<

pharmaceutics

Article

An Algorithm for Nonparametric Estimation of a Multivariate
Mixing Distribution with Applications to Population
Pharmacokinetics

Walter M. Yamada 1t

, Michael N. Neely 2%, Jay Bartroff ' , David S. Bayard 4% , James V. Burke >,

Mike van Guilder ', Roger W. Jelliffe 't , Alona Kryshchenko ', Robert Leary 7' , Tatiana Tatarinova 5%

and Alan Schumitzky 13*

check for

updates
Citation: Yamada, W.M.; Neely, M.;
Bartroff, J.; Bayard, D.S.; Burke, J.V,;
M.; Jelliffe, RW.,;
Kryshchenko, A.; Leary, R.; Tatarinova,
T.; Schumitzky, A. An Algorithm for

van Guilder,

Nonparametric Estimation of a Mul-
tivariate Mixing Distribution with Ap-
plications to Population Pharmacoki-
netics. Pharmaceutics 2021, 1, 0.
https:/ /dx.doi.org/

Received:
Accepted:
Published:

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional claims
in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-
censee MDPI, Basel, Switzerland. This
article is an open access article distributed
under the terms and conditions of the
Creative Commons Attribution (CC BY)
license (https:/ / creativecommons.org/
licenses /by /4.0/).

Laboratory of Applied Pharmacokinetics and Bioinformatics, Children’s Hospital of Los Angeles, Los

Angeles, CA 90027, USA; wyamada@chla.usc.edu (W.M.Y.); mneely@chla.usc.edu (M.N.N.);

dbay007@earthlink.net (D.S.B.); uphill@cox.net (M.v.G.); alona.kryshchenko@csuci.edu (A.K.);

schum@usc.edu (A.S.)

Pediatric Infectious Diseases, Children’s Hospital of Los Angeles, Keck School of Medicine, University of

Southern California, Los Angeles, CA 90027, USA

3 Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA;
bartroff@usc.edu

4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

5 Department of Mathematics, University of Washington, Seattle, WA 98195, USA;

burke@math.washington.edu

Department of Mathematics, California State University Channel Islands, University Dr,

Camarillo, CA 93012, USA

7 Certara, Raleigh, NC 27606, USA; Bob.Leary@certara.com

Department of Biology, University of La Verne, La Verne, CA 91750, USA; ttatarinova@laverne.edu

*  Correspondence: schum@usc.edu; Tel.: +1 818-249-9444

1t These authors contributed equally to this work.

Abstract:

Population pharmacokinetic (PK) modeling has become a cornerstone of drug development and
optimal patient dosing. This approach offers great benefits for datasets with sparse sampling, such as
in pediatric patients, and can describe between-patient variability. While most current algorithms
assume normal or log-normal distributions for PK parameters, we present a mathematically consistent
nonparametric maximum likelihood (NPML) method for estimating multivariate mixing distributions
without any assumption about the shape of the distribution. This approach can handle distributions
with any shape for all PK parameters. It is shown in convexity theory that the NPML estimator
is discrete, meaning that it has finite number of points with nonzero probability. In fact, there
are at most N points where N is the number of observed subjects. The original infinite NPML
problem then becomes the finite dimensional problem of finding the location and probability of
the support points. In the simplest case, each point essentially represents the set of PK parameters
for one patient. The probability of the points is found by a primal-dual interior-point method; the
location of the support points is found by an adaptive grid method. Our method is able to handle
high-dimensional and complex multivariate mixture models. An important application is discussed
for the problem of population pharmacokinetics and a nontrivial example is treated. Our algorithm
has been successfully applied in hundreds of published pharmacometric studies. In addition to
population pharmacokinetics, this research also applies to empirical Bayes estimation and many
other areas of applied mathematics. Thereby, this approach presents an important addition to the
pharmacometric toolbox for drug development and optimal patient dosing.

Keywords: mixture distribution; mixture model; high dimensional statistics; nonparametric maxi-
mum likelihood; primal-dual interior-point method; adaptive grid; population model
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1. Introduction

Pharmacokinetic studies in healthy volunteers commonly collect multiple observations
in each subject. These datasets often arise from Phase I clinical trials and have been
traditionally analyzed by noncompartmental methods or by modeling via the standard
two-stage approach. Patient datasets often contain complex dosage regimens and only a
few (or one) observation(s) per patient. To analyze such sparse datasets, e.g., in pediatric
or critically ill patients, population modeling is required, since noncompartmental analysis
and the standard two-stage approach are not applicable [1,2]. Population modeling has
been shown to estimate PK parameters without bias and with good precision for such
sparse datasets [3]. Parametric population modeling algorithms are commonly used
and assume typically either normal or log-normal distributions for the between subject
variability of PK parameters. While this assumption is made for virtually every parametric
population PK model, it is difficult to prove, especially for datasets with a small number of
subjects. Nonparametric population modeling can describe a multivariate distribution of
PK parameters without assuming any shape of the PK parameter distribution. This is a key
advantage of the nonparametric approach that is based on the exact log-likelihood. The
present work comprehensively describes the foundation of this nonparametric estimation
algorithm for the first time. This algorithm has been used in hundreds of peer-reviewed
papers.

Pharmacometric observations can be described statistically by a mixture model. In
this case, the probability of random variable arguments (the PK population model) of
the pharmacokinetic compartmental model are described by a mixing distribution. The
problem of estimating the mixing distribution from a set of pharmacometric observations
can be stated as follows. Let Y3, ..., Yy be a sequence of independent but not necessarily
identically distributed random vectors constructed from one or more observations from
each of N subjects in the population. Let 01, ...,0x be a sequence of independent and
identically distributed random vectors that represent unknown parameter values of N
subjects. The 6 belong to a compact subset © of Euclidean space with common but
unknown distribution F. In other words, F is a distribution of the parameters in the
population model. ® represents the parameter space, and the dimension of this space
is the number of parameters in the population model. The {6;} are not observed. It
is assumed that the conditional densities p(Y;|6;) are known, fori = 1,...,N. p(Y;|6;)
represents the model of observations y; given parameter values 6; including uncertainties
of the measurement protocol. The mixing distribution of ¥; with respect to F is given by

p(Y;|F) = [ p(Y;|6;)dF(0;). Because of independence of the {Y;}, the mixing distribution
of the {Y;} with respect to F is given by

N
L(F) = p(Y ., Y[F) =T [ p(¥l6)dF(6) )
i=1

The mixing distribution problem is to maximize the likelihood function L(F) with respect
to all probability distributions F on ©.

Remark 1. The distribution FML that maximizes L(F) is a consistent estimator of the true mixing
distribution; which means that FML will converge to the true distribution if the number of subjects
is large. This was proved originally by Kiefer and Wolfowitz in 1956 [4] . The consistency of FML
is especially important for our application to population pharmacokinetics where FML is used as a
prior distribution for Bayesian dosage regimen design [5].

The algorithm described in this paper differs from most other published methods in
a number of ways. Our algorithm allows for high dimensional parameter space ®. Most
published methods require the dimension of ® to be small and many require the dimension
of ® to be 1, i.e,, these methods required the number of parameters in the population
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model to be small. We have treated examples where the dimension of @ is as high as 29,
see Section 3.

Most published algorithms require the {¥;} to be identically distributed and assume
that the population model {p(Y;|0;)} is rather simple, such as p(Y;|6;) is a multivariate
normal density with mean vector 6; and covariance matrix X. Even if X is unknown and
has to be estimated, the structure of this model is straightforward. However, the estimation
of T has to be done carefully to avoid singularities, see Wang and Wang [6]. As will
be described in Section 3, we allow p(Y;|0;) to be calculated from a system of nonlinear
ordinary differential-algebraic equations.

We now describe the details of our algorithm. It was proved by Lindsay [7] and
Mallet [8] , under simple hypotheses on the population model {p(Y;|6;)}, that the global
maximizer FME of L(F) could be represented by a discrete distribution with support on at
most N points, i.e., a distribution with nonzero probability located on at most N points.

Remark 2. One way to motivate this result by Lindsay and Mallet is as follows: Suppose by some
lucky chance, we knew the exact parameters for each subject. How can we package this into a
distribution? Answer: The “empirical distribution” of the exact parameters. That is the discrete
distribution supported at the N exact parameters with equal weights. It turns out in this case that
this empirical distribution is also the nonparametric maximum likelihood (NPML) distribution of
the parameters. What is remarkable is that if we only have noisy measurements (Y1, ..., YN ) of the N
subjects only indirectly related to the subject parameters, the structure of the NPML is the same. A
discrete distribution supported at N points. Of course, in this real case, the position and weights of
the N support points are unknown. Finding these positions and weights is the subject of this paper.

This result leads immediately to a finite dimensional optimization problem for FML,
namely to maximize the likelihood function

N K
LA, ¢) =T X Mep(Yile) ©)
i=1k=1
with respect to the support points ¢ = (¢, ..., px) and weights A = (A4, ..., Ag) such that
P €O N >0fork=1,..,K, K< Nand YK A =1

In our algorithm I(A, ¢) = log L(A, ¢) is maximized, so that

N K
I(A, @) =Y log ) Aep(Yilgy) ®3)
i=1 k=1

and the maximization problem becomes
maximize [(A, ¢) 4

such that ¢ € @K, A = (A1, ..., Ax) € RK, K< Nand YK A=1.

Although the maximization problem in Equation (4) is finite dimensional, it is still high-
dimensional. The dimension of the maximization problem in Equation (4) is N(dim ®) +
(N—-1).

The optimization problem in Equation (4) is naturally divided into two problems:

Problem 1. Given a set of support points { ¢}, find the optimal weights {A;}.

Problem 2. Given the solution to Problem 1, find a better set of support points.

Problems 1 and 2 are solved cyclically until convergence, i.e., no significant improve-
mentin (A, ¢).

Problem 1 is a convex programming problem. In our algorithm, we solve this problem
by the primal-dual interior-point (PDIP) method. This type of method is standard in convex
optimization theory (see Boyd and Vandenberghe [9]). However, the exact implementation
for a specific problem varies from problem to problem. The exact details of our implemen-
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tation are described in the Appendix. See also Bell [10], Baek [11] and Yamada et al. [12].
Our PDIP implementation is fast and can easily handle thousands of variables.

Finding a better set of support points in Problem 2 is a more difficult problem. This
location problem is a nonconvex global optimization problem with many local extrema
and whose dimension is potentially N x dim ©. The details of our algorithm, called the
adaptive grid (AG) method, will be described in Section 2.3 and in Algorithm 1.

Algorithm 1 Nonparametric adaptive grid (NPAG) algorithm. Input:
(Y, gbo, a,b,Ap,Ar, A, Ae,A)), a and b are the lists of lower and upper bounds, re-
spectively, of @; Ap is the minimum distance allowable between points in the estimated
FML_ A, see §Section 2.7. Output: (¢, A,1(A, ¢)).

1: procedure NPAG(Y, ¢°, a,b, Ap) > Estimate FML given Y
2. Initialization: ¢ = ¢°, LogLike = —10%, F; = 10, F; = 2% F, eps = 0.2,
A =104 A =102, A, =104 A, =103,n=0

3. whileeps > A, or |F; — Fy| > Ap do

4: Calculate ¥ (¢) > N x K matrix {p(Y;|¢x)}
5: [A(¢),1(A(@), )] +— PDIP(¥(¢)) > Appendix A
6: if (MAXCYCLES == 0) then

FUL— 1(3(9), )

8: A— /\((P)

9: return [¢, A, FML]

10: end if

11: n<—n+1

12: ¢° <— CONDENSE(¢, A (), A)) > Alg. 3
13: [A(¢°),1(A(¢°), ¢°)] <— PDIP(¥(¢°)) > PDIP returns G
14: NewLogLike = I(A(¢°), ¢°)

15: if (n > MAXCYCLES) then

16: EME «— 1(A(¢°), ¢°)

17: A A(¢°)

18: return [¢, A, FML]

19: end if

20: if |NewLogLike — LogLike| < Ap and eps > A, then

21: eps = eps/2 > Adjust precision
22: end if

23: if eps < A, then > check EXIT conditions
24 F; = NewLogLike

25: if ‘Fl — F0| < Ar then

26: FML+—

27: ¢ < ¢S A —— A(9°)

28: return [¢, A, FML]

29: else

30: Fo = Fj;eps = 0.2 > Reset Algorithm
31: end if

32: end if

33: ¢ «— ¢° <— EXPAND(¢¢, eps,a,b,Ap) > Alg. 2
34: LogLike <~ NewLogLike

35: end while
36: end procedure
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Roughly speaking, Problems 1 and 2 are solved as follows. An initial large grid of
possible support points is defined in the hypercube ®. Problem 1 is solved on this large
grid. After PDIP, most of the original grid points are removed due to near-zero weights,
leaving a smaller high-probability grid. Problem 1 is then solved on this smaller grid. Then,
the adaptive grid method for Problem 2 takes place. For each remaining grid point, up to
2 x dim ©® new (daughter) support points are added. A daughter point outside the search
space © or too close to a parent point is discarded. The new grid contains the current
high-probability points plus the added daughter points. The algorithm is then ready for
Problem 1 again. By construction, each iteration increases the value of I(A, ¢). This process
continues until the function I(A, ¢) does not significantly change.

1.1. Comparable Methods

Because of space limitations, in this section, we only discuss NPML methods that
optimize Equation (4), methods that treat multivariate distributions, and methods which
allow general conditional probabilities { P(Y;, 6;) }. As explained in this paper, any such
NPML algorithm has to address two problems: locations of support points and weights
of support points. NPAG does locations by an adaptive grid method and weights by the
primal-dual interior-point (PDIP) method. The algorithms discussed in this seection are
summarized in Table 1.

The original methods of Lindsay [7] and Mallett [8] were based on algorithms of
optimal design in the style of Fedorov [13]. In Schumitzky [14], an algorithm was proposed
which did both locations and weights by the expectation maximization algorithm (EM). It
was stable but also slow.

In Lesperance and Kalbfleisch [15], a new method was introduced which did weights
by the dual method described in Section 5 of Lindsay [7] and locations by what they called
the intra-simplex direction method (ISDM). Even though the Lesperance and Kalbfleisch
paper was restricted to univariate distributions, the ISDM method has been generalized to
the multivariate case. To briefly describe ISDM, let D(6, F) be the directional derivative of
log L(F) in the direction of the Dirac distribution dg supported at 8 € ©. (This function is
defined in Section 4 below.) ISDM is an iterative algorithm. At stage k, let F¥ be the current
estimate FML, Then, find all the local maxima of D (6, F¥). These local maxima are added
to the current set of support points and a new F<*1 is calculated. If there are no new local
maxima, then the algorithm is done.

In Pilla, Bartolucci, and Lindsay [16], another new method was developed where the
locations were found by an initial fine grid. However, the weights were found by a dual
version of the PDIP method.

In Savic, Kjellsson, and Karlsson [17], a nonparametric method (NONMEM-NP)
was added to the popular NONMEM® program. NONMEM-NP is a hybrid parametric—
nonparametric approach The locations of support points were found by a parametric
maximum likelihood algorithm. Then, the weights were found by maximizing Equation (4)
relative to the newly found support points. NONMEM-NP can handle high-dimensional
and complex multivariate distributions. An extension to NONMEM-NP was developed in
Savic and Karlsson [18] where additional support points are added to the original set. A
comparison between NONMEM-NP and NPAG is discussed in Leary [19].

In Wang and Wang [6] , a new algorithm was developed for multivariate distributions.
The locations were found by a combination of EM and a variant of ISDM. The weights
were found by a family of quadratic programs. In [6], examples are performed for 8- and
13-dimensional mutivariate mixing distributions.
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Table 1. Table of NPML Methods.
Author(s)/Reference/Date Problem 1 Method Problem 2
Method
Lindsay [7] (1983) Convex Geometry VDM
Mallet [8] (1986) Optimal Design VDM
ae939[>ze;rance and Kalbfleisch [15] Semi-Infinite Programming ISDM
(5251861;; Kjellsson and Karlsson [17] Parametric NONMEM None
2(1)5‘6’)83“01““1 and Lindsay [16] Dual of PDIP Adaptive Grid
Schumitzky [14] (1991) EM EM
X. Wang and Y. Wang [6] (2015) Quadratic Programming ISDM
NPAG [20] (2001) PDIP Adaptive Grid

Legend: VDM vertex direction method; EM expectation-maximization; ISDM intra-simplex direction method;
NPML nonparametric maximum likelihood; PDIP primal-dual interior-point method.

Note: The quadratic programming algorithm (QP) of Wang and Wang [6] has an
attractive feature. For a prescribed set of support points, QP finds the zero probabilities
exactly. Thus, QP avoids the grid condensation step where support points from PDIP with
sufficiently low probabilities are deleted. However, QP and PDIP are based on different
numerical methods and a comparison of the efficiency of both algorithms has not been
determined.

We finally mention that the NPML problem is a special case of a finite mixture model
problem with unknown supports and weights. For a discussion of this approach, see
Tatarinova and Schumitzky [21].

The algorithms which have shown by published examples to handle the highest
dimensional multivariate problems are NONMEM-NP, Wang and Wang [6], and NPAG.

1.2. Benders Decomposition

For any set of grid points ¢ = (¢1, ..., ¢) in O, let A = A(¢p) be the corresponding
set of optimal weights given by the PDIP method. Then, the function F(¢) = [(A(¢), ¢)
depends only on ¢ and can be maximized directly. For optimization methods, this tech-
nique is called Benders decomposition. The NPAG algorithm maximizes F(¢) by an
adaptive search method. In a method proposed by James Burke, F(¢) is maximized by a
Newton-type method. Since the function F(¢) is not necessarily differentiable, a relaxed
Newton method must be used similar to what is described in the Appendix for the primal-
dual algorithm. For details of Benders decomposition as applied to our problem, see Bell
[10], Baek [11] and Jordan-Squire [22].

Founded on this prior work, the present study aimed to comprehensively describe,
for the first time, the nonparametric adaptive grid algorithm (NPAG). This approach uses
the exact log-likelihood to solve population modeling problems and does not make any
assumptions about the shape of the PK parameter distributions. We illustrated the features
and capabilities of this algorithm using a population PK modeling example. This algorithm
presents the computational foundation of several hundred peer-reviewed papers, to date,
and is ideally suited to optimize individual patient dosage regimens. The output of the
NPAG algorithm becomes the input of the BestDose™ patient dosing software which is
used at the bedside in real-time [23].

2. Materials and Methods
2.1. Pmetrics

The simulations and NPAG optimizations in this paper can be duplicated in R, using
programs in the Pmetrics package [24]. R and Pmetrics are free software. R is available from
many download sites. Pmetrics is available from lapk.org. NPAG is run using the NPrun()
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command in Pmetrics. Sample datasets and compartmental models are also available at
lapk.org.

2.2. NPAG Subprograms

NPAG is a Fortran program consisting of a number of subroutines as described below.
The main program performs the adaptive grid (AG) method (consisting of expansion and
compression algorithms) and calls the primal-dual interior-point (PDIP) subprogram. The
PDIP algorithm solves the maximization problem of Equation (4) for a fixed grid and is
described precisely in the Appendix.

2.3. NPAG Implementation (NPAG—Algorithm 1)

For the purpose of this discussion, we can think of PDIP as a function A from @ into
the set S" = {A € R : Y | Ay = 1} defined as follows: If ¢ = (1, ..., o) then A(¢p) =
(;\1, e )A\m) maximizes Equation (4) relative to the fixed set of grid points (¢y, ..., ). In
this case, we write G = (¢, A(¢)) and [(G) = [(¢, A(¢)).

In NPAG, there are two types of grids: expanded and condensed. The expanded grids
are the initial grid and the grids after grid expansion (Algorithm 2). The condensed grids
are generated by grid condensation (Algorithm 3). Each cycle of NPAG begins with an
expanded grid. The likelihood calculation is done on the condensed grids.

Now for the adaptive grid method. Assume that © is a bounded Q-dimensional
hyper-rectangle. Initially, we let ¢° = (¢Y, ..., ¢%,) be the set of M Faure grid points

expanded —
in © (see [25-27]). Alternatively, we could initially let ¢ panded be generated by a uniform
distribution on © or by a prior run of the program.

Remark. The Faure grid points for a hyper-rectangle © are a low-discrepancy set
which in some sense optimally and uniformly covers ©. In our implementation of NPAG,
the Faure point sets come in discrete sizes which nest with each other. (Allowable number
of points equals 2129, 5003, 10007, 20011, 40009, 80021, and multiples of 80021.) This nesting
property is useful for checking the optimality of FML (see Section 4). We have found that
replacing the initial Faure set with a set generated by a uniform distribution on ® increases
the time to convergence but results in the same optimal distribution.

Now set G, panded = (¢° A(¢°)). Our approach is to generate a sequence of solutions
G" to Equation (4) of increasingly greater likelihood, where unless otherwise specified,
G" refers to the condensed grid at the n'" cycle of the algorithm. If G" has log-likelihood
negligibly different than G"~!, then G" is considered the optimal solution to Equation (4)
and is relabeled FML. If not, then the process continues using the ¢" as the new seed. This
loop is repeated until FM! is found.

The stopping conditions for NPAG are defined precisely in Algorithm 1. If the stopping
conditions are not met prior to a set maximum number of iterations, the program will exit
after writing the last calculated G” into a file.

2.4. Grid expansion (EXPAND—AIlgorithm 2)

The crux of the adaptive grid method is how to go from G° to G! or, more generally,
from G" to G"*1. The details of doing this are now explained roughly below and precisely
in Algorithm 1.

Let Q be the dimension of ®. Suppose at stage n we have a grid of high-probability
support points ¢”". We then add 2Q daughter points for each support point ¢y € ¢". The
daughter points are the vertices of a small hyper-rectangle centered at each ¢, with size
proportional to the original size of the hyper-rectangle defining ®. The size of this small
hyper rectangle decreases as the accuracy of the estimates increases. (See Algorithm 2.)

Let 4)’61;;}1” ged = ¢" U Daughter-Points. Then the PDIP subprogram is applied to
1 o : 1 1 3 1
gb;‘;;m Jeq Tesulting in the new solution set GZ;; nded = (4;?;;7% dod” A((pg;an ie1)) (see Al-

n+1
expande

gorithm 1). The solution set G 4 18 now ready for grid condensation.



Pharmaceutics 2021, 1, 0 8 of 22

Algorithm 2 EXPAND. Input: ¢=(4)1, cee ,(])K), Ag, © = [ﬂ1,b1] X [ag, bg] X oo X [ﬂQ, bQ],
a = [al,- .- ,LIQ], b= [bl, s ,bQ], Ap. Output: ¢/=(47i,' .- ’4)5\/1)’ where M < K(l +2Q).
Note: In this algorithm, ¢p=(¢1, - - - , ¢k ) is a Q x K matrix, with Q = dim ©.

function EXPAND(¢, Ag, a, b, Ap)
2; Initialize: [Q, K| = size(¢), I = Q x Q Identity matrix, new¢ <— ¢

fork=1,..,Kdo > K = number of input support points
4: ford=1,..,Qdo >Q =dim®
T(d) = Ag(b(d) —a(d))
6: if ¢(d,k)+T(d) <b(d) then > Check upper boundary
o = @(, )+ T(A)I(:, d)
8: dist = 10%°
end if
10: for k;;, = 1: length(new¢) do
newdist = Y abs(¢p™ —newe(:,k;,))./ (b — a) >x./y done
component-wise
12: dist = min(dist, newdist)
end for
14: if dist > Ap then > Check distance to new support point

new¢ <«— [newe, ¢|

16: end if
if p(d, k) —T(d) > a(d) then > Check lower boundary
18: ¢ =@, k)—T()I(;,d)
dist = 103
20: end if
for k;, =1 :length(new¢(1,:)) do
22: newdist = Y (abs(¢p~ —newe(:, ki) ./ (b —a)) > x./y done

component-wise

dist = min(dist, newdist)

24: end for
if dist > Ap then > Check distance to new support point
26: neweg <— [newe, ¢ |
end if
28: end for
end for
30: ¢ <— new¢

end function
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Algorithm 3 Condense algorithm. Input: (¢, A, A ), Output: ¢ Note: ¢° is considered a
subset of ¢

function CONDENSE(¢, A, A))

ind = find (A > (maxA)A) ) > Inequality and max are performed component-wise
¢ = ¢(:,ind)
return ¢°¢

end function

2.5. Grid Condensation (CONDENSE—AIgorithm 3)

The above solution set G;’;p}l nded Ay have many support points with low probability.

We remove all support points which have corresponding probability less than (max A)A,,
where A is the vector of current probabilities and the default for A, is 1073, (Note that
the remaining probabilities are not normalized at this point.) The probabilities of the
remaining support points are normalized by a second call to the PDIP subprogram. This
second call to PDIP is fast. The likelihood associated with these remaining support points
and normalized probabilities is then used to update the program control parameters and
check for convergence (Algorithm 1 and Section 2.7). If convergence is attained, then the
output of this second call to PDIP provides the support points and probabilities of the final
solution. If convergence is not attained, then the remaining support points are sent to the
grid expansion subprogram (Algorithm 2), initializing the next cycle.

At the end of the program, the output of this second call to PDIP provides the location
and weights of the final solution.

2.6. PDIP Subprogram—See Appendix A

The PDIP subprogram finds the optimal solution to Equation (4) with respect to A for
fixed ¢. PDIP employs a primal-dual interior-point method that uses a relaxed Newton
method to solve the corresponding Karush-Kuhn-Tucker equations. (See Equations (14)-
(17) of Appendix A.)

For any Y=(Y3, .., Yy) and any ¢=(¢1, ..., px) € Ok, the input to the PDIP subprogram
is the N x K matrix {p(Y;|¢x)}. The output consists of the optimal weights A(¢) and the
corresponding log-likelihood (A (¢), ¢). An in-depth description of the PDIP algorithm
and its implementation is presented in Appendix A. See also [10-12].

2.7. NPAG Stopping Conditions

As explained above, a potential solution to is not accepted as a global optimum
until successive sequences of G" produce final distributions evaluating to sufficiently close
log-likelihood. The various upper and lower bounds A for NPAG control and stopping
conditions are defined below and are used in Algorithms 1-3.

FML

A, Primary upper bound on the allowable difference between two successive estimated
log-likelihoods; the default initialization is 10—4.

Ar Secondary upper bound on the allowable difference between two successive estimated
log-likelihoods of potential FML; the default initialization is 10~2.

A, Sets an upper bound on the accuracy variable eps of Algorithm 1. The default
initialization for A, is 107*. The default initialization for eps is 0.2 and is stepped
down until eps < A, Ar and A, define the two stopping conditions for Algorithm 1.

Ap Sets alower bound on how close two support points can get; the default initialization
is 1074,

A, Sets a lower bound factor on the probabilities of the weights A; the default initializa-
tion is 1072.
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2.8. Calculation of p(Y; | ¢x)

Given observations Y;, i = 1, ..., N and grid points ¢, k = 1, ..., K, the PDIP subpro-
gram only depends on the N x K matrix {p(Y;|¢x)}. NPAG can be used for any problem
once this matrix is defined. However, the default setting of NPAG is for the problem of
population pharmacokinetics. For a good background of population pharmacokinetics, see
Davidian and Giltinan [28,29].

In population pharmacokinetics, generally Y; = (y;1,...,y; m) is a matrix of vector
observations for the ith subject. Since NPAG allows multiple outputs, each y; ,, is itself
a g-dimensional vector y; ,, =(Yim1, - - yirm,q). The observations y; ,, j, are then typically
given by a regression equation of the form:

Yimj = fim,j(0i) +Vimj, j=1,--,q (5)
Vignj ~ N(O, (07,i(6))%)

0; are unobserved parameters specific for Y;

In the above Equation (5), f; ,j is a known nonlinear function depending on the model
structure, the dosage regimen, the sampling schedule, all covariates and of course the
subject-specific parameter vector ;. Except for simple models, f; ;, ; requires the solution
of (possibly nonlinear) ordinary differential equations.

In the current implementation of NPAG, it is assumed that the (y;1,...,yim) are
independent. Then

M
exp <_; Z (Yijm — fzm(ﬁbk))z‘;nlz(‘pk) (Yim — fi'm(¢k))T>

m=1
H%zl \/(27'[)‘7 det z"i,m (¢k)

p(Yil¢x) = (6)

where f; ., = (fim1, - fimg) and Zj p, = diag(aiz,m,l, ...,Ui%m,q). For the purposes of matrix

multiplication in Equation (6) ,we think of y; ,, and f; ,, as g-dimensional row vectors.

To complete the description of Equation (6) we need to model the standard deviation
terms 0; , ; of the assay noise. In our implementation of NPAG, four different models are
allowed. Let

i, (Pr) = co + c1fim;i(Pr) + szfm,j(fl’k) + CSfE’m,j(¢k) )
and set
Xim,j assay error polynomial only
Vi j multiplicative error g
O s =
L] az it 2 additive error ®
0% constant level of error

The parameter <y in Equation (8) is a variance factor. Artificially increasing the variance
during the first several cycles of NPAG increases the likelihood for each ¢, allowing the
algorithm to use these cycles to find a better initial state from which to begin optimization.
NPAG also has an option to “optimize” y. This changes NPAG from a nonparametric
method to a “semiparametric” method and will not be discussed here. The interested
reader can consult [12].

Next, if cp = 0 in Equation (7), then «; ;, ; can become small for certain values of ¢ that
in early iterations can be far from optimal. This, in turn, causes numerical problems as the
likelihood is infinite if ¢; ;, ; = 0. One way to avoid this problem is to take 0; ,,; = constant.
Another way would be to assume that «; ;, ; is known and is given by

2 3
Xigm,j = €0 + C1Yipm,j + C2Yim,j + C3Yim,j ©)
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That is, to approximate ¢ by using a polynomial of the observed values rather than
model predicted values. In our experience with NPAG, the approximation of Equation (9)
is useful for ensuring computational stability (especially during the early cycles of the
algorithm). However, from a theoretical perspective, this change violates the conditions
of maximum likelihood and will not be discussed here. Again, the interested reader can
consult [12].

2.9. Convergence

For a given initial grid ¢, the NPAG algorithm is only guaranteed to find a local
maximum of L(F) . More precisely, if ¢* is the final grid of NPAG starting from ¢°, then
A(¢*) is a global maximum on ¢* but the support points ¢* may be only a local maximum.

Global convergence of a nonparameteric maximum likelihood method for estimation
of a multivariate mixing distribution is difficult. For one-dimensional distributions the
problem is straightforward. The idea of proof goes back to at least Fedorov [13] in 1972,
which involves the use of directional derivatives.

Let F be any distribution on ®. Then, the directional derivative of log L(F) in the
direction of the Dirac distribution Jg supported at 0 is defined by

D(6, F)=[L}; P(Yi|6)/P(Yi|F)] = N, 6 € ®, where p(Y;|F) = [ p(¥;|6)dF(). Let F
be the current NPML estimate at iteration k. The Fedorov method involves maximizing
D(6, Fy) for 8 € ©, at every iteration. Then, the point at which the maximum occurs is added
in an optimal way to Fi to give Fy 1. Under the assumptions of regularity, Fedorov shows
that L(F;) converges to L(FML), see Fedorov [13], (Theorem 2.5.3). Many improvements to
this method have been made. In Lesperance and Kalbfleisch [15] and Wang and Wang [6],
instead of just adding the point at which D(6, Fy) occurs, all the points where local maxima
occur are added in an optimal way. Again, under the assumptions of regularity, convergence
as above is proved. In one dimension, these methods are efficient. In higher dimensions,
these methods are not computationally practical.

We now suggest a method to check whether the final distribution of NPAG is globally
optimal and, if not optimal, how close it is to the optimal. It also involves the use of the
directional derivative D(6, F), but only at the last iteration of NPAG. Now define

D(F) = D(6,F
(F) rgleg( )

Note that the max in the above expression is only over ® and not over ®. It is proved
in Lindsay [7] that F* is a global maximum of L(F), i.e.,, F*=FML if and only if D(F*) = 0.
Even if D(F*) # 0, it is useful to make this computation as it is also proved in Lindsay [7]
that L(FML) — L(F*) < D(F*), so this last expression gives an estimate of the accuracy of
the final NPAG result.

Now, even though we said above it is not practical to calculate D(F) at every iteration
of an algorithm, we are just suggesting to make this calculation at the end of the algorithm.
This calculation can be performed by a deterministic or stochastic optimization algorithm.

3. Examples

First of all, the NPAG program has been used successfully in high-dimensional and
very complex pharmacokinetic-pharmacodynamic models. In Ramos-Martin et al. [30], the
NPAG program was used for a population model of the pharmacodynamics of vancomycin
for coagulase-negative staphylococci (CoNS) infection in neonates. Vancomycin is an
antibiotic used to treat a number of serious bacterial infections. CoNS are the most com-
monly isolated pathogens in the neonatal intensive care unit. This model had 7 nonlinear
differential equations and 11 random parameters. The population was a combination of
300 experimental and animal subjects. In Drusano et al. [31], the NPAG program was used
for a population model of two drugs for the treatment of tuberculosis. This model had 5
nonlinear differential equations, 3 nonlinear algebraic equations, 1671 observations from 6
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outputs and 29 random parameters. In the algebraic equations, the state variables were
only defined implicitly and had to be solved for by an iterative method.

The above two examples are too complex to use for simulation purposes. Conse-
quently, we present here a simpler model which has an analytic solution and which can
be checked by other algorithms. Nevertheless, the estimation of parameters in this model
is not trivial. We consider a three-compartment PK model with a continuous IV infusion
into the central compartment and a bolus input into the absorption compartment. The
individual subject model is described by the following differential equations:

dxq 0 for0<t<5

— = —Kyx1, x1(t) = -

dt 1 () {b ift =5

dX2

W == Ku.X‘l - (Ke +ch)x2 + KPCX3 —|—1’(t), XZ(O) == O
dx

d—: = Kepxa — Kpexa,  x3(0) =0

and output equation

y1(t) = x2(t)/ Ve +w(t), w(t) ~ N(0,0?), ¢ =55

The inputs are a bolus b = 2000 mg at t = 5 Hr and a continuous infusion r(t) = 500
Hr!, for 0 < t < 16 Hr. This model has 5 random parameters (V, Ky, K¢, Kcp, Kpe). A
diagram of this model is given in Figure Al. It is known that this model is structurally
identifiable, see Godfrey [32]. However, we have found that for a continuous IV infusion,
the parameters K., and K. can be difficult to estimate in a noisy environment.

The details of the simulation are as follows. There were 300 simulated subjects.
The random variables (V, K,, Kep, Kpc) were independently simulated from normal
distributions with means respectively equal to (1.2, 0.8, 2.0, 0.2) and standard deviations
equal to 25% coefficient of variation.

The random variable K, was independently simulated from a bimodal mixture of
two normal distributions with means respectively equal to 0.5 and 1.5, with standard
deviations equal to 10% coefficient of variation, and with weights equal to 0.2 and 0.8. This
distribution would apply to an elimination rate constant with a bimodal distribution where
80% of the subjects have a mean of 1.5, and only 20% have a mean of 0.5. The power of the
nonparametric method allows the detection of the 20% group.

Eleven observations were taken at times t = 0.25, 1.0, 4.98, 5.25, 5.5, 6.0, 7.0, 8.5,10.0,
13.0,16.0.

These sampling times were chosen in an ad hoc fashion and are not to be considered
optimal. In Figure A2, we show the profiles of the 300 noisy model outputs y;. These
profiles are plotted as piecewise linear functions with nodes at the observation times.

The initial Faure set had 80, 321 support points dispersed in the volume

(Ka, V, Ke, Kep, Kpe) € [(0.01,2.0), (0.01,2.5), (0.0001,2.0), (0.0,4.0), (0.0001,2.0)]

The assay error (Equation (8)) is not always known. An approximate assay error
polynomial can be inferred from literature and Pmetrics includes a routine to estimate the
assay error polynomial from the data. Another approach to analyzing data with unknown
measurement error is to run successive NPAG optimizations using decreasing error mag-
nitude for each new run. An advantage of this approach is that model development is
faster. The first cycle of NPAG, which begins with a relatively large measurement error,
can be initialized using a relatively small number of support points. Each NPAG solution
is used as a prior to skip the first (and most computationally burdensome) step in the next
NPAG run. We demonstrate this approach can converge to the correct solution on this
simulated data.

Convergence for this problem was accomplished after applying NPAG four times. For
the first application, o = 0.025Y;;,u1are4- The output distribution of this first application
was used as a prior to start NPAG again, this time with ¢ = 7.96 4 0.0125Y};,,,,14te4. The
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output of this second application was used as a prior to start a third NPAG run, this time
with o = 7.96 4 0.0065Y;,,u1ate4- Finally, the output density of this third run was used as a
prior to run NPAG a fourth time, this time with ¢ = 5.5, the same as for the simulation. The
step down in assumed observation error happened at convergence for each previous error
levels: at cycles 4513, 5972, and 6791. Final convergence happened at cycle 8012. There are
284 support points in the final density.

The simulated and estimated marginal distributions are shown in Figures A3 and A4.
It is seen that the estimated marginal distributions are similar to the simulated histograms.
In particular, the bimodal shape of K, was uncovered. Similarity is tested using the R
routine mtsknn.eq(..., k = 3), which returns a pval = 0.5809. mtsknn.eq applies a K—nearest
neighbors approach to estimate the probability that two non-parametric distributions arise
from the same distribution.

NPAG is designed to estimate the whole joint distribution of the parameters. As
mentioned earlier, the estimate FM! is especially important for our application to popu-
lation pharmacokinetics where FML is used as a prior distribution for Bayesian dosage
regimen design. However, FM! is a consistent estimator of the true mixing distribution
and consequently, the moments of FME should be consitent estimators of the true moments.
Means and variances of parameter estimates for FM! can be easily obtained by integrating
the corresponding marginal distributions. So as a check of this fact, in Table A1, the com-
parisons of estimated versus simulated means and variances are shown. Again, results are
quite accurate (see Tables A1 and A2).

Finally, in Figure A5 we include a graph of Predicted versus Observed values which
shows the all around good fit of the data. The predicted (right panel: Predicted Bayesian)
values are gotten as follows: For each subject, the Bayesian mean estimate of the parameters
are found using the final NPAG distribution as a prior and that subject’s observations.
Then, based on these parameter means, the subject’s concentration profile is calculated.
The predicted (left panel: Predicted Population) is the weighted average of the evaluation
of all support points for subject model.

4. Conclusions

We have provided the first comprehensive description of the NPAG algorithm for
estimating multivariate mixing distributions. This algorithm can describe between sub-
ject variability without assuming any shape for the distribution of PK parameters and is
excellently suited for optimizing patient dosing [33-35]; NPAG is based on an iterative
algorithm employing the Primal-Dual Interior-Point method and an Adaptive Grid method.
This approach can handle pharmacokinetic, pharmacodynamic and other models with
a high number of estimated model parameters and is based on the exact log-likelihood.
A detailed description of NPAG is provided along with an application for a common
two-compartment PK models. Finally, the NPAG algorithm is arguably the most efficiently
parallelizable population modeling algorithm, since it can parallelize over both subjects and
support points. This allows one to readily implement this algorithm on supercomputers as
our laboratory has done on research projects. In addition to population pharmacokinetics,
this research also applies to empirical Bayes estimation, see Koenker and Mizera [36] and
to many other areas of applied mathematics, see Banks et al. [37]. Overall, the NPAG
algorithm provides an important addition to the pharmacometric toolbox for drug devel-
opment and optimal patient dosing at the interface of applied mathematics, biomedical
scientists, and clinicians.
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5. Supplementary Material
5.1. Recent References Using Npag

As a means for readers to more quickly assess the applicability of NPAG in a wide
variety of pharmacometric studies, we refer here to the first 10 references on a recent
PubMed search for papers that use NPAG . Note that all population PK studies using
Pmetrics employ NPAG.

1.  Pharmacodynamics of Posaconazole in Experimental Invasive Pulmonary Aspergillo-
sis: Utility of Serum Galactomannan as a Dynamic Endpoint of Antifungal Effi-
cacy. Gastine S, Hope W, Hempel G, Petraitiene R, Petraitis V, Mickiene D, Bacher J,
Walsh TJ, Groll AH. Antimicrob Agents Chemother. 2020 Nov 9:AAC.01574-20. doi:
10.1128/AAC.01574-20. Online ahead of print. PMID: 33168606

2. Cerebrospinal fluid penetration of ceftolozane/tazobactam in critically ill patients
with an indwelling external ventricular drain. Sime FB, Lassig-Smith M, Starr T,
Stuart J, Pandey S, Parker SL, Wallis SC, Lipman ], Roberts JA. Antimicrob Agents
Chemother. 2020 Oct 19:AAC.01698-20. doi: 10.1128/ AAC.01698-20. Online ahead of
print. PMID: 33077655

3.  Population Pharmacokinetics of Continuous-Infusion Meropenem in Febrile Neu-
tropenic Patients with Hematologic Malignancies: Dosing Strategies for Optimizing
Empirical Treatment against Enterobacterales and P. aeruginosa. Cojutti PG, Can-
doni A, Lazzarotto D, Fili C, Zannier M, Fanin R, Pea F. Pharmaceutics. 2020 Aug
19;12(9):785. doi: 10.3390/pharmaceutics12090785. PMID: 32825109 Free PMC article.

4. Caspofungin Weight-Based Dosing Supported by a Population Pharmacokinetic
Model in Critically Ill Patients. Martson AG, van der Elst KCM, Veringa A, Zijlstra ]G,
Beishuizen A, van der Werf TS, Kosterink JGW, Neely M, Alffenaar JW. Antimicrob
Agents Chemother. 2020 Aug 20;64(9):e00905-20. doi: 10.1128/AAC.00905-20. Print
2020 Aug 20. PMID: 32660990 Free PMC article.

5. Ethionamide Population Pharmacokinetic Model and Target Attainment in Multidrug-
Resistant Tuberculosis. Al-Shaer MH, Martson AG, Alghamdi WA, Alsultan A, An G,
Ahmed S, Alkabab Y, Banu S, Houpt ER, Ashkin D, Griffith DE, Cegielski JP, Heysell
SK, Peloquin CA. Antimicrob Agents Chemother. 2020 Aug 20;64(9):e00713-20. doi:
10.1128/AAC.00713-20. Print 2020 Aug 20. PMID: 32631828

6. Development and validation of a dosing nomogram for amoxicillin in infective endo-
carditis. Rambaud A, Gaborit B], Deschanvres C, Le Turnier P, Lecomte R, Asseray-
Madani N, Leroy AG, Deslandes G, Dailly E, Jolliet P, Boutoille D, Bellouard R,
Gregoire M; Nantes Anti-Microbial Agents PK/PD (NAMAP) study group. ] An-
timicrob Chemother. 2020 Oct 1;75(10):2941-2950. doi: 10.1093/jac/dkaa232. PMID:
32601687

7. Population Pharmacokinetics and Target Attainment of Cefepime in Critically Il
Patients and Guidance for Initial Dosing. Al-Shaer MH, Neely MN, Liu J, Cherabuddi
K, Venugopalan V, Rhodes NJ, Klinker K, Scheetz MH, Peloquin CA. Antimicrob
Agents Chemother. 2020 Aug 20;64(9):e00745-20. doi: 10.1128/AAC.00745-20. Print
2020 Aug 20. PMID: 32601155
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8.  Baclofen self-poisoning: Is renal replacement therapy efficient in patient with nor-
mal kidney function? Brunet M, Léger M, Billat PA, Lelievre B, Lerolle N, Boels D,
Le Roux G. Anaesth Crit Care Pain Med. 2020 Oct 14:52352-5568(20)30230-7. doi:
10.1016/j.accpm.2020.07.021. Online ahead of print. PMID: 33068797

9.  Ceftriaxone dosing in patients admitted from the emergency department with sepsis.
Heffernan AJ, Curran RA, Denny K]J, Sime FB, Stanford CL, McWhinney B, Ungerer J,
Roberts JA, Lipman J. Eur ] Clin Pharmacol. 2020 Sep 24. doi: 10.1007 /s00228-020-
03001-z. Online ahead of print. PMID: 32974748

10. Population Pharmacokinetic Models of Anti-Tuberculosis Drugs in Patients: a Sys-
tematic Critical Review. Otalvaro JD, Hernandez B E AM, Rodriguez CA, Zuluaga AF.
Ther Drug Monit. 2020 Sep 18. doi: 10.1097/FTD.0000000000000803. Online ahead of
print. PMID: 32956238

5.2. Recent Studies to Which NPAG Can Be Applied

The references below use excellent parametric methods. All of these methods have the
same mathematical structure as our nonparametric NPAG. The main difference is that in the
parametric methods, it is assumed that the population distribution is multivariate normal
with unknown mean vector and unknown covariance matrix. In NPAG, we do not make
any parametric assumptions about the population distribution, as discussed in our paper.
Otherwise, the population analysis problem is the same. [38] and [39] use the method
S-ADAPT. S-ADAPT is based on the ADAPT package developed by D’ Argenio, Wang and
Schumitzky. [40] and [41] use the industry standard parametric version of NONMEM. [42]
uses the stochastic approximation expectation maximization method (SAEM). NPAG can
run any problem that is run by any of these programs.

5.3. Comparison of NPAG to Classical Population Analysis Programs

Several studies have compared NPAG to a parametric algorithm. Bustad et al. [43]
compared the statistical consistency and efficiency of ITS and two older NONMEM® rou-
tines, FO and FOCE to that of NPEM and NPAG on simulated datasets; the nonparametric
methods were more consistent and efficient. Prémaud et al. [44] also compared NPAG
to NONMEM® FOCE, but the two algorithms converged to distinctly different results.
NPAG converged to an estimator with better predictive performance allowing for its use
in therapeutic drug monitoring. More recently, de Velde et al. [45] compared NONMEM®
FOCE-I to NPAG, with both methods converging to similar parameter estimates. In each of
the above studies, NPAG converged to a distribution with greater variance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
AG Adaptive grid

CoNS  Coagulase-negative Staphylococci

EM Expectation-maximization algorithm

ISDM  Intra-simplex direction method

NPAG Nonparametric adaptive grid algorithm
NPML  Nonparametric maximum likelihood

PDIP Primal-dual interior-point method

Qpr Quadratic programming

Appendix A. A Primal-Dual Interior-Point Algorithm (PDIP)

To make this paper self-contained, we outline here the PDIP algorithm which was
written by James Burke. This algorithm is a FORTRAN subroutine of NPAG. The descrip-
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tion below is based on the Matlab and C++ codes found in Bradley Bell’s website, see [10].
Definition of general terms and theorems can be found in Boyd and Vandenberghe [9].

Appendix A.1. Duality Theory and the Basic Problem

Given a set of support points { ¢y}, the problem of finding the optimal weights {A; }
in Equation (4) can be posed as the following optimization problem

P min®(¥A)s.t.0<A, eTA=1,

where ¥ € R"*™ is the matrix whose (i, j) entry is p(y; | ¢;) and where in general, the
function ® : RF s R U {400} is given by

. (A1)
+o0 ,otherwise.

o(z) = {—Zé‘_l logz; ,0 <z and
The symbol e is always to be interpreted as the vector of all ones of the appropriate
dimension.
The problem P is a convex programming problem since the objective function ® is
convex and the constraining region is a convex set. The Fenchel-Rockafellar dual of the
convex program P is the problem

D min®(w) st LTw < me.

From Boyd, we obtain the following Karush-Kuhn-Tucker (KKT) equations relating
the solutions to the problem P and D.

me=Y"w+y (A2)
e=WYA (A3)
0=AYe (Ad)

where for any vector x, we define X to be the diagonal matrix having x along the diagonal.

Appendix A.2. An Interior-Point Path-Following Algorithm
The relaxed KKT is given by

me=Y"w+y (A5)
e=WYA (A6)
pne = AYe (A7)
0<A 0<w, 0<y, (A8)

for u > 0. (u is the relaxation parameter.) A damped Newton’s method is used to solve the
above system.
Consider the function F : R¥"*" s R2"*" given by

YTw +vy
WYA
AYe

F(A, w,y) =

A triple (A, w, y) solves Equations (A5) to (A8) if and only if

me
F(A,w,y) = ( e ) (A9)
ue
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and 0 < A, 0 < w, and 0 < y. Path-following algorithms attempt to solve A9 by applying
Newton’s method for progressively smaller values of the relaxation parameter y. We first
need the derivative of F. It follows

0 Y7 I
FAwy)=|WY Z 0
Y 0 A

where z = YA.
At the kth iteration of the algorithm, the Newton step is given by the solution to the
nonsingular linear system

F(Ak, wk, yk) +F (Ak, wk, yk> * [Ak, wk, Ykr = [em,en,ykem}T (A10)

where y is constrained to satisfy the first KKT condition y* = e,, — ¥Tw*.
The above set of equations can be reduced by standard techniques. It follows:

Aw = H 'r, (A11)
Ay = —¥YAw (A12)
AA =1 — A — DAy (A13)

where H=D, —¥YD;¥T,D, =ZW !, D; =AY L, r, = yYﬁle, r = W le — ¥r; where
the superscript k is suppressed for simplicity.

Appendix A.3. The Algorithm

To describe the algorithm, we need to define the variables: ¢ = LY Ay, p =
_ [®(w)+D(¥A)|

|le — WZe||o and the scaled duality gap v TS|

Appendix A.3.1. Initialization

Initially choose A0 = e, /m, w® = e,/¥AL, and yo = e, — ¥Tw’. (Division of two
vectors is performed component-wise.) Set ¢ = 1075.

Appendix A.3.2. Iteration
At iteration k + 1, set

L = gk
where the reduction factor ¢ is defined by
1 Jifu <eandp > ¢,
min(0.3, (1 —61)?), (1 —6,)?, plifo%lr , otherwise.

The next iterates are given by A**1 = AK + 6, [AAF], w1 = W + 6, [Aw!] and y*+! =
y* + 6,[Ay¥], where the “damping” factors &; and &, are defined by

-1
d10=— {min(min(AlAA), —;)]

-1
b0 =~ min(min(y g min (),

6, = min(1,0.999956; )
6, = min(1,0.9999565 )

Appendix A.3.3. Exit Conditions
Iterate Equations (A11)-(Al13) until y < eand p < eand ¢y < e.
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If these conditions are not satisfied after a set number of iterations, then write “PDIP
did not converge in the given number of iterations”.

Figure A1. Model.
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(a) Simulated model profiles. (b) Percent tiles of the simulated model profiles at the observation
times.

Figure A2. The 300 simulated observed profiles, frame a, are generated in Pmetrics using the function SIMrun(). The 0.05,
0.25, 0.5, 0.75, and 0.95 percent tiles of the profiles are plotted in frame b, with the Clyso, in grey. The observation times
are marked by a vertical dotted line in frame b. Other details are in the text. Of note: inspection of these profiles does not
suggest a bimodal elimination parameter.
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Figure A3. Kernel densities of simulated PK parameters. All K are in Hr~!, Volume is in dL. Kernel
density (dashed line) of the distribution is over-plotted on the histogram (grey), which are normalized
to the total observations. Simulated support points are generated in Pmetrics using the function
SIMrun(). Details are in the text. Kernel densities are calculated in R using the (S3) generic function

density().
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Figure A4. Kernel densities of NPAG estimated PK parameters (black line) vs. Simulated r.v.s
(dashed with grey fill). K are in H r~1, volume is in dL. NPAG estimation is calculated using the
NPrun() function in Pmetrics. Similarity of these two distributions is verified in R using the function

mtsknn.eq(). See text for further detail.
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Figure A5. Predicted vs. Observed. Population Fit: 72 = 0.569 , intercept = 3.8(Closo, — 5.85,13.5),
slope = 1.12(Clys9,1.08,1.15) ,bias = —6.45, imprecision = 366. Individual Bayesian Posterior Fit:
2 = 0.999, intercept = 0.168(Clggy, — 0.267,0.603), slope = 0.998(Cly50,0.997,1), bias = 0.0612,
imprecision = 1.15.

Table Al. Simulation versus optimization. Row 1: True simulated means for each parameter. Row 2: NPAG estimates of

corresponding means.

Ka Vc Ke Kcp Kpc
HSIM 0.7948080 1.1982732 1.3162403 1.9700861 0.2028168
HNPAG 0.8003521 1.2054767 1.3108326 1.9780514 0.2059419
Table A2. Parameter Covariance Matrices.
Simulation Ka A% Ke Kcp Kpc
Ka 0.0215919795
\% 0.0011916465 0.0468421011
Ke —0.0015398993 —0.0005839048 0.1563336061
Kep 0.0009717487 —0.0032613149 —0.0019679155 0.1391046100
Kpce —0.0000572936 0.0004080801 0.0007402169 0.0004695783 0.0013055173
NPAG Ka \" Ke Kcp Kpc
Ka 0.0241232043
A% 0.0038827461 0.0537290654
Ke —0.0009243608 —0.0075706783 0.1686441632
Kep —0.0017343788 —0.0083046624 —0.0022665464 0.1617627081
Kpc 0.0006769795 0.0005601072 0.0027358931 0.0007782649 0.0021142178
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