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Abstract

In fitting data with a spline, finding the optimal placement of knots can significantly
improve the quality of the fit. However, the challenging high-dimensional and non-
convex optimization problem associated with completely free knot placement has been
amajor roadblock in using this approach. We present a method that uses particle swarm
optimization (PSO) combined with model selection to address this challenge. The
problem of overfitting due to knot clustering that accompanies free knot placement is
mitigated in this method by explicit regularization, resulting in a significantly improved
performance on highly noisy data. The principal design choices available in the method
are delineated and a statistically rigorous study of their effect on performance is carried
out using simulated data and a wide variety of benchmark functions. Our results
demonstrate that PSO-based free knot placement leads to a viable and flexible adaptive
spline fitting approach that allows the fitting of both smooth and non-smooth functions.

1 Introduction

A spline of order k is a piecewise polynomial function that obeys continuity conditions
onits value and its first k —2 derivatives at the points, called knots, where the pieces join
(de Boor 2001). Splines play an important role in nonparametric regression (Wegman
and Wright 1983; Wahba 1990; Hardle 1990), simply called curve fitting when the
data is one dimensional, where the outcome is not assumed to have a predetermined
form of functional dependence on the predictor.

It has long been recognized (Wold 1974; Burchard 1974; Jupp 1978; Luo and
Wahba 1997) that the quality of a spline fit depends significantly on the locations of
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the knots defining the spline. Determining the placement of knots that is best adapted
to given data has proven to be a challenging non-linear and non-convex, not to mention
high-dimensional, optimization problem that has resisted a satisfactory solution.

A diverse set of methods have been proposed that either attempt this optimization
problem head-on or solve an approximation to it in order to get a reasonable solution.
In the latter category, methods based on knot insertion and deletion (Smith 1982;
Lyche and Mgrken 1988; Friedman and Silverman 1989; Friedman 1991; Stone et al.
1997) have been studied extensively. In these methods, one starts with a fixed set of
sites for knots and performs a step-wise addition or removal of knots at these sites. The
best number of knots is determined by a model selection criterion such as generalized
cross validation (GCV) (Luo and Wahba 1997; Golub et al. 1979). Step-wise change in
knot placement is not an efficient exploration of the continuous space of possible knot
positions and the end result, while computationally inexpensive to obtain and tractable
to mathematical analysis, is not necessarily the best possible (Zhou and Shen 2001).
Another approach explored in the literature is the two-stage framework in which the
first stage identifies a subset of active or dominant knots and the second stage merges
them in a data dependent way to obtain a reduced set of knots (Park and Lee 2007,
Kang et al. 2015; Luo et al. 2019). These methods have shown good performance for
low noise applications.

In attempts at solving the optimization challenge directly, general purpose stochas-
tic optimization algorithms (metaheuristics) such as genetic algorithm (GA) (Mitchell
1998), artificial immune system (AIS) (Ulker and Arslan 2009) or those based on
Markov chain Monte Carlo (MCMC) (Green 1995), have been studied (Pittman 2002;
DiMatteo et al. 2001; Yoshimoto et al. 2003; Miyata and Shen 2003). These methods
have proven quite successful in solving many challenging high-dimensional optimiza-
tion problems in other fields and it is only natural to employ them for the problem
of free knot placement. However, GA and AIS are more suited to discrete optimiza-
tion problems rather than the inherently continuous one in knot optimization, and
MCMC is computationally expensive. Thus, there is plenty of scope for using other
metaheuristics to find better solutions.

It was shown in Gélvez and Iglesias (2011), and independently in Mohanty (2012),
that particle swarm optimization (PSO) (Kennedy and Eberhart 1995), a relatively
recent entrant to the field of nature inspired metaheuristics such as GA, is a promising
method for the free knot placement problem. PSO is governed by a much smaller set
of parameters than GA or MCMC and most of these do not appear to require much
tuning from one problem to another. In fact, as discussed later in the paper, essentially
two parameters are all that need to be explored to find a robust operating point for
PSO.

An advantage of free knot placement is that a subset of knots can move close enough
to be considered as a single knot with a higher multiplicity. A knot with multiplicity
> 1 can be used to construct splines that can fit curves with discontinuities. Thus,
allowing knots to move and merge opens up the possibility of modeling even non-
smooth curves. That PSO can handle regression models requiring knot merging was
demonstrated in Gdlvez and Iglesias (2011) albeit for examples with very low noise
levels.
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It was found in Mohanty (2017), and later in a simplified model problem (Mohanty
2018), that the advantage engendered by free knot placement turns into a liability as
the level of noise increases: knots can form spurious clusters to fit outliers arising from
noise, producing spikes in the resulting estimate and making it worse than useless.
This problem was found to be mitigated (Mohanty 2018) by introducing a suitable
regulator (Ruppert et al. 2003). Regularization has also been used in combination with
knot addition (Luo and Wahba 1997) but its role there—suppression of numerical
instability arising from a large numbers of knots—is very different.

The progress on free knot placement described above has happened over decades
and in somewhat isolated steps that were often limited by the available computing
power. However, the tremendous growth in computing power and the development of
more powerful metaheuristics has finally brought us to the doorstep of a satisfactory
resolution of this problem, at least for one-dimensional regression.

In this paper, we combine PSO based knot placement with regularization into a
single algorithm for adaptive spline fitting. The algorithm, called Swarm Heuristics
based adaptive and penalized estimation of splines (SHAPES), has the flexibility to
fit non-smooth functions as well as smooth ones without any change in algorithm
settings. It uses model selection to determine the best number of knots, and reduces
estimation bias arising from the regularization using a least squares derived rescaling.
Some of the elements of SHAPES outlined above were explored in Mohanty (2018)
in the context of a single example with a simple and smooth function. However, the
crucial feature of allowing knots to merge was missing there along with the step of
bias reduction. (The bias reduction step does not seem to have been used elsewhere to
the best of our knowledge.)

Various design choices involved in SHAPES are identified clearly and their effects
are examined using large-scale simulations and a diverse set of benchmark functions.
Most importantly, SHAPES is applied to data with a much higher noise level than has
traditionally been considered in the field of adaptive spline fitting and found to have
promising performance. This sets the stage for further development of the adaptive
spline methodology for new application domains.

The rest of the paper is organized as follows. Section 2 provides a brief review of
pertinent topics in spline fitting. The PSO metaheuristic and the particular variant used
in this paper are reviewed in Sect. 3. Details of SHAPES are described in Sect. 4 along
with the principal design choices. The setup used for our simulations is described in
Sect. 5. Computational aspects of SHAPES are addressed in Sect. 6. This is followed
by the presentation of results in Sect. 7. Our conclusions are summarized in Sect. 8.

2 Fitting splines to noisy data

In this paper, we consider the one-dimensional regression problem

yi = f(x)+e€, (1

i=0,1,...,N=1,x0=0,xy_1 =1, xj41 > xi,withf()Q unknown and ¢; drawn
independently from N (0, 1). The task is to find an estimate f(x), given {y;}, of f(x).
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To obtain a non-trivial solution, the estimation problem must be regularized by
restricting f(x) to some specified class of functions. One reasonable approach is to
require that this be the class of “smooth” functions, and obtain the estimate as the
solution of the variational problem,

N—-1 1
7 = argmin, [Z i — FE)) + A /O dx (f”(x))z} . @)

i=0

It can be shown that the solution belongs to the space of cubic splines defined by {x;}
as the set of knots. Consequently, fis known as the smoothing spline estimate (Wahba
1990; Reinsch 1967). In Eq. (2), the first term on the right measures the fidelity of the
model to the observations and the second term penalizes the “roughness”, measured by
the average squared curvature, of the model. The trade-off between these competing
requirements is controlled by A > 0, called the regulator gain or smoothing parameter.

The best choice for A is the principle issue in practical applications of smoothing
spline. The use of GCV to adaptively determine the value of A was introduced in Craven
and Wahba (1978) and is used, for example, in the implementation of smoothing
spline in the R (Core Team 2019) stats package. A scalar A, adaptively selected
or otherwise, is not well suited to handle a function with a heterogeneous roughness
distribution across its domain. The use of a spatially adaptive gain function, A(x), has
been investigated in different forms (Wahba 2002; Storlie et al. 2010; Liu and Guo
2010; Wang et al. 2013) to address this issue.

A different regularization approach is to eschew an explicit penalty term and reg-
ularize the fitting problem by restricting the number of knots to be << N. This leads
to the regression spline (Wold 1974) estimate in which f(x) is represented as a linear
combination of a finite set of basis functions—the so-called B-spline functions (de
Boor 2001; Curry and Schoenberg 1947) being a popular choice—that span the space
of splines associated with the chosen knot sequence and polynomial order. Differ-
ent methods for adaptive selection of the number of knots, which is the main free
parameter in regression spline, have been compared in Wand (2000). The asymptotic
properties of smoothing and regression spline estimates have been analyzed theoreti-
cally in Claeskens et al. (2009).

Smoothing and regression splines are hybridized in the penalized spline (Ruppert
et al. 2003; Eilers and Marx 1996; Eilers et al. 2015) approach: the deviation of the
spline model from the data is measured by the least squares function as in the first term
of Eq. (2) but the penalty becomes a quadratic form in the coefficients of the spline in
the chosen basis set. As in the case of smoothing spline, adaptive selection of the scalar
regulator gain can be performed using GCV (Ruppert et al. 2003) and locally adaptive
gain coefficients have been proposed in Ruppert and Carroll (2000), Krivobokova et al.
(2008), Scheipl and Kneib (2009) and Yang and Hong (2017). The performance of
alternatives to GCV for selection of a scalar regulator gain have been investigated and
compared in Krivobokova (2013).

While penalized spline is less sensitive to the number of knots, it is still a free
parameter of the algorithm that must be specified. Joint adaptive selection of the
number of knots and regulator gain has been investigated in Luo and Wahba (1997)
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and Ruppert (2002) using GCV. Other model selection methods can also be used for
adaptive determination of the number of knots (see Sect. 2.3).

2.1 B-spline functions

Given a set of M knots b = (bg, by, ...,by—_1),b; € [0,1],b;11 > b;, and given
order k of the spline polynomials, the set of splines that interpolates {(y;, b;)}, yi € R,
forms a linear vector space of dimensionality M + k — 2. A convenient choice for
a basis of this vector space is the set of B-spline functions (Curry and Schoenberg
1947).

In this paper, we need B-spline functions for the more general case of a knot
sequence T = (19, T1, ..., Tp—1), Ti+1 = T; with P > M knots, in which a knot can
appear more than once. The number of repetitions of any knot cannot be greater than
k.Also,tj =bofor0 < j<k—1,andt; =by_jfor P—k < j < P —1. The
span of B-spline functions defined over a knot sequence with repetitions can contain
functions that have jump discontinuities in their values or in their derivatives. (The
dimensionality of the spanis P — k.)

The Cox—de Boor recursion relations (de Boor 1972) given below provide an effi-
cient way to compute the set of B-spline functions, {B; x(x; T)}, for any given order.
The recursions start with B-splines of order 1, which are piecewise constant functions

_ l,t;,<x<r1;
Bji(x:T) = {0 AR @)
For2 < k' <k,

Bijp(x) =wj(xX)Bjr-1(x) + Vjr1.0(x)Bjy1x-1(x), 4)

Lt # T
wj @) = w0 " 5)

O, ‘Ej+k/_1 = ‘[j

l—wjp&), -1 #71j

s(x) = ’ . 6
y],k( ) {0’ Tj+k’—1 — _L_j ( )

In the recursion above, 0 < j < P — k' — 1. Figure 1 provides an illustration of
B-spline functions.

The regression spline method is elegantly formulated in terms of B-spline functions.
The estimate is assumed to belong to the parametrized family of linearly combined
B-spline functions,

P—k—1
fs@ T = Y ajBjix:T), )
Jj=0
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Fig. 1 Cubic B-spline functions {B; 4(x;7)},i = 0, 1,..., 11, for an arbitrary choice of 16 knots (7)
marked by squares. For visual clarity, alternate B-spline functions are shown in black and gray. Knots with
multiplicity > 1 result in B-splines that are discontinuous in value or derivatives

where @ = (ag, o1, ..., p_k—1). The least-squares estimate is given by f(x) =
f(x;a,T), where @ and T minimize

N-1
L@ =) (y—fx;a1)] ®)
i=0
2.2 Regression and penalized spline with free knot placement
The penalized spline estimate is found by minimizing

Ly(@,7) = L@, 7) + A\R@), ©)

over the spline coefficients (c.f. Eq. 7), where R (@) is the penalty, while keeping the
number of knots and knot locations fixed. In this paper, we choose

P—k—1
R@= > o (10)
j=0
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for reasons explained below.

Formally, the penalty function can be derived by substituting Eq. (7) in the roughness
penalty. This would lead to a quadratic form similar to the penalty in Eq. (10) but with
a kernel matrix that is not the identity matrix (Ramsay and Silverman 1997). The
elements of this matrix would be Euclidean inner products of B-spline derivatives.
However, using such a penalty adds a substantial computational burden in free knot
placement because it has to be recomputed every time the knot placement changes.
Computational aspects of this problem are discussed in Eilers and Marx (1996), where
a simplified form of the roughness penalty is used that is based on the differences of
coefficients of adjacent B-splines. This is a good approximation for the case considered
in Eilers and Marx (1996) of a large number of fixed knots and closely spaced B-
splines, but not necessarily for free knots that may be small in number and widely
spread out. Another perhaps more important consideration is that repeated knots in
free knot placement result in B-splines with discontinuous derivatives. This makes
the kernel matrix particularly challenging for numerical evaluation and increases code
complexity. In this paper, we avoid the above issues by using the simple form of the
penalty function in Eq. (10) and leave the investigation of more appropriate forms to
future work. We note that the exploration of innovative penalty functions is an active
topic of research (e.g., Lindstrom 1999; Eilers et al. 2015; Goepp et al. 2018).

While the reduction of the number of knots in regression spline coupled with the
explicit regularization of penalized spline reduces overfitting, the fit is now sensitized
to where the knots are placed. Thus, the complete method involves the minimization
of L, («, T) (c.f., Eq. 9) over both @ and 7. (The method of regression spline with knot
optimization and explicit regularization will be referred to as adaptive spline in the
following.)

Minimization of L, over & and T can be nested as follows.

min L; (@, T) = min <minLA(&,?)). (11)
T, T o

The solution, @(T), of the inner minimization is expressed in terms of the (P —k)-by-N
matrix B(7), with

Bm,n T) = Bm,k(xn§ 7), (12)

as
@@ =yB'G™, (13)
G = BB’ + I, (14)

where I is the (P — k)-by-(P — k) identity matrix. The outer minimization over T of
F.(7) = Li(@(7), 7), (15)
needs to be performed numerically.
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Due to the fact that freely moveable knots can coincide, and that this produces dis-
continuities in B-spline functions as outlined earlier, curve fitting by adaptive spline can
accommodate a broader class of functions—smooth with localized discontinuities—
than smoothing or penalized spline.

The main bottleneck in implementing the adaptive spline method is the global min-
imization of F) (T) since it is a high-dimensional non-convex function having multiple
local minima. Trapping by local minima renders greedy methods ineffective and high
dimensionality makes a brute force search for the global minimum computationally
infeasible. This is where PSO enters the picture and, as shown later, offers a way
forward.

2.3 Model selection

In addition to the parameters o and T, adaptive spline has two hyper-parameters,
namely the regulator gain A and the number of interior knots P — 2(k — 1), that
affect the outcome of fitting. Model selection methods can be employed to fix these
hyper-parameters based on the data.

In this paper, we restrict ourselves to the adaptive selection of only the number
of knots. This is done by minimizing the Akaike information criterion (AIC) Akaike
(1998): For a regression model with K parameters 0 = 60,01, ...,0k_1),

AIC = 2K —2maxIn (A®®)), (16)
0

where A (8) is the likelihood function. The specific expression for AIC used in SHAPES
is provided in Sect. 4.

3 Particle swarm optimization

Under the PSO metaheuristic, the function to be optimized (called the fitness function)
is sampled at a fixed number of locations (called particles). The set of particles is
called a swarm. The particles move in the search space following stochastic iterative
rules called dynamical equations. The dynamical equations implement two essential
features called cognitive and social forces. They serve to retain “memories” of the
best locations found by the particle and the swarm (or a subset thereof) respectively.

Since its introduction by Kennedy and Eberhart (1995), the PSO metaheuristic has
expanded to include a large diversity of algorithms (Engelbrecht 2005). In this paper,
we consider the variant called local-best (or lbest) PSO (Kennedy 1999). We begin
with the notation (Normandin et al. 2018) for describing Ibest PSO.

F (x): the scalar fitness function to be minimized, with x = (xl Jx2 ., x4 ) € R4,
In our case, x is T, F is F)(7) (c.f., Eq. 15),andd = P — 2(k — 1).

S C R¥: the search space defined by the hypercube al <x)<bl,=1,2,....d
in which the global minimum of the fitness function must be found.

N : the number of particles in the swarm.

xi[k] € RY: the position of the ith particle at the kth iteration.
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— v;[k] € R?: a vector called the velocity of the ith particle that is used for updating
the position of a particle.

— pilk] € R?: the best location found by the ith particle over all iterations up to and
including the kth. p;[k] is called the personal best position of the ith particle.

F(pilk]) = min F(Qx;[j]). (17)
1<j<k

— ni[k]: a set of particles, called the neighborhood of particle i,n;[k] <
{1,2,..., Np}\ {i}. There are many possibilities, called topologies, for the choice
of n;[k]. In the simplest, called the global best topology, every particle is the neigh-
bor of every other particle: n;[k] = {1,2,..., Ny} \ {i}. The topology used for
Ibest PSO in this paper is described later.

— 1;[k] € R¥: the best location among the particles in n;[k] over all iterations up to
and including the kth. [;[k] is called the local best for the ith particle.

F(li[k]) = je{?}lLiE " F(pjlkD). (18)

i

- pelkl € R?: The best location among all the particles in the swarm, p,[k] is called
the global best.

F(pglkl) = min F(pilk]). 19)

The dynamical equations for lbest PSO are as follows.

vilk + 1] = wlk]v; [k] + c1(pi[k] — x; [k])ry

+ca(lilk] — x;[k])ra, (20)

xilk + 11 = xi[k] + zi[k + 11, 1)
| v/ [K], —vhax < v/ [K] < vh

21K = { —vhaxs /1Kl < —vihax : (22)

UrlnaXs U;'/ (k] > U'r/nax
Here, w[k] is a deterministic function known as the inertia weight, c¢; and c; are
constants, and r; is a diagonal matrix with iid random variables having a uniform
distribution over [0, 1]. Limiting the velocity as shown in Eq. (22) is called velocity
clamping.

The iterations are initialized at k = 1 by independently drawing (i) xij [1] from
a uniform distribution over [a/, b/], and (ii) vij [1] from a uniform distribution over

[a/ —xi] (11, b7 —xij [1]]. For termination of the iterations, we use the simplest condition:
terminate when a prescribed number N, of iterations are completed. The solutions
found by PSO for the minimizer and the minimum value of the fitness are pg[Njer]
and F(pg[Nier]) respectively. Other, more sophisticated, termination conditions are
available (Engelbrecht 2005), but the simplest one has served well across a variety of
regression problems in our experience.
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The second and third terms on the RHS of Eq. (20) are the cognitive and social
forces respectively. On average they attract a particle towards its personal and local
bests, promoting the exploitation of an already good solution to find better ones nearby.
The term containing the inertia weight, on the other hand, promotes motion along the
same direction and allows a particle to resist the cognitive and social forces. Taken
together, the terms control the exploratory and exploitative behaviour of the algorithm.
We allow the inertia weight w[k] to decrease linearly with k from an initial value w;ax
to a final value wpi, in order to transition PSO from an initial exploratory to a final
exploitative phase.

For the topology, we use the ring topology with 2 neighbors in which

i—1,i+1}i¢{l,N,}
nilkl= { (N,,i+1}, i=1 . (23)
i—1,1, =N,

The local best, /;[k], in the kth iteration is updated after evaluating the fitnesses of all
the particles. The velocity and position updates given by Eqgs. (20) and (21) respectively
form the last set of operations in the kth iteration.

To handle particles that exit the search space, we use the “let them fly” boundary
condition under which a particle outside the search space is assigned a fitness value
of co. Since both p;[k] and [;[k] are always within the search space, such a particle is
eventually pulled back into the search space by the cognitive and social forces.

3.1 PSO tuning

Stochastic global optimizers, including PSO, that terminate in a finite number of
iterations do not satisfy the conditions laid out in Solis and Wets (1981) for convergence
to the global optimum. Only the probability of convergence can be improved by tuning
the parameters of the algorithm for a given optimization problem.

In this sense, most of the parameters involved in PSO are found to have fairly robust
values when tested across an extensive suite of benchmark fitness functions (Bratton
and Kennedy 2007). Based on widely prevalent values in the literature, these are:
N, =40,c1 =2 = 2.0, wypax = 0.9, wyin = 0.4, and Vihax = 0.5[b7 — a’].

Typically, this leaves the maximum number of iterations, Njer, as the principal
parameter that needs to be tuned. However, for a given N, the probability of con-
vergence can be increased by the simple strategy of running multiple, independently
initialized runs of PSO on the same fitness function and choosing the best fitness value
found across the runs. The probability of missing the global optimum decreases expo-
nentially as (1 — Peony) Vs, where Peopy is the probability of successful convergence
in any one run and Ny is the number of independent runs.

Besides Nijer, therefore, Nyyps is the remaining parameter that should be tuned. If
the independent runs can be parallelized, Ny is essentially fixed by the available
number of parallel workers although this should not be stretched to the extreme. If
too high a value of N is needed in an application (say Npns > 8), it is usually

an indicator that P.opny should be increased by tuning the other PSO parameters or by
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Input:

e y < Data

® Niuns < Number of PSO runs

® Niter < Maximum number of iterations

® Ninots  {M1, Mo, ..., Mmax}; Number of knots (not counting repetitions)
e )\ < Regulator gain
Execute:
for M € Nyt do > Loop over models
for r € {1,2,..., Nruns} do > (Parallel) loop over PSO runs
T(r) < arg min= F\ (T) using PSO > Best location
a(r) < B-spline coefficients corresponding to 7(r)
F(M,r) «+ Fx\(7(r)) > Best fitness value
end for
rar 4 arg min, F(M,r) > Best PSO run

AIC(M) < AIC for F(M,rpr) (c.f., Eq. 24)
f(M) « Estimated function corresponding to 7(rps) and a(rps)

end for
Mpest < arg min,,; AIC(M) > Model with lowest AIC

Jie f(Mbest) .
f + Bias corrected f (c.f., Sec. 4.1)

Output:

® Mpest N > Best model
e Estimated, bias-corrected f > Estimated function from best model
o F(Mpest T My ess) > Fitness of best model

Fig.2 Pseudo-code for the SHAPES algorithm. All quantities with parenthesized integer arguments stand
for arrays, with the argument as the array index

exploring a different PSO variant. In this paper, we follow the simpler way of tuning
Npuns by setting it to Npyps = 4, the typical number of processing cores available in a
high-end desktop.

4 SHAPES algorithm

The SHAPES algorithm is summarized in the pseudo-code given in Fig. 2. The user
specified parameters of the algorithm are (i) the number, Nyns, of PSO to use per
data realization; (ii) the number of iterations, Njr, to termination of PSO; (iii) the
set of models, Nyyos, over which AIC based model selection (see below) is used;
(iv) the regulator gain A. Following the standard initialization condition for PSO (c.f.,
Sect. 3), the initial knots for each run of PSO are drawn independently from a uniform
distribution over [0, 1].

A model in SHAPES is specified by the number of non-repeating knots. For each
model M € Nyyots, F (M, rpr) denotes the fitness value, where 1 < rp; < Npups is the
best PSO run. The AIC value for the model is given by

AIC =4M + F(M, ry), (24)

which follows from the number of optimized parameters being 2M (accounting for
both knots and B-spline coefficients) and the log-likelihood being proportional to the
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least squares function for the noise model used here. (Additive constants that do not
affect the minimization of AIC have been dropped.)

The algorithm acts on given data y to produce (i) the best fit model Myegt € Ninots;
(i1) the fitness value associated with the best fit model; (iii) the estimated function f
from the best fit model. The generation of fincludes a bias correction step described
next.

4.1 Bias correction

The use of a non-zero regulator gain leads to shrinkage in the estimated B-spline
coefficients. As a result, the corresponding estimate, f, has a systematic point-wise
bias towards zero. A bias correction transformation is applied to fas follows.

First, the unit norm estimated function % is obtained,

a1, (25)
(WAl
where ||f|| =0 f?]l/z is the L, norm.
Next, a scaling factor A is estimated as
N—1
A = argmin, Z (yi —an)?. (26)
i=0

The final estimate is given by f = A7

As discussed earlier in Sect. 2.2 (c.f. Egs. 9 and 10), the penalty used in this paper
is one among several alternatives available in the literature. For some forms of the
penalty, there need not be any shrinkage in the B-spline coefficients and the bias
correction step above would be unnecessary.

4.2 Knot merging and dispersion

In both of the mappings described in Sect. 4.3, it is possible to get knot sequences
in which a subset (7;, Ti+1, ..., Tigm—1) of 1 < m < M — 2 of interior knots falls
within an interval (x;, x4 1) between two consecutive predictor values. There are two
possible options to handle such a situation.

— Heal: Overcrowded knots are dispersed such that there is only one knot between
any two consecutive predictor values. This can be done iteratively by moving a
knot to the right or left depending on the difference in distance to the corresponding
neighbors.

— Merge: All the knots in an overcrowded set are made equal to the rightmost knot
Ti+m—1 until its multiplicity saturates at k. The remaining knots, 7; t0 Tj 4, —1—k, are
equalized to the remaining rightmost knot ; 4,,, — 1 —¢ until its multiplicity saturates
to k, and so on. (Replacing rightmost by leftmost when merging is an equally valid
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alternative.) Finally, if more than one set of merged knots remain within an interval
(xj,xj41), they are dispersed by healing.

If only healing is used, SHAPES cannot fit curves that have jump discontinuities in
value or derivatives. Therefore, if it is known that the unknown curve in the data is
free of jump discontinuities, healing acts as an implicit regularization to enforce this
condition. Conversely, merging should be used when jump discontinuities cannot be
discounted.

It is important to note that in both healing and merging, the number of knots stays
fixed at M + 2(k — 1) where M € Niqots-

4.3 Mapping particle location to knots

For a given model M € Nyyos, the search space for PSO is M dimensional. Every
particle location, 7 = (29, z1, - .-, 2ZMm—1), in this space has to be mapped to an M +
2(k — 1) element knot sequence T before evaluating its fitness Fj (7).

We consider two alternatives for the map from 7z to 7.

— Plain: 7 is sorted in ascending order. After sorting, k — 1 copies of zg and zp7—1
are prepended and appended respectively to z. These are the repeated end knots
as described in Sect. 2.1.

— Centered-monotonic: In this scheme (Leung 2015), the search space is the unit
hypercube: z; € [0, 1], Vi. First, an initial set of M knots is obtained from

Z0 = 70, 27
Ti —Ti—1
<isM—2 = ————, (28)
Ti+1 — Ti—1
TM—1—T
IM—1 = M_ (29)
1—1

This is followed by prepending and appending k — 1 copies of 79 and Ty
respectively to the initial knot sequence.

In the plain map, any permutation of Z maps into the same knot sequence due to sorting.
This creates degeneracy in Fj, which may be expected to make the task of global
minimization harder for PSO. The centered-monotonic map is designed to overcome
this problem: by construction, it assigns a unique T to a given z. Moreover, T is always
a monotonic sequence, removing the need for a sorting operation. This map also has
the nice normalization that the center of the search space atz; =0.5,1 <i <M —2,
corresponds to uniform spacing of the interior knots.

It should be noted here that the above two maps are not the only possible ones. The
importance of the “lethargy theorem” (degeneracy of the fitness function) and using a
good parametrization for the knots in regression spline was pointed out by Jupp (1978)
back in 1978. A logarithmic map for knots was proposed in Jupp (1978) that, while
not implemented in this paper, should be examined in future work.
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4.4 Optimization of end knots

When fitting curves to noisy one-dimensional data in a signal processing context, a
common situation is that the signal is transient and localized well away from the end
points xg and xy_ of the predictor. However, the location of the signal in the data—its
time of arrival in other words—may be unknown. In such a case, it makes sense to
keep the end knots free and subject to optimization.

On the other hand, if it is known that the curve occupies the entire predictor range,
it is best to fix the end knots by keeping zg and z,7_1 fixed. (This reduces the dimen-
sionality of the search space for PSO by 2.)

4.5 Retention of end B-splines

The same signal processing scenario considered above suggests that, for signals that
decay smoothly to zero at their start and end, it is best to drop the end B-spline functions
because they have a jump discontinuity in value (c.f., Fig. 1). In the contrary case, the
end B-splines may be retained so that the estimated signal can start or end at non-zero
values.

5 Simulation study setup

We examine the performance of SHAPES on simulated data with a wide range of
benchmark functions. In this section, we present these functions, the simulation pro-
tocol used, the metrics for quantifying performance, and a scheme for labeling test
cases that is used in Sect. 7. (In the following, the terms “benchmark function” and
“benchmark signal” are used interchangeably.)

5.1 Benchmark functions

The benchmark functions used in this study are listed in Table 1 and plotted in Fig. 3.

Function f] has a sharp change but is differentiable everywhere. Functions f> and
fe have jump discontinuities, and f3 has a jump discontinuity in its slope. Functions
fa and f5 are smooth but sharply peaked. Functions f7 to f1¢ all decay to zero at both
ends and serve to model smooth but transient signals; f7 to fo are designed to require
progressively higher number of knots for fitting; fjo is an oscillatory signal that is
typical for signal processing applications and expected to require the highest number
of knots. In addition, f7 and fg test the ability of SHAPES to localize time of arrival.

5.2 Data simulation
Following the regression model in Eq. (1), a simulated data realization consists of

pseudorandom iid noise drawn from N (0, 1) added to a given benchmark function
that is sampled uniformly at 256 points in [0, 1].
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Table 1 The benchmark functions used in this paper

Expression Domain
F1(x) = 90(1 4 ¢—100x—0.4))—1 x €0, 1]
0.01 + (x — 0.3)%)~! 0<x <06
fx)= 2 —1
(0.015 + (x — 0.65)2) 06<x<1
F3(x) = 100 10x=51 4 (10x — 5)° /500 xel0,1]
Fa(x) = sin(x) + 2¢~30x xe[-2,2]
f5(x) = sin(2x) + 2¢~16%% 42 xe[-2.2]
4x2(3 — 4x) 0<x<05
fo) = { $x(@x® —10x +7) - 3 05<x <075
Bxa—1? 075<x<1
f1(x) = B3 4(x;7); T = (10, 71, -+, T11)
03, 0<i<2 €[0.1]
%=10558<i<10 el
(1t3,...,77) = (0.3,0.4, .45,0.5,0.55)
f3(x) = B34(x: T) + B3 4(x —0.125; 7) xe[0.1]
fo(x) = B3.4(x —0.25,7) + B3 4(x — 0.125; T) x €[0,1]
_ (x=05)2
flo(x) = e~ 0135 sin (10.247 (x — 0.5)) xe[0,1]

The sources from which the functions have been obtained are: f] to f3 (Yoshimotoetal. 2003); f1 (DiMatteo
etal. 2001); f5 (Denison et al. 1998; Li and Yan 20006); fe (Lee 2002); f7 (Mohanty 2018). Functions fg
to f1¢ are introduced here

We consider the performance of SHAPES across a range of signal to noise ratio
(SNR) defined as,

snr = I (30)

o

where f is a benchmark function and o is the standard deviation—set to unity in
this paper—of the noise. For each combination of benchmark function and SNR,
SHAPES is applied to Ng = 1000 independent data realizations. This results in
1000 corresponding estimated functions. Statistical summaries, such as the point-wise
mean and standard deviation of the estimate, are computed from this set of estimated
functions.

5.3 Metrics

The principal performance metric used in this paper is the sample root mean squared
error (RMSE):

1/2
1 O .
RMSE = N—RZIIf—f,-||2 , 31)
=1
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Fig. 3 Benchmark functions normalized to have SNR = 100. The function name is indicated in the upper
left corner of each panel. The abscissa in each panel is identical to the one showing f1o

where f is the true function in the data and f; its estimate from the jth data realization.
We use bootstrap with 10* independently drawn samples with replacement from the
set{|| f — E %} to obtain the sampling error in RMSE.

A secondary metric that is useful is the sample mean of the number of knots in
the best fit model. To recall, this is the average of Myest € Nipors Over the Ng data
realizations, where Mpegt and Nipos Were defined in Sect. 4. The error in Mpeg; iS
estimated by its sample standard deviation.

5.4 Labeling scheme

Several design choices in SHAPES were described in Sect. 4. A useful bookkeeping
device for keeping track of the many possible combinations of these choices is the
labeling scheme presented in Table 2.

Following this labeling scheme, a string such as LP_100_0.1_50_FKM refers to
the combination: Ibest PSO; plain map from PSO search space to knots; SNR = 100
for the true function in the data; regulator gain A = 0.1; maximum number of PSO
iterations set to 50; end knots fixed; end B-splines retained; merging of knots allowed.
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Table 2 Labeling scheme for a combination of design choices in SHAPES

PSO algorithm (Sect. 3) L: lbest PSO *

Knot map (Sect. 4.3) P: Plain C: Centered-monotonic
SNR (Eq. 30) (Numerical)

A (Eq.9) (Numerical)

Niter (Number of PSO iterations) (Numerical)

End knots (Sect. 4.4) F': Fixed V. Variable

End B-splines (Sect. 4.5) K: Keep D: Drop

Knot merging (Sect. 4.2) M: Merge H: Heal

The string labeling a combination is formed by going down the rows of the table and (a) picking one
letter from the last two columns of each row, or (b) inserting the value of a numerical quantity. Numer-
ical values in the key string are demarcated by underscores on both sides. Thus, a key string looks like
Y1Yy_X3_X4_Xs5_YeY7Yg where Y; and X; stand for letter and numerical entries respectively, and i is the
row number of the table starting from the top. We have left the possibility open for replacing lbest PSO
with some other variant in the future. This is indicated by the ‘*x’ symbol in the top row

6 Computational considerations

The results in this paper were obtained with a code implemented entirely in MAT-
LAB (Matlab Release 2018b). Some salient points about the code are described below.

The evaluation of B-splines uses the efficient algorithm given in de Boor (2001).
Since our current B-spline code is not vectorized, it suffers a performance penalty in
MATLAB. (We estimate that it is & 50% slower as a result.) Nonetheless, the code is
reasonably fast: A single PSO run on a single data realization, for the more expensive
case of SNR = 100, takes about 11 sec on an Intel Xeon (3.0 GHz) class processor.
It is important to note that the run-time above is specific to the set, Nipots, of models
used. In addition, due to the fact that the number of particles breaching the search
space boundary in a given PSO iteration is a random variable and that the fitness of
such a particle is not computed, the actual run times vary slightly for different PSO
runs and data realizations.

The only parallelization used in the current code is over the independent PSO runs.
Profiling shows that &~ 60% of the run-time in a single PSO run is consumed by
the evaluation of particle fitnesses, out of which ~ 45% is spent in evaluating B-
splines. Further substantial saving in run-time is, therefore, possible if particle fitness
evaluations are also parallelized. This dual parallelization is currently not possible
in the MATLAB code but, given that we use N, = 40 particles, parallelizing all
N, fitness evaluations can be expected to reduce the run-time by about an order
of magnitude. However, realizing such a large number of parallel processes needs
hardware acceleration using, for example, graphics Processing Units.

The operations count in the most time-consuming parts of the code (e.g., evaluating
B-splines) scales linearly with the length of the data. Hence, the projected ratios above
in run-time speed-up are not expected to change much with data length although the
overall run-time will grow linearly.

The pseudorandom number streams used for the simulated noise realizations and in
the PSO dynamical equations utilized built-in and well-tested default generators. The
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PSO runs were assigned independent pesudorandom streams that were initialized, at
the start of processing any data realization, with the respective run number as the seed.
This (a) allows complete reproducibility of results for a given data realization, and
(b) does not breach the cycle lengths of the pseudorandom number generators when
processing a large number of data realizations.

7 Results

The presentation of results is organized as follows. Section 7.1 shows single data
realizations and estimates for a subset of the benchmark functions. Section 7.2 ana-
lyzes the impact of the regulator gain A on estimation. Sections 7.3 and 7.4 contain
results for SNR = 100 and SNR = 10 respectively. Section 7.5 shows the effect of
the bias correction step described in Sect. 4.1 on the performance of SHAPES for
both SNR values. In Sect. 7.6, we compare the performance of SHAPES with two
well-established smoothing methods, namely, wavelet-based thresholding and shrink-
age (Donoho and Johnstone 1995), and smoothing spline with adaptive selection of
the regulator gain (Craven and Wahba 1978). The former follows an approach that
does not use splines at all, while the latter uses splines but avoids free knot placement.
As such, they provide a good contrast to the approach followed in SHAPES.
In all applications of SHAPES, the set of models used was

Ninows = {5, 6,7, 8,9, 10, 12, 14, 16, 18}.

The spacing between the models is set wider for higher knot numbers in order to reduce
the computational burden involved in processing a large number of data realizations.
In an application involving just a few realizations, a denser spacing may be used.

Figure 4 shows the performance of Ibest PSO across the set of benchmark functions
as a function of the parameter Njer. Given that the fitness values do not change in a
statistically significant way when going from Njer = 100 to Njer = 200 in the
SNR = 100 case, we set it to the former as it saves computational cost. A similar plot
of fitness values (not shown) for SNR = 10 is used to set Njr = 50 for the SNR = 10
case.

7.1 Sample estimates

In Fig. 5, we show function estimates obtained with SHAPES for arbitrary single
data realizations. While not statistically rigorous, this allows an initial assessment of
performance when the SNR is sufficiently high. Also shown with each estimate is the
location of the knots found by SHAPES.

For ease of comparison, we have picked only the benchmark functions (f1 to fe)
used in Gélvez and Iglesias (2011). The SNR of each function matches the value
one would obtain using the noise standard deviation tabulated in Géalvez and Iglesias
(2011). Finally, the algorithm settings were brought as close as possible by (a) setting
the regulator gain A = 0, (b) using the plain map (c.f., Sect. 4.3), (c) keeping the end
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Fig. 4 Performance of /best PSO as a function of the number of iterations, Njir, to termination. Each
curve corresponds to one of the benchmark functions at SNR = 100 and shows the mean fitness value as
a function of Njer. The mean fitness value is an average over Np = 1000 data realizations of the fitness
value corresponding to the best model (i.e., F(Mpest, 7'My, ) defined in Fig. 2). The error bars represent
+10 deviations where o is the sample standard deviation. The other algorithm settings used for this plot
can be read off from the key string shown in the legend using Table 2

knots fixed, and (d) allowing knots to merge. Differences remain in the PSO variant
(and associated parameters) used and, possibly, the criterion used for merging knots.

We find that SHAPES has excellent performance at high SNR values: without any
change in settings, it can fit benchmark functions ranging from spatially inhomoge-
neous but smooth to ones that have discontinuities. For the latter, SHAPES allows
knots to coalesce into repeated knots in order to improve the fit at the location of the
discontinuities. The sample estimates in Fig. 5 are visually indistinguishable from the
ones given in Galvez and Iglesias (2011). The same holds for the sample estimates
given in Yoshimoto et al. (2003), which uses benchmark functions f; to f3 and SNRs
similar to Gdlvez and Iglesias (2011).

7.2 Regulator gain
While the aim of restricting the number of knots in regression spline is to promote

a smoother estimate, it is an implicit regularization that does not guarantee smooth-
ness. In the absence of an explicit regularization, a fitting method based on free knot

@ Springer



174 S.D. Mohanty, E. Fahnestock

. ; . . A . . . . A
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Fig. 5 Sample estimated functions for the benchmark functions f] to fg. In each panel: the solid black
curve is the estimated function; triangles show the locations of its knots (vertically stacked triangles denote
repeated knots); the dashed black curve is the true function; gray dots represent the data realization. (In most
cases, the solid and dashed curves are visually indistinguishable.) The SNRs (rounded to integer values)
of the functions in order from f] to fg are 1104, 747, 506, 241, 633, and 254, respectively. The algorithm
settings were LP_SNR_0_100_FKM (c.f., Table 2). Note that under these settings, the end B-splines are
retained, which requires end knots to have the maximum allowed multiplicity. But this is a fixed multiplicity
in each plot and not shown for clarity
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Fig. 6 Effect of regulator gain, A, on estimation. The solid and dashed curves are the estimates obtained
with A = 0.1 and 2 = 5.0 respectively, where 1 is the regulator gain for the penalty term in Eq. (9). The
true curve—benchmark function f7 with SNR = 10—is shown with a dotted line and the gray dots show
the data realization. The interior knots in the best model for A = 0.1 and A = 5.0 are shown as squares and
triangles respectively. (Not shown here is an extra repeated knot for A = 0.1.) Besides the difference in A,
the algorithm settings — LP_10_A_50_FKM (see Table 2)—were identical for the two estimated curves

placement will exploit this loophole to form spurious clusters of knots that fit outliers
arising from noise and overfit the data. This issue becomes increasingly important as
the level of noise in the data increases.

Figure 6 illustrates how adding the penalized spline regulator helps mitigate this
problem of knot clustering. Shown in the figure is one data realization and the cor-
responding estimates obtained with high and low values of the regulator gain A. For
the latter, sharp spikes appear in the estimate where the function value is not high but
the noise values are. The method tries to fit out these values by putting more knots
in the model and clustering them to form the spikes. Since knot clustering also needs
large B-spline coefficients in order to build a spike, a larger penalty on the coefficients
suppresses spurious spikes.

Figures 7 and 8 present a statistically more rigorous study of the effect of A by
examining the RMSE attained across the whole set of benchmark functions at different
SNR values. In both figures, the RMSE is shown for identical algorithm settings except
for A, and in both we observe that increasing the regulator gain improves the RMSE.
(The lone case where this is not true is addressed in more detail in Sect. 7.4.) The
improvement becomes more pronounced as SNR is lowered. (The effect of A on the
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Fig.7 Effect of regulator gain on (top panel) the root mean squared error (RMSE), and (bottom panel) the
mean number of knots in the best model for SNR = 100 benchmark functions. In both panels, the solid
and dotted curves correspond to A = 0.1 and A = 0.0 respectively. The other algorithm settings used for
this plot can be read off from the key strings shown in the legend using Table 2. The data points correspond
to the benchmark functions shown on the abscissa. The error bars show +1o deviations, where o is the
estimated standard deviation

number of knots in the best fit model at either SNR is within the sampling error of the
simulation.)

The higher values of the regulator gains in Figs. 7 and 8—X = 0.1 and A = 5.0 for
SNR = 100 and SNR = 10 respectively—were chosen according to the SNR. These
pairings were chosen empirically keeping in mind that there is an optimum regulator
gain for a given noise level. Too high a gain becomes counterproductive as it simply
shrinks the estimate towards zero. Too low a value, as we have seen, brings forth the
issue of knot clustering and spike formation. Since the latter is a more serious issue
for a higher noise level, the optimum regulator gain shifts towards a correspondingly
higher value.

7.3 Results for SNR = 100
We have already selected some of the algorithm settings in the preceding sections,
namely, the number of iterations to use and the regulator gain for a given SNR. Before

proceeding further, we need to decide on the remaining ones.
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Fig.8 Effect of regulator gain on (top panel) the root mean squared error (RMSE), and (bottom panel) the
mean number of knots in the best model for SNR = 10 benchmark functions. In both panels, the solid and
dotted curves correspond to A = 5.0 and A = 0.1 respectively. The other algorithm settings used for this
plot can be read off from the key strings shown in the legend using Table 2. The data points correspond
to the benchmark functions shown on the abscissa. The error bars show 10 deviations, where o is the
estimated standard deviation

For the SNR = 100 case, it is clear that the end knots and end B-splines must be
retained because benchmark functions f7 to f do not all decay to zero and the noise
level is not high enough to mask this behavior. Similarly, knot merging is an obvious
choice because discontinuities in some of the benchmark functions are obvious at
this SNR and they cannot be modeled under the alternative option of healing. The
remaining choice is between the two knot maps: plain or centered-monotonic.

As shown in Fig. 9, the RMSE is distinctly worsened by the centered-monotonic
map across all the benchmark functions. This map also leads to a higher number of
knots in the best fit model although the difference is not as significant statistically.
Thus, the clear winner here is the map in which knots are merged.

With all the design choices fixed, the performance of SHAPES can be examined.
This is done in Figs. 10 and 11 where the point-wise sample mean and 20 deviation,
o being the sample standard deviation, are shown for all the benchmark functions.
Note that the level of noise now is much higher than the examples studied in Sect. 7.1.

It is evident from these figures that SHAPES is able to resolve different types of
discontinuities as well as the locations of features such as peaks and sharp changes.
In interpreting the error envelope, it should be noted that the errors at different points
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Fig.9 Effect of the map used for transforming PSO search space coordinates to knots on (top panel) the root
mean squared error (RMSE), and (bottom panel) the mean number of knots in the best model for SNR = 100
benchmark functions. The solid and dotted curves correspond to the plain and centered-monotonic maps
respectively. The other algorithm settings used for this plot can be read off from the key strings shown in
the legend using Table 2. The data points correspond to the benchmark functions shown on the abscissa.
The error bars show +10 deviations, where o is the estimated standard deviation

are strongly correlated, a fact not reflected in the point-wise standard deviation. Thus,
a typical single estimate is not an irregular curve bounded by the error envelopes, as
would be the case for statistically independent point-wise errors, but a smooth function.
Nonetheless, the error envelopes serve to indicate the extent to which an estimate can
deviate from the true function.

7.4 Results for SNR = 10

Here, we examine the case of high noise level at SNR = 10. Figures 12 and 13
show the point-wise sample mean and +20 deviation, o being the sample standard
deviation, for all the benchmark functions. The algorithm settings used are the same
as in Sect. 7.3 for the SNR = 100 case except for the regulator gain and the number
of PSO iterations: A = 5.0 and Nj,r = 50 respectively.

Unlike the SNR = 100 case, the high noise level masks many of the features of the
functions. For example, the discontinuities and the non-zero end values for fj to fg
are washed out. Thus, the algorithm settings to use are not at all as clear cut as before.
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Fig. 10 Mean estimated functions (black curve) for benchmark functions f] to fg at SNR = 100. The true
functions are shown as dotted curves but they are practically indistinguishable from the mean estimated
functions. The gray curves show 20 deviation from the mean function, where o is the estimated standard
deviation. The gray dots show an arbitrary data realization for the purpose of visualizing the noise level.
The abscissa has the same range for each panel. The algorithm settings used are given by the key string
LP_100_0.1_100_FKM, which can be expanded using Table 2

In fact, the results presented next show that alternative settings can show substantial
improvements in some cases.

First, as shown in Fig. 14, the estimation of fjo actually improves significantly
when the regulator gain is turned down to A = 0.1. While this is the lone outlier
in the general trend between regulator gain and RMSE (c.f., Fig. 8), it points to the
importance of choosing the regulator gain adaptively rather than empirically as done
in this paper.
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Fig. 11 Mean estimated functions (black curve) for benchmark functions f7 to fj9 at SNR = 100. The
true functions are shown as dotted curves but they are practically indistinguishable from the mean estimated
functions. The gray curves show %20 deviation from the mean function, where o is the estimated standard
deviation. The gray dots show an arbitrary data realization for the purpose of visualizing the noise level.
The abscissa has the same range for each panel. The algorithm settings used are given by the key string
LP_100_0.1_100_FKM, which can be expanded using Table 2

Next, Fig. 15 examines the effect of the knot map and its interplay with fixing the
end knots or allowing them to vary. Allowing the end knots to vary under either knot
map leads to a worse RMSE but the number of knots required in the best fit model is
reduced, significantly so for f7 to fio. A plausible explanation for this is that the high
noise level masks the behavior of the functions at their end points, and freeing up the
end knots allows SHAPES to ignore those regions and focus more on the ones where
the function value is higher relative to noise.

Under a given end knot condition, the centered-monotonic map always performs
worse in Fig. 15 albeit the difference is statistically significant for only a small subset
of the benchmark functions. Remarkably, this behavior is reversed for some of the
benchmark functions when additional changes are made to the design choices. Fig-
ure 16 shows the RMSE when the centered-monotonic map and variable end knots
are coupled with the dropping of end B-splines and healing of knots. Now, the per-
formance is better for functions f7 to fjq relative to the best algorithm settings found
from Fig. 15: not only is there a statistically significant improvement in the RMSE
for these functions but this is achieved with a substantially smaller number of knots.
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Fig. 12 Mean estimated functions (black curve) for benchmark functions fj to fg at SNR = 10. The true
functions are shown as dotted curves. The gray curves show 20 deviation from the mean function, where
o is the estimated standard deviation. The gray dots show an arbitrary data realization for the purpose of
visualizing the noise level. The abscissa has the same range for each panel. The algorithm settings used are
given by the key string LP_10_5_50_FKM, which can be expanded using Table 2

This improvement comes at the cost, however, of significantly worsening the RMSE

for the remaining benchmark functions.

7.5 Effect of bias correction

Figure 17 shows the effect of using the bias correction step described in Sect. 4.1 on
RMSE. We see that bias correction reduces the RMSE for some of the benchmark
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Fig. 13 Mean estimated functions (black curve) for benchmark functions f7 to fjo at SNR = 10. The true
functions are shown as dotted curves. The gray curves show 20 deviation from the mean function, where
o is the estimated standard deviation. The gray dots show an arbitrary data realization for the purpose of
visualizing the noise level. The abscissa has the same range for each panel. The algorithm settings used are
given by the key string LP_10_5_50_FKM, which can be expanded using Table 2

functions, namely f7 to fjo, and that the reduction is more at higher SNR for fo.
For the remaining benchmark functions, bias correction makes no difference to the
RMSE.

7.6 Comparison with other methods

In this section, we compare the performance of SHAPES with WaveShrink (Donoho
and Johnstone 1995) and smoothing spline (Reinsch 1967; Craven and Wahba 1978)
as implemented in R Core Team (2019) (called R: sm. spl in this paper). The for-
mer is taken from the Matlab-based package WaveLab (Huo 2000) and it performs
smoothing by thresholding the wavelet coefficients of the given data and applying non-
linear shrinkage to threshold-crossing coefficients. For both of these methods, we use
default values of their parameters with the following exceptions: for WaveShrink
we used the “Hybrid” shrinkage method, while for R: sm. spl we use GCV to deter-
mine the regulator gain. For reproducibility, we list the exact commands used to call
these methods:
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3L |LP_10_0.1_50_FKM
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T

Fig. 14 The mean estimated function (black) for benchmark function fjg at SNR = 10 with regulator gain
A = 0.1. (The dotted curve shows the true function.) The gray curves show £20 deviation from the mean
function, where o is the estimated standard deviation. The gray dots show an arbitrary data realization for
the purpose of visualizing the noise level. The other algorithm settings can be read off from the key shown
in the plot legend using Table 2

— WaveShrink (Y, ‘Hybrid’,L): Y is the data to be smoothed and L is the
coarsest resolution level of the discrete wavelet transform of Y.

— smooth.spline (X,Y, cv=FALSE): X is the set of predictor values, Y is the
data to be smoothed, and cv=FALSE directs the code to use GCV for regulator
gain determination.

Each method above was applied to the same dataset as used for producing Fig. 10.
Statistical summaries, namely, the mean estimated function, the £2¢ deviation from
the mean, and RMSE were obtained following the same procedure as described for
SHAPES. A crucial detail: when applying WaveShrink, weuse L € {1, 2, ..., 6}
and pick the one that gives the lowest RMSE.

The results of the comparison are shown in Table 3, Figs. 18 and 19. Table 3 shows
the RMSE values attained by the methods for the benchmark functions fi to fg, all
normalized to have SNR = 100. Figure 18 shows more details for the benchmark
functions that produce the best and worst RMSE values for WaveShrink. Similarly,
Fig. 19 corresponds to the best and worst benchmark functions for R: sm. spl.

While noted in the caption of Fig. 18, it is worth re-emphasizing here that the error
envelopes of SHAPES shown in Figs. 18 and 19 are computed relative to the mean
estimated function of the method being compared to, not to that of SHAPES itself.

@ Springer



184 S.D. Mohanty, E. Fahnestock

==
65| —I—LP_10_5.0_50_FKM /,//=
6| "I LC_10_5.0_50_FKM 77
s —I- LP_10_5.0_50_VKM /,
w [ l=E-LC_10_5.0_50_VKM L /
w 5 . )
= .
o 45
4 |
35
3 -
14
212+
o
g
ué 10 |-
()
Qo
€
2 8r
C
[
()
= 6
]

Benchmark function

Fig. 15 Comparison of plain and centered-monotonic maps under fixed (F) and variable (V) end knot
conditions at SNR = 10. The top and bottom panels respectively show RMSE and mean number of knots
in the best model. The other algorithm settings used for this plot can be read off from the key strings shown
in the legend using Table 2. The data points correspond to the benchmark functions shown on the abscissa.
The error bars show 10 deviations, where o is the estimated standard deviation

This modification eliminates visual confusion caused by the different biases (i.e., mean
estimated functions) of the methods. However, the bias curves shown separately in
these figures do use the respective mean estimated function for each method. The
actual mean estimated functions and corresponding error envelopes of SHAPES can
be seen in Fig. 10.

From Table 3, we see that SHAPES has the lowest RMSE in all cases. Figures 18
and 19 show that this arises from SHAPES generally having both a lower estimation
variance (where its error envelope nests within that of the other methods) as well
as a lower bias. Typically, R:sm. spl has a lower variance than SHAPES around
stationary points of the true function but the difference is marginal. In some cases,
such as f3 and fp, the bias in the SHAPES estimate is significantly lower than that
of either WaveShrink or R: sm. spl. In general, waveShrink estimates are less
smooth than those from either SHAPES or R: sm. spl. This is manifested, for exam-
ple, in the rougher behavior of the mean estimated function from WaveShrink. Both
WaveShrink and R:sm. spl have a much poorer resolution of the jump disconti-
nuity in fs compared to SHAPES (c.f., Fig. 10).
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Fig. 16 Comparison of plain and centered-monotonic maps under the FKM and VDH algorithm settings
respectively at SNR = 10. See Table 2 for the meaning of these and other algorithm settings given by the
key strings in the legend. The top and bottom panels respectively show RMSE and mean number of knots
in the best model. The data points correspond to the benchmark functions shown on the abscissa. The error
bars show 10 deviations, where o is the estimated standard deviation

8 Conclusions

Our results show that the challenge of free knot placement in adaptive spline fitting
is solvable. The most important element of the solution is the use of an effective
metaheuristic for knot optimization. We have shown that Ibest PSO is effective in this
task. Considering the fjo benchmark function for example, the best model found by
SHAPES reaches the vicinity of the highest number (= 18) of non-repeating knots
considered in this paper. The good quality of the fit obtained for fjo shows that PSO
was able to handle this high-dimensional optimization well.

Relative to the SNRs used commonly in the literature on adaptive spline fitting,
the values of SNR used in this paper, namely SNR = 100 and SNR = 10, can
be ranked respectively as being moderate to low. For the former, discontinuities in
function values or derivatives were well localized by SHAPES in all the cases. At the
same time, the smooth parts of the benchmark functions were also well estimated. The
estimates from SHAPES for low SNR (= 10) had, naturally, more error. In particular,
the noise level in all the data realizations was high enough to completely mask the
presence of discontinuities and, thus, they were not well localized. Nonetheless, even
with a conservative error envelope of +20 around the mean estimated signal, the
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Fig. 17 The effect of bias correction on root mean squared error (RMSE) for SNR = 10 (top) and SNR =
100 (bottom) benchmark functions. Solid and dotted curves in each panel correspond to bias correction
switched on and off, respectively. The algorithm settings used were LP_SNR_X_ Njir_FKM in all the cases
with (top) A = 5.0, Njter = 50, and (bottom) 1 = 0.1, Njer = 100. These are the fiducial settings used for
SNR = 10 and SNR = 100 in Sects. 7.4 and 7.3, respectively. The data points correspond to the benchmark
functions shown on the abscissa. The error bars show 1o deviations, where o is the estimated standard
deviation

overall shape of the true function is visually clear in all the examples. This shows that
the estimated functions are responding to the presence of the true function in the data.

While we have characterized the performance of SHAPES as an estimator in this
paper, the observation made above for the low SNR case suggests that SHAPES may
also be used to set up a hypotheses test. This could be based, say, on the fitness value
returned by SHAPES. Note that, being a non-parametric method, SHAPES can han-
dle functions with qualitatively disparate behaviors—from a simple change between
two levels to oscillatory—without requiring any special tuning. Thus, such a hypothe-
ses test would allow the detection of signals with a wide morphological range. This
investigation is in progress.

The dependence of design choices on SNR, as elucidated in this paper, does not
seem to have been fully appreciated in the literature on adaptive spline fitting, proba-
bly because the typical scenario considered is that of high SNR. While performance
of SHAPES for SNR = 100 is found to be fairly robust to the design choices made,
they have a non-negligible affect at SNR = 10. The nature of the true function also
influences the appropriate algorithm settings for the latter case. Fortunately, the set-
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Table 3 RMSE values for
SHAPES, WaveShrink, and
R:sm.spl obtained with the fl 3.62 7.96 (4) 4.91
same dataset as used for Fig. 10

SHAPES WaveShrink R:sm.spl

H 4.86 747 (4) 7.39
f 4.01 5.82(3) 5.52
fa 4.07 8.11 (4) 5.24
fs 3.92 6.21 (3) 4.19
fs 3.36 6.93 (3) 7.62

The benchmark functions used are f] to fg at SNR = 100. In the
case of WaveShrink, the RMSE is the lowest attained over different
values of the parameter L. The best value of L is shown parenthetically
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Fig. 18 Comparison of SHAPES with alternate methods, WaveShrink and R: sm. spl, for benchmark
functions f3 and f; at SNR = 100. The left column of figure panels is associated with WaveShrink and
the right with R: sm. spl. In each column, (i) the benchmark function used is indicated in each panel, (ii)
black curves correspond to SHAPES, and (iii) gray curves to the alternate algorithm. For each benchmark
function, there are two panels: (i) The one labeled “std” shows the +20 error envelopes relative to the
estimated mean signal from the alternate method; (ii) the one labeled “bias” shows the difference between
the true function and the estimated mean signal from each method. The abscissa has the same range for
each panel. The ordinate values are identical across the panels in a given row. The dataset used and the
algorithm settings for SHAPES are the same as in Fig. 10
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Fig. 19 Same as Fig. 18 except for the change in benchmark functions to f5 and fg

tings were found to depend on only some coarse features of a function, such as its
behavior at data boundaries (f1 to fg), whether it is transient ( f7 to fg), or whether
it is oscillatory ( f19). Such features are often well-known in a real-world application
domain: it is unusual to deal with signals that have discontinuities as well as signals
that are smooth and transient in the same application. Hence, in most such cases, it
should be straightforward to pick the best settings for SHAPES.

The inclusion of a penalized spline regulator was critical in SHAPES for mitigating
the problem of knot clustering. For all except one ( f19) benchmark functions consid-
ered here, the regulator gain was determined empirically by simply examining a few
realizations at each SNR with different values of the regulator gain A. Ideally, however,
A should be determined adaptively from given data using a method such as GCV. The
case of f1p at SNR = 10 provides a particularly good test bed in this regard: while
A = 5.0 worked well for the other benchmark functions at SNR = 10, the RMSE for
f10 improved significantly when the gain was lowered to A = 0.1. Thus, any method
for determining A adaptively must be able to handle this extreme variation. We leave
the additional refinement of using an adaptive regulator gain in SHAPES to future
work.

The extension of SHAPES to multi-dimensional splines and longer data lengths is
the next logical step in its development. It is likely that extending SHAPES to these
higher complexity problems will require different PSO variants than the one used here.
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The codes used in this paper for the FKM option (c.f., Sect. 7.3) are available in a
G1itHub repository at the https://github.com/mohanty-sd/SHAPES.git
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