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Abstract—Investigation of existing advanced exploits is crucial
for system security assurance. One way to achieve system security
assurance is through evaluating defenses using qualitative secu-
rity metrics and accurate measurement methodologies. Analyzing
existing exploit techniques can provide crucial insights about
qualitative security metrics and measurement methodologies.

In this tutorial, we investigate existing advanced exploit tech-
niques by dividing the exploits into their constituent components.
Our analyses focus on the impact of different defense techniques
on the individual exploit components. These impact analyses
provide insights for finding security metrics/methodologies as well
as improving existing defenses. In this tutorial, we aim to focus
on Return-Oriented Programming (ROP), Just-In-Time Return-
Oriented Programming (JITROP), and Data-Oriented Attacks
(DOAs). We aim to cover defenses such as fine-grained Address
Space Layout Randomization (ASLR) and pointer protection
techniques. More specifically, we aim to quantify the impact of
fine-grained ASLR on different components of advanced ROP
attacks. Besides, we will demonstrate a data-oriented exploit—an
attack technique that circumvents currently deployed defenses—
and explore defense techniques for defending against DOAs.

Through this tutorial, we aim to improve people’s under-
standing and awareness of fundamental operating system se-
curity. The hands-on portion of the proposed tutorial will
empower participants and researchers by providing knowledge
on low-level security, application-level defenses, and security
metrics/methodologies.

Index Terms—ASLR, ROP, JITROP, DOP, Pointer Protection

I. CONTROL-ORIENTED EXPLOITS AND DEFENSES

ROP attack technique [1] first demonstrated by Hovav
Shacham utilizes short instruction sequences called gadgets.
The advantage of gadgets is that they are part of code
binary and can perform various operations such as mem-
ory, assignment, arithmetic, logic, etc. These operations are
called Turing-complete computations in literature [2]. One
key defense strategy to defend against ROP attacks is to
limit the access of gadgets, i.e., fewer operations can be
performed. The PaX team introduced ASLR [3] to randomize
the layout of a binary to limit the gadget lookup. However,
attackers can reconstruct the binary layout in the presence of
information leaks. Thus, fine-grained ASLR defenses (e.g.,
Zipr [4], Multi-compiler [5], Selfrando [6], CCR [7], and
Shuffler [8]) randomize a binary layout with finer granularity
than ASLR aiming to make the randomization resilient to
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information leaks and improve entropy. Entropy measures how
well a defense can randomize a binary layout.

Snow et al. demonstrated such limitations of fine-grained
randomizations under the JITROP [9] threat model using a
technique called recursive code harvest. The recursive code
harvest technique has the ability to discover new code pages
(i.e., more gadgets) by leveraging control-flow transfer instruc-
tions, such as call and jmp from a single memory leak. It is
important to note that stack buffer overflow, heap overflow,
etc. serve as the initial gateways to enter other stages of such
a sophisticated exploit.

This recursive code harvesting technique enables the op-
portunities to quantify the impact of fine-grained ASLR on
different components of advanced ROP exploits. We aim to
quantify two such impacts (i) gadget-lookup (i.e., collecting
gadgets) and (ii) gadget-lookup times (i.e., collecting gadgets
within a time-bound) using the Turing-complete [2] and MOV
Turing-complete [10] gadget sets. Each of these gadget sets
contains a set of gadgets for Turing-complete operations [11].

II. DATA-ORIENTED EXPLOITS AND DEFENSES

Many researchers have shifted their focus from control-
oriented attacks to data-oriented attacks (DOAs) in recent
years [12]-[14] due to the unreliability of code-reuse at-
tacks when CFI is enforced. Though DOAs [15] have been
demonstrated years ago, such attacks have gained momentum
in recent years. In DOAs, data pointer manipulation has
become an appealing attack technique. Data pointer overwrites
allow attackers to corrupt data pointers to point to arbitrary
and unintended locations [16]. For example, data pointer
manipulation can leak critical information about an applica-
tion’s address space layout [17]. Data-Oriented Programming
(DOP) [12] requires the address of some non-control data
pointers to accomplish DOP-based attacks. Chen et al. [15]
demonstrated a DOA by corrupting a data pointer in the
ghttpd HTTP server through a stack buffer overflow to bypass
security checks of input strings. In summary, data pointer
manipulation has become an attractive technique for DOAs.
As a result, we observe pointer protection mechanisms such
as ARM pointer authentication [18]. In this part of the tutorial,
we aim to demonstrate a data-oriented exploit using pointer



manipulation. We will also demonstrate how ARM pointer
authentication can defend the exploit.

III. FORMAT

Our tutorial includes a hands-on part on the control- and
non-control exploits and their defenses. Specially, we aim
to cover ROP, JITROP, and data-oriented exploits with fine-
grained ASLR and ARM pointer authentication defenses.
The tutorial is 90 minutes long. All the tools, exploits, and
instructions will be packaged in a docker image with necessary
libraries installed and will be released publicly on GitHub '.
Attendees need to install the latest version of docker. We will
structure the tutorial using the following four parts:

1) Background on exploits and defenses. The tutorial will
start with short background information regarding the
advancement of control- and non-control exploits, with
an emphasis on advanced exploits such as ROP, JITROP,
and DOP. We will end this short session by discussing
two defense strategies, namely fine-grained ASLR and
ARM pointer authentication.

2) Hands-on on control-oriented exploits and defenses.
We will start this session with a basic ROP exploit.
Attendees will be able to run the exploit in the docker
container. Next, we will provide normal and hardened
versions of a binary. Three fine-grained ASLR tools (i.e.,
function-level, basic block-level, and instruction-level)
harden the binary and make three hardened versions of
the binary. We will provide scripts for the attendees to
run and observe looked-up gadgets and lookup times in
numeric values. The numeric values will help attendees
to compare the results regarding the impact of different
levels of fine-grained ASLR’s granularities.

3) Exercise on code harvesting. In this short session, we
will encourage the audience to practice JITROP’s code
harvesting technique from different starting points. We
will also provide a simple benchmark to compare the
three ASLR techniques.

4) Hands-on demonstration on non-control exploits and
defenses. In this session, we will demonstrate a data-
oriented exploit and how the ARM pointer authentica-
tion [18] technique can prevent data-oriented exploits.

IV. TARGET AUDIENCE AND OUTCOMES

We expect the audience to have a basic knowledge of
running scripts. We will provide the scripts and commands.
The skills of GDB commands would be a plus for a smooth
hands-on experience. We recommend audience install the
latest version of docker. This tutorial will achieve the following
goals.

1) The participants will get hands-on experience on ad-
vanced control- and data-oriented exploits and various
defense strategies.

2) They will learn how to explore advanced exploits by
assessing the impact of various defenses.

Uhttps://github.com/salmanyam/tutorial-secdev-2021

3) They will also be encouraged in applying application-
level defenses and strengthening low-level security un-
derstanding.
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