.28)
(um; 1) D?AY) — D, D"AY + 0,D"e") +0,D,,(h{) — ¢*PRY)L)  (4.29)
— 0D "l = 0,
(Am; 1) DAY — D,D"AY =0, (4.30)
(mn: 1) D) + 2R,7, 1Y) — 2D, DY) — 2D, D, b (4.31)

+ DmDn( ABh +gpq¢( )) = 0.

Pq
The notation on the left hand side (M N k) refers to the M N components of Einstein’s

equations at order 7% To solve these equations we want to find gauge choices, in a manner

compatible with eq. (3.5), so that the following equations are true:

D —4 D —4

where D™®,,,, = 0 = §""®,,,, and ¢(u, ) is constant on M;,,. We want to construct a

DAL =0 DAY =0 and o) = <I>mn+(DmDn— Jmn_ 1y )xp+ Junn_ (4.32)

diffeomorphism, specified by a vector-field, that preserves our asymptotic fall-off conditions
and implements (4.32). So we assume that the vector field has the form,
(1)

o 80090 (1) s
where we assume no O(r’) term in &;. Under this diffeomorphism, the metric shifts
by gun — gun + 2V (). In order to achieve the gauge conditions of eq. (4.32) the
components of fj(\}) must satisfy

1
D) = AL —0.£0) + D) = —AD Duél) = —Sel. (434)

To ensure that we preserve the Bondi gauge conditions at leading order, we set &gl) = 0. The
first equation in (4.34) implies that D2§1(41) = —DmAST)n. The right side of this equation has
no zero mode, and so we can solve for 51(41). Next, using Proposition 2, we can decompose

90%21 into tensor, vector and scalar parts:

1
D -4

Pl = o + Dinn) + (DmDn - gmnD2) vy Imn g (4.35)

D—4
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where ¢™"®,,, = D"®,,,, = 0 and D™(,, = 0. Using proposition 1, fy(r}) = D,,£+n,, where
D™n,, = 0. Using these decompositions and taking the trace of the third equation in (4.34)

gives D*¢ = —%(b. The zero-mode of ¢ is the obstruction to solving for £&. Subtracting out
the zero mode, we can solve D*¢ = —1(¢ — ¢). With this choice of &, we can replace
¢ by ¢(u, ). Furthermore, we can choose 7,, = —%Cm, which eliminates the vector part

of gpﬁ,llgl Finally, we consider the divergence of the second equation in (4.34), D2§1(L1) =
—Dm AL, + d,D*¢. Since the right side of this equation has no zero mode, we can solve
for &(}). This completes the specification of the diffeomorphism which implements (4.32).
The leading order Einstein equation (egs. (4.25) to (4.31)) can now be directly solved.
In this gauge, eqs. (4.26) to (4.28) imply that h&lr),hz(})‘ and h%g are constant on M.
Therefore,
WY =0y (w.0), ) =Roa(u.0),  h) = Rl (u.0). (4.36)
Equations (4.32) and (4.36) imply that eq. (4.25), which takes the form
Dh{l) = 82(q" Py + ¢), (4.37)

can be directly solved. Since the right hand side of eq. (4.37) is in the kernel of the Laplacian
D?, the left and right hand sides must both vanish implying

Al = E;lu) (u,0) and (95((]‘435541])3 +¢) =0. (4.38)
Applying ¢™" to eq. (4.31) and using eqs. (4.32) and (4.36) yields
(D —5)D*V =0, (4.39)

which, by Proposition 2, implies that the trace-free scalar part of ®,,, vanishes.'® Using our
gauge conditions, harmonicity of the spacetime components h,(},,) and that eq. (4.39) implies
D%SL = 0, the (um;1) and (Am;1) components of Einstein’s equation imply that AL
and AS}n are harmonic with decomposition
b1 b1
AQ =AM () © V) () and AL, =D AT (w) @ V) ("), (440)
i=1 i=1
where Vﬁ) are a basis for harmonic one-forms on M. Finally, egs. (4.32), (4.36) and (4.39)
imply that

D2Pyy + 2R 1Ry = 0 = Dy = > 0O (w, 0T (4™, (4.41)

=1

YEquation (4.39) looks unconstrained for D = 5 but that case is very special since the internal space is

S and the only term in (4.35) is proportional to ¢.
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where f&)n are the ch trace-free, divergence-free, unobstructed deformations of Mj,;. Finally

eq. (4.38) implies that the sum ¢*Bhsp+¢ can have, at most, linear-dependence on retarded
time u. Einstein’s equations at order T%, however, place a stronger constraint on the time-
dependence of this quantity. In particular, a direct calculation of ¢g*? applied to the zero

mode of the trace-reversed Einstein equations implies that
Ap7(1) _
We summarize our findings on the asymptotic behavior of the metric in the following lemma:

Lemma 4. Let (M, g) be an isolated system in a gauge which satisfies our ansatz eq. (3.5).
There exists a unique diffeomorphism which preserves our ansatz such that the leading order

expansion coefficients of the metric have the following properties:
1. The R* metric components are harmonic on M, and therefore satisfy
hG) =P (w,0), B =R (w6), ) =R(w.0), hGh=Rip(u,0), (443)
and the by, hﬁz components vanish.

2. The components AL and A um admit the decomposition
AD =3 A0 (w,0) @ VI (g™, AL, ZA G, 0) @ VO (y™),  (4.44)
i=1

and ALY vanishes. The 77(7? are a complete basis of by linearly independent Killing
vectors of M, where by is the first Betti number of M.

3. The components 90,(%% satisfy

(1) — gmn ) (
Chn =T ) + Zcb u, )L (™), (4.45)

, are a complete basis of aZL symmetric, rank 2 tensor
fields which satisfy Dmtm)n =0, gm”ﬂ(;)n =0 and eq. (2.22). Furthermore, the metric
satisfies 0,(¢"Bh), + ¢) = 0.

where ¢ = gm”gpmn and the tm

Without loss of generality, we will assume this gauge in the remainder of this work.
This gauge choice dramatically simplifies the analysis of the higher-dimensional Einstein

equations by gauging away higher harmonics in the internal space. We note that any metric
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which admits an asymptotic expansion (3.5), and which satisfies the Einstein equations, can
be put into this gauge. In this sense, our gauge choice is not an additional assumption but
actually a consequence of the fall-off conditions and equations of motion.
In this gauge the news tensor, defined in (4.18), is very nicely related to the leading
order metric by:
Nop = 0,18 (4.46)

This expression for the news tensor identifies the gauge-invariant radiative degrees of free-

dom of the leading order metric, and manifestly satisfies the relations spelled out in (4.19).

4.3 Asymptotic symmetries of compactified spacetimes

In this section we investigate the asymptotic symmetries of spacetimes with compact extra
dimensions. Before doing so, it will be convenient to further refine the gauge choice of
Lemma 4. Note that the trace ¢4% h(Alj)B is constrained by eq. (4.42) so that ¢4? hfj}g(u, 0) =
—d(u, 0)+c(f). We now show that there exists a residual gauge transformation, compatible
with Lemma 4, which allows us to set ¢ = 0. Performing a diffeomorphism parameterized

by &n = ¢(0) Ky, where Ky is defined in eq. (3.2), we see that the metric changes by
Wik = Wi+ 20(0)aan . by = B} + Pac(6). (4.47)

where 2, is the covariant derivative compatible with g4p, defined in section 1.5. The shift
in h&)‘ does not affect the gauge fixed in Lemma 4, while the change in hp is exactly of
the form needed to eliminate ¢(¢). Fixing this gauge, we may now assume that c¢(f) = 0

AB hi‘l])g has no further diffeomorphism freedom.

and therefore ¢

For an arbitrary dynamical spacetime the metric will not, generically, have any exact
symmetries. However for given asymptotics, the spacetime will admit an asymptotic sym-
metry group. We define this group as the group of diffeomorphisms which preserve the

ABh;l,)B = —¢. Since in this gauge, the metric

gauge conditions in Lemma 4 along with ¢
decomposes into spin-2, spin-1 and spin-0 degrees of freedom there is a corresponding de-
composition of the asymptotic symmetry group. The upshot of this is that we can consider
the asymptotic symmetries of spin-2, spin-1 and spin-0 degrees of freedom separately.

To find the symmetry group of the spin-2 modes, we note that the R* components of the
leading order metric h,(},,) are effectively in a Bondi-type gauge. The original Bondi gauge
conditions on the leading order metric are h = 24) = ¢1B h(Alj)B = 0. It then follows from
Bondi’s original analysis that the symmetry group that preserves these gauge conditions is

the BMS group B which we shall review shortly. We note that our gauge conditions also
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imply hY = hﬁi = 0. Additionally, we imposed ¢4? h(Alj)B = —¢. Since ¢ has no residual

gauge freedom this fixes ¢*? h%}. Therefore, the asymptotic symmetry group of the spin-2
degrees of freedom is the BMS group 8.

At this point as promised, we should recall some properties of the BMS group. The
Lie algebra (bms) of B contains an infinite-dimensional normal Lie subalgebra t, which

contains the supertranslations. Explicitly, the elements of t are

M = —T(h) (%)M — %QQT(Q) (%)M + %qAB@BT((‘)) (a%) N +..., (4.48)

(13

where the “...” denotes vector fields that vanish as r — oo at fixed u, 64 and y™. The
function 7'(f) is smooth on the asymptotic 2-sphere. If T'(f) is an ¢ = 0 spherical har-
monic then eq. (4.48) is an asymptotic time translation. If T() is a linear combination
of ¢ = 1 spherical harmonics then eq. (4.48) is an asymptotic spatial translation. If 7'(0)
is orthogonal to the ¢ = 0,1 spherical harmonics then (4.48) is called a supertranslation
and, asymptotically, corresponds to the action of an infinitesimal, angle-dependent time
translation. The quotient bms/t = s0(3,1) is the Lorentz Lie algebra, which correspond
to conformal Killing vectors of S?. At the level of group structure, the BMS group (B)
is therefore the semi-direct product of the restricted Lorentz group (£) and the infinite-

dimensional supertranslation group (7):
B=LxT. (4.49)

We now turn to the spin-1 degrees of freedom. The diffeomorphisms that act on A,(}%
and preserve our metric asymptotics (3.5) are generated by g,(fi) (0), which cannot depend
on u. To preserve Lemma 4, 52) must be harmonic on Mj,. Any such 57(,?) is a smooth
function S(#) multiplied by a Killing vector V™(y) on My,

M o \"
& =SO)V™(y) (ay—m) + ..., (4.50)
where the omitted terms again vanish as r — oo. There are b; Killing vectors on M.
In the limit as r — oo, the commutator of any two &M of the form (4.50) vanishes so the
asymptotic symmetry group generated by these vector fields is abelian. Let us denote this
group of angle-dependent internal isometries by €. We note that elements of this group do
not commute with Lorentz transformations in L.

The remaining degrees of freedom are the spin-0 modes of (4.35) given by the tensor

modes ®,,,, describing the volume-preserving moduli, and the scalar mode ¢ which is the

39



volume mode. There is no choice of asymptotic vector field which preserves our asymptotic
conditions and the gauge conditions given in Lemma 4 that can affect either ®,,,,, or ¢. The
only asymptotic diffeomorphism that can affect 4,05,1% is of the form 51&1) + ..., but all of this
gauge freedom has already been used to implement the gauge of Lemma 4. Thus there is
no remaining diffeomorphism freedom for these modes.
Therefore, the enlarged asymptotic symmetry group (&) is the semi-direct product of
B with the abelian group €:
6 =2 xC. (4.51)

We note that this asymptotic symmetry group is identical to the asymptotic symmetry
group of asymptotically flat Einstein-Maxwell-scalar theory where € is replaced with the
asymptotic symmetries of the electromagnetic field [64]. Therefore, € has the natural
interpretation as the asymptotic symmetry group of the graviphotons.

Finally we will give the action of elements of & on .#*, which has the topology of

R x 5% x Miy. An element of this asymptotic symmetry group moves a point (u,6,y) to

(ﬂ,é, y) as
i = w(O)[u+T(0)], (4.52)
04 = o(h), (4.53)
g™ =py,0), (4.54)

where o : S? — S? acts by a conformal isometry of the 2-sphere given by 0*qan = w?qas.
Similarly, at each fixed angle, the map p(-,0) : My — My acts as an isometry of the
internal space: p*Gmn = Gmn- An illustration of the combined action of a supertranslation
with an angle-dependent internal isometry is given in figure 2. Finally we note that, in
terms of the leading order metric hg\?N, the infinitesimal action of the composition of a

supertranslation and an angle-dependent internal isometry is

1
Wi (u, 0,y) = hih(u,0,y) + T(0)Nap(u,0) + (@A@B - §qAB@2) T(9), (4.55)
AD (. 0,) — AL (u,0,9) + 245(0) ® V(). (4.56)

So the composition of a supertranslation and an angle-dependent isometry only affects the

zero-modes of the leading order metric.
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Figure 2: The figure illustrates the action of a supertranslation and an angle-dependent
internal isometry on the asymptotic sphere. We chose My, = S for simplicity. Null infinity
is an incoming null surface with topology R x S? x S* whose cross sections are asymptotically
large spheres. A point in R x S? (highlighted in black) and a point on M, = S, where
the S! is represented by a circle, specifies a point on null infinity. At leading order in %
supertranslations only act on R* while angle-dependent internal isometries act only on M.
Given a constant u cut of null infinity, labeled ¥y, a supertranslation acts by u — u+ T'(6)
and an angle-dependent internal isometry acts by y — y + S(0). The composition of these

group actions takes the cut Xy into the cut ;.

5 Bursts of Radiation

Building on our discussion of the radiative degrees of freedom and the corresponding asymp-
totic symmetries in section 4, we now examine the response of the asymptotic spacetime
metric to a burst of radiation. We study the metric near . by analyzing Einstein’s equa-
tion in a % expansion. We consider spacetimes which are stationary at early times, undergo
a period where there is a significant amount of gravitational radiation for a finite range of
retarded time, and then approach stationarity at asymptotically late times. It was pointed

out in [7], at early or late times, that the metric corresponding to a collection of inertially
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moving massive bodies is stationary at order %, but will generically be non-stationary at
higher orders in % In particular, it was shown quite generally, that the behavior of the /-th

multipole moment for the metric of a static compact object at some time t = u + r behaves

as ( o1
u+r U

huy ~ —m—~ -+ 3 (5.1)

near £t where gy = Nun + huny and the behavior in the internal space has been

suppressed. Therefore a generic, boosted compact object will be stationary at leading
order in 1/r but will generically be non-stationary at subleading orders in 1/r. This non-
stationarity for £ = 1 can be removed by boosting to the center of mass frame where the
matter is at rest. However, hy,y is generically non-stationary at sub-leading orders in 1/r
if one has incoming or outgoing compact objects at early or late times.

However, for simplicity, we will investigate null memory effects caused entirely by the
flux and scattering of incoming and outgoing gravitational radiation, and no ordinary mem-
ory. To impose this condition we assume the stronger stationarity conditions of [7]. Specif-
ically we assume there exists a gauge in which the metric satisfies the following stationarity

conditions at asymptotically early and late times:
Guhg\?[)N —0 asu— £oo foralln>1. (5.2)

We will further require that the stress energy vanish in a neighborhood of null infinity at

early and late times at the following orders:
TM, -0 asu— 400 foralln <3 (5.3)

This is not terribly restrictive: the condition includes all stress-energy with compact support
and most isolated systems studied in the literature.

This section is laid out as follows: in section 5.1 we examine the constraints from Ein-
stein’s equation on the metric in the stationary eras. In section 5.2, we use our results from
sections 4.2 and 5.1 to integrate Einstein’s equations to obtain gauge invariant informa-
tion about the change in the metric between the stationary eras caused by the passage of
gravitational radiation to .# . As we shall see, certain components of the change in the met-
ric correspond precisely to the composition of a supertranslation with an angle-dependent

isometry.

5.1 Stationary eras

We first investigate the behavior of the metric in a stationary era. Our stationarity condi-

tions turn out to imply constraints on the angular behavior of the metric at leading order
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in % It is useful to note that Proposition 1 applies to any closed Riemannian manifold and
Proposition 2 applies to any compact Riemannian Einstein space, and therefore they both

apply to the 2-sphere equipped with the round metric ¢p.

Remark 1. Propositions 1 and 2 apply to any compact Riemannian manifold. For example
with the round metric qap on the 2-sphere then (S?, qap) is a compact Riemannian Einstein
space with ¢ = 1. Therefore, Propositions 1 and 2 apply to both a one form V, and a second
rank, symmetric tensor field Tag on S?. Therefore, V4 and Tap can be both be decomposed
uniquely as in eqs. (2.14) and (2.24) where the covariant derivative is now the derivative
operator P, compatible with metric qag. There is no ‘tensor part’ since there are mo
divergence-free, trace-free tensors on S?. Furthermore, any divergence free vector vy on S?
can be written as the ‘curl’ of a scalar function P, i.e., vy = eAPDgP. This is sometimes
called the ‘magnetic parity’ or ‘parity odd’ part of the vector. Finally, any rotationally
invariant operator (such as 9° = qAB@A.@B) acting on a one-form or a symmetric tensor

preserves this decomposition.

Given Remark 1, we now determine the metric constraints from Einstein’s equations in
a stationary era. We adopt the gauge described in Lemma 4. The analysis of Einstein’s
equations in a stationary era is greatly simplified by further fixing the gauge of the metric
at 0(7%) In Appendix A, we prove that one can put the metric in a gauge compatible with
the stationarity conditions (5.2) and (5.3) and the gauge of Lemma 4 so that Einstein’s
equations imply that

by
—(2) 0 @), m
W) =T, (0), AR => AN0) oV, (y™), (5.4)
=1
and R .
(2) — (2) . gmn 2 \11(2) m gmn _(2)
o2 = 020 + (DuD, — 22D )00 + 22500, 6

Aside from special cases like M, = T¥, neither U@ nor CID%)1 are zero modes on M.

We now analyze Einstein’s equations in a stationary era in the gauge of Lemma 4 with

the constraints (5.4) and (5.5) imposed. The zero mode of Einstein’s equations at order %,
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after a lengthy calculation described in Appendix A, yields

(uu; 3) 2°h}) =0, (5.6)
(ur; 3) 2*h}) =0, (5.7)
(uA;3) (2% — Uiy — D@l — Za(hy) = ) = 0, (5.8)
(rr; 3) ¢ — 2D =0, (5.9)
(rA;3) P40 — D0 =0, (5.10)
(AB; 3) 2% — AW\ — 2912 Dy + 29 hihqas + DaPpqPh),
+qapd“Phe) + [ZaZ5 — qa5)(6 — 218)) =0, (5.11)
(um; 3) 2* AL =, (5.12)
(Am; 3) (22 = 1]AT + 9,400 =, (5.13)
(mn; 3) 2*¢ =0 and 2?00 =0, (5.14)

where the coefficients A&l;i), Ag;i) and @', are defined in Lemma 4. In eq. (5.14), the ®®
are the d, exactly massless modes as discussed in section 2.2. Additionally, the (rm;3)
components of Einstein’s equations vanish. Equations (4.29), (5.6), (5.7) and (5.9) imply

that hf}lz, hq(}r), o, @%)n and Aq(};i) are spherically symmetric and
¢ = 2nY). (5.15)

Consequently, the left hand side of eq. (5.10) vanishes. Using Proposition 2 and Remark 1,

one can write

A (0) = 2,59(8) + e4® 25 RD(6), (5.16)
h(6) = 24P (0) + ea® DpF(0), (5.17)

and
WL (0) = €a€ Dy DeW (0) + (@A@ - W‘TB@?) T(6) + qATBU(G). (5.18)

Applying €“1 P to egs. (5.8), (5.10) and (5.13) yields
2°RY0) =0, Z2°F@O)=0 and (2°+2)2°W(9) =0, (5.19)

and therefore the magnetic parity parts of A(Al;i), hgf)‘ and hfjj)g vanish.'" Applying ¢4? to

HThe operator (22 + 2)2? annihilates the £ = 0,1 spherical harmonics. Let W be the projection of
W into the subspace spanned by ¢ = 0,1 spherical harmonics. That W is annihilated by the operator in
eq. (5.18) (i.e. e(AC@B)QCW = 0) follows from the fact that any function that is a linear combination of
¢ = 0,1 spherical harmonics satisfies .@A@BVV = quBW.
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eq. (5.11) yields a relation between U(6),T(0) and P(0):
2°U(0) — 2*(2* 4+ 2)T(0) + 42*P() = 0. (5.20)
We summarize the above results in the following lemma:

Lemma 5. Let (M, g) be an isolated system that satisfies both our ansatz (3.5) in a gauge
compatible with Lemma J and our stationarity conditions. There exists a unique diffeomor-
phism which preserves these gauge and stationarity conditions such that the leading order

expansion coefficients satisfy the following relations:

1. The R* metric components satisfy:

W) =c, WY =co W) = 2.P(0), (5.21)
Wiy = (%% - %7392)T(0) + QATBU(G), (5.22)

and hiy) =0 = hg. Here ¢y and ¢y are constants, the functions P(0),T(0) and U(0)

are smooth functions on S? and are related by,
P°U0) — 2*(2* + 2)T(0) +42°P() = 0. (5.23)

2. The A,(}n)@ components satisfy:
b1 ) b1 .
A =3QO VI, AN =Y 250V, (524)
=1 1=1

and A% = 0. The QY are constants and the functions S¥(0) are smooth functions

on S?.

3. The internal space components satisfy:

R ds
1) — _Imn P $6) (m 5.95

where 2¢y = ¢ and the coefficients ®O are constants.

This discussion captures the leading order behavior of the metric near .#* for stationary

objects in the bulk; for example, stars or black holes with possible scalar hair.
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5.2 Change in the metric coefficients after the burst of radiation

Now that we have determined the radiative degrees of freedom in Lemma 4, and the metric
component constraints from the requirement of stationarity at asymptotically early and
late times in Lemma 5, we now integrate the leading order Einstein equations to prove the

following theorem:

Theorem 1. Let (M, g) be an isolated system which satisfies our ansatz and stationarity
conditions. Let gy be in the gauge described by Lemmas j and 5 and satisfy Finstein’s

equation with stress energy Ty n satisfying eq. (5.3) and the dominant energy condition.

1. The change in the metric coefficient hfj}g is

1 1
AI30) = (9420 ~ jasn? ) T(0) - Jaano (5.26)
where A¢p = A <Am”gp7%21) is a constant; specifically, it cannot be a function of 6. The
function T'(0) is a smooth function on S? determining an asymptotic supertranslation

(eq. 4.55) which satisfies
2*(D* +2)T(0) = 4ARLY) — 2Ap — 167F(6), (5.27)

where AR is a constant, F(0) <0 s

1

F0) = " Vol(M)

/ dudppg,, (T (u,0,y) + —N“b/\/ab(u 0 y)) (5.28)
RXMmt 32

and dpipg,,, is the volume measure of (Gmn, Mint)-

2. The change in the metric coefficient AS,)H s
AAY (0, 4™ Z 2,50 7 (ym) (5.29)

where V,(;) are a basis of by harmonic one-forms on M, and the coefficients S@
are a set of smooth functions of S? which are parameters of an asymptotic internal

isometry and satisfy

2*59(0) = AQW + 1677 (9), (5.30)
where the QW are constants and
T00) = L / dudpipg,, T (u, 0,y™) V" (™). (5.31)
Vol(Mint) Jrx M,
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3. The change in the metric coefficient gog,% s

Aelny™) = - Gonn A¢+ZM><Z I (™), (5.32)

where A¢ and AP are constants, and the Zﬁf}n are a basis of dr, symmetric, divergence

free two tensors on M, which satisfy the Lichnerowicz equation.

Proof. We assume that the metric g,/ is in a gauge compatible with Lemmas 4 and 5. The

‘zero mode’ of the (uv;2) components Einstein’s equation at order %2 (see Appendix A.1),

yields
(uu; 2) 0,21 + 9,hY — 9,8 = 87T Naw b — -a <h ABN 5 (5.33)
(ur;2) dutp — 20,h) = 92p? (5.34)
(uA;2) 0,21, — 20,89 + 8,240 = 927" (5.35)

and the (rr;2), (rA;2) and (AB;2) components of Einstein’s equation vanishes. Integrating

eq. (5.34) together with our stationarity conditions eq. (5.2) implies that
Ap = 2Ah0 (5.36)

which agrees with eq. (5.15). Lemma 5 implies that A¢ is spherically symmetric. Further-

more we note that, by Lemma 4
0u(@Bhl) + ¢) =0 = A¢p = —AU (5.37)
where U = qABh 5 in the stationary eras. Combining egs. (5.33) and (5.35) yields
AgpByp (1) _ (1) 2 L ranr
0,220}, = 20,hY) — (2* +2)0,hY) + 167T2 + 2/\/@ Ny — 0,C1, (5.38)

where () denotes a collection of terms which vanish in the stationary eras. Integrating
with respect to retarded time, using eq. (5.2) and using the decomposition of hf4 p in the

stationary eras given by Lemma 5 yields
2*(2% + 2)AT(0) = 4ALY) — 2A¢Y — 167F(0) (5.39)

where F is the total flux of stress energy and news squared to null infinity given by eq. (5.28).
That F < 0 follows from the positivity of T2 due to the dominant energy condition and
the positivity of N®Ny,.
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The zero mode of the (um;2) components of Einstein’s equation at order T% can be ex-
tracted by taking the zero mode of the (um;2) components contracted with the orthonormal
basis vectors gm"fo) on M. The (rm;2) and (Am;2) components of Einsteins equation

vanish and the zero mode of the (um;2) components yield

(um;2) 9,244 — 9, At = / (167727 + 0,C5) (5.40)
Mint

where Afj)(u, ) and Aq(f)(u, 0) are defined in Lemma 4 and C5 vanishes in the stationary
eras. Integrating eq. (5.40) and using egs. (5.2) and (5.3) and using the decomposition of
AST)R, A in the stationary era given by Lemma 5 as well as the decomposition of gog,})z and

Ny given by Lemma 4 and eq. (4.21) respectively yields the desired relation
P*°ASD () = AQY + 16779 (9) (5.41)

where the 7@ (6) are defined by eq. (5.31). Finally, the (mn;2) components of Einstein’s
equation place no further constrains on the change in 90%21 and therefore, Lemmas 4 and 5
imply that Agpﬁ% is given by eq. (5.32).

That T(f) and the S (6) generate an asymptotic supertranslation and an asymptotic
angle-dependent internal isometry between the stationary eras follows from Equations (4.55)

and (4.56) and that N, = 0 in the stationary eras. O

We finally consider the spherical harmonic dependence of the change in the metric
coefficients Ahi‘%,Ah%)n and Apim. We first note that, by Lemma 5, Aplh, is clearly
spanned only by ¢ = 0 spherical harmonics. By Proposition 2, if T'(f) is spanned by ¢ = 0, 1
spherical harmonics then Z4Z5T(0) = —qapT(0). Therefore, it follows that the tracefree
part of Ah(Alj)B on S? is orthogonal to the ¢ = 0, 1 spherical harmonics. Furthermore, by the
form of eq. (5.29), we have that AAS)R is orthogonal to the ¢ = 0 spherical harmonics.

6 The Memory Effect in Compactified Spacetimes

6.1 Unification of memory effects

We now explore the geometric interpretation of Theorem 1 in terms of the memory effect,
which is an observable quantity. Physically, the memory effect is the permanent relative
displacement of a system of test particles, initially at rest, caused by the passage of a burst
of gravitational radiation. The relative displacement of test particles is governed by the

geodesic deviation equation

(VMY 0)26N = —RyrpoN oMol (6.1)
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where v is the tangent vector of the worldline of the particle, £ is the deviation vector
and Ry po” is the Riemann tensor. We are interested in the displacement of test particles
located near future null infinity and shall determine the leading order memory effects in a
% expansion in a neighborhood of null infinity.

We consider a spacetime where the metric near future null infinity is stationary at
leading order in %, at asymptotically early and late retarded times. In this subsection, we
will simplify and integrate eq. (6.1) to derive an explicit formula for the memory effect. This
discussion is a modification of a similar analysis found in [65]. There are subtle differences
when one considers compact internal manifolds, which makes the argument worth revisiting.

Consider an array of initially stationary test particles in a neighborhood of null infinity,
which we model as a congruence of time-like geodesics whose tangents v initially point in
the (9/0u)™ direction. In a neighborhood of null infinity, the spacetime metric deviates
from the Ricci-flat direct product metric (2.2) at order % Consequently, the geodesic
equation implies that v differs from the corresponding integral curve of (9/0u)™ only at
order % and therefore u will differ from an affine parameterization beginning at this order.

For an arbitrary internal manifold, the curvature is generically non-vanishing at infinity:.
Nevertheless, these considerations imply that the quantity Rypo™vMv@ in eq. (6.1) does
vanish at infinity and is only non-vanishing at order % Therefore, the deviation of v™ from
(8/0u)M in eq. (6.1) can only affect £V at order - and faster fall-off. Finally, by eq. (4.2),
the Riemann tensor differs from the Weyl tensor at O(r%) since the stress energy falls off
like 7%2 Since we are only considering the memory effect at leading order in %, we can
replace v™ with (0/0u)M and RpppNoPv? with the electric Weyl tensor £y, (as defined
in eq. (4.11)) in eq. (6.1) which yields

9?
ou?

Indices on the right hand side of eq. (6.2) are raised and lowered with the asymptotic metric

= —EMyeN (6.2)

gun- Equation (6.2) implies that ¢M differs from the integral curve of its initial value &)’
at order X and we may replace M by its initial value in the right hand side of eq. (6.2).

Thus, at leading order in %, we have
P Lym M _¢N
gt = ENNED), (63)

where 51(\/1[) is the deviation vector at O(%) Integrating eq. (6.3) twice, we obtain

gOMI T AM e (6.4)

U=—00
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where )
AMNE—/ du’/ du"Eyn. (6.5)

We refer to Apsy as the memory tensor. This characterizes the memory effect as a linear
map on the initial displacement to the change in the relative separation. Further, as noted
in Lemma 3, the only non-vanishing components of £y, x are £, = —%auj\fab where a, b are

along S? x M. This gives a simpler manifestly gauge-invariant relation for the memory,

1 o0
Aup(0,y) = 5/ duNop(u, 0, y). (6.6)
From (6.6), it follows that
Aab = Abcw qabAab = qABAAB + gmnAmn = 0; (67)

and clearly A,y is time-independent. Additionally from eq. (4.19), we see that
D’App =0, D’Ap, =0, D*Apy 4 2R "0,, = 0. (6.8)

Using arguments identical to those in the proof of Lemma 3, we see that A 4p is independent

of internal coordinates y™ and Ay, and A,,, can be uniquely decomposed in a basis of
)

harmonic 1-forms 77(7? and Lichnerowicz zero modes fﬁfm, respectively,
SN (0 < - 1
Aan =D APO @V, (4) and A =D AVO0 (1) + 5 Gmnd™Dyg(6). (6.9)
i=1 i=1

The A% are a collection of by 1-forms on S2, and the A®) are smooth functions on S2.
We now provide a geometric interpretation of Theorem 1. In the gauge given in Lemma 4,

the news tensor can be expressed in terms of the leading order metric eq. (4.46). This pro-

vides a direct relation between the change in the hfj;_;, h(Alzl and h%) before and after the

radiation epochs:
1 1 1

Using the results of Theorem 1 we can now relate the memory to the change in the metric
due to a burst of radiation. We first note that certain metric components appearing in
Theorem 1 can be directly related to definitions of the Bondi mass aspect and electric

charge aspect in R*.

1 1 | ) )
mp = —555’) = §hf}u) and QW = F) = A% (in a stationary era), (6.11)
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where F' = dA using the exterior derivative on R* and A, is defined in eq. (3.1). Using
the results of Theorem 1 and eq. (6.9) we see that

.@A.@BAAB = 2AmB - %A(ﬁ - 87T.F(0), qABAAB = —%Agﬁ, (612)
. 1 . .

@AAE:)(Q) — 5AQ(@) + 8WJ(Z)(9>, (6.13)

Al = %ACD(") and §"™A,, = %Agb. (6.14)

In analogy with the decomposition of the news in eqs. (4.20) and (4.21) we can decompose

the flux F(6) into gravitational, electromagnetic and scalar contributions to the flux:

F(0) = Far(0) + Fem(0) + Fs(0), (6.15)
where
Far(0) = — /Rdu (@+ %NABNAB)7 (6.16)
Fom(0) = — i /R du NN (6.17)
P

i
Fs(0) = — Q/Rdu N? — Z/Rdu (N2, (6.18)

From the point of view of reduction, eq. (6.16) corresponds to the flux of four-dimensional
gravitational radiation energy as well as null stress energy. Equation (6.17) corresponds to
the flux of electromagnetic energy and eq. (6.18) is the flux of scalar energy where the first
term is the contribution from the volume mode and second term is the contribution from
the volume-preserving moduli.

We can give a physical interpretation to these relations, which express memory in terms
of fluxes. First consider eq. (6.12). The spherically symmetric part of the left hand side
vanishes. The right hand side defines a change in the spherically symmetric part of the

mass aspect. It is reasonable to view

1
m=mpg — é_l¢ (in a stationary era) , (6.19)
as the mass since the change in this quantity is determined by the energy flux to .#* in
analogy with the four-dimensional result (1.12). Similarly, Q@ is the electric charge for each
asymptotic gauge-field A,(f;l) since AQ® is determined by the charge flux to .#*. Via (6.14),

scalar memory is defined by the change in the scalar charge, given by the coefficient of the
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% term in the expansion of the field near .# ™, between early and late times. In this case,
there is no integrated flux term.

The memory effect A,p corresponds to the permanent relative angular displacement of
a pair of freely falling test masses. Ay, corresponds to the displacement in the internal
space directions (i.e. along Killing directions) for a pair of test masses that are initially
angularly displaced. If the test masses had some initial displacement in the internal space
then, due to a change in scalar charge, the relative displacement in the internal space will
change by an amount A,,,. Physically, the internal space is small and therefore relative
displacements of test masses into the internal space are undetectable. Nevertheless, the
four-dimensional scalar and electromagnetic memory effects are usually described in terms
of velocity kicks [14, 15]. We should be able to recover this way of observing memory from
the higher-dimensional gravitational picture.

To see how this emerges, consider the geodesic motion of a test particle with velocity

'UM

MV =0, (6.20)

which follows from varying the point-particle action

S = —m/ vV —0un () deM dzN (6.21)

This equation of motion eq. (6.20) describes the motion of a point particle following a

timelike geodesic. We consider the case where the tangent v, initially vgwo), is of the form

a M 8 M

M _ m

= — Vv — 6.22
Y(0) Cl(@u) +C2 (y>(6ym> ) (6.22)
»  1+/1+4¢ s 1+ V/1+4¢

a= 5 = 7 ) (6.23)

where Vm(y) is a unit normalized Killing vector, which is automatically geodesic on Mjy:
V"D, V" =0and §™V,V, = 1. (6.24)

This characterizes an initially stationary test particle with charge ¢ determined by the
velocity in the internal direction at some early time u = uy. The vector field V' must
be Killing to ensure the test particle is constructed from zero modes of the internal space.
Since our discussion is purely classical, we will not worry about quantization conditions on

the internal momentum, which force such momenta to be of order the Kaluza-Klein scale.
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We are interested in the velocity kick of this test particle relative to a preferred class
of asymptotic, stationary observers, which will define our lab frame. To define a time-like
vector field viP, we Lie-transport the tangent vector v](\g), so that v" in our coordinates
agrees with the trivial extension v}? for all u > uy. We note that this is an accelerated
reference frame, which implies that it differs from geodesic evolution of vg\g) at order %:

vy = Uip + M +0 (%) (6.25)
r r
Expanding eq. (6.20) in powers of % and integrating the geodesic equation a straightforward
computation yields in the gauge described by Lemma 4 that the non-vanishing components
of the velocity kick are AvAM) and Av™™,

AvD (u, 0) = ¢ / Dy + 3 / du/ N g V" (6.26)

The first term on the right hand side of (6.26) is not proportional to the charge! Rather
it is finite as ¢ — 0 and corresponds to a purely gravitational velocity kick. This effect
actually has nothing to do with the compact internal space and is present in just R*. It
would be very interesting to explore the potential observability of this effect. The second
term is the electromagnetic kick we expect. Note that N4,V is independent of 3 because
of eq. (4.20). Similarly, the radial velocity kick

2 u
A () = 2 / AN va vl (6.27)

—00
is sensitive to radiation from the specific scalar zero modes associated to the torus compo-
nent in the decomposition theorem of [57].

The total velocity kicks in the angular and radial directions, respectively, are given by

Ava(6) = lim Ao (u,0), (6.28)
U—00

Av"(0) = lim Av"D(u,6). (6.29)
U—00

Using eq. (5.35) we find that the integrand of the first term in eq. (6.26) can be expressed

in terms of an integral of the news:

1 1 1 1, ,—
Ouhiyy = 57" Npa + ZaN + 5 Dahi}) - 505/152. (6.30)
Integrating eq. (6.30) and using eq. (5.36) implies that
1
Ah(0) = 3 /]R du?® Npa. (6.31)
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Using eq. (6.6) yields the total velocity kick in terms of the memory

Ava(0) =EDPAps+ ¢A sV, (6.32)
AV (0) =EN V"V (6.33)

This leaves the question of how to detect radiation for moduli associated to the simply-
connected component of M. It appears that directly detecting such radiation requires a
more sophisticated detector, but we can make one comment on this issue. In principle, a
detector can measure Nsp, Ma,, and the torus contribution to N,,, by the motion of the
arms of a LIGO-like detector and the motion of a charged test particle. Squaring these
contributions gives us all of eq. (6.15) except any unknown null stress-energy, including
contributions from additional moduli. We can use the measured fluxes to compute what
should be the dominant contribution to the right hand side of eq. (6.12). Assuming the
size of the ordinary memory effect compared with the radiation contribution is still small,
and there is a sizeable discrepancy between the observed gravitational memory and the flux
computation, we can place upper bounds on the possible contribution of any additional

moduli.

6.2 The circle case

The original beauty of Kaluza-Klein theory was a unification of electromagnetism, gravity
and scalar field theory in a single 5-dimensional theory of gravity compactified on a circle.
Let us revisit this beautiful and simple example to unify the separately studied notions
of memory for gravity [13, 18], electromagnetism [15-17] and scalar theories [14] in the
framework of 5-dimensional gravity using the discussion of section 6.1.

Let us take a spacetime metric with an exact U(1) isometry,
gundzMde™ = g, datde” + 2@ (dy + A, (v)dx")?, (6.34)

where y ~ y+27L and ¢ — 0 at infinity. Reducing the D = 5 Einstein-Hilbert action with

zero cosmological constant on y gives the 4-dimensional action,

1

5= 167G

1
/ d*z e, /g (R — Z62%"1%177“” + a#goa“gO) , (6.35)

where F' = dA. This is a special case of M;,; that we studied earlier in the frame we have
assumed in our discussion so far, which is not Einstein frame! The % terms in the expansion
of A, and %@ can be identified with Af}y) and go&} defined in eq. (3.1) and discussed in

the preceding sections.
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Specializing eq. (6.21) to the case of a R* x S* gives the geodesic equation,
d?zM vy dzN daP
dr? NP dr dr

with the Christoffel symbols given to leading order in % by

=0, (6.36)

1

C _ CDg 3(1) c _
Fuu =4q a’LLhuD ) Fuy - 2

cDg A1) S P
¢“Po, ALY, ryy_éaqu, (6.37)

where (1) = 201, Assuming an initial v} of the form eq. (6.22) gives the following leading
Y (0)

order equations of motion,

D M) = —_2rM _ 2qL — ;KM (6.38)

vy’

where KM = (%)M. In this case, the time-dependent behavior of the angular and radial

velocity kicks for a particle with charge ¢, which might vanish, is determined using
2
D) = —c?qcz)@uh&)} — qFQEL) . Ot = —%8u¢(1). (6.39)

Using the analysis of section 6.1, the total velocity kick from the far past (u — —o0) to the
far future (u — +o0) is given by

Avy = cf.@BABA +qAy,, AV = chyy, (6.40)

where Ay, Ap, and Ay, are found in eq. (6.10).

One final comment: in the context of subleading soft photon theorems, there are pro-
posals to permit gauge transformations in abelian gauge theory that grow linearly with r
near £ [66, 67]. This is an interesting possibility, although the asymptotic behavior of the
gauge parameter no longer defines a U(1) group element. In the Kaluza-Klein context, al-
lowing such gauge transformations becomes a statement about higher-dimensional gravity,
which would generalize the class of diffeomorphisms normally permitted, assuming such a

generalization is sensible. It would be interesting to explore this embedding further.

6.3 Color memory

While most of the analysis in this paper assumes a Ricci-flat M, we cannot resist sketching
how color memory studied in [19, 55] should also emerge from Kaluza-Klein reduction. The
starting point is a higher-dimensional gravity theory which admits a space with non-abelian

isometries. We will assume a D — 4 sphere for simplicity. Let us take an action,
1

S = W dD.T\/ —g (R —2A — ’FD74‘2) s (641)
D
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where Fp_, is a D — 4-form field strength. Compactifying this theory on SP~* with radius

L gives an effective four-dimensional potential for the radius L of the form:

2 (D-4)(D-5)  N?
Ve = D4 D2 T [3(D—4) (6.42)

Here we assume the sphere metric is LgdsgD_4, where ds%D_4 is the metric for a sphere
of unit volume. The parameter N is proportional to the amount of quantized Fp_, flux
through the sphere. Since this is a classical gravity theory, we can chose A conveniently to
ensure the resulting spacetime is flat Minkowski. Under this condition, the potential has
a minimum with L growing with N. This is all we need. We have engineered Minkwoski
spacetime from a compactification with non-abelian isometries. In this case, the identity
component of the isometry group is SO(D — 3).

Let us return to the geodesic equation eq. (6.36) for a test particle with velocity along
the sphere. The novelty in this case, by comparison with the Ricci-flat case, is that the
internal velocity vector can rotate as higher-dimensional gravitational radiation passes by.
In the Ricci-flat case, the Christoffel symbols along Killing directions vanish. For spaces
with non-abelian isometry groups, like the sphere, this is no longer true. From a four-
dimensional perspective, the color charge would therefore appear to change because of a

burst of radiation, in agreement with [19].

6.4 Frames

The final issue we need to address is the choice of frames. As illustrated in the circle
example of section 6.2, the natural four-dimensional frame that corresponds to studying
radiation in terms of the D-dimensional metric is not Einstein frame. Let us parametrize

the volume mode or breathing mode of the internal metric in analogy with the circle case,
dsg\,lint = 2@y dy™dy", (6.43)

where ¢ — 0 at infinity. To connect with our earlier discussion, note that ¢ = 2(D — 4)¢p™)
where ¢ is defined in Lemma 4. Reducing to four dimensions gives an effective action of

the form,
1
S=1a / d*zeP=Y°\/"gR+ ..., (6.44)

where the omitted terms involve scalar and vector fields whose kinetic terms typically

depend on . Our analysis in terms of g gives formulae for memory in this frame. To

convert to Einstein frame with a canonical Einstein-Hilbert action, we need to perform one
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conformal transformation and use the relations described in section 1.1. The Einstein frame

metric is defined by

gE) = D=0 g
(1) ae (1)
b 16
L/ AT S 6.46
Thar 7+ +27“n“ * (6.46)

Therefore the leading order metric in Einstein frame is

. 1
hiai™ = o) + S 0 (6.47)
and so the Einstein news tensor is
NE Z Nyp— SNgap = N 6.48
ap = Nap = 5Nqap = Nas. (6.48)

Thus the Einstein news tensor is equivalent to the trace-free Bondi news tensor — an Ein-
stein frame observer is insensitive to the overall breathing mode as we expect [24]. The

components of electromagnetic and scalar radiative degrees of freedom are unchanged:
NE = Ny and NE) = N, (6.49)

The memory effects as viewed by such an Einstein frame observer are then given by

1
A — Aup — 5445 (47" Acp) | AL — Ay and AP = A, (6.50)
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A Asymptotic Expansion of Einstein’s Equations

In this Appendix, we collect some technical results regarding the asymptotic Einstein equa-
tions and the decay of certain components of the Ricci tensor that will be used ubiquitously
in this paper. To simplify our analysis we assume that the metric is in the gauge described

by Lemma 4.

A.1 Constraints on the asymptotic expansion

It is more convenient for our analysis to examine the trace-reversed Einstein equations given
by,
RMN = 87TTMN, (Al)

where Ty is the trace-reversed stress tensor:

1

Tun =Tun — D g IMN (gPQTPQ) - (A.2)

It is useful to split the Ricci tensor into a linear and nonlinear part using the metric split

gun + hary for some chosen g. We define the nonlinear part of the Ricci tensor as
Ran = Run — Ruw, (A.3)
where R,sy is the Ricci tensor and R w18 the linearized Ricci tensor defined below:
Rar = 5 (Dgharw + 28" %hpq — M0V huyp + Yu¥nh) . (A4)

On the right hand side, all differential operators along with Riemann are defined with
respect to g. In the Appendices, we will denote the linearized version of objects with a
tilde, just as EMN is the linear part of Ry/n.

In our analysis we defined ¢ in (3.4) while hysn is given by the collection of functions
(hyws Apn, Pmn) appearing in (3.5). We will expand (A.1) to find a series of recursion
relations of the form: (linearized Ricci) = (stress-energy) - (non-linear Ricci). We find the

following relations:

(2 + (n—1)(n = 2)]A57) +2(n — 1)0,hl) + D*RGY + 05 (A7) 4 ¢+)
— 20,00 = 167 T, 4 2R, (A.5)

(2% + n(n — 3)]hD 4 200D — 240 4 2(n — 1)0,h + DR 4 g™
= 0™ = n0u (A" + ¢1) = —16x T + 2R, (A.6)
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(2% + (n—1)(n —2) — URUTY = 22,4 (WD — hD) 4 2(n — 1)0,h") + DAY
— 249" — 0,5 + 240,(h™ + ™) = —167T Y + 2R, (A7)

(22 + (n—1)(n — 2) — 40D + 4R 4 2448 R0 — 4gAR0 Y 4 2(n — 1)9,h

+ D?h0Y L ongp™ (= 1)(A" Y + oY) = —167T Y 4 2R (D), (A.8)
(2% + (n—1)(n —2) — 5] Y + 4pY — 29, (hD — B0y —29Bp0 Y + DRl
+2(n — 13,0 — 24 + 0 — (n = 1)Za(h" + ¢ D)
= —167T7 Y 4 2R, (A.9)

2%+ (n— 1)(n—2) = A" — 49uhly P+ 49ahi Y + 2(n — 1)A,AY) + D*hGEY
- 29 A%UB —2(yp"™ — 9 n))QAB +(24%5 — (n — 1)qap) (W™D + ¢
— qapdu(h™ 4+ ™) 4 2(h0=Y — 2D 4 p=Dyg 1y = 167 T + 2RGHY, (AL10)

(2% + (n = 1)(n = 2)]AGTY + 2(n = 1)9,AL, + D2AGY — D™ — 9,05
+ D, 0y, (KD 4 o)) = 1677 (0D 4 oR [ HL) (A.11)

(2% + n(n — 3)]A"D 42400 _ 99440 4 9(p — 1)9,AT) + D2 AU 4 pgp()
— D" —nD,,(h™ + ¢™) = 16Tt 4 2R (A.12)

(2% + (n—1)(n —2) — ATV —29,(A=D — A=Dy 4 2(p — 1)9,A%) + D?ATHY
— 240 — Db 4 D AR + ™) = —167 T 4 2RTHY, (A.13)

(2% + (n— 1)(n — 2)Jpl ) + 2(n — 1)0,0) + D2t + 2R, P, 900D — 2D Y
+ D, D, (W) 4 ¢ty = 167D 4 2R D, (A.14)

Here we have defined
U = N, B =9RG), 6™ = g, (A.15)

so that
™ = @ApT D (3 —n)(RD — BDY — 9 R 4 D™ AR

ur uu um?

(A.16)
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O = NG+ B =)D = D) = g PR Y - 0un) + DAL, (A7)

v = 2PREY F - = ) = oub + DAL (AR)
Wi = 22 AG Y+ (3 n) (ALY = ARY) = 0,40 + D). (A19)

In the body of this work, we will need the expansion of Einstein’s equations to order T%,
and to order 1%3 for the special case of a stationary era.

A direct calculation of RS\?N in the gauge of Lemma 4 shows that the non-vanishing
components of Rg\?N can be written entirely in terms of the news eq. (4.46). Explicitly the

non-vanishing components of R( 1N are given by,

R = N “Nab + a (h$) N, (A.20)

R :i(DmCI)pq)Npq - %CI)I’"DPNW - mqﬁD”Nnm + %Dm(qﬂwﬂp), (A.21)

RP = — i(D(mcbpq)(Dn)cbpq) + (D"®%,,)(Dy®y,) + %cbququcpmn (A.22)
+ mqﬁD%)mn + }leDn(chqq)pq),

where the product in eq. (A.20) is explicitly given by

1
N = hENAE 4 AN 4 @ N - 5 657 N, (A.23)

and the scalars ®,,,,(u, 8, y) and ¢(u, 0) are defined in Lemma 4. The remaining components
of Rg\?N vanish. In Section 5.2, the zero modes of the nonlinear parts of the Ricci tensor
appear as “flux” terms for the change in metric. More precisley, we find that the zero
modes of R and R'Z, determine the change in the metric due to a burst of radiation.
The zero mode of eq. (A.20) is manifestly non-vanishing unless A, = 0. To determine the

zero mode of Rf% we contract with a Killing vector V' of (Mg, Gmn) and integrate over

Mint:
1 Pq
Mint Mint

ON?,V

—2D,( "N, V"
p( N, D —4

- Vpcbm"/\fmn)} : (A.24)
/ N L5P i, (A.25)

where in the first line we used the fact that ®,, is divergence free, ¢ is constant on My

and that V™ is covariantly constant to write the last three terms in eq. (A.21) as a total
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derivative. In the second line we used the fact that V™ is covariantly constant to write the
directional derivative in terms of the Lie derivative. However the decomposition theorem
of [57] states that My, is a free quotient of a Riemannian product of a torus and a connected
Ricci-flat space with vanishing b;. For such a product, £3®,,, = 0 since V is one of the
torus isometries.

At this stage, we want to check whether our ansatz (3.5) of an expansion in powers of
% makes sense as an asymptotic expansion. This might seem fairly reasonable because in
both pure gravity and Maxwell-Einstein, there exists a large class of solutions which are
smooth at . in a particular gauge [68]."> However, this is not the case for a scalar field in

four dimensions with null sources [65]. A scalar field ¢ in Minkowski spacetime satisfying

Ono = J, (A.26)
where J is a source, does not admit a % expansion near ¢ when J ~ T%, which is a
configuration with finite flux through .#*. Rather one must include 105# terms in the
expansion. This is without dynamical gravity.

In our case, there is a general obstruction to integrating in from .#*. Namely, if a
specific scalar fluctuation of My, is obstructed, or equivalently gets a mass at some order
beyond the linearized approximation, then our ansatz is simply not valid for that mode.
The mode could never propagate to .# ", which we implicitly assume in our ansatz. We can
see this obstruction emerge in the % expansion. Consider the mn component of the vacuum

Einstein’s equations at order Tiz, i.e., eq. (A.14) for n = 1 and T = 0

D), + 2R, 02 — 2D ) + Dy D (B + ¢1¥) = 2RE, (A.27)

m P4
After contracting both sides with a tensor field ™" (y) which is annihilated by Lichnerowicz,
it is straightforward to check that the right hand side vanishes. We therefore get the

following nonlinear obstruction to our ansatz,
/ tmmR2) = 0, (A.28)
Mint

It is straightforward to check that the volume mode, as expected, is unobstructed. Letting

tmn = Jmn(y) in eq. (A.28) and using eq. (A.22) gives

1 1 1
g"mRP) = (Z DO Dy, — 5 DPOT Dy + ZD%Q), (A.29)

12Note that starting with smooth initial data on a Cauchy surface and evolving that data does not

generically lead to a solution with an analytic expansion in % near .# 7. Rather log(r) terms can be

generated at subleading orders in % even in pure gravity [69]. However, there exists a class of initial data

in pure gravity that guarantee C* differentiability at .#* for any k [68].
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where ®% = ®,,,®™". Integrating over Miy,

1 1
/j;/l gmnRgLL :5 //Vl <§qu)qum(I)pq - Dp¢quq®pm>a (ABO)
1 1
=3 /M ( - Ecbmn?q)pq + @quPchbpm) (A.31)
1
25 /M <Rmpnqq)mnq)pq _ Rmpnqq)mnq)pq + q)ququ(I)pm) , (A.32)
—0, (A.33)

where we have used
D*®,,, + 2R, =0,

and that ®,,, is divergence-free. As we spelled out in section 2.2, the space of exactly
massless modes cZL < dy, is smaller than the kernel of Lichnerowicz. The exactly massless
volume-preserving moduli satisfy eq. (A.28). Thus, as in Lemma 4, we truncate the lin-
earized massless moduli to exactly massless moduli and obtain a solution consistent with
our ansatz and Einstein’s equations at order 7% As we will see in section A.3, this trun-
cation also ensures that our ansatz is consistent with Einstein’s equations at order %3 We
fully expect that restricting to exactly massless modes is necessary to obtain a solution to
Einstein’s equations to all orders in %, however we have not attempted to show this here.
Note that this discussion motivates our imposing a similar condition on Tﬁ%; namely, that

T2 be orthogonal to the di, + 1 exactly massless scalar modes.

A.2 Going to the stationary era gauge

We now want to show that a metric in the gauge of Lemma 4 can be further restricted at

order r% in a stationary era. Specifically,

by )
W2 =R ), AR =" A9 @ VL (y™) (A.34)
=1
and
@ _ 2 (pA ,m C Gmn 2\ @) 04 my . Gmn =)
P = P (00, 5™) + ( DDy — 22D JUR(0%,y™) + 22267 (0). (A.35)

. . . . —-(2) .
Note that go,(fb% is missing a vector term shown in Proposition 2, and gb( ) is constant on

M. To achieve this gauge we first make a gauge transformation that is compatible with
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our ansatz (3.5), stationarity conditions and Lemma 4. We choose a gauge vector field of

Ear ~ M T O(i>, (A.36)

the form,

r? r3
where &), is a u-independent gauge transformation. By an analysis similar to the proof of
Lemma 4 we see that DmAff% = 0 is divergence free and 905321 admits the decomposition

given in eq. (A.35). In a stationary era, R,(fl,) = R,(f,z and T]%\, = 0. Therefore:

(1v;2) D*h() =0, (A.37)
(um; 2) DQA,(EW)L =0, (A.38)
(mn; 2) D*o? +2R,.7,%® + D,, D, (—2h® + h® + ¢*P'F)) (A.39)

— 2D, D¢}, = 2R,

We conclude that

by
W2 =R (u,0) and A2 =3 AD(u,0) © V,u(y). (A.40)

nv
i=1
Using these relations we now study (mn;2). Taking the trace of (mn;2) gives™
1 1
—2D™D"p?) = 5 D" Dy, @, — DM D, By, + 5D2(c1>1"1c1>pq), (A.41)
which yields the following equation for ¥®):

D- 1 1 1
(D = i) D'W®) = — D" D, B,y + DD, B, — D(@M1D,,).  (Ad2)

We note that the above analysis implies that the right hand side has no zero modes and
therefore, we can solve for U in terms of ®,,,. After solving for U we can then solve
for (ID%)I:

D-5 1
LI®D)] = —L[D,, ¥?] + 2(m) D,.D,D*V® — (D, @"")(Dyy®y)  (A43)
1 1 $D*P,,
DP®7,) (D, ®,,) + =P D, Dy @, + ~ Dy Dy (P71D,,) + —o
‘l’( )( [p q])+2 pq +4 ( pq)+2(D_4)

Here L[] is the Lichnerowicz operator and ©,,,, = (DmDn — %DQ). As in our discussion
of section A.1, we again truncate to exactly massless scalar fluctuations for which the right

hand side of eq. (A.43) has no Lichnerowicz zero modes. This guarantees solvability of

13 Just to remind the reader, ®,,, without a superscript denotes the leading order term as in (4.32).
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eq. (A.43). On a generic Ricci flat manifold, 9® will not be harmonic and &), does not
satisfy the Lichnerowicz equation. In the special case of My, = T, we see that D,,®,, = 0
and

D*U® =0 = D0 +2R,F, 10 =0 for My, = T*. (A.44)

A.3 Ricci in a stationary era

The last result we want to record is the behavior of the nonlinear part of the Ricci tensor
at order 7%3 By a lengthy but straightforward calculation, the following components of the

nonlinear part of the Ricci tensor vanish in a stationary era and in our gauge at order %3 :

R = and R =0 in a stationary era, (A.45)

%

and the nonvanishing components are

1

RO = —D,,("D,,) + 5 Dp(®™®y)  in a stationary era, (A.46)
1 1

sz@ = ZDm.QA(Q)pq(I)pq) — §Dp(<I>pq_@A<I>mq) in a stationary era. (A.47)

Finally, the R component is given by

1 2 1
Rgg?z = §D(mq)qu”)901(31) + (qu)q(melpISOEL))q) + §DmDn(®pqﬁp(2)pq> (A.48)
2 1 1 . _
_ Dp(q)qu(mQOib)z;) + §Dp(®quq%07(Z21) + EDS [@ P@Pq:mnq]
1 — 1. — = 1. s— =
- _Dm [(I)SPq)Pq:nsq] - _gqu)l Smsq—kls + _gqu)l Slng=kms
2 2 2
+ non-zero modes,
where =, = 2D, ®,)y — Dy®,,, and ‘non-zero modes’ refers to modes orthogonal to

the Lichnerowicz zero modes. Again this obstruction to solving Einstein’s equations is
generically non-trivial for a Ricci-flat space, but [ Moy R = 0 if £, is an exactly
massless fluctuation, and hence the obstruction vanishes. Note that for the special case of
Mine = T*, Rl = 0.

B A Gauge Invariant Derivation of Memory in Linearized Grav-
ity with Compact Extra Dimensions

In this section we will derive the memory effect in linearized gravity for isolated systems

with compact extra dimensions using the Bianchi identity. In particular we shall assume,
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in any neighborhood of null infinity, there exists a gauge in which the metric admits an
asymptotic expansion of the form (3.5). We now derive the memory effect in a manifestly
gauge invariant way using the Bianchi identity for the asymptotic Weyl tensor. Since we
shall be working with gauge invariant quantities, we shall only need that the expansion
(3.5) is valid in any local neighborhood of null infinity.

We denote the linearized Weyl tensor by Cun prg- The linearized Bianchi identity is

O Cnpigr = 0. (B.1)
The linearized electric Weyl tensor is defined as
EPR = éNPQRTLNTLQ, (BQ)

where n¥ = (0/0u)N. Lemma 3 applies to the leading order linearized electric Weyl

tensor, which has non-vanishing components £ ap and £ Am that are harmonic on M. The

component gmn satisfies the Lichnerowicz equation on M;,. Finally, we again have that
AB¢ __ ~mng

q SAB =4 (c;mn

We now compute the memory effect from the Bianchi identity. We recall that
ZMN :/ du'/ dU//gMN. (Bg)

We start with the scalar memory effect. Since Amn satisfies the Lichnerowicz equation we

can expand A,,, as

~ ~ 1
A, = Z AOTO 4 50 4gmng “Apg: (B.4)
in terms of dy, trace-free, divergence-free symmetric tensors 7, ) which satisfy the Lichnerow-
icz equation. Note that § is defined in (1.32). We note that A®®) and A¢ in Theorem 1
are actually gauge invariant quantities and therefore, the derivation of scalar memory is

exactly analogous to the derivation in the nonlinear theory:
~ 1 . ~ 1
AW = §A<I>(“ and §"" Ay = 5 A0, (B.5)

For the scalar case, working with gauge invariant variables does not buy us much.
To derive the electromagnetic memory effect, we note that an explicit computation using

the linearized metric yields

Cuvpm Za Fi)(z") @ V.9 (y™), (B.6)
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where the bar on the left hand side denotes a projection to zero modes as described in
section 1.5. Viewing the left hand side as a 1-form in the internal space, this means
projecting to harmonic 1-forms on Mj,; in agreement with the expression on the right
hand side. Fﬁ,) is the field strength for the graviphoton associated to V% This field
strength is now gauge invariant and 9, is the derivative operator compatible with the flat
metric 7,,.
Since the Weyl tensor is trace-free and satisfies the first Bianchi identity, it follows that
Fle,) satisfies
O"F{) =0 and 9, F =0 (B.7)

for all <. We then expand F ,59 in powers of % near null infinity as given by eq. (3.5). Using

Lemma 4, the the only non-vanishing component of F,Sf,) at order % is Fu(iil) which, by

eq. (B.6), is directly related to Eam in the following way,
b1
Eam == 0.F5) (. 0) @ VI (y™). (B.8)
i=1
The divergence equation for F, 5) at order %2 constrains the angular divergence of Féi;l),
24F"Y = 9,F2), (B.9)
Similarly, applying eA? the Bianchi identity for F,SZV) at order T% yields
PP, PO = 5, PFED, (B.10)
Therefore, using eqs. (B.3) and (B.8) we find that
AP AW = A (&BF/%,@) and 2R = A (FED) | (B.11)

On the right hand side, A means the change in the quantity from u = —oo to u = 4o00.
Finally we turn to the gravitational memory effect arising from asymptotic dimensional
reduction. Using the fact that the Weyl tensor is divergence-free and satisfies the homoge-

neous wave equation one can show that the zero mode of C,,,, satisfies

3, Coplon = 0. (B.12)

We first focus on the relevant equations for EW. By analogous manipulations that led to
egs. (4.5) and (4.6) we find that

9"E,, =0 and 0,E,, =0. (B.13)
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Therefore, the R* components of the linearized electric Weyl tensor satisfy the same equa-
tions as the components of the linearized electric Weyl tensor in flat spacetime. One major
difference is that, when one has compact extra dimensions, n““EW is non-vanishing. In flat
spacetime this quantity does vanish but, in the presence of compact extra dimensions, the
tracelessness of the Weyl tensor implies that n“”EW vanishes if only if g™" ~mn vanishes.
This is a crucial difference that leads to contributions from the breathing mode of Mj,; to
the observed gravitational memory in this frame. We will discuss the choice of frame in
section 6. Because of this subtlety we shall explicitly derive the memory effects implied by
the system of equations given in eq. (B.13).

We now expand EW in powers of % The explicit recursion relations relating Weyl tensor
components order by order in £ can be found in [65]. By Lemma 4 the only non-vanishing
component of EW is € . Since the trace qABg AB is equivalent to —g™" ~mn we shall focus
on the trace-free part of Eap on the 2-sphere. Applying ¢“4 %2, to the angle component of
the divergence equation in eq. (B.13) at order 5 yields

PAPPTF [Eap] = ——@2 ABE,p + 0,9°EQ, (B.14)

where TF[ . ] takes a symmetric 2-tensor on S? and projects out the trace: Typ — Tup —
%QAB (CZCDTCD)-

The r-component of the divergence equation in eq. (B.13) at order 5 gives,

24EY = ¢*BEQ), + 0,E. (B.15)

Finally applying ¢*Z to the angle-angle components of the wave equation in eq. (B.13) at
order 5 gives

(22 — 9)¢*BE g + 20,4"PE®), = 0. (B.16)

Equations (B.14) to (B.16) imply that

PAGPTF [Enp| = (27 — 1]gmE,,, + 2B, (B.17)

where we used that fact that ¢4? Eap = —Qm”E'mn
Equation (B.17) constrains the scalar part of TF[€45] on the 2-sphere. We now consider
the vector part. The vector part of the angle-angle components of memory are determined

by the magnetic Weyl tensor on R* given by,

1 . =
B, = 26” 1Coovus (B.18)
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where €,,, is the spatial volume form on R* which is related to the volume element on
R* by €., = €uup; indices are raised with the background flat metric 7,,. The magnetic
Weyl tensor is symmetric, has vanishing u-components and, by the first Bianchi identity,

is traceless:

Bu =0, B,, =B, and 7B, =0. (B.19)

Furthermore, the linearized Bianchi identity and the fact that all components of the lin-

earized tensor satisfies the wave equation implies that
8B, =0 and OB, =0. (B.20)

Therefore, the linearized magnetic Weyl tensor satisfies the same relations as the linearized
magnetic Weyl tensor in flat spacetime. In contrast to the R* components of the linearized
electric Weyl tensor, the magnetic Weyl tensor is traceless. The system of equations given
by eq. (B.20) are therefore identical to their analogous equations in flat spacetime. The
derivation of the vector part of memory for perturbations in flat spacetime has been treated
previously in [53]. Since these computations are identical to the derivation of the vector
part of A B, we will not repeat this analysis here. Equation (B.20) implies the following

fall-off for the magnetic Weyl tensor components:

~ 1 ~ 1 ~ 1
BAB ~ O (;) 5 Bry ~ O (ﬁ) 5 Brr ~ O (ﬁ) . (B21)

The final result from analyzing eq. (B.20) together with eq. (B.21) is

249"B\), = >°BY (B.22)

u-—rr

where E% = — (%) € Acgch and, explicitly, §§§) = (%) eABéfj)gm.
After integrating egs. (B.17) and (B.22) and using the fact that ¢*BAsp = —§™ Apn
we find that

PAGPTF(A 4] = %[@2 ~ 186 A (BD). (B.23)

CAGe DR 4y = —A (]35;3)) and  ¢APA,p = —%Agb. (B.24)

Equations (B.23) and (B.24) are consistent with the linearized form of eq. (6.12) since, by
Lemma 5, A <§§§)> vanishes and A¢ is spherically symmetric under the strong stationarity

conditions we imposed.
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