Evaluation of Static Vulnerability Detection Tools
with Java Cryptographic APl Benchmarks

Sharmin Afrose, Ya Xiao, Sazzadur Rahaman, Barton P. Miller, Danfeng (Daphne) Yao

Abstract—Several studies showed that misuses of cryptographic APIs are common in real-world code (e.g., Apache projects and
Android apps). There exist several open-sourced and commercial security tools that automatically screen Java programs to detect
misuses. To compare their accuracy and security guarantees, we develop two comprehensive benchmarks named CryptoAPI-Bench
and ApacheCryptoAPI-Bench. CryptoAPI-Bench consists of 181 unit test cases that cover basic cases, as well as complex cases,
including interprocedural, field sensitive, multiple class test cases, and path sensitive data flow of misuse cases. The benchmark also
includes correct cases for testing false-positive rates. The ApacheCryptoAPI-Bench consists of 121 cryptographic cases from 10
Apache projects. We evaluate four tools, namely, SpotBugs, CryptoGuard, CrySL, and another tool (anonymous) using both
benchmarks. We present their performance and comparative analysis. The ApacheCryptoAPI-Bench also examines the scalability of
the tools. Our benchmarks are useful for advancing state-of-the-art solutions in the space of misuse detection.

Index Terms—Cryptographic APl misuses, benchmark, Java.

1 INTRODUCTION

Various studies have shown that a vast majority of Java
and Android applications misuse cryptographic libraries
and APIs, causing devastating security and privacy implica-
tions. The most pervasive cryptographic misuses include ex-
posed secrets (e.g., secret keys and passwords), predictable
random numbers, use of insecure crypto primitives, vulner-
able certificate verification [1]-[6].

Several studies showed that the prominent causes for
cryptographic misuses are the deficiency in understanding
of security API usage [4], [7], complex API designs [7], [8],
the lack of cybersecurity training [4], insecure code genera-
tion tools [9] and insecure/misleading suggestions in Stack
Overflow [4], [10]. The reality is that most developers, with
tight project deadlines and short product turnaround time,
spend little effort on improving their knowledge or hard-
ening their code for long-term benefits [11]. Recognizing
these practical barriers, automatic cryptographic code gen-
eration [12], and misuse detection tools [5] play a significant
role in assisting developers with writing and maintaining
secure code.

The security community has produced several impres-
sive static (e.g., CryptoLint [3], CrySL [13], FixDroid [14],
MalloDroid [1], CryptoGuard [5]) and dynamic code screen-
ing tools (e.g., Crylogger [15], SMV-Hunter [16], and An-
droSSL [17]) to detect API misuses in Java. The static
analysis does not require a program to execute, rather it
is performed on a version of the code (e.g., source code,
intermediate representations or binary). Many abstract se-

o 5. Afrose, Y. Xiao and D. Yao are with the Department of Computer
Science, Virginia Tech, Blacksburg, VA, 24060.
E-mail: sharminafrose@ut.edu, yax99@ut.edu, danfeng@ut.edu

e S. Rahaman is with the Department of Computer Science, University of
Arizona, Tucson, AZ, 85721.
E-mail: sazz@cs.arizona.edu

e B. P. Miller is with the Computer Sciences Department, University of
Wisconsin-Madison, Madison, WI, 53706.
E-mail: bart@cs.wisc.edu

curity rules are reducible to concrete program properties
that are enforceable via generic static analysis techniques [5],
[18]. Consequently, static analysis tools have the potential to
cover a wide range of security rules. In contrast, dynamic
analysis tools require one to execute a program and spend
a significant effort to trigger and detect specific misuse
symptoms at runtime. Hence, dynamic analysis tools may
be limited in their coverage. A code screening tool needs
to be scalable with wide coverage. Thus, static analysis-
based tools are usually more favorable than their dynamic
counterparts.

However, a major weakness of static analysis tools is
their tendency to produce false alerts. False alerts substan-
tially diminish the value of a tool. To reduce the number of
false positives, most of the static analysis tools offer a trade-
off between completeness and scalability [19]. We define
completeness as the ability to detect all the misuse instances
and scalability as the ability to induce low computational
overhead to analyze large code-bases. Designing tools that
would produce fewer false positives and false negatives
with smaller computational overhead help the real-world
deployment.

To advance and monitor the scientific progress of do-
mains to produce effective tools, a mechanism for compara-
tive studies is required. Unfortunately, for automatic detec-
tion of cryptographic API misuses, no suitable mechanism
or benchmark exists. Such a benchmark needs to have sev-
eral requirements: i) It should cover a wide range of misuse
instances. ii) It should cover interesting program properties
(e.g., flow-, context-, field-, path-sensitivity, etc.) [20], [21].
These are different detection capabilities required for captur-
ing certain vulnerabilities. iii) Test cases should be written
in easily compilable source codes so that both source code
and binary code analysis tools can be easily evaluated.

None of the existing benchmarks follows these criteria
(e.g., DroidBench [22], Ghera [23]). For example, Droid-
Bench [22] only contains binaries. Ghera [23] has sources

of provided Android apps. However, both DroidBench and
Ghera barely cover cryptographic API misuses.

In this paper, we present two benchmarks for crypto-
graphic API misuses. The first one is CryptoAPI-Bench,
a comprehensive benchmark for comparing the quality of
cryptographic vulnerability detection tools. It consists of
181 unit test cases covering 18 types of cryptographic mis-
uses. Several test cases include interesting program prop-
erties [20], [21]. Flow-sensitive correctly computes and ana-
lyzes the order of statements in a program. Path-sensitivity
analysis computes different dataflow analysis information
dependent on conditional branch statements. Field-sensitive
analysis distinguishes two fields containing the same object
in a class. A context-sensitive analysis is any interprocedural
analysis that analyzes the target of a function call.

The second one is ApacheCryptoAPI-Bench which is
built upon 10 real-world Apache projects. It contains early
versions of activemg-artemis, deltaspike, directory-server,
manifoldcf, meecrowave, spark, tika, tomee, wicket projects.
We identify 121 crypto cases in them, including 82 basic
cases and 39 advanced cases.

We run CryptoAPI-Bench and ApacheCryptoAPI-Bench
on four static analysis tools (i.e., SpotBugs [24], Crypto-
Guard, CrySL, and Tool A (anonymous) and perform a com-
parative analysis of these tools. These tools are i) capable of
detecting cryptographic misuse vulnerabilities and ii) open-
sourced and/or provide free evaluation license. CrySL and
CryptoGuard are open-sourced research prototypes that are
actively being maintained to improve their accuracy and
coverage. SpotBugs is also an actively maintained open-
source project, which is the successor of FindBugs. Tool
A is one of the most popular static analysis platforms for
decades.

Our main technical contributions are summarized as
follows.

e We provide a benchmark named CryptoAPI-Bench,
which consists of 181 test cases covering 18 types
of Cryptographic and SSL/TLS API misuse vulnera-
bilities. CryptoAPI-Bench utilized various interesting
program properties (e.g., field-, context-, and path-
sensitivity) to produce a diverse set of test cases.
Our benchmark is open-sourced and can be found
on GitHub [25].

e We provide another benchmark named
ApacheCryptoAPI-Bench for checking the scalability
property of the cryptographic vulnerability detection
tools. We document 121 test cases covering
12 types of Cryptographic and SSL/TLS API
misuse vulnerabilities from 10 real-world Apache
projects. The detailed information regarding
ApacheCryptoAPI-Bench can be found on
GitHub [26].

e We evaluate four static analysis tools that are ca-
pable of detecting cryptographic misuse vulnera-
bilities. Our experimental evaluation revealed some
interesting insights. For complex cases, specialized
tools (e.g., CryptoGuard, CrySL) detect more crypto-
graphic misuses and cover more rules than general-
purpose tools (e.g., SpotBugs, Tool A). Currently,
none of these tools supports path-sensitive analysis.

2

A preliminary version of the work appeared in the
Proceedings of the 2019 ACM Conference on Computer
and Communications Security (CCS) [5] and the 2019 IEEE
Secure Development Conference (SecDev) [27]. We ex-
panded the conference version by adding a new benchmark
ApacheCryptoAPI-Bench (Section 4, Table 2) that contains
complex real-world Java programs and we test four static
tools’ performance in real-world code (Section 6.4, Table 7,
Table 8). For CryptoAPI-Bench, We also add two new misuse
categories (Section 2.4, Section 2.18), 11 new test cases (Table
1), and update tools” performance evaluation (Table 4, Table
5, Table 6).

The remainder of this paper is organized as follows.
Section 2 describes cryptographic API misuse categories.
Section 3 and Section 4 outlines the design of CryptoAPI-
Bench and ApacheCryptoAPI-Bench. Section 5 reviews ex-
isting cryptographic vulnerability detection tools. Section 6
presents the evaluation and performance analysis of the
tools on the benchmarks. Discussion is given in Section 7.
Section 8 describes the related works. Finally, Section 9
concludes this paper.

2 CRYPTO API MISUSE CATEGORIES

In this section, we discuss 18 Java cryptographic API misuse
categories. We got the insights of these misuse categories
from previous literature [5], [13], [14], NIST documents [28]-
[30], and other blogs [31]. We describe reasons for vul-
nerability and possible secure solutions for these misuse
categories.

2.1 Cryptographic Keys: For encryption, it
is expected to use an unpredictable key using
javax.crypto.spec.SecretKeySpec API that takes
a byte array as input. If the Byte array is constant or
hardcoded inside the code, the adversary can easily
read the cryptographic key and may obtain sensitive
information. Therefore, an unpredictable byte array should
be used as a parameter in SecretKeySpec to generate a
secure key.

2.2 Passwords in Password-based Encryption:
Password-based Encryption (PBE) is a popular
technique of generating a strong secret key using
javax.crypto.spec.PBEKeySpec APIL It takes three
parameters (i.e, password, salt, and iteration count).
However, if a hardcoded or constant password is used in
the code, then malicious attackers may obtain the password
and predict the key [3]. Therefore, an unpredictable
password should be used as a parameter in PBEKeySpec.

2.3 Passwords in KeyStore: Cryptographic
keys and certificates are sometimes stored using
java.security.KeyStore API The KeyStore employs a
password to get access to the stored keys and certificates.
However, if a hardcoded or constant password is used for
KeyStore in the code, it poses a security threat of revealing
keys and certificates stored in the KeyStore. Therefore,
an unpredictable random password should be used in
KeyStore.

2.4 Credentials in String: Credentials (passwords, secret
keys, etc) should not be stored in the String variable. In
Java, String is a final and immutable class stored in the
heap. More specifically, it exists in the memory until garbage

collection. Therefore, sensitive information should not be
stored in String[32], [33]. Compared with String, it is highly
recommended to use mutable data structures (e.g., byte or
char array) for sensitive information and clear it immedi-
ately after use. This reduces the window of opportunity for
an adversary. [34].

2.5 Hostname Verifier: HostnameVerifier in
javax.net.ssl.HostnameVerifier API verifies
the hostname by checking the hostname’s authentication
and identification. In some cases, verify() method of
HostnameVerifier class is set to return true by default
so that the verification method can quickly get past an
exception. However, this arrangement causes a security
threat, where URL spoofing [35] attacks can be possible.
URL spoofing makes it simpler for numerous cyber-attacks
(e.g., identity theft, phishing).

2.6 Certificate Validation: Empty methods are often im-
plemented in javax.net.ssl.X509TrustManager in-
terface to connect quickly and easily with clients and remote
servers without any certificate validation. In that case, the
TrustManager accepts and trusts every entity including the
entity that is not signed by a trusted certificate authority. It
may cause Man-in-the-middle (MitM) attacks [1], [36].

2.7 SSL Sockets: javax.net.ssl.SSLSocket
connects a specific host to a specific port. How-
ever, before the connection, the hostname of the
server should be verified and authenticated using
javax.net.ssl.HostnameVerifier APIL However,
incorrect implementation omits the hostname verification
when the socket is created [2], [37].

2.8 Hypertext Transfer Protocol: HyperText Transfer Pro-
tocol (HTTP) sends a request to a server to retrieve a web
page. However, HTTP allows hackers to intercept and read
sensitive information [38]. Therefore, it is recommended to
use HyperText Transfer Protocol Secure (HTTPS) that uti-
lizes a secured socket layer to encrypt sensitive information.

2.9 Pseudorandom Number Generator (PRNG):
The generation of a pseudorandom number using
java.util.Random is vulnerable as the generated
random number is not completely random, because
it uses a definite mathematical algorithm (Knuth’s
subtractive random number generator algorithm [39])
that is proven to be insecure. To solve the problem,
java.security.SecureRandom provides non-
deterministic and unpredictable random numbers.

2.10 Seeds in Pseudorandom Number Generator (PRNG)
While using java.security.SecureRandom, if a con-
stant or static seed is provided in SecureRandom, then it is
possible to have the same outcome on every run. Therefore,
developers should use a non-deterministic random seed.

211 Salts in Password-based encryption (PBE):
javax.crypto.spec.PBEParameterSpec API takes
salt as one of the parameters for Password-based encryp-
tion. Using constant or static salts increases the possibility
of a dictionary attack. The salt should be a random number
that produces a random and unpredictable key.

212 Mode of Operation: The Electronic Code-
book (ECB) mode of operation is insecure to use in
javax.crypto.Cipher as ECB-encrypted ciphertext can

3

leak information about the plaintext. Instead of ECB, Cipher
Block Chaining (CBC) or Galois/Counter Mode (GCM) is
more secure to use.

2.13 Initialization Vector (IV): The initialization vec-
tor (IV) is used during encryption and decryption with
several modes of operation. Static/constant initialization
vector introduces vulnerabilities for CBC mode of operation.
Therefore, it is suggested to use an unpredictable random
initialization vector in crypto.spec.IvParameterSpec
API. Note that, for several modes of operation (e.g., CTR,
CBC-MAC), unpredictable random IV is not required.

2.14 Iteration Count in Password-based Encryption
(PBE): In Jjavax.crypto.spec.PBEParameterSpec
AP], it takes iteration count as one of the parameters for
Password-based Encryption (PBE). In PKCS #5 [40], it is
suggested that the number of iteration should be more than
1000 to provide a reasonable security level.

2.15 Symmetric Ciphers: Symmetric ciphers use the same
key for encryption and decryption. There are a couple of
vulnerable symmetric cipher algorithms, e.g., DES, Blow-
fish, RC4, RC2, IDEA. For example, DES is a broken block
cipher because it uses an outdated block size (64 bits) that
allow brute-force attack. RC4 is a flawed stream cipher
that produces a biased keystream while a pseudo-random
keystream is required for security, thus leading to several
attacks (e.g., bit-flipping attack). To overcome the attacks,
developers need to use a secure alternative AES which can
support a block length of 128 bits and key lengths of 128,
192, and 256 bits [41].

2.16 Asymmetric Ciphers: In asymmetric cryptography,
two keys, ie., a public key and a private key are used
for encryption and decryption. RSA is considered insecure
for 1024-bit ciphers [29]. For this reason, developers are
recommended to use RSA with a key size of 2048 bits or
higher.

2.17 Cryptographic Hash Functions: A cryptographic
hash function generates a fixed-length alphanumeric hash
value or message digest which is commonly used in verify-
ing message integrity, digital signature, and authentication.
A cryptographic hash function is contemplated as broken
if a collision can be observed, i.e., the same hash value is
generated for two different inputs. The list of broken hash
functions includes SHA1, MD4, MD5, and MD2. Therefore,
developers need to use a strong hash function, e.g., SHA-
256.

2.18 Cryptographic MAC: A MAC algorithm HmacMD5
and HmacSHAI1 are considered insecure as these are sus-
ceptible to collision attacks [42]. Therefore, the developers
need to use a strong MAC algorithm, e.g., HmacSHA256.

3 DESIGN oF CRYPTOAPI-BENCH

In this section, we present the design of the CryptoAPI-
Bench. We manually generate 181 unit test cases guided
by 18 types of misuses presented in Section 2. We divide
all test cases into two types, i.e., basic cases and advanced
cases. These test cases incorporate the majority of possible
variations in the perspective of program analysis to detect
cryptographic vulnerability.

TABLE 1
CryptoAPI-Bench: Summary of unit test cases. There are 181 unit test cases with 45 basic cases and 136 advanced cases (interprocedural, field
sensitive, combined case, path sensitive, miscellaneous, and multiple class test cases). Total test cases per type and misuse categories are
summarized here. Details information are presented in Section 3.

No. T e e—— e Basic Two Three Field Combined Path Misc Multiple Total Cases
. Cases | Interproc. | Interproc. | Sensitive Case Sensitive) Class per Categories
1 Cryptographic Key 2 1 1 1 1 1 1 1 9
2 Password in PBE Predictable 3 1 1 1 1 1 2 1 11
3 Password in KeyStore Secrets 2 1 1 1 1 1 2 1 10
4 Credentials in String 2 1 1 1 1 0 1 1 8
5 Hostname Verifier Vulnerability 2 0 0 0 0 0 0 0 2
6 Certificate Validation in 3 0 0 0 0 0 0 0 3
7 SSL Socket 1 0 0 0 0 0 0 0 1
8 HTTP Protocol SSL/TLS 2 1 1 1 1 1 0 1 8
9 PRNG Predictable 2 0 0 0 0 0 0 0 2
10 Seed in PRNG PRNGs 3 2 2 2 2 2 2 2 17
11 Salt in PBE 2 1 1 1 1 1 1 1 9
12 Mode of Operation Vulnerable 2 1 1 1 1 1 0 1 8
13 Initialization Vector Parameters 2 1 1 1 1 1 2 1 10
14 Iteration in PBE 2 1 1 1 1 1 1 1 9
15 Symmetric Ciphers 6 5 5 5 5 5 0 5 36
16 Asymmetric Ciphers Vulnerable 1 1 1 0 1 1 0 1 6
17 Cryptographic Hash Algorithms 5 4 4 4 4 4 0 4 29
18 Cryptographic MAC 3 0 0 0 0 0 0 0 3
Total Cases per Type 45 21 21 20 21 20 12 21 181
3.1 Basic Cases that the test case is insecure. In three-interprocedural test

Basic test cases are simple ones where the probable source
of vulnerability for Crypto API exists within the same
method. For example, Listing 1 shows that Cipher API
takes cryptoAlgo as an argument. Note that, cryptoAlgo
contains an insecure cipher algorithm that is defined within
the same method methodl. In CryptoAPI-Bench, we create
45 basic test cases covering all 18 misuse categories. Among
these test cases, 30 test cases contain cryptographic vulnera-
bility (i.e., true positive), and 15 test cases do not contain any
cryptographic vulnerability (i.e., true negative). These test
cases identify a tool’s capability to detect a specific misuse
category.

public void methodl ()
I oo
cryptoAlgo =
Cipher cipher

"DES/ECB/PKCS5Padding"
Cipher.getInstance (cryptoAlgo)

}
Listing 1. Example code snippet of a basic test case

3.2 Advanced Cases

The advanced cases are more complex compared to basic
cases where the probable source of vulnerability of a Crypto
API appears from other methods, classes, field variables,
or conditional statements . In CryptoAPI-Bench, we include
136 advanced cases. The distribution of advanced cases is
presented from the fourth to tenth columns of TABLE 1.

3.2.1 Interprocedural Cases

In interprocedural cases, the probable source of
vulnerability in a Crypto API comes from other methods
(i.e., procedures). We create two types of interprocedural
cases: two-interprocedural (i.e., involving two methods)
and three-interprocedural (i.e., involving three methods).
In a two-interprocedural test case, the probable source of
vulnerability comes from another method as a parameter.
Listing 2 shows the code snippet of a two-interprocedural
test case. In method2, Cipher API takes cryptoAlgo

as an argument, and cryptoAlgo is not defined in |

method?2, rather, it comes from another method methodl.

The assigned value of cryptoAlgo in methodl shows s

cases, the probable source of vulnerability comes from two
consecutive methods (i.e., source defined in one method,
passes to another method, and then passes again to be
used in Cipher API). CryptoAPI-Bench contains a total of
42 interprocedural test cases. Among them, 21 are two-
interprocedural test cases, and 21 are three-interprocedural
test cases. The purpose of having the interprocedural test
cases is to check the detection tool’s interprocedural data
flow handling capability.

public void methodl
{

O

cryptoAlgo = "DES/ECB/PKCS5Padding"
method2 (cryptoAlgo)

}
public void method2

{

(String cryptoAlgo)

Cipher cipher Cipher.getInstance (cryptoAlgo)

}
Listing 2. Example code snippet of a two-interprocedural test case

3.2.2 Field Sensitive Cases

In field-sensitive cases, the probable source of cryptographic
vulnerabilities can be detected by the analysis tools if the
tools are capable of performing field-sensitive data flow
analysis. Field-sensitive refers to an analysis that is able
to differentiate multiple fields or variables with the same
object [21]. In Listing 3, algo is an instance or field variable
in the Crypto class. The constructor Crypto () stores algo
with defAlgo object. A class member function encrypt ()
use this algo value in Cipher APIL Both algo and defAlgo
contain the same object, i.e., a secure or insecure cipher
algorithm. This is a field-sensitive case as the tools need
to trace the field variable algo as the probable source of
vulnerability. CryptoAPI-Bench contains 20 field-sensitive
test cases.
class Crypto {
String algo
public Crypto
algo

(String defAlgo) {
defAlgo;

}

o=

public void encrypt (...) { 1

Cipher cipher = Cipher.getInstance (algo);

} 6
Listing 3. Example code snippet of a field sensitive test case

3.2.3 Combined Cases

The combined cases are a bit more complex where both in-
terprocedural and field sensitivity properties are combined,
i.e., both Listing 2 and Listing 3 are incorporated to generate
complicated test cases. CryptoAPI-Bench has 21 combined
test cases.

3.2.4 Path-Sensitive Cases

In path-sensitive test cases, conditional branch instructions
are included in the test cases containing the definition of the
probable source of a vulnerability. In Listing 4, an example
code snippet of a path sensitivity case is given. Depending
on the choice variable, the Cipher is getting the instance
from a secure or an insecure cryptographic algorithm. There
are 20 path-sensitive test cases in CryptoAPI-Bench.

10

public void methodl (int choice) {
Cipher ch = Cipher.getInstance
if (choice > 1) {

ch = Cipher.getInstance

("DES/ECB/...") ;

("AES/CBC/...") ;
}

ch.init (Cipher.ENCRYPT_MODE, key) ;

}
Listing 4. Example code snippet of a path sensitive test case

3.2.5 Miscellaneous Cases

Miscellaneous test cases evaluate the tool’s abilities to rec-
ognize irrelevant constraints and other interfaces, e.g., Map.
In Listing 5, the Map interface of Line 3-6 provides a secure
key or insecure key depending on the choice variable. The
Map indices (e.g., “a”, “b”) represent only index values,
not security-relevant values. Similarly, in Line 8, the “UTF-
8” represents byte encoding, not any constant or hard-
coded value. CryptoAPI-Bench contains 12 miscellaneous

test cases.

public void methodl (String choice) {
Map<String, String> hm =
String>();
hm.put ("a",
hm.put ("b",
String keyString =

new HashMap<String,

secureKeyString);
insecureKeyString) ;
hm.get (choice);

byte [] b =
IvParameterSpec ivSpec =

secureKeyString.getBytes ("UTEF-8") ;
new IvParameterSpec (b);

}
Listing 5. Example code snippet of a miscellaneous test case

3.2.6 Multiple Class Cases

In multiple class test cases, the probable source of vulner-
abilities comes from another Java class. An example code
snippet of multiple class case is presented in Listing 6.
It is necessary to detect whether a secure or an insecure
algorithm is passed in Line 4 in MultipleClassl and used
in Line 9 in MultipleClass2. CryptoAPI-Bench has 21
multiple class test cases.

public class MultipleClassl {
public void methodl (String passedAlgo) {
MultipleClass2 mc = new MultipleClass2
mc.method2 (passedAlgo);

()

}
}
public class MultipleClass2 {
public void method2 (String cryptoAlgo) {
Cipher ¢ = Cipher.getInstance (cryptoAlgo);
}
}

Listing 6. Example code snippet of a multiple class test case

4 DESIGN OF APACHECRYPTOAPI-BENCH

We include the early version of real-world large 10 Apache
projects to check the scalability property of different tools.
The second and third columns of TABLE 2 show the number
of Java files and lines of Java Code in Apache projects. The
spark project is the largest among 10 considered projects
containing 2,005 Java files with 311,856 lines of code. The
meecrowave project contains the lowest number of Java files
(40 Java files) and deltaspike contains the lowest number of
lines of code (i.e., 5,116 LoC).

We enlist 121 test cases in ApacheCryptoAPI-Bench.
Among them, 82 test cases are basic cases, i.e., the vulnera-
bility rise within the same method. There are 39 advanced
test cases where probable source vulnerability comes from
other methods (interprocedural cases), other classes (mul-
tiple class cases), class variables (field sensitive cases), etc.
We detect 64 cryptographic misuses, i.e., true positive alerts.
Regarding true negatives, we consider only the cases where
a tool shows the case as a false alert. With this consideration,
we show 57 true negative cases.

We look into the Apache projects in the Benchmark and
made detailed documentation. The documentation consists
of cryptographic vulnerabilities the project contains, an
explanation of the error, the location (file name, method
name, line number) of the vulnerabilities. The documen-
tation and corresponding ApacheCryptoAPI-Bench bench-
mark are available in the GitHub repository [26].

5 EXISTING CRYPTOGRAPHIC VULNERABILITY
DETECTION TOOLS

In this section, we summarize the vulnerability detection
tools that we choose to run on CryptoAPI-Bench and
ApacheCryptoAPI-Bench. We consider three criteria while
choosing the analysis tools. (1) Open-sourced tools: The
open-sourced vulnerability detection tools, i.e., CrySL [13],
CryptoGuard [5], SpotBugs [24] are convenient to use as we
are able to analyze their codes and understand the reason
for their lack of performance. (2) Static analysis tools: We
choose static analysis tools that can examine and detect
vulnerability without executing the code. SpotBugs, Cryp-
toGuard, CrySL, and Tool A are static analysis tools. (3) Free
cryptographic vulnerability detection services: We consider
Tool A as a provider of free cryptographic vulnerability
detection service. Tool A is not open-sourced. However, Tool
A provides online services to detect vulnerability.

We also consider GrammaTech [43], QARK [44] and
FixDroid [14]. However, GrammaTech is a commercial tool.
We were unable to access its trial version. The online
SWAMP [45] contains GrammaTech tool to use that only

TABLE 2
ApacheCryptoAPI-Bench: Summary of unit test cases. Contents (number of Java file and lines of code) of the considered Apache projects are
summarized here. There are total 121 unit test cases with 82 basic cases and 39 advanced cases. Details information are presented in Section 4.

Apache Number of | Lines of Test Cases
Project Java Files Code Total Case | Basic Case | Advanced Cases | True Positive | True Negative
deltaspike 87 5116 8 5 3 2 6
directory-server 468 20780 36 15 21 19 17
incubator-taverna-workbench 45 9919 8 5 3 8 0
manifoldcf 126 16998 7 4 3 3 4
meecrowave 40 5646 3 3 0 3 0
spark 2005 311856 26 25 1 12 14
tika 225 16558 2 1 1 0 2
tomee 1029 118661 9 7 2 7 2
wicket 204 13442 9 7 2 7 2
artemis-commons 126 8915 15 12 3 7 8
Total 121 82 39 64 57
TABLE 3

Generated alert keywords for each misuse category from cryptographic vulnerability detection tools (SpotBugs, CryptoGuard, CrySL, and Tool A).
For example, for misuse category 16 (i.e., Cryptographic Hash), the generated alert keywords in tools are WEAK_MESSAGE_DIGEST, broken
hash scheme, ConstraintError, RISKY_CRYPTO, respectively.

Misuse Categories SpotBugs CryptoGuard CrySL Tool A
1 HARD_CODE_PASSWORD Constant keys RequiredPredicateError HARDCODED_CREDENTIALS
2 HARD_CODE_PASSWORD Constant keys HardCodedError HARDCODED_CREDENTIALS
3 HARD_CODE_PASSWORD Predictable password HardCodedError HARDCODED_CREDENTIALS
4 — — RequiredPredicateError —
5 WEAK_HOSTNAME_VERIFIER Manually verify hostname — BAD_CERT_VERIFICATION
6 WEAK_TRUST_MANAGER Untrusted TrustManager — BAD_CERT_VERIFICATION
7 - Does not manually verify socket — RESOURCE_LEAK
8 — HTTP protocol — -
9 PREDICTABLE_RANDOM Untrusted PRNG — —
10 — Predictable Seed RequiredPredicateError PREDICTABLE_RANDOM_SEED
11 — Constant Salt RequiredPredicateError —
12 CIPHER_INTEGRITY Broken crypto scheme ConstraintError RISKY_CRYPTO
13 STATIC_IV Constant IV RequiredPredicateError —
14 — <1000 iteration ConstraintError —
15 CIPHER_INTEGRITY Broken crypto scheme ConstraintError RISKY_CRYPTO
16 — Export grade public key ConstraintError —
17 WEAK_MESSAGE_DIGEST Broken hash scheme ConstraintError RISKY_CRYPTO
18 — — ConstraintError —

supports vulnerability detection for C and C++. Therefore,
we excluded GrammaTech from our list of tools. QARK is a
tool that is mainly designed to capture security vulnerabili-
ties in Android applications. FixDroid is built as a research
prototype that is embedded as a plugin in Android Studio
to conduct a usability study. Our investigation shows that
the detection capability of FixDroid and QARK is limited.
Though QARK has been maintained and updated, FixDroid
has not been updated since 2017.

Therefore, we mainly focus on four tools, i.e., SpotBugs,
CryptoGuard, CrySL, and Tool A to evaluate on CryptoAPI-
Bench.

5.1 SpotBugs

SpotBugs is a static analysis tool also for capturing defi-
ciencies in Java code. The tool is built based on a plu-
gin structure. The tools detect defects by utilizing visitor
patterns in class files or bytecodes of Java, state machine,
flags. We use the SpotBugs tool (version 3.1.12) available
online in SWAMP [45]. However, currently, SWAMP is in
the transition to a new host service [46].

5.2 CryptoGuard

CryptoGuard [5] is a static analysis tool that is operated
based on program slicing with novel language-based re-
finement algorithms. It significantly reduces the false pos-
itive rate which is a typical problem for static analysis.
Furthermore, CryptoGuard covers 16 cryptographic rules
and achieves high precision. The authors showed screening
a large number of Apache projects and Android apps to

present their high precision rate and low false positive rate.
We run the experiment on CryptoGuard (commitID: 97b220)
available on GitHub [47].

5.3 CrySL

CrySL [13] is a domain-specific language for cryptographic
libraries. The static analysis CogniCryptsast takes the
rules provided in the specification language CrySL as input,
and performs a static analysis based on the specification of
the rules. CrySL is open-sourced and we run the experiment
on CrySL (commit ID: 004cd2) available on GitHub [48].

5.4 Tool A

We choose to anonymize Tool A’s name. Tool A has an
educational license that generally does not allow publishing
comparison with other tools.

6 EVALUATION AND ANALYSIS

In this section, we evaluate the results for four crypto-
graphic misuse detection tools, i.e., SpotBugs, CryptoGuard,
CrySL and Tool A. We show the experimental setup, evalu-
ation criteria, and analysis results using both benchmarks.

6.1

We evaluate mainly four cryptographic analysis tools, i.e.,
SpotBugs [24], CryptoGuard [5], CrySL [13], Tool A on both
Benchmarks. We follow the instructions from GitHub to
set up the environment of CryptoGuard and CrySL in our
machine to perform the analysis. We upload JAR files from
CryptoAPI-Bench and Apache projects into SpotBugs tool

Experimental Setup

TABLE 4
CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL and Tool A on all 18 rules with CryptoAPI-Bench’s 181 test cases. There are 37
secure APl use cases (15 in basic and 22 in advanced), which a tool should not raise any alerts on. GTP stands for ground truth positive, which is
the number of insecure API use cases in the benchmark. Findings of the table are reported in Section 6.3.

No. Misuse Categories GTP | SpotBugs | CryptoGuard CrySL Tool A
TP FP | TP FP TP FP | TP FP

1 Cryptographic Key 7 0 3 5 1 0 8 5 1
2 Password in PBE 8 2 0 7 1 0 10 7 1
3 Password in KeyStore 7 1 1 7 1 0 10 5 1
4 Credentials in String 7 - - - - 0 8 - -
5 Hostname Verifier 1 - - 1 0 - - 1 0
6 Certificate Validation 3 3 3 0 - - 3 0
7 SSL Socket 1 - 1 0 - - 1 0
8 HTTP Protocol 6 - - 6 1 - - - -
9 PRNG 1 0 1 0 - - - -
10 | Seed in PRNG 14 - 11 2 0 15 1 2
11 | Saltin PBE 7 - - 6 1 6 1 - -
12 | Mode of Operation 6 1 3 6 1 5 1 1 1
13 Initialization Vector 8 3 6 7 1 7 1 - -
14 Iteration Count in PBE 7 - - 5 1 5 3 - -
15 | Symmetric Cipher 30 5 11 30 5 25 5 4 4
16 | Asymmetric Ciphers 5 - - 4 1 5 1 - -
17 | Cryptographic Hash 24 4 8 24 4 20 4 4 4
18 | MAC Algorithm 2 — — — - 2 0 — -
Total 144 20 32 124 20 75 67 32 14

available in SWAMP. Tool A is an online tool that takes
GitHub link and compressed code files in order to start
analysis.

6.2 Evaluation Criteria

We evaluate the vulnerability detection tools by running
these tools on our benchmarks. After performing the anal-
ysis, we capture true positives, false positives, and false
negatives from the corresponding tool’s result log. As our
purpose is to detect cryptographic vulnerability detection,
we consider only cryptographic misuse alerts and discard
others. In TABLE 3, we present the alert keywords that
detection tools use while showing a specific cryptographic
misuse. This can assist developers to understand which
keyword they should search in the result log to find a
specific type of vulnerability. In the following, we provide
a brief description of our process of identification of true
positive, false positive, and false negative alerts.

6.2.1

If a tool generates an alert due to the correct reason
while screening any specific vulnerable unit test case in
CryptoAPI-Bench, then the event is considered as a true
positive.

True positive (TP)

6.2.2 False positive (FP)

The false positive alert can be captured from two different
scenarios. If an alert raised by a tool is unexpected (i.e., does
not exist in a specific unit test case), then the alert is a false
positive. In addition, if a tool gives an inaccurate reason for
an expected alert, then it is also considered a false positive.

6.2.3 False negative (FN)

A vulnerable test case may not be detected by the evalua-
tion tools. This missed detection is characterized as a false
negative.

After analyzing the results by determining the true
positive (TP), false positive (FP), and false negative (FN)
values, we compute the recall and precision to determine
the performance of the tools.

6.3 CryptoAPI-Bench: Analysis of Results

In this section, we describe CryptoAPI-Bench evaluation
findings on each detection tool based on the result log and
performance analysis. TABLE 4 presents the number of true
positive and false positive vulnerability threat detection cap-
tured by the tools for 18 cryptographic misuse categories.
There are only 6 common cryptographic misuse categories
detected by all tools. To ensure fairness in comparison,
we consider only these 6 common cryptographic misuses
while finding the comparative analysis results of tools based
on the basic and advanced benchmark in TABLE 5 and
TABLE 6, respectively. The analysis results are presented in
terms of false positive rate (FPR), false negative rate (FNR),
recall, and precision.

Analysis Overview: TABLE 4 shows that among the 18
specified high impact cryptographic misuse categories in
Section 2, the cryptographic vulnerability detection tools are
able to detect a subset of rules.

e SpotBugs, CryptoGuard, CrySL, Tool A covers 9, 16,
14, 10 cryptographic misuse categories, respectively.

e In total, the benchmark contains 144 vulnerable test
cases and among these true positive cases, SpotBugs,
CryptoGuard, CrySL, Tool A detects 20, 124, 75, 32
cases, respectively.

e In addition, SpotBugs, CryptoGuard, CrySL, Tool A
also generate 32, 20, 67, 14 false alarms, respectively
that are included as false positive cases.

6.3.1 Analysis on Basic Benchmark

TABLE 5 shows the performance analysis result of four
detection tools on six common cryptographic misuse cat-
egories based on the basic benchmark. We capture the
following findings based on TABLE 5.

e SpotBugs shows 3 false positive errors. It detects
all cases except one. SpotBugs is not designed to
capture threats in the basic case of the vulnerable
cryptographic key misuse.

TABLE 5
CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL and Tool A on six common misuse categories with CryptoAPI-Bench’s common
21 basic cases. TP, FP, FN stand for true positive, false positive, false negative, respectively. Findings of the table are reported in Section 6.3.1.

o True Positive | True Negative SpotBugs CryptoGuard CrySL Tool A
Basic Test Cases Count Count TP | FP | FN | TP | FP | FN | TP [FP | FN | TP | FP | FN
IntraProcedural 14 6 13 3 1 14 0 0 10 7 4 13 0 1

Result Recall (%) 92.86 100.00 71.43 92.86
Precision (%) 81.25 100.00 58.82 100.00
TABLE 6

CryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL and Tool A on six common misuse categories with CryptoAPI-Bench’s common

84 advanced cases. TP, FP, FN stand for true positive, false positive, false

negative, respectively. Findings of the table are reported in Section 6.3.2.

Advanced True Positive | True Negative SpotBugs CryptoGuard CrySL Tool A
Test Cases Count Count TP | FP | FN | TP | FP | FN | TP | FP | EN | TP | FP | FN
Two-Interprocedural 13 0 0 0 13 | 12 0 1 10 3 3 3 0 10
Three-Interprocedural 13 0 0 0 13 | 12 0 1 10 3 3 3 0 10
Field Sensitive 13 0 0 0 13 | 13 0 0 10 2 3 1 0 12
Combined Case 13 0 0 12 | 13 | 12 0 1 0 2 13 3 0 10
Path Sensitive 0 13 0 10 0 0 13 0 0 13 0 0 12 0
Miscellaneous Cases 3 2 0 0 3 3 0 0 0 5 3 0 0 3
Multiple Class methods 13 0 0 0 13 | 13 0 0 10 3 3 3 0 10
Results Recall (%) 0.00 95.59 58.82 19.12
Precision (%) 0.00 83.33 56.34 52.00

CrySL produces 7 false positive errors due to their
rules associated with Crypto APIs for the crypto-
graphic key, password in PBE, and password in
KeyStore.

Tool A does not generate any false positive errors.
It can successfully detect every vulnerability except
one. Tool A is not designed to capture IDEA as a
vulnerable cryptographic algorithm.

For insecure uses of pseudo-random number gen-
erators, SpotBugs and CryptoGuard flag all uses of
java.util. Random.

In summary, for all basic cases, CryptoGuard and Tool
A generate a precision of 100%. For SpotBugs and CrySL, it
produces some false positives and hence generates precision
of 81.25%, 58.82% respectively.

6.3.2 Analysis on Advanced Benchmark

TABLE 6 shows the performance analysis result of four
detection tools on six common cryptographic misuse cate-
gories based on the advanced benchmark. We capture the
following findings based on TABLE 6.

In the prospect of path sensitivity, it is obvious that
none of the cryptographic vulnerability detection
tools is path-sensitive in their static analysis. The
tools generate 10, 13, 13, 12 false positive alerts for
path sensitive cases, respectively. The possible reason
for the false positive alert is that for the concerned
variable, a container is defined to store all values of
the concerned variable. There is no ordered list that
shows the latest assignment. Therefore, alerts will be
raised if the container contains any vulnerable value
that is intended to be used in the Crypto APL. A
significant reason for having a high false positive rate
because of the tools being path insensitive.
SpotBugs is not designed to capture vulnerability
threats in advanced cases. Therefore, it shows 0%
precision and recall.

SpotBugs produces 12 false positives for combined
cases. In combined cases, SpotBugs failed to detect
the source of vulnerability using both interproce-
dural and field sensitive analysis. For example, in

Symmetric Cipher cases, instead of showing the
correct “CIPHER_INTEGRITY” alert, it produces an
incorrect “HARD_CODE_PASSWORD” alert.
CryptoGuard performs better than other tools in
terms of both precision and recall. The reasons be-
hind this include 1) Cryptoguard performs dataflow
analysis based on forward slicing and backward
slicing that efficiently handles the advanced cases,
2) CryptoGuard follows several refinement in-
sights that systematically remove irrelevant con-
stants, hence reducing false positives. However, as
being a static analysis tool, CryptoGuard cannot han-
dle path-sensitive cases. In addition, CryptoGuard
missed 3 vulnerabilities due to clipping orthogonal
method invocation (i.e., limiting the depth to visit
callee method).

CrySL produces incorrect “RequiredPredicateError”
alerts for the cryptographic key, password in PBE,
and password in KeyStore test cases, causing false
positives. In some of these cases, CrySL detection
rules are unable to recognize secure byte arrays and
would still incorrectly generate alerts.

Tool A is not designed to detect vulnerable ciphers
and cryptographic hash functions in advanced cases.
That is the reason for having high false negative
values and generating high FNR in Tool A. Tool
A is a close-sourced detection tool. Therefore, we
are unable to confirm the reason for the incorrect
detection cases.

In summary, for all of the advanced cases, SpotBugs is
not designed to identify the advanced vulnerability threats
correctly. Therefore, the precision rate is 0%. CryptoGuard
detects fairly well (missed only 3 cases) among all detection
tools with a precision of 83.33%. CrySL produces precision
of 56.34%. Tool A generates a precision of 52.00%.

6.4 ApacheCryptoAPI-Bench: Analysis of Results

TABLE 7 presents the number of true positive and false
positive vulnerability threats detected by the tools. CrySL
fails to analyze spark and artemis-commons project. Tool
A fails to analyze artemis-commons project. SpotBugs and

TABLE 7
ApacheCryptoAPI-Bench comparison of SpotBugs, CryptoGuard, CrySL and Tool A on 10 Apache projects. GTP stands for ground truth positive,
which is the number of insecure APl use cases in the Apache codes.

. SpotBugs CryptoGuard CrySL Tool A
EaEiivies GTP | 1p i FP i FN TPryp FP | FN | TP ?i’ FN | TP | FP | EN
deltaspike 2 2 0 0 2 0 0 2 3 0 2 0 0
directory-server 19 11 0 8 5 0 14 18 6 1 5 0 14
incubator-traverna-workbench 8 2 0 6 4 0 4 7 0 1 3 0 5
manifoldcf 3 0 3 3 0 3 3 3 2 0 2 1 1
meecrowave 3 3 0 0 2 0 1 2 0 1 2 0 1
spark 12 9 12 3 12 | 14 0 - - - 4 0 8
tika 0 0 0 0 0 0 0 0 2 0 0 0 0
tomee 7 3 1 4 4 2 3 6 0 1 3 1 4
wicket 3 0 2 3 3 2 0 2 2 1 0 0 3
artemis-commons 7 5 8 2 5 8 2 - - - - - -

Total 64 35 26 29 37 29 27 40 15 5 21 2 36

CryptoGuard successfully analyze all 10 projects. Overall,
we capture the following findings.

e Tool A has a low false positive value. However,
SpotBugs and CryptoGuard have high false positive
values of 26, 29, respectively. The main reason is that
CryptoGuard and SpotBugs consider all usages of
Java.util.Random as vulnerable whereas majority of
the random is used in a non-security context. We
have discussed the reason for generating high false
positives for CrySL in Section 6.3.2.

e SpotBugs, CryptoGuard, CrySL, and Tool A can ac-
curately detect 35, 37, 40, and 21 alerts respectively
from 64 alerts. The main reason for missed alarms
is that no tool can detect all 18 types of vulnerabil-
ities as shown in TABLE 3. For example, SpotBugs
and CryptoGuard cannot capture vulnerable crypto
algorithm usage in SecretKeySpec API. Among the
successfully compiled programs (i.e., from 8 Apache
projects), CrySL captures 40 out of 45.

o After analyzing ten Apache projects, we find that
there are 82 basic cases, whereas, the number of
advance cases is only 39. Therefore, in the real world
codes, the number of basic cases is much higher than
advanced cases. Vulnerability detection tools should
consider expanding their coverage to detect more
categories of vulnerabilities.

e From TABLE 7, we observe that CrySL fails to
analyze two Apache projects: spark and artemis-
commons. CrySL throws StackOverFlowError (ie.,
memory error) during analyzing objects for spark.
The probable reason is the larger number of files and
lines of code Spark contains for analysis. For artemis-
commons, CrySL throws NullPointerErrorException
during analysis due to the reference variable not
pointing to any object. Tool A fails to analyze only
the artemis-commons project. Tool A is closed source,
therefore, we are unable to confirm the reason for
this failure. TABLE 8 shows the runtime on Apache
projects for only CryptoGuard and CrySL. For Tool
A and SpotBugs, we use the web version that takes
all scan requests for users and reports results after
complete scanning. Therefore, we cannot calculate
their original runtime for comparison. Among the
8 successful analyzed projects, we observe average
runtime for CrySL is 14.64 seconds and CryptoGuard
is 11.46 seconds. For the largest Apache project Spark

(LoC: 311,856), CryptoGuard successfully analyzes
in 88.68 seconds and CrySL produces incomplete
analysis report after running for 46.84 seconds. Over-
all, SpotBugs and CryptoGuard successfully analyze
all 10 Apache projects. Therefore, SpotBugs, Crypto-
Guard are scalable for large projects.

6.5 Verifiability

Our benchmarks are open-sourced and are available on
GitHub [25], [26]. It contains the Java cryptographic API
test cases. The detailed documentation and explanation are
provided there.

TABLE 8

Runtime for analyzing Apache projects. Star (*) symbol indicates that
the analysis was unsuccessful.

Apache Projects LoC CrypIt{:SS;:; (SecC)rySL
deltaspike 5.1K 4.31 6.95
directory-server 20.8K 8.96 23.03
incubator-taverna-workbench 9.9K 12.69 7.94
manifoldcf 17K 7.07 8.20
meecrowave 5.6K 4.67 7.24
spark 311.9K 88.68 46.84*
tika 16.6K 7.46 8.15
tomee 118.7K 40.52 34.81
wicket 134K 5.99 20.83
artemis-commons 8.9K 5.63 19.82*

7 DISCUSSION

Tool insights. No tool can cover all categories of vulner-
abilities (TABLE 4). However, their methodologies can be
extended to cover most of these vulnerabilities. For example,
the technique that Tool A uses to detect constant crypto-
graphic keys can be transferred to detect static IVs or fewer
iteration counts.

The main differences among different tools are within
their approach to trade-offs among false positives, false neg-
atives. Our experimental evaluation reveals that all of these
tools produce a number of false positives and false nega-
tives. CryptoGuard performs on-demand inter-procedural
dataflow analysis. Its backward data flow analysis starts
from the slicing criteria and explores upward (1) and or-
thogonally (—) on-demand. Orthogonal method invocation
chains always return to the call sites. By leveraging this
insight, CryptoGuard offers a performance vs scalability
tradeoff by limiting the depth of the orthogonal invocations
(which is “clipping of orthogonal method invocations”).
In the current implementation, the depth is set to be 1.

That means CryptoGuard will skip deeper orthogonal callee
methods, which may result in false negatives. However, the
advantage of the orthogonal method invocation technique
is that it helps to improve precision.

The main focus of CrySL is to provide a language to
specify a class of cryptographic misuse vulnerabilities that
can be detected using a generic detection engine. For the
version that we tested, CrySL would raise an alert if a
cryptographic key is not generated using a key generator.
However, one can legitimately reuse a previously generated
key, which CrySL would mistakenly detect as a vulnerabil-
ity. An impressive aspect of CrySL is that it is constantly
being maintained and updated to improve its accuracy. The
methodology of SpotBugs is inherently limited to detecting
advanced cases as they use patterns to detect most of the
vulnerabilities.

None of these tools are path-sensitive, i.e., all raising
false alerts in path sensitive cases. A possible reason for this
failure is that the existing path-sensitive analysis techniques
are usually costly, i.e., high runtime complexity.

CryptoAPI-Bench cannot be used to evaluate scalabil-
ity property. All of our test cases are lightweight by de-
sign. The primary focus is to produce easily readable test
cases that demand minimal code to express complex pro-
gram properties. On the other hand, all of the projects in
ApacheCryptoAPI-Bench are complex programs including
a lot of files and lines of code. The primary focus is to test
the vulnerability detection tool’s scalability property and
extrapolation to applications on real-world code.

Case Studies. TABLE 4 shows that many misuse
cases are still uncovered by tools (e.g., CryptoGuard,
SpotBugs, Tool A cannot handle MAC misuses) that
should be addressed to expand coverage. Among the
covered rules, there are also some deficiencies. For
example, CryptoGuard and SpotBugs can capture RC4 as
a vulnerable cipher but not ARCFOUR cipher algorithm
as the static code does not specify ARCFOUR as a
vulnerable cipher. Static or predictable initialization
vector defined in another method, class, file, or as field
variable (i.e., advanced cases) cannot be captured using
SpotBugs and Tool A. In another advanced case, a java
file in manifoldcf contains SecretKeySpec key =
new SecretKeySpec (secretKey.getEncoded(),
"AES"). This secretKey parameter is initialized as a field
variable with a static string value of “NowIsTheTime” and
passed through three procedures. This complex case cannot
be captured by SpotBugs, CryptoGuard, or Tool A.

Our limitation. Currently, our benchmark does not con-
tain cryptographic cases, e.g., digital signature, CBC-MAC
misuses in MAC, other modes of operations (e.g., CTR).
We plan to include test cases based on these cryptographic
vulnerabilities in our CryptoAPI-Bench benchmark. Fur-
thermore, our benchmark does not have any cases that
involve Java reflection APIs. The primary reason is that the
use of Java reflection during cryptographic coding is highly
unlikely. Consequently, none of the existing open-sourced
tools is designed to detect such cases. However, we plan
to include new cases that leverage Java reflection APIs to
induce cryptographic misuse vulnerabilities.

10
8 RELATED WORK

Vulnerability detection benchmarks. AndroZoo++ [49] is
a collection of over eight million Android apps [50] that
drives a lot of security, software engineering, and malware
analysis research. However, vulnerabilities in these apps
are not documented, hence not suitable for vulnerability
detection benchmarking purposes.

DroidBench [22], a benchmark containing vulnerable an-
droid apps, fills the gap by providing specific vulnerability
locations within the benchmark. Till date, DroidBench is
one of the most popular benchmarks to evaluate the perfor-
mance of vulnerability detection tools in Android literature.
In total, DroidBench has 119 APKs from 13 categories (Com-
mit id 0fe281b). Categories include vulnerabilities that use
field and object sensitivity, inter-app communication, inter-
component communication, android life-cycle, reflection,
etc. However, DroidBench i) does not cover cryptographic
misuse vulnerabilities and ii) does not have source code. To
the best of our knowledge, Ghera [23] is the only Android
app benchmark that contains app source code. Like Droid-
Bench, most of the vulnerabilities in Ghera are specific to
Android apps and barely contain any cryptographic misuse
vulnerabilities. To be specific, CryptoAPI-Bench and Ghera
have only 2 types of vulnerabilities in common.

OWASP Benchmark [51] is fundamentally designed
to capture eleven cybersecurity vulnerabilities. However,
among the detected vulnerabilities, it builds to address only
three Java cryptographic vulnerabilities, i.e., weak encryp-
tion algorithm, weak hash algorithm, and a weak random
number. SonarSource [31] released a set of vulnerability
samples that can be useful to check for coverage of vul-
nerability categories. A verification tool for five common
audit controls is proposed for ensuring continuous compli-
ance [52]. MASC framework [53] is designed to evaluate
static analysis tools using mutation testing. However, it
considers limited complex cases.

Other benchmarks. The DaCapo benchmarks [54] are
designed to evaluate the performance of various compo-
nents of Java virtual machine (JVM), Garbage collection
(GQ), Just-in-time (JIT) compiler itself. BugBench [55] is
a benchmark to find C/C++ bugs that contains 17 real-
world applications. BugBench mostly covers various mem-
ory, concurrency, and semantic bugs. To detect bugs in the
multi-threaded Java programs, a benchmark and framework
have been proposed [56], [57]. Coding practice and rec-
ommendations are provided for 28 enterprise applications
that use Spring security framework [58]. ManyBugs and
IntroClass benchmarks are designed to evaluate various
C/C++ code repair techniques [59]. Most of the defects in
ManyBugs and IntroClass do not impact security, e.g., in
the ManyBugs benchmark, more than half of the instances
impact correctness, not necessary security.

9 CONCLUSION AND FUTURE WORK

We believe that for scientific, in-depth, and repro-
ducible comparisons benchmark is an important compo-
nent. In this paper, we present CryptoAPI-Bench and
ApacheCryptoAPI-Bench to evaluate the detection accuracy,
scalability, and security guarantees of various cryptographic
misuse detection tools. Our benchmarks are open-sourced

and are available on GitHub. We evaluated four static analy-
sis tools that are capable of detecting cryptographic misuses.
Our evaluation revealed some interesting insights, i.e., 1)
tools that are specialized to detect cryptographic misuses
(e.g., CryptoGuard, CrySL) cover more rules and higher
recall than general purpose tools (e.g., SpotBugs, Tool A),
ii) none of the existing tools is path-sensitive.

We are actively working on expanding CryptoAPI-Bench
by adding new rules, test cases, and covering new crypto-
graphic APIs. In the future, we plan to achieve the following
goals.

o To motivate the research of cryptographic misuse
detection tools for other platforms, we plan to extend
CryptoAPI-Bench to cover other popular languages,
e.g., Python.

o Other non-cryptographic API misuses (e.g., Android
APIs to access sensitive information (location, IMEI,
passwords, etc.) [60], [61], fingerprint protection [62],
cloud service APIs for information storage [63]) are
also proven to cause catastrophic security conse-
quences. We also plan to include the misuses of these
critical non-cryptographic APIs.

ACKNOWLEDGMENTS

This work has been supported by the National Science
Foundation under Grant No. CNS-1929701 and the Virginia
Commonwealth Cyber Initiative (CCI).

REFERENCES

[1] S.Fahl, M. Harbach, T. Muders et al., “Why Eve and Mallory Love
Android: An Analysis of Android SSL (in) Security,” in the ACM
Conference on Computer and Communications Security, CCS’12, 2012,
pp. 50-61.

[2] M. Georgiev, S. Iyengar, S. Jana et al., “The Most Dangerous
Code in the World: Validating SSL Certificates in Non-Browser
Software,” in the ACM Conference on Computer and Communications
Security, CCS’12, 2012, pp. 38-49.

[3] M. Egele, D. Brumley, Y. Fratantonio ef al., “An Empirical Study
of Cryptographic Misuse in Android Applications,” in ACM Con-
ference on Computer and Communications Security, CCS’13, 2013, pp.
73-84.

[4] N. Meng, S. Nagy, D. Yao et al., “Secure Coding Practices in
Java: Challenges and Vulnerabilities,” in International Conference
on Software Engineering, ICSE’18, May 2018.

[5] S. Rahaman, Y. Xiao, S. Afrose et al., “CryptoGuard: High Preci-
sion Detection of Cryptographic Vulnerabilities in Massive-sized
Java Projects,” in ACM Conference on Computer and communications
security, CCS’19, Nov. 2019, pp. 2455-2472.

[6] S. Rahaman and D. Yao, “Program Analysis of Cryptographic
Implementations for Security,” in IEEE Cybersecurity Development,
SecDev’17, Cambridge, MA, USA, 2017, pp. 61-68. [Online].
Available: https:/ /doi.org/10.1109 /SecDev.2017.23

[7] Y. Acar, M. Backes, S. Fahl et al., “Comparing the Usability of
Cryptographic APIs,” in IEEE Symposium on Security and Privacy,
SP’17, San Jose, CA, USA, May 22-26, 2017, pp. 154-171.

[8] S. Nadi, S. Kriiger, M. Mezini et al., “Jumping Through Hoops:
Why Do Java Developers Struggle with Cryptography APIs?” in
International Conference on Software Engineering, ICSE'16, 2016, pp.
935-946.

[9] M. Oltrogge, E. Derr, C. Stransky et al., “The Rise of the Citizen

Developer: Assessing the Security Impact of Online App Genera-

tors,” in IEEE Symposium on Security and Privacy, SP'18, 2018, pp.

634-647.

Y. Acar, M. Backes, S. Fahl et al., “You Get Where You're Looking

for: The Impact of Information Sources on Code Security,” in IEEE

Symposium on Security and Privacy, SP'16, San Jose, CA, USA, May

23-25, 2016, pp. 289-305.

H. Assal and S. Chiasson, “Security in the Software Development

Lifecycle,” in Fourteenth Symposium on Usable Privacy and Security,

SOUPS’18, 2018, pp. 281-296.

[10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]
(31]
[32]

(33]

[34]

[35]

[36]

11

S. Kriiger et al., “CogniCrypt: Supporting Developers in using
Cryptography,” in IEEE/ACM International Conference on Automated
Software Engineering, ASE’17, 2017, pp. 931-936.

S. Kritiger, J. Spdth, K. Ali et al., “CrySL: An Extensible Approach to
Validating the Correct Usage of Cryptographic APIs,” in European
Conference on Object-Oriented Programming, ECOOP’18, 2018, pp.
10:1-10:27.

D. C. Nguyen et al., “A Stitch in Time: Supporting Android De-
velopers in Writing Secure Code,” in ACM Conference on Computer
and Communications Security, CCS’17, 2017, pp. 1065-1077.

L. Piccolboni, G. Di Guglielmo, L. P. Carloni et al., “Cry-
logger: Detecting Crypto Misuses Dynamically,” arXiv preprint
arXiv:2007.01061, 2020.

D. Sounthiraraj, J. Sahs, G. Greenwood et al., “SMV-Hunter:
Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle
Vulnerabilities in Android Apps,” in The Network and Distributed
System Security Symposium, NDSS'14, 2014.

F. Gagnon, M. Ferland, M. Fortier et al., “AndroSSL: A Platform to
Test Android Applications Connection Security,” in International
Symposium on Foundations and Practice of Security, FPS’15, 2015, pp.
294-302.

K. Ashcraft and D. R. Engler, “Using Programmer-Written Com-
piler Extensions to Catch Security Holes,” in IEEE Symposium on
Security and Privacy, (SP’02), 2002, pp. 143-159.

A. Machiry, C. Spensky, J. Corina et al., “DR. CHECKER: A Soundy
Analysis for Linux Kernel Drivers,” in 26th USENIX Security
Symposium, USENIX Security’17, Vancouver, BC, Canada, 2017, pp.
1007-1024.

Wikipedia contributors, “Data-flow Analysis — Wikipedia, The
Free Encyclopedia,” last accessed: Sep 9, 2021. [Online]. Available:
https:/ /en.wikipedia.org/wiki/Data-flow_analysis

J. Spdth, K. Ali, and E. Bodden, “Context-, Flow-, and Field-
sensitive Data-flow Analysis Using Synchronized Pushdown
Systems,” Proc. ACM Program. Lang., vol. 3, no. POPL, Jan. 2019.
[Online]. Available: https://doi.org/10.1145/3290361

S. Arzt, S. Rasthofer, C. Fritz et al., “FlowDroid: Precise Context,
Flow, Field, Object-Sensitive and Lifecycle-aware Taint Analysis
for Android Apps,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI'14, 2014, pp. 259-269.

J. Mitra and V. Ranganath, “Ghera: A Repository of Android App
Vulnerability Benchmarks,” in Proceedings of the 13th International
Conference on Predictive Models and Data Analytics in Software Engi-
neering, PROMISE’17, Toronto, Canada, 2017, pp. 43-52.
“SpotBugs: Find Bugs in Java Programs,” https://spotbugs-
.github.io/, online; Last accessed: Dec 3, 2020.

S. Afrose, “CryptoAPI-Bench,” https://github.com/CryptoAPI-
Bench/CryptoAPI-Bench, 2019.

——, “ApacheCryptoAPI-Bench,” https:/ / github.com/CryptoAPI-
Bench/ApacheCryptoAPI-Bench, 2020.

S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A Compre-
hensive Benchmark on Java Cryptographic API Misuses,” in 2019
IEEE Cybersecurity Development (SecDev). 1EEE, 2019, pp. 49-61.
E. Barker and A. Roginsky, “Transitioning the Use of Crypto-
graphic Algorithms and Key Lengths,” in Special Publication (NIST
SP), National Institute of Standards and Technology, Gaithersburg, MD,
2019.

E. Barker, L. Chen, A. Roginsky et al., “Recommendation for Pair-
wise Key Establishment Using Integer Factorization Cryptogra-
phy,” in Special Publication (NIST SP), National Institute of Standards
and Technology, Gaithersburg, MD, 2019.

“NIST Computer Security Resource Center,”
nist.gov/projects, online; Last accessed: Sep 3, 2021.
“SonarSource Static Code Analysis,” https://rules.sonarsource.
com/, online; Last accessed: Dec 3, 2020.

“Oracle,” https:/ /docs.oracle.com/javase/8/docs/api/java/secur-
ity /Permission.html, online; Last accessed: Sep 3, 2021.

“Secure Code Review: 8 Security Code Review Best Practices,”
https:/ /snyk.io/blog/secure-code-review/, online; Last accessed:

Sep 3, 2021.

“Secure Coding Guidelines for Java SE,”
https:/ /www.oracle.com/java/technologies/javase/seccodeguide.html,
online; Last accessed: Sep 3, 2021.

“URL Spoofing,” http://www.securitysupervisor.com/security-
g-a/network-security /262-what-is-url-spoofing.html, online; Last
accessed: Dec 3, 2020.

“Find Security Bugs,” https://find-sec-bugs.github.io/, online;

Last accessed: Dec 3, 2020.

https:/ /csrc-

[37] “Hostname Verification to SSL Socket,” https://www.the-
codingforums.com/threads/adding-hostname-verification-to-
sslsocket.958287/, online; Last accessed: Dec 3, 2020.

[38] C. A. Barton, G. A. Clarke, and S. Crowe, “Transferring Data via a
Secure Network Connection,” 2006, US Patent 7,093,121.

[39] D.E. Knuth, Art of Computer Programming, volume 2: Seminumerical
Algorithms. Addison-Wesley Professional, 2014.

[40] K. Moriarty, B. Kaliski, and A. Rusch, “PKCS #5: Password-Based
Cryptography Specification Version 2.1,” 2017.

[41] “AES Encryption,” https://aesencryption.net/, online; Last ac-
cessed: Dec 3, 2020.

[42] M. Bellare, “New Proofs for NMAC and HMAC: Security Without
Collision Resistance,” Journal of Cryptology, vol. 28, no. 4, pp. 844—
878, 2015.

[43] “GRAMMATECH,” https://www.grammatech.com/, online; Last
accessed: Dec 3, 2020.

[44] “Quick Android Review Kit (QARK),” https://github-
.com/linkedin/qark, online; Last accessed: Dec 3, 2020.

[45] “Welcome to the SWAMP,” https://continuousassurance.org,
2018.

[46] “Transition of SWAMP software,” https://continuousassurance-
.org/blog/, online; Last accessed: Dec 3, 2020.

[47] “CryptoGuard,” https:/ /github.com/CryptoGuardOSS/cryptoguard,

online; Last accessed: Dec 3, 2020.

[48] “Cognicrypt_SAST: CrySLtoStatic =~ Analysis Compiler,”
https:/ /github.com/CROSSINGTUD/CryptoAnalysis, online;
Last accessed: Dec 3, 2020.

[49] L.Li,J. Gao, M. Hurier et al., “ AndroZoo++: Collecting Millions of
Android Apps and Their Metadata for the Research Community,”
arXiv preprint arXiv:1709.05281, 2017.

[50] “AndroZoo,” https://androzoo.uni.lu/, online; Last accessed:
Dec 3, 2020.

[51] E. Burato, P. Ferrara, and F. Spoto, “Security Analysis of the
OWASP Benchmark with Julia,” The Italian Conference on Cyber-
Security (ITASEC), vol. 17, 2017.

[52] M. Kellogg, M. Schif, S. Tasirans et al., “Continuous Compliance,”
in 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2020, pp. 511-523.

[53] A. S. Ami, N. Cooper, K. Kafle et al., “Why Crypto-detectors
Fail: A Systematic Evaluation of Cryptographic Misuse Detection
Techniques,” arXiv preprint arXiv:2107.07065, 2021.

[54] S. M. Blackburn et al., “The DaCapo Benchmarks: Java Bench-
marking Development and Analysis,” in Proceedings of the 21th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA’06, Portland, Oregon,
USA, 2006, pp. 169-190.

[55] S. Lu, Z. Li, F. Qin et al., “BugBench: Benchmarks for Evaluating
Bug Detection Tools,” in Workshop on the Evaluation of Software
Defect Detection Tools, vol. 5, 2005.

[56] K. Havelund, S. D. Stoller, and S. Ur, “Benchmark and Framework
for Encouraging Research on Multi-Threaded Testing Tools,” in
Proceedings International Parallel and Distributed Processing Sympo-
sium, IPDPS’03. IEEE, 2003, p. 286.

[57] Y. Eytani, K. Havelund, S. D. Stoller et al., “Towards a Framework
and a Benchmark for Testing Tools for Multi-Threaded Programs,”
Concurrency and Computation: Practice and Experience, vol. 19, no. 3,
pp. 267-279, 2007.

[58] M. Islam, S. Rahaman, N. Meng et al., “Coding Practices and
Recommendations of Spring Security for Enterprise Applications,”
in 2020 IEEE Secure Development (SecDev). 1EEE, 2020, pp. 49-57.

[59] C. Le Goues, N. Holtschulte, E. K. Smith et al., “The ManyBugs
and IntroClass Benchmarks for Automated Repair of C Programs,”
IEEE Transactions on Software Engineering, vol. 41, no. 12, pp. 1236-
1256, 2015.

[60] A. Bosu, E Liu, D. Yao et al., “Collusive Data Leak and More:
Large-Scale Threat Analysis of Inter-app Communications,” in
ACM ASIA Conference on Computer and Communications Security,
AsiaCCS’17, 2017, pp. 71-85.

[61] Y. Nan, Z. Yang, X. Wang et al., “Finding Clues for Your Secrets:
Semantics-Driven, Learning-Based Privacy Discovery in Mobile
Apps,” in 25th Annual Network and Distributed System Security
Symposium, NDSS’18, 2018.

[62] A. Bianchi, Y. Fratantonio, A. Machiry ef al., “Broken Fingers: On
the Usage of the Fingerprint API in Android,” in 25th Annual
Network and Distributed System Security Symposium, NDSS’18, 2018.

12

[63] C. Zuo, Z. Lin, and Y. Zhang, “Why Does Your Data Leak?
Uncovering the Data Leakage in Cloud from Mobile Apps,” in
IEEE Symposium on Security and Privacy, (SP’19), London, UK, 2019.

Sharmin Afrose is a Ph.D. student in the depart-
ment of computer science at Virginia Tech. She
is working under the supervision of Professor
Danfeng (Daphne) Yao. Her research interests
include software security for Java Cryptographic
API and Al bias in healthcare. She received a
BS in Computer Science and Engineering from
the Bangladesh University of Engineering and
Technology (BUET).

Ya Xiao is a Ph.D. student of computer sci-
ence department at Virginia Tech. She is work-
ing under the supervision of Professor Danfeng
(Daphne) Yao. Her research interests include
neural network based software security solu-
tions, program analysis, and neural cryptanaly-
sis. She has been awarded the Bit Shares Fel-
lowship and the Dennis G. Kafura Fellowship
at Virginia Tech. She received M.S. degree and
B.S. degree from Beijing University of Posts and
Telecommunications (BUPT).

Sazzadur Rahaman is an assistant professor
in the Department of Computer Science at the
University of Arizona. He works towards mak-
ing security research more democratized and
affordable. He is broadly interested in computer
security and privacy problems, specifically in
building robust systems and methodologies by
using program analysis, formal verification, ap-
plied cryptography, and machine learning-based
techniques. Sazzadur completed his Ph.D. from
Virginia Tech. He received his B.Sc. in com-
puter science at Bangladesh University of Engineering and Technology

(BUET). Barton P. Miller is a Vilas Distinguished
Achievement Professor, and Amar & Belinder
Sohi Professor in Computer Sciences at the
University of Wisconsin, Madison. He directs
the software assurance and training program
for Trusted CI, the NSF Cybersecurity Center
of Excellence and co-directs the MIST software
vulnerability assessment project in collaboration
with his colleagues at the Autonomous Univer-
sity of Barcelona, where they are addressing
issues related to maritime cybersecurity. He also
directs the Paradyn Tools project, which is investigating program scal-
ability and binary code analysis and instrumentation technologies for
use in profiling, debugging, forensics, and cyber-security. He received
his B.A. degree from the University of California, San Diego in 1977,
and M.S. and Ph.D. degrees in Computer Science from the University of
California, Berkeley in 1980 and 1984. Professor Miller is a Fellow of the
ACM.

Danfeng (Daphne) Yao is a Professor of Com-
puter Science at Virginia Tech. She is an Eliza-
beth and James E. Turner Jr. 56 Faculty Fellow
and CACI Faculty Fellow. Her research interests
include building cyber defenses, as well as ma-
chine learning for digital health, with a shared
focus on accuracy and deployment. She cre-
ates new models, algorithms, techniques, and
deployment-quality tools for securing large-scale
software and systems. Her tool CryptoGuard
helps large software companies and Apache
projects harden their cryptographic code. She systematized program
anomaly detection in the book Anomaly Detection as a Service. Her
patents on anomaly detection are extremely influential in the indus-
try, cited by patents from major cybersecurity firms and technology
companies, including FireEye, Symantec, Qualcomm, Cisco, IBM, SAP,
Boeing, and Palo Alto Networks. In 2018, she was named an ACM
Distinguished Scientist. Previously, she received the NSF CAREER
Award and ARO Young Investigator Award. Dr. Yao is the ACM SIGSAC
Vice Chair and has been a member of the ACM SIGSAC executive
committee since 2017. She received her Ph.D. degree from Brown
University (Computer Science), M.S. degrees from Princeton University
(Chemistry) and Indiana University (Computer Science), Bloomington,
B.S. degree from Peking University in China (Chemistry).

