ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/359392390

Software Security for the People: Free and Open Resources for Software Security
Training

Article in IEEE Security and Privacy Magazine - March 2022

DOI: 10.1109/MSEC.2022.3142336

CITATIONS READS
0 76

2 authors, including:

Barton P. Miller
= University of Wisconsin-Madison

238 PUBLICATIONS 9,228 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot DPM - A Distributed Program Monitor View project

roject Create new project "DEMOS/MP" View project

All content following this page was uploaded by Barton P. Miller on 22 March 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/359392390_Software_Security_for_the_People_Free_and_Open_Resources_for_Software_Security_Training?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/359392390_Software_Security_for_the_People_Free_and_Open_Resources_for_Software_Security_Training?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/DPM-A-Distributed-Program-Monitor?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Create-new-project-DEMOS-MP?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barton-Miller?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barton-Miller?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Wisconsin-Madison?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barton-Miller?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Barton-Miller?enrichId=rgreq-83a240261108ab43b1e7c8b5145b63c9-XXX&enrichSource=Y292ZXJQYWdlOzM1OTM5MjM5MDtBUzoxMTM2MzU3MTk1OTM5ODQwQDE2NDc5NDAwNzYwNTU%3D&el=1_x_10&_esc=publicationCoverPdf

Software Security for the People:
Free and Open Resources for
Software Security Training

Elisa R. Heymann
University of Wisconsin-Madison

Barton P. Miller
University of Wisconsin-Madison

Abstract—The enormous growth in software development affects every facet of our lives,
creating an urgent need for training in software security. In response, we have developed free
and open software security education and training materials for a wide range of practitioners,

from the student to experienced professional.

B INDUSTRY, GOVERNMENT, AND ACADEMIA are
developing software across a wide range of critical
areas, including online services, sensor networks,
autonomous vehicles, and IoT where computing is
found in a myriad of physical devices. The
confidentiality, integrity, and availability of this
software and devices that are controlled by it is an
ongoing concern. Software developers need the skills
to design, write, test, and assess code that is resistant
to being exploited [1,2]. However successful exploits
appear at a frightening rate.

We are addressing these needs by:

1. Developing and deploying a curriculum and
instructional and training materials to help
software practitioners design, write, and assess
code that is resistant to attack. These materials are
based on our experiences in doing in depth
vulnerability assessments of critical systems.

IEEE Security & Privacy

Published by the IEEE Computer Society

2. Producing curriculum and training materials that
are cross-cutting and can readily be applied to
undergraduate and graduate education, and to the
training of software professionals.

3. Applying a modular approach to our curricula and
training materials so that they vary in depth and
length, cover a variety of security attacks, and
provide examples based on different operating
systems, programming languages, and
frameworks.

4. Providing materials and instruction/training in a
scalable way so that we can reach the broadest
audience. Scalability is addressed in several ways,
including: available online video lectures, text
chapters, and exercises; producing an advanced

university; live

training at conferences, labs, and universities;
turnkey teaching materials for the use of other
instructors; week-long software security “boot

undergraduate course at our

© 2022 Miller, Heymann

EDUCATION

camps” for undergraduates from institutions that

serve underrepresented communities; and train-

the-trainers workshop to increase the number of
qualified software security instructors.

5. Developing student and trainee evaluation and
assessment materials, with the ultimate goal of
providing levels of certification.

6. Focusing on accessibility by providing closed
captions on all our video materials. Initially, these
captions are available in both English and Spanish.

7. Lowering the barriers to acceptance and use of
these materials by making them free and open.

8. Ensuring that our materials are a living curriculum
that can be updated to match the frantic
technological developments in cybersecurity.
Leveraging the free and open nature of our
materials, we are developing an open source
community around them. We currently have
colleagues developing new modules in areas in
which they have special experience.

While we have made much progress in producing
materials and using them in education and training,
this effort is a living work with new developments yet
to be made.

THE NEED

There is an urgent need for software practitioners
that are better trained (or trained at all) in software
security. There is broad competition across many
industries for practitioners with software security
skills. Industries in areas that are not traditionally
involved in computing are now competing for new
graduates and experienced practitioners. A better
supply of software-security trained new graduates and
educational resources are needed for our existing
workforce. We also need to reach out to
underrepresented groups to help build an inclusive
workforce.

Looking beyond the dramatic headlines, we can see
concrete numbers that motivate the urgency for
better resources in the area of software security. The
last decade has brought an incredible proliferation of
software, with a rate of growth unseen in any previous
time. The most dramatic sources of this growth are
application stores for both the iOS and Android, where
there are now millions of apps in each store (see Figure
1). We can also see this growth in the proliferation of

web sites with active content; in control systems for
trains, cars, aircraft, and shipping; and in the
increasing appearance of embedded computers in the
home, workplace, and even the objects that we wear
or carry with us (or inside of us).

In this age of unprecedented growth of software,
we are producing more programmers now than we did
at the peak of the decades-ago Internet Bubble, but
not nearly in proportion to the growth in software
production (see the undergraduate degree data from
CRA Taulbee Survey in Figure 2). The number of degree
recipients in CS and CE is not matching the demand for
such students and few of these graduates are trained
in software security [3]. We have observed the same
lack of training in software security for experienced
industrial and research software teams. For other
programmers —those informally trained or self-taught,
or those with limited software academy experience —
security seems to be a distant and vague concept.

In many organizations, the concept of software
security is poorly understood and often poorly funded
[3]. Most organizations understand the networking
and hardware aspects of security, the firewalls, border
routers, web and email filters, virus scanners, and
perhaps even identity management; however, many
of these organizations deploy services and build
devices based on software that they write, either
standalone or as part of a web infrastructure. The
security of this code, from the design, to the coding, to
the testing, to the deployment, is often an
afterthought, if it is considered at all.

APPROACH

Our approach is to address software security
education in a holistic way, by developing common
materials and curricula that apply to a broad spectrum
of learning contexts. We include video units with
closed captions in English and Spanish, accompanying
text chapters, presentation materials, assessment
materials, and exercises. The goal of this project is to
reach the broadest audience possible in an area where
there is a desperate shortage of trained practitioners.

IEEE Security & Privacy

Number of Apps Available Online

5,000,000
4,500,000
4,000,000
3,500,000
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000

500,000

0
2009 2010 2011 2012 2013 2014

—Android

2015 2016 2017 2018 2019 2020 2021

—i0S

Figure 1: Number of Mobile Apps for Android and iOS

CRA Taulbee Survey 2020

36,000

34,000

32,000
30,000
28,000
26,000
24,000

Number of Degrees

22,000

20,000 /
18,000

16,000 /‘

14,000 /
12,000
10,000

8,000 ~r—¢l=l/

6,000

T T T T

I I - R N S R S S
(o) D' O O O HY O O

Figure 2: U.S. Undergraduate CS and CE Degree Production [4]

Much of this work has been supported TrustedCl,
the NSF Cybersecurity Center of Excellence. Our role in
that project has been to conduct in-depth software
vulnerability assessments of scientific infrastructure
projects, develop software security training materials,
and conduct live training related to software security.

Guiding Principles

Our approach to curriculum and materials is based
on several guiding principles:
P1. Span technical depth:

March/April 2022

Our learning materials are targeted to span the
range from students and trainees to software
professionals with little security experience and
experienced software professionals who want to
further develop their security skills. Our materials
support starting points from a basic programming
background to practitioners and
advanced graduate students. By using a small-unit

experienced

structure and presenting materials with increasing
opportunities for depth, we can reach students and
trainees at their current skill level. As they increase
their basic programming and computer science

EDUCATION

knowledge, they can access more units and more
depth in previously-studied units.
P2. Span technical breadth:

The software security field has many dimensions.
For example, there are many technical areas, many
commonly used languages, and several commonly
used operating systems and platforms. While no
curriculum can be truly universal, we are building it in
such a way that it has broad applicability. Some areas,
such as pointers and memory, are targeted at specific
languages (C and C++ in this case). Some areas, such as
exception handling, are applicable to many languages,
and benefit from examples or detailed mention in
each language. Other areas, such as techniques for
fuzz testing or vulnerability assessment, are agnostic
to the language and platform. As a result, the selection
of units, sections from a selection of units, or focus on
a language or platform in the units, will allow the
instructor or students and trainees to target their
learning.

P3. Accessibility and inclusivity:

It is crucial to reach a broad audience across
cultural boundaries. The first step in that process will
be to produce closed captions for each video unit. We
currently include both English and Spanish captions. As
opportunities present themselves, we will add other
languages (we already have informal offers from
colleagues in Japan and Germany). We try to conform
to Web Content Accessibility Guidelines (WCAG) to
ensure that we create the fewest barriers possible to
our materials. In addition, we continue to solicit
feedback from our users to help us be more inclusive.
P4. Broad reach:

There are many opportunities to
software security, from the start of a programmer’s
education, to a comprehensive university software

introduce

security course for a computer science major, to
focused practicing
professional. The above principles of spanning
technical breadth and depth support our ability to
have broad reach.
P5. Clear learning goals:

Our curriculum is formulated to have clear learning
outcomes for each unit. For the student, they see a

training for the software

concrete list of goals presented at the start of each
video lecture. For the instructor, there will be an

expanded list of learning outcomes, prerequisites, and
evaluation methods for each unit.
P6. Shared materials:

We have created widely accessible delivery
channels to ensure that our materials are broadly
available and freely accessible. These channels include
a university-supported website for text chapters and
hands-on exercises, and Vimeo for the videos (see
Figure 3). These materials can be found at
https://research.cs.wisc.edu/mist/SoftwareSe
curityCourse/.

Educational Components

The basic educational products that we have
produced are a comprehensive set of learning units,
where each unit will contain the following educational
components:

EC1. A video lecture of approximately 10-20 minutes
long: Each lecture starts with motivation and
learning goals, followed by a sequence of technical
topics to develop the student’s understanding of the
material.

EC2. Closed captioning for each lecture, in both English
and Spanish: As time permits and outside resources
allow, we will include other languages.

EC3. Lecture slides for instructors: The slides from
each unit are available separately in source form
(PowerPoint) for trainers and instructors.

EC4. A text chapter that reinforces the material in that
lecture: This written guide provides coverage of the

lecture material, with increased detail,
examples, and exercises. In addition, many chapters
contain links to further in-depth readings.

EC5. Active learning exercises: Associated with each
unit are in-class exercises that reinforce the material

basic

in those units. These are meant to be done
collaboratively in small groups and then discusses as
a whole class.

EC6. Hands-on exercises: These exercises guide the
student in trying out the ideas presented in the video
and text. Each exercise is delivered in a container or
virtual machine image, with a guide and ready-to-
run code. The exercises include those that are
suitable as traditional homework assignments and

those intended for classroom-based active learning.

IEEE Security & Privacy

In the near future, these exercises will be cloud
ready and launchable.
EC7. Evaluation and assessment materials: These
materials include those for both self-assessment
activities and conventional testing. These materials

are the basis for certifying the students and trainees.

Delivery Channels

As we mentioned above, our software security
educational materials can be applied to a variety of
learning contexts. Some of the delivery channels that
we address include:

S1. The semester-long class, based on a flipped
(blended learning) [5], classroom with active
learning exercises: Taken in total, the material that
we have developed forms a coherent body of
knowledge to support an advanced undergraduate
class, such as the Introduction to Software Security
(CS542) advanced undergraduate class that we
introduced at the University of Wisconsin-Madison
and Seguridad y Vulnerabilidad del Software at the
Universitat Autonoma de Barcelona. The online
lectures, text, and exercises allow the instructor to
use class time for discussion, learning
sessions, and evaluation to support each unit.

S2. Supplemental material to support traditional

active

computer science courses, such as courses in
operating systems, databases, computer security, or
even introductory programming: For example, (1)
the SQL Injection unit can used in a database course,
(2) the pointers and memory unit in an operating
systems course, (3) a selected set of units to provide
the software security sections of a broader
introductory course on software security, and (4) the
unit on introduction to software assurance tools in
the introductory programming sequence.

$3. Professional training courses (tutorials) intended
for workforce development: Such courses are
typically taught in anything from half-day to three-
day formats. These courses combine a coherent
sequence of video lectures to cover focused topics
of interest to the venue (company or organization)
and audience. The longer format classes typically
include hands-on exercises.

S4. Motivational lecture: There are a variety of venues
for a basic introduction to software security, that is
accessible to students with the most basic

March/April 2022

programming background. Examples of such venues
include a high school AP Computer Science course,
an Hour of Code (https://hourofcode.com/)
presentation, or a Hackathon. Such lectures can
motivate students to select career paths that lead
them into a Cl career.

S5. Live lecture class: The presentation materials,
separate from the video lectures, can be used by
instructors in any of the above contexts to
supplement their live lecture materials.

CURRICULUM

We have divided the subject into technical area
modules, where each module is divided into units (see
Table 1: Overview of Software Security Curriculum).
Each unit can have a video lecture, text chapter,
hands-on exercises, and evaluation activity.

To date, we have 37 video units (with over 10,000
views), 20 text chapters, and 20 hands-on (homework)
exercises. In addition, we have 25 active learning
exercises and 15 quizzes to support instructor-led class
teaching.

This curriculum is a starting point and will evolve
based on student, colleague, and organizational
feedback, and on our experiences as we introduce new
materials to the various learning contexts. As we
complete the initial coverage of topics, we will then
review existing topics for updates and add new topics.
By making our materials free and open, we hope to
form a software security community where, the topics
will naturally expand as our colleagues will contribute
material of their own. For example, Prof. Daphne Yao’s
group at Virginia Tech is currently developing a unit on
the safe use of cryptographic libraries.

Table 1: Overview of Software Security Curriculum

Module Topic

Module 0 Introduction and welcome

Module 1 Basic concepts and terminology:

Provide a common language and background
for a precise discussion of software security.
Introduce to terms and concepts such as risk,
threat, weakness, vulnerability, exploit,

confidentiality, integrity, and availability.

Thinking like an attacker:
Introduction to how the experienced attacker
views a system and the concept of “owning the

EDUCATION

Module 2

Module 3

Module 4

Module 5

Module 6

bits”. Redefine exploit from the attacker’s point
of view and introduce terms and concepts such
as attack surface and impact surface. Describe
some classic attacks from this point of view.

Thinking like a designer:

The secure design principles, software security
life cycle, Microsoft Threat Modeling, and other
approaches to incorporating security into
program design. Introduction to the security life
cycle, trust boundaries, threat identification
diagraming, validation, and mitigation. Discuss
common threat categories based on the
STRIDE model: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of
service, and Elevated privilege. Learn how to
capture the design, evaluate the risk, and
mitigate the risk.

Thinking like a secure
programming:

This module covers a wide variety of coding
weaknesses that can lead to vulnerabilities,
including pointers and memory, numeric errors
(a seriously underestimated category), race
conditions, exceptions, serialization, privilege
de-escalation, sandboxing, DNS, injections
(SQL, command, language, and XML), web
(cross site techniques, session hijacking, open
redirect), and mobile.

programmer,

Thinking like a systems person, defensive
techniques:

This module covers a variety of compiler,
operating system, and processor defensive
techniques, including address space layout
randomization (ASLR), stack canaries, dynamic
memory checks, and W@X. These techniques

make your program more difficult to attack

Thinking like an analyst, in-depth vulnerability
assessment:

Working as an analyst, learn how to evaluate a
software system for vulnerabilities. Vulnerability
assessment includes identifying the trust
boundaries and attack surface, key software
architectural features and resources, trust and
privilege analysis, detailed component analysis,
and results dissemination. The goal is to focus
on the high value assets in a system.

Thinking like an analyst, automated assessment
tools:

Automated analysis tools, including static and
dependency checking, are a base-line
technique to be used by every program. Topics
for static analysis tools include understanding
the conceptual basis for code analyses,
including the basics of program control and

dataflow, flow sensitivity, context sensitivity,
inter-procedural analysis, and pointer analysis.
Topics for dynamic analysis tools include
program instrumentation and control, code
coverage, and input-set generation. Includes a
discussion of the practical application of a
variety of software assurance tools and tool
environments and the limitations of these tools.

Module 7 Dynamic Techniques, fuzz testing and other

checkers:

Introduction to fuzz testing as a state-space
exploration exercise (an application of “owning
the bits” from Module 1.2). Topics include the
background and principle of fuzz random
testing, techniques for using fuzz tools (such as
American Fuzzy Lop), techniques for input
generation, and how to develop their own
custom fuzz tool.

THE CURRENT SOFTWARE SECURITY
CURRICULUM ECOSYSTEM

It is good to see Software Security included as one
of eight knowledge areas included in the Cybersecurity
Curricula 2017 guidelines produced by a Joint Task
Force on Cybersecurity Education [7] and again in the
Cybersecurity Curricular Guidance for Associate-
Degree Programs [8].

Many computer programs
undergraduate classes in computer or information
security. These courses cover a wide spectrum of
topics but focus only in a limited way on software
security issues. While these courses have a clear value

science include

in developing skills to mitigate cybersecurity risk, they
often do not have an emphasis on the software
security skills and practices needed to build security
into the devices on which we rely within every sector
of our economy and for many activities in our daily
lives.

A course titled “Build It, Break It, Fix It” originally
taught at several U.S. universities became a contest [9]
aimed at assessing the ability to securely build
software, not just break it. The Software Engineering
Institute at Carnegie Mellon University has developed
software assurance reference curricula for Masters,
Undergraduate, and Community College as well as for
Executives.

There are also open resources for learning some
software security topics. Of the resources found at the

IEEE Security & Privacy

site Free and Low Cost Online Cybersecurity Learning
Content maintained by NIST’s National Initiative for
Cybersecurity Education [6] only one, at the time this
article was published, was focused software security.
There are also courses from safecode.org. These are
short, introductory video modules on a variety of
software assurance topics, such as Secure Memory
Handling and Cross Site Scripting. While their
materials are well prepared, they cover only a few
specific areas and are not of sufficient depth and
coverage to be used in a university or professional
setting, and do not include exercises.

Professional training companies, such as SANS
Institute, Secure Coding Academy, Infosec Institute,
AppSec Labs, Denim Group, and John Bryce Training
College, provide software security training at a cost to
the students (or organizations that contract for their
use) and are unlikely to share for their materials with
other instructors for free use.

HOW WE GOT HERE

Our curriculum was not created in isolation. It grew
out of our years of experience doing in-depth software
vulnerability assessments and our research efforts to
improve and automate the assessment process [10].

Our academic software assessment activities
started in 2006 with a request to help increase the
security assurance of the infrastructure software that
was running in the TeraGrid (the predecessor of
XSEDE). Since we were located in the same
department as the Condor (now HTCondor) project,
and since Condor was a core element of the TeraGrid
environment, we started assessing that software. At
that time, there were no well-defined processes for
approaching such a large body of software for
assessment. As part of our assessment activity, we
worked to structure our activity and, as a result,
developed the First Principles Vulnerability
Assessment (FPVA) methodology [11].

Over the years, we have refined FPVA and have had
it applied to many important code bases by us and
teams that we have trained. Under DHS funding, we
assessed Wireshark and Google Chrome. Under NATO
and the European Commission funding, we assessed
critical Grid software, including MyProxy, VOMS
Admin, VOMS Core, glExec, Argus, WMS, and CREAM.
In addition, we have recently assessed the software
used to control about half of the world’s container

March/April 2022

shipping ports [12], finding and helping to fix major
software vulnerabilities that would have allowed an
attacker to cause great harm. In addition, we used
these experiences to help evaluate the effectiveness
of software analysis tools [13].

WHERE DO WE GO FROM HERE?

The materials we have developed are a work in
progress. The security field changes rapidly, so we will
continue to evolve our materials, updating topics,
adding new topics (including those from colleagues),
and increasing our reach with closed captions in
additional languages.

And, of course, we will continue to proselytize
security in academia, industry, and
government. The recent White House Executive Order
[14] directly addresses software security and may act
to increase interest in software security education and
training. As a closing note, our training materials cover
attacks on a logging service and command injections,

software

so the knowledge to prevent serious global software
vulnerabilities such as the one that enabled the recent
Apache log4j2 logging service [15] attack, is already at
hand.

ACKNOWLEDGMENT

This paper is a product of Trusted CI. Trusted CI is
supported by the National Science Foundation under Grant
#1920430. For more information about Trusted CI, visit:
http://trustedci.org/. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. We
are grate for to Bill Newhouse, Jelena Mirkovic and Blair
Taylor for their many useful suggestions to help improve
this paper.

B REFERENCES

1. Matt Bishop, Deborah Frincke, “Teaching Secure
Programming”, IEEE Security & Privacy, vol. 3,
September/October 2005.

2. Siddharth Kaza, Blair Taylor, Kyle Sherbert, “Hello,
World! — Code Responsibly”, IEEE Security & Privacy,
vol 16, January/February 2018. DOI
10.1109/MSP.2018.1331035.

3. Dave Gruber, “Modern Application Development
Security”, Enterprise Strategy Group, August 2020.
https://info.veracode.com/survey-report-esg-modern-
application-development-security.html

4. Stuart Zweben and Betsy Bizot, “2020 Taulbee
Survey, Bachelor's and Doctoral Degree Production”,

EDUCATION

10.

1.

12.

13.

14.

15.

Computing Research Association, 2021.
https://cra.org/resources/taulbee-survey/

Eric Mazur, Peer Instruction: A User's Manual Series
in Educational Innovation, Prentice Hall, Upper Saddle
River, NJ, 1997.

“Free and Low Cost Online Cybersecurity Learning
Content”’, Information Technology Laboratory,
National Institutes of Standards and Technology,
https://www.nist.gov/itl/applied-
cybersecurity/nice/resources/online-learning-content,
accessed December 2021.

“Cybersecurity Curricula 20177, Computing Curricula
Series Joint Task Force on Cybersecurity Education,
December 2017. https://cybered.hosting.acm.org/wp-
content/uploads/2018/02/newcover_csec2017.pdf
“Cybersecurity Curricular Guidance for Associate-
Degree Programs”, Committee for Computing
Education in Community Colleges, January 2020.
https://ccecc.acm.org/files/publications/Cyber2yr2020
.pdf

James Parker, Michael Hicks, Andrew Ruef, Michelle
L. Mazurek, Dave Levin, Piotr Mardziel and Kelsey R.
Fulton, “Build It, Break it, Fix It, Contesting Secure
Development”, ACM Transactions on Privacy and
Security 23, 2, article 10, April 2020.
https://dl.acm.org/doi/fullHtmlI/10.1145/3383773.
Wenbin Fang, James A. Kupsch, and Barton P. Miller,
“Automated Tracing and Visualization of Software
Security Structure and Properties”, Symposium on
Visualization for Cyber Security (VizSec), Seattle,
October 15, 2012.

James A. Kupsch, Barton P. Miller, Eduardo César,
and Elisa Heymann, “First Principles Vulnerability
Assessment”, 2010 ACM Cloud Computing Security
Workshop, Chicago, IL, October 2010.

Joseph O. Eichenhofer, Elisa R. Heymann, Barton P.
Miller and Kyung Won (Arnold) Kang, “An In-Depth
Security Assessment of Maritime Container Terminal
Software Systems”, IEEE Access, vol. 8, July 2020.
https://doi.org/10.1109/ACCESS.2020.3008395.
Appeared in earlier form in: Joseph O. Eichenhofer,
Elisa Heymann and Barton P. Miller, "In-Depth
Software Vulnerability Assessment of Container
Terminal Systems", 2nd NATO Conference on Cyber
Security in the Maritime Domain, Souda, Crete,
Greece, September 2017.

James A. Kupsch, Elisa Heymann, Barton P. Miller,
and Vamshi Basupalli, “Bad and Good News about
Using Software Assurance Tools”, Software: Practice
& Experience, April 2016.
http://onlinelibrary.wiley.com/doi/10.1002/spe.2401/fu
Il

The “Executive Order on Improving the Nation’s
Cybersecurity”, The White House, May 12, 2021.
https://www.whitehouse.gov/briefing-
room/presidential-actions/2021/05/12/executive-
order-on-improving-the-nations-cybersecurity/
“Apache Log4j Vulnerability Guidance”, Cybersecurity
& Infrastructure Security Agency, U.S. Department of

Homeland Security, December
https://www.cisa.gov/uscert/apache-log4;j-
vulnerability-guidance

2021,

Elisa Heymann is a Senior Scientist on the NSF
Cybersecurity Center of Excellence at the University
of Wisconsin-Madison, and an Associate Professor
at the Autonomous University of Barcelona. She co-
directs the MIST software vulnerability assessment
at the Autonomous University of Barcelona, Spain.
She coordinates the in-depth vulnerability
assessments for NSF Trusted Cl and was also in
charge of the Grid/Cloud security group at the UAB.
Heymann participated in two major Grid European
Projects: EGI-INSPIRE and European Middleware
Initiative (EMI). Heymann's research interests
include security and resource management for Grid
and Cloud environments. Her research is supported
by the NSF, Spanish government, the European

Commission, and NATO. Contact her at
elisa@cs.wisc.edu
Barton Miller is the Vilas Distinguished

Achievement Professor and the Amar & Belinder
Sohi Professor in Computer Sciences at the
University of Wisconsin-Madison. He is a co-Pl on
the Trusted ClI NSF Cybersecurity Center of
Excellence, where he leads the software assurance
effort and leads the Paradyn Tools project, which is
investigating performance and instrumentation
technologies for parallel and distributed applications
and systems. His research interests include software
security, in-depth vulnerability assessment, binary
and malicious code analysis and instrumentation,
extreme scale systems, and parallel and distributed
program measurement and debugging. In 1988,
Miller founded the field of Fuzz random software
testing, which is the foundation of many security and
software engineering disciplines. In 1992, Miller
(working with his then-student Prof. Jeffrey
Hollingsworth) founded the field of dynamic binary
code instrumentation and coined the term “dynamic
instrumentation”. Miller is a Senior Member of the
IEEE and a Fellow of the ACM. Contact him at
bart@cs.wisc.edu

IEEE Security & Privacy

O <8

TRUSTED €1

urne

CEHTER OF I¥CELLERCE

da Rl

Introduction to Software Security

Videos by Elisa Heymann and Barton P. Miller
Text by Elisa Heymann, Loren Kohnfelder and Barton P. Miller

Contacts: siiaclcs.vizs.eds 8nd sectecavizs.ada.

£ 2021 Eliza H=ymann, Barion P. Miller and Loren Kohnf=lkier

This work is lioensed under a Creative Commons fcl.'trltLh"'r KonCommercial-Sharedlike 4.0 Intemational License.

Module 1- Introduction

1.2.2

1.2.1
1.1 |Introduction Part 1: Basic| Introduction Part 2; |Introduction Part 3: Risks |
Welcome snd Overview Terminology Threats and Basic Concepts
-- - e = ® - ® -
e [o e o e =
) || 3 Engilar. Rl _ﬂmm 3 Grglenn. Saowital
i 1.3
Thinking Like sn Attscker:
Owning the Bits
- -
L~ a2
MM
$8 D el |
Modul= 2: Thinking Lik= a De=ign=r
o 2.2 2.3
5 i Mumom Threst Modeling
Sacure Design Principles Methodology
e E
S [@ | e
Maduh: 3= Thin'l{ing Like ‘an Programmer: Secure Programming
3.1 3.3 3.4
Pointers snd Strings Directory Traversal Exceptions
- I:I 1
w @ . m o e - e 2\
3.5 3.6 3.7 3.8 .
Carialie AbioRT Privilege, Sandboxing, Host Mame Introduction to Injection
Environments Authentication Attacks
T ngaen, Gamts b FET | e s
b o B
3.8.1 3.8.4
w @ F u@lﬂu@-.iu®ﬁl
3.5.1 3.9.4
" mmm. mmm :
Web Attacks: rn iy ks el m:tm
Background Srorheb oy et Session Mansgement
[¥s5) Forgery [CSRE) ﬁ
3.0.5
3.10.1 3.10.2
Wb Attacks: . .
st Mobile: Background Mobite: Attacks
s - . =) =y F;a
:
Modulz 4: Defensive Technigues
a1 e 4.3
e Memory Safety Chechs Control Flow Integrity
D Checks
e = = - -
o 2 [&
B g

Figure 1: Current Online Instructional Material Web Site
https://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

March/April 2022

https://www.researchgate.net/publication/359392390

