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Quantum Sampling for Finite Key Rates in High

Dimensional Quantum Cryptography
Keegan Yao, Walter O. Krawec, and Jiadong Zhu

Abstract—It has been shown recently that the framework of
quantum sampling, as introduced by Bouman and Fehr, can
lead to new entropic uncertainty relations highly applicable
to finite-key cryptographic analyses. Here we revisit these so-
called sampling-based entropic uncertainty relations, deriving
newer, more powerful, relations and applying them to source-
independent quantum random number generators and high-
dimensional quantum key distribution protocols. Along the way,
we prove several interesting results in the asymptotic case for our
entropic uncertainty relations. These sampling-based approaches
to entropic uncertainty, and their application to quantum cryp-
tography, hold great potential for deriving proofs of security for
quantum cryptographic systems, and the approaches we use here
may be applicable to an even wider range of scenarios.

Index Terms—Quantum Cryptography, Quantum Entropic
Uncertainty, Quantum Information Theory, High-Dimensional
Quantum Communication.

I. INTRODUCTION

Quantum sampling, as introduced by Bouman and Fehr

in [1], is a framework allowing for the analysis of quan-

tum systems through classical statistical sampling methods.

Informally, it was shown that when sampling a quantum state

(via measuring some subset of it in a particular basis), the

remaining, unmeasured, portion of the state behaves like a

superposition of states that are “close” (with respect to some

target value such as Hamming weight) to the observed sample.

How close they are depends, in fact, on the error probability

of the classical sampling protocol used (where the classical

sampling strategy would observe a portion of a classical

word in some alphabet and argue about how the remaining,

unobserved, portion of the word looks). At a high level,

suppose one measures a random portion of some quantum state

|ψ〉 in the Z = {|0〉 , · · · , |d− 1〉} basis and always observes

|0〉. Then, one would expect that the remainder of the state

(the unmeasured portion) should be a superposition of states

that are relatively close to the all |0 · · · 0〉 state. Bouman and

Fehr’s framework formalizes this notion, even when the state

is entangled with an environment system (e.g., an adversary).

Besides being fascinating on its own, there are now several

interesting applications of this work. In their original paper

K. Yao is with Duke University, Department of Computer Science, Durham
NC 27708 USA

W. O. Krawec is with the University of Connecticut, Department of
Computer Science and Engineering, Storrs, CT 06269 USA. Contact:
walter.krawec@uconn.edu

J. Zhu is with the University of Connecticut, Department of Mathematics,
Storrs CT 06269 USA.

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

[1], the authors showed some applications to quantum cryp-

tography, namely a security proof of the entanglement-based

BB84 QKD protocol for qubits (dimension two systems).

Recently in [2], [3], we showed how the quantum sampling

framework may be used to derive novel quantum entropic

uncertainty relations which are highly applicable to finite-key

quantum cryptographic security analyses. Informally, quantum

entropic uncertainty relations bound the amount of uncertainty

in two different measurement outcomes performed on some

quantum system. For instance, the famous Maassen and Uffink

relation [4] (which, itself, followed from a conjecture by

Kraus in [5] and was an improvement over an uncertainty

relation proposed first by Deutsch [6]) states that, given a

quantum state ρ acting on a d-dimensional Hilbert space

Hd, then if two measurements are performed on the system

resulting in random variables M and N respectively, it holds

that H(M) + H(N) ≥ γ, where γ is a function of the

two measurements performed (namely their overlap, though

we will formally define this later for our applications). In

particular, one cannot in general be certain of the outcome of

both measurements of the system. By now there are numerous

quantum entropic uncertainty relations with various fascinating

properties and applications; for a general survey, the reader is

referred to [7], [8], [9].

The so-called sampling-based entropic uncertainty relations

we introduced in our earlier work [2], [3] turn out to be

highly useful in finding optimistic secure bit generation rates

for quantum random number generation (QRNG) protocols

in the source-independent security model [10]. Our relations

bounded the quantum min-entropy Hmin(A|E) as a function

of the Shannon entropy of a particular measurement outcome

and the measurement overlap. Since min entropy is a highly

valuable resource in quantum cryptography (in particular, it

can be used to determine how many uniform random bits one

may extract from a source, independent of any adversary [11]),

finding tight bounds on this quantity is highly desirable when

analyzing quantum cryptographic protocols. As we’ve shown

in our earlier work, our relations often out-perform prior

work in cryptographic settings, producing more optimistic bit

generation rates for QRNG protocols leading, potentially, to

more rapid implementations of such systems (though here, and

in our prior work, we focus only on theoretical analyses -

practical settings, though interesting, are outside the scope of

this current work). Furthermore, our sampling-based relations

incorporate all needed finite sampling effects thus making

them easy to use “out of the box.”

Here, we revisit sampling-based entropic uncertainty rela-

tions. These relations involve a quantum state ρ, possibly en-
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tangled with an adversary, whereby a random sample is chosen

and a test is performed by measuring a portion of ρ resulting

in some outcome q. In this work, we show a highly general,

two-party entropic uncertainty relation (Theorem III.1) which,

informally, states that with high probability (based on the

failure probability of a classical sampling strategy):

Hǫ
min(A|E) + log2 |Jq| ≥ nγ, (1)

where Jq is the set of all words in some alphabet that are

“close” to the observed string q; n is the number of qudits

that were not measured in the test state; and γ is a function

of the overlap between the two measurements. One of the

strong advantages to our new sampling-based relation is that

one may design classical sampling strategies suitable to a

quantum cryptographic purpose and simply insert it directly

into the above; all one needs to do is analyze the classical

error probability and bound or evaluate the size of the set Jq
(which is typically a combinatorial proof). Though this result

is more general than our original, it turns out the proof of this

is nearly identical to our prior work in our conference paper [3]

(itself, building on a proof technique we used originally in [2]

but there for qubit systems only). However the novelty is, first,

in the generality of the result that it works for any classical

sampling strategy (whereas in our recent conference paper

[3] only a particular sampling strategy was proven); second

in its applications, we show that this new bound is powerful

enough to analyze a particular source-independent (a form of

partial device independence introduced first in [10]) QRNG

protocol producing more optimistic bit-generation rates than

prior work using alternative methods and, furthermore, unlike

our previous work, can provide an alternative proof of the

previously mentioned Maassen-Uffink relation for dimensions

strictly greater than 2 (in [2] we showed this for dimension 2
systems only as our older work in [2] was only applicable to

qubit systems).

Our second main contribution is to show a novel sampling-

based entropic uncertainty relation involving Alice, Bob, and

Eve. Here, Alice and Bob perform a test measurement on

some portion of their quantum state, resulting in outcome

qA and qB respectively (these are words in some d-character

alphabet). Then, informally, our new entropic uncertainty

relation (Theorem IV.1) states that, with high probability:

Hǫ
min(A|E) + ηdHd [∆H(qA, qB) + δ] ≥ n0γ + n1γ̂, (2)

where n0 + n1 = n, the number of systems not measured

initially; ηd is a constant depending on the dimension (d)

of the individual systems measured; δ takes into account

imperfect, finite samples; Hd is the d-ary Shannon entropy;

and ∆H(x, y) is the Hamming distance of words x and y.

Our entropic uncertainty relation can actually incorporate the

maximal measurement overlap γ̂ and the second-maximal

overlap γ, making it useful if the two measurement bases have

a similar basis element (e.g., a “vacuum” element, useful in

QKD when considering channel loss - though, of course, this is

not the only way to prove security over lossy channels [12], it

does provide, as we show, a very straight forward and general

relation useful for this application also). This ability shows

the great promise in using the Quantum Sampling framework

of Bouman and Fehr, augmented with our proof techniques

developed here and in our prior work [2], [3] to prove

interesting, and useful, entropic uncertainty relations. Indeed,

our proof method can even be extended to support additional

measurement overlap quantities. Note that the ability to utilize

multiple measurement overlaps is not unique to our relation;

e.g., state-dependent entropic uncertainty relations [13] can

also utilize multiple measurement overlaps in various ways.

However, it does demonstrate the flexibility of our approach

based on Bouman and Fehr’s quantum sampling framework

and does provide a new entropic uncertainty relation using

quantum min entropy and classical Shannon entropy.

Note that, if qA = qB , then our result shows that the min-

entropy conditioned on the adversary’s system E must be high.

We use our entropic uncertainty relation to provide a proof of

security, in the finite key setting, of the High-Dimensional

BB84 protocol [14], [15], [16], [17]. Our security proof is

valid against arbitrary attacks by an adversary and applies

easily to any dimension d of the signal states and can even

take into account lossy channels. Since high-dimensional QKD

protocols exhibit many fascinating and useful properties (such

as increased noise tolerance [15], [18]), and are experimentally

feasible today [19], [20], [21], [22], our new analysis may

provide even further benefits to these systems. We note that in

[1], the sampling framework was used to provide a proof of

security for the standard (qubit-based) BB84 using alternative

methods which were specific to the qubit-BB84 protocol. Our

method provides, first, a novel entropic uncertainty relation

which may have numerous other applications to quantum

cryptographic protocols outside of HD-BB84; and, secondly,

provides as an application a simple proof of security for the

high-dimensional variant of BB84 for any dimension d of the

system.

This work makes several contributions, not the least of

which is showing yet further fascinating, and highly appli-

cable, connections between the quantum sampling framework

of Bouman and Fehr [1], classical sampling methods, and

quantum information theory, in particular entropic uncer-

tainty. Furthermore, our relations are immediately applicable

to quantum cryptography in the finite key setting, leading to

composable security [11] and, as we show, in most typical

scenarios also highly optimistic secure bit-generation rates for

source-independent QRNG protocols and QKD protocols. In

practice, such sampling-based approaches show that quantum

communication systems may run at higher bit-generation rates

than previously thought. Thus, not only does this work provide

interesting theoretical contributions, but also potential practical

ones (though, as stated, we are not considering practical

experimental imperfections here, leaving this as interesting

future work). We suspect that there are even more connections

and applications of the quantum sampling framework which

may shed further light on problems in general information

theory and applied quantum cryptography. This paper attempts

to take a step forward in that direction.

A. Notation

We start with some notation and definitions that we will use

throughout this work. An alphabet Ad is a set of d characters
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which we typically label {0, 1, · · · , d− 1}. Given a word q ∈
And , the substring qt indexed by t ⊂ {1, . . . , n} is the string

qt = qt1qt2 . . . qt|t| . The substring q−t denotes the substring

indexed by the complement of t.
Much of our work involves arguing about the properties of

a given word. In particular, given a string q ∈ And , the relative

Hamming weight is defined as w(q) =
|{j | qj 6=0}|

n and the

relative character count with respect to i ∈ Ad is defined as

ci(q) =
|{j | qj=i}|

n . Note that w(q) = 1 − c0(x). We will

use c(q) to denote the d-tuple of all relative counts, namely

c(q) = (c0(q), · · · , cd−1(q)). The Hamming distance between

two strings x, y ∈ And is ∆H(x, y) = |{i | xi 6=yi}|
n .

A density operator ρ is a positive semi-definite Hermitian

operator with trace equal to one, acting on some Hilbert space

H. If ρAE acts on some Hilbert space HA⊗HE , we write ρE
to mean the partial trace of ρAE over A (similarly for other

systems).

We use Hd to denote a d-dimensional Hilbert space. Given

a basis {|v0〉 , · · · , |vd−1〉} of Hd, and given a word i ∈ And ,

we write |vi〉 to mean |vi1〉 ⊗ · · · ⊗ |vin〉. If the basis under

consideration is clear, we will sometimes write |i〉 to mean

|vi〉.
The Shannon entropy of a random variable X is denoted by

H(X). The d-ary entropy function Hd is defined as Hd(x) =
d logd(d−1)−x logd x− (1−x) logd(1−x). Note that when

d = 2 this is simply the binary Shannon entropy. Finally,

we define the extended d-ary entropy H̄d(x) to be Hd(x) if

0 ≤ x ≤ 1−1/d; otherwise H̄d(x) = 0 if x < 0 or H̄d(x) = 1
if x > 1− 1/d.

Given ρAE acting on HA ⊗ HE , then the conditional

quantum min entropy [11] is defined to be:

Hmin(A|E)ρ = sup
σE

max{λ ∈ R | 2−λIA ⊗ σE − ρAE ≥ 0}.
(3)

When the E system is trivial, we have Hmin(A|E)ρ =
Hmin(A)ρ = − logmaxλ, where the maximum is taken over

all eigenvalues λ of ρA. In particular, if ρA is a classical system

(that is, ρA =
∑
a pa |a〉 〈a|), then Hmin(A)ρ = − logmax pa.

Note that, for any quantum-quantum-classical state ρAEC =∑N
c=0 pcρ

(c)
AE ⊗ |c〉 〈c|, then it is easy to prove from the

definition of min entropy that the following holds:

Hmin(A|EC)ρ ≥ min
c
Hmin(A|E)ρ(c) . (4)

Though we will not need it here, a useful interpretation of

Hmin(A|E) for classical-quantum states (cq-states) ρAE (that

is, states of the form ρAE =
∑
a pa |a〉 〈a| ⊗ ρ

(a)
E ) was given

in [23] as:

Hmin(A|E)ρ = − logPg(ρAE),

where Pg(ρAE) is the maximal guessing probability that Eve

can guess the value of Alice’s register, namely:

Pg(ρAE) = max
{Ma}

∑

a

patr
(
Maρ

(a)
E

)
,

where the maximum is over all POVM operators on HE .

Finally, the conditional smooth min entropy is defined to be

[11]

Hǫ
min(A|E)ρ = sup

σ∈Γǫ(ρ)

Hmin(A|E)σ. (5)

where Γǫ(ρ) = {σ | ||ρ− σ|| ≤ ǫ} and here ||X|| is the trace

distance of operator X .

For additional notation, given a quantum state ρAE and an

orthonormal basis Z of the A register, we write Hmin(Z|E)ρ to

mean the conditional min entropy of ρAE after measuring the

A system using the Z basis. If the state ρAE is pure, namely

ρAE = |ψ〉 〈ψ|AE , we write Hmin(A|E)ψ . This notation is

similar for smooth min entropy.

The following Lemma relating the min entropies of mixed

and pure states will be useful to our work later as it will allow

us to bound the min entropy of a superposition of states by,

instead, computing the min entropy of a corresponding mixture

of states:

Lemma I.1. (From [1] based also on a Lemma in [11]) Let

Z = {|i〉} and X = {|xi〉} be two orthonormal bases of HA.

Then for any pure state |ψ〉 =∑i∈J αi |i〉⊗|φi〉E ∈ HA⊗HE
(where |φi〉E are arbitrary, normalized states in HE), if we

define the mixed state ρ =
∑
i∈J |αi|2 |i〉 〈i| ⊗ |φi〉 〈φi|, then

Hmin(X|E)ψ ≥ Hmin(X|E)ρ − log2 |J |.

Quantum min entropy is of vital importance to quantum

cryptography as it allows one to determine how many uniform

random bits one may extract from a cq-state ρAE that are

also independent of Eve. In particular, given a cq-state (which,

itself, is typically the result of running some quantum cryp-

tographic protocol where the A register may not be uniform

random or completely independent of the E register), one may

apply the process of privacy amplification (typically running

the A register through a randomly chosen two-universal hash

function) to establish the required uniform and independent

random string. If σKE is the result of applying privacy

amplification to the initial ρAE system, where the K register

is of size ℓ bits, it was shown in [11] that:
∣∣∣∣
∣∣∣∣σKE −

IK
2ℓ
⊗ σE

∣∣∣∣
∣∣∣∣ ≤

√
2(H

ǫ
min

(A|E)ρ−ℓ) + 2ǫ. (6)

Thus, by deriving a lower-bound on the min entropy of

the initial state ρAE before privacy amplification, one may

establish how many uniform and independent bits may be

extracted (namely, ℓ) from the state to satisfy the above trace

distance inequality up to a desired level of security; e.g., so

that the difference between the real state σKE and the “ideal”

state IK/2
ℓ⊗ σE (which represents a uniform random string,

independent of any other system) is no more than some ǫPA.

II. QUANTUM SAMPLING

In [1], Bouman and Fehr discovered a fascinating con-

nection between classical sampling strategies and quantum

sampling. Since our work utilizes this as a foundation to prove

our entropic uncertainty relations (later used to prove security

of QRNG and QKD protocols), we take the time in this section

to provide a review of their main results. Everything in this

section, definitions, concepts, and theorems, come from [1]

except when explicitly mentioned. Occasionally, we will make

some generalizations and simplifications, however wherever

we do so, it will be made clear in the narrative.
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Let Ad be an alphabet with d characters and N ∈ N

be fixed. A classical sampling strategy is a triple Ψ =
(PT , PS , f), where PT is a probability distribution over sub-

sets of {1, 2, · · · , N}, PS is a probability distribution over

some set {0, 1}∗ called seed values, and f is a function:

f : {0, 1}∗ ×A∗
d → R

k. (7)

Given a string q ∈ AN , the strategy consists of, first, sampling

a subset t according to PT ; sampling a seed value s according

to PS , observing the value of qt and evaluating f(s, qt). This

evaluation should lead to a “guess” of the value of some target

function g : A∗
d → R

k evaluated on the unobserved portion of

q, namely q−t. Informally, a good sampling strategy will en-

sure that, with high probability, maxi |fi(s, qt)− gi(q−t)| ≤ δ
(i.e., the difference in all coordinates of the output function

evaluated on the sampled portion of q, compared to the target

function evaluated on the unobserved portion, are no greater

than δ). Note that above, we are generalizing the sampling

result of [1] to include more general target and guess functions;

in [1], k = 1 and g(x) = w(x), the Hamming weight of

x. However, the proof of their main result is easily seen to

hold in this more general case, so long as suitable classical

strategies are analyzed appropriately (as we do later in this

section). Finally, note that in our work, we do not make

use of this additional random seed value (which is useful

when implementing randomized guess functions f ); thus, we

disregard writing it from here on out and, instead, our function

f simply maps strings from A|t|
d to values in R

k.

Now, fix a subset t ⊂ {1, 2, · · · , N} and δ ≥ 0 and consider

the set:

Gf,gt,δ = Gt,δ = {i ∈ ANd | max
j
|fj(it)− gj(i−t)| ≤ δ}. (8)

This set consists of all “good” words in ANd where, for the

given choice of t, the estimate produced by f is δ close to the

desired target function on the unobserved portion. Note that,

when the context is clear, we will forgo writing the f and

g superscripts. From this, the error probability of the given

classical sampling strategy is defined to be:

ǫclδ (Ψ) = max
q∈AN

d

Pr (q 6∈ GT,δ) , (9)

where the probability is over the choice of subsets t drawn

according to PT (the notation Gt,δ is used to denote the set

defined above for a fixed t whereas GT,δ denotes a random

variable over the choice of subset t). Note that the randomness

here is only over the choice of subset; if the function f need

also make random choices, this could be incorporated through

the use of the additional seed value. Since our strategies we

use here do not need this, we forgo considering it.

From the above definition, it is clear that for any q ∈ ANd ,

the probability that the sampling strategy fails to produce an

accurate estimate of the target function is at most ǫclδ . The “cl”

superscript is used to denote that this is the failure probability

of the classical sampling strategy.

These notions may be adapted to quantum states. Let Hd be

the d-dimensional Hilbert space spanned by some orthonormal

basis B = {|0〉 , · · · , |d− 1〉}. The choice of basis may be

arbitrary, however all following definitions are taken with

respect to the chosen basis.

Given a classical sampling strategy (PT , f) (again, disre-

garding the seed PS which we do not use) and a quantum

input state |ψ〉 ∈ H⊗N
d ⊗ HE , a quantum sampling strategy

may be constructed as follows: first, sample t according to PT ;

second, measure those qudits in H⊗N
d indexed by t using basis

B to produce measurement result qt ∈ A|t|
d ; finally, evaluate

the function f(qt). The main result from [1], informally, is that

the remaining unmeasured portion of the input state should

behave like a superposition of states that are δ close in the

target function g(·) to the estimated value f(qt).
More formally, consider:

span (Gt,δ) = span {|b〉 | b ∈ Gt,δ} ,

where, by |b〉, we mean |b1〉⊗· · ·⊗|bN 〉 (again, with respect to

the given basis). Note that, if |ψ〉AE ∈ span (Gt,δ)⊗HE , and

if subset t is actually the one chosen by the sampling strategy,

then it is guaranteed that, after measuring those qudits indexed

by t in the given basis B resulting in outcome qt, the remaining

unmeasured portion will be in a superposition of states of the

form:

|ψq〉A−tE
=
∑

i∈Jq
αi |i〉 ⊗ |Ei〉 ,

where:

Jq = {i ∈ AN−|t|
d | max

j
|fj(q)− gj(i)| ≤ δ}.

Formally, the main result from [1] is stated below, which

argues that the input state will be ǫ close in trace distance to

an ideal state where this sampling process always yields the

correct guess and this collapse always happens. Furthermore,

the ǫ depends on the error probability of the underlying

classical sampling strategy.

Theorem II.1. (From [1], though reworded for our applica-

tion): Let Ψ = (PT , f) be a classical sampling strategy with

classical failure probability ǫclδ for given δ > 0. Then, for

every state |ψ〉AE ∈ HA ⊗ HE with HA ∼= H⊗N
d , there

exists a collection of states {|φtAE〉}t indexed by subsets t
of {1, · · · , N} with each |φtAE〉 ∈ span (Gt,δ) ⊗ HE such

that

1

2

∣∣∣∣
∣∣∣∣
∑

t

PT (t) |t〉 〈t| ⊗
(
|ψ〉 〈ψ| − |φtAE〉 〈φtAE |

) ∣∣∣∣
∣∣∣∣ ≤

√
ǫclδ (Ψ),

(10)

where t represents a sampled subset of {1, . . . , N}.
Proof. In Bouman and Fehr’s work [1], it was shown that for

a fixed |ψ〉AE it holds that

min
{|φt

AE
〉}

∣∣∣∣∣

∣∣∣∣∣
∑

t

PT (t) |t〉 〈t| ⊗
(
|ψ〉 〈ψ|AE − |φtAE〉 〈φtAE |

)
∣∣∣∣∣

∣∣∣∣∣

≤
√
ǫclδ (11)

where the minimum is over all {|φtAE〉} ⊂ span (Gt,δ)⊗HE ,

for a sampling strategy where the target function was g(x) =
w(x). However, in their proof, the above is shown directly
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by projecting the input |ψ〉AE into the space span (Gt,δ) ⊗
HE , thus directly constructing the ideal states. Namely, the

ideal states were defined by the decomposition |ψ〉AE =

〈φ̃tAE |ψAE〉 |φ̃tAE〉+〈φtAE |ψAE〉 |φtAE〉 where the |φ̃tAE〉 lives

in a space orthogonal to the ideal. This minimum is therefore

attained by these ideal states. Furthermore, there is no specific

reason in this construction to restrict to target functions that

are the Hamming weight, nor to target functions that are

one-dimensional. Indeed, by considering any definition of

Gt,δ , their construction and the subsequent analysis follows

identically assuming the error probability is defined as in

Equation 9 based on the set Gt,δ . The important difference

comes in the analysis of the classical sampling strategy in

order to compute ǫclδ .

The fascinating thing about Theorem II.1 is that, by choos-

ing suitable classical sampling strategies, one may analyze the

behavior of ideal states which always behave appropriately for

the given strategy. From this, and the fact that the real state

is close, in trace distance, to these ideal states (on average

over the randomness in the sampling strategy), one may then

promote the analysis from the ideal state to the actual input.

Already in [2], [3], we used this to prove novel, and useful,

quantum entropic uncertainty relations which were then used

to analyze particular QRNG protocols. We now generalize

these results, analyze a more powerful QRNG protocol, and

also show how this can be used to develop entropic uncertainty

relations involving A, B, and E with applications to high-

dimensional QKD protocols. We show that, furthermore, this

provides highly optimistic secure bit generation rates for both

the QRNG and QKD protocols in a variety of scenarios.

However, to analyze these protocols, we first require some

important classical sampling strategies.

A. Classical Sampling Strategies

As discussed, Theorem II.1 allows us to consider classical

sampling strategies and use these to analyze quantum proto-

cols. Here we discuss four classical sampling strategies which

we denote Ψ0,Ψ1, Ψ2, and Ψ2+0. Strategy Ψ0 was analyzed

in [1] and we use this to bound the error of the other strategies.

The other strategies involve one party (Ψ1) or two parties (Ψ2

and Ψ2+0) and will be used later when deriving our entropic

uncertainty relations.

One-Party HD-Restricted-Sampling Ψ0: In [1], the follow-

ing natural sampling strategy was analyzed which we denote

here as Ψ0. We use this result to bound the error in our other

sampling strategies to be discussed next. Let q ∈ An+md be a

string and the target function g(x) = w(x). The strategy, first,

chooses a subset t of {1, · · · , n+m} of size m, uniformly at

random and observes string qt. Next, it outputs f(qt) = w(qt),
an estimate of the Hamming weight of the unobserved portion,

namely w(q−t). We call this the HD-Restricted-Sampling

strategy as it is high-dimensional, however it only looks at

the Hamming weight, ignoring the counts of other characters.

The following Lemma was proven in [1]:

Lemma II.1. (From [1]): Let δ > 0 and d ≥ 2. Then the

failure probability of the above described sampling strategy

Ψ0 for m ≤ n is:

ǫclδ (Ψ0) ≤ 2 exp

(−δ2m(n+m)

m+ n+ 2

)
.

We comment that there is nothing special in the above

sampling strategy, or their proof, about the use of the Ham-

ming weight in the above Lemma; instead one could replace

the target function g(x) with any single cj(x) or 1 − cj(x)
(to count the number of letters equal to, or not equal to, j
respectively) and the same bound will follow (for a single,

fixed but arbitrary, j). See [1].

One-Party HD-Full-Sampling Ψ1: In our work, here, we will

need three additional sampling strategies. The first sampling

strategy, which we denote Ψ1, is a one-party strategy involving

Alice only and will be used for our QRNG analysis later. The

strategy works for strings in ANd , where N = n+m and the

target function is g(x) = (c0(x), . . . , cd−1(x)) where ci(x)
is the relative number of times symbol i appears in the word

x (as defined in Section I-A). First, the strategy Ψ1 chooses

a subset t of size m from {1, · · · , N} uniformly at random

and observes the string qt ∈ Amd . Finally, Ψ1 outputs f(qt) =
(c0(qt), . . . , cd−1(qt)) as an estimate of the relative counts of

the unobserved q−t. The proceeding Lemma determines an

upper bound on the error probability of the sampling strategy

Ψ1.

Lemma II.2. Let δ > 0 and d ≥ 2. Then the failure

probability of the above described sampling strategy Ψ1 when

m ≤ n is:

ǫclδ (Ψ1) ≤ 2d exp

(
−mδ2 m+ n

m+ n+ 2

)
.

Proof. Note that, for any j, (PT , cj) is exactly the strategy

Ψ0 (though, instead of looking at the number of strings with

a certain Hamming weight, we are looking at the number of

strings with a certain character count). Thus, using the bound

provided by Lemma II.1 we find

ǫclδ = max
q∈Am+n

d

Pr (q 6∈ GT,δ(Ψ1))

≤
∑

j

max
q∈Am+n

d

Pr (|fj(qt)− gj(q−t)| > δ)

≤ 2d exp

(
−mδ2 m+ n

m+ n+ 2

)
.

Two-Party HD-Sampling Ψ2: The second strategy we require

will be used for our two-party applications later and we denote

by Ψ2. Here, we have an input string q = (qA, qB) ∈ ANd ×
ANd , where N = n+m. The strategy will first choose a subset

t ⊂ {1, · · · , N} of size m uniformly at random. The strategy

will then sample qAt and qBt ; that is, it will observe the qA

portion and qB portion individually, using the same subset (this

may be written strictly using our earlier definitions, however

such strict formality is not enlightening). The target function is
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g(qA−t, q
B
−t) = ∆H(qA−t, q

B
−t) (where ∆H(x, y) is the relative

Hamming distance of words x and y as defined in Section I-A)

and the output will be f(qAt , q
B
t ) = ∆H(qAt , q

B
t ). Again, we

may bound the error probability of this strategy using Lemma

II.1.

Lemma II.3. Let Ψ2 be the strategy defined above; δ > 0
and m ≤ n. Then ǫclδ (Ψ2) ≤ ǫclδ (Ψ0).

Proof. Let N = n + m and Gt,δ = {(i, j) ∈ ANd ×
ANd | |∆H(it, jt) − ∆H(i−t, j−t)| ≤ δ} and G′t,δ = {i ∈
AN | |w(it)−w(i−t)| ≤ δ}. Pick q = (qA, qB) ∈ ANd ×ANd
and let x = qA − qB , where the subtraction here is character-

wise, modulo d, in the given alphabet. Clearly w(xt) =
∆H(qAt , q

B
t ), and similarly for x−t. Thus, q ∈ Gt,δ if and

only if x ∈ G′t,δ . Hence, for every q = (qA, qB), it holds that:

Pr
(
qAqB 6∈ GT,δ

)
= Pr

(
qA − qB 6∈ G′T,δ

)

≤ max
x∈AN

d

Pr
(
x 6∈ G′T,δ

)
= ǫclδ (Ψ0).

Since this holds for any q = (qA, qB), we’re done.

Finally, we define a second two-party sampling strategy

which combines Ψ2 with Ψ0; we denote this strategy by Ψ2+0.

For this strategy, the target function is now g(qA−t, q
B
−t) =

(∆H(qA−t, q
B
−t), cb∗(q

A
−t)) for some given, fixed, distinguished

index b∗ ∈ Ad (we later call this the “count index”). This

sampling strategy chooses a subset according to Ψ2 and

outputs a guess f(qAt , q
B
t ) = (∆H(qAt , q

B
t ), cb∗(q

A
t )). It is not

difficult to show from Lemmas II.1 and II.3 that the error

probability of this strategy is:

ǫclδ (Ψ2+0) ≤ ǫclδ (Ψ2) + ǫclδ (Ψ0) ≤ 4 exp

(−δ2m(n+m)

m+ n+ 2

)
.

(12)

III. QUANTUM SAMPLING BASED ENTROPIC

UNCERTAINTY

In [2], [3], we showed how the technique of quantum sam-

pling, introduced in [1] and discussed in the previous section,

can be used to prove entropic uncertainty relations bounding

the smooth quantum min entropy and the Shannon entropy, as

a function of the overlap of two projective measurements. Our

first work [2] introduced a novel entropic uncertainty relation

applicable to qubits (i.e., d = 2) only and with a fixed sampling

strategy; in our conference paper [3], we expanded the result

to work for qudits (d ≥ 2), however only with a partial

basis measurement and a particular, fixed, sampling strategy.

Here, we discuss and generalize this result to work with

more general sampling strategies allowing a “plug-and-play”

entropic uncertainty relation for various classical sampling

strategies. Indeed, as shown in this section, one may introduce

an arbitrary classical sampling strategy (perhaps one that is

useful for a particular cryptographic application); one need

only compute the error probability of the given classical

strategy, along with the size of a set similar to G (generally a

classical combinatorial proof) to derive a result applicable to

a quantum system. The proof of this follows the same two-

step approach we introduced in [2], [3] only with suitable

generalizations at certain points.

To describe our sampling based entropic uncertainty rela-

tions, we require an experiment which takes as input a quantum

state ρ acting on HT⊗HA⊗HE where the A portion is an N -

fold tensor of some smaller d-dimensional Hilbert space and

the T register is a Hilbert space spanned by orthonormal basis

{|t〉} where t ⊂ {1, · · · , N}. The experiment also requires an

orthonormal basis X = {|x0〉 , · · · |xd−1〉}.
The experiment will first choose a random subset t by

measuring the T register. It will then measure the A portion of

ρ, indexed by t, using the given X basis. This measurement re-

sults in outcome q ∈ A|t|
d and a post-measurement state ρ(t, q),

acting on the unmeasured portion of HA and HE . We denote

this experiment by (t, q, ρA′E(t, q))← Exp (ρTAE , X). Note

that the experiment also returns the subset chosen. Sampling

based entropic uncertainty relations allow one to bound the

min entropy in the remaining post-measured state, assuming

an alternative measurement were to be made on the A portion

of it. This bound is a function of the measurement overlap and

the classical measurement outcome q.

The main result from [2], [3] was to relate the min entropy

in the remaining portion of the system as a function of the

measurement overlap and the binary Shannon entropy (or, in

the case of our recent conference paper [3], the d-ary Shannon

entropy) of the relative Hamming weight of the observed

outcome q after running the experiment. However, the proof

technique used there can be applied to a more general setting

allowing for arbitrary sampling strategies and, in particular,

to bound the min-entropy as a function of the measurement

overlap and the size of a particular set Jq of classical strings

that are δ-close to the observed q.

Theorem III.1. Let 0 < β < 1/2 and Ψ be a classical

sampling strategy with error probability ǫclδ for given δ >

0. Let ǫ =
√
ǫclδ , and let ρAE be an arbitrary quantum

state acting on space HA ⊗ HE , where HA ∼= H⊗N
d for

d ≥ 2. Let Z = {|zi〉}d−1
i=0 and X = {|xi〉}d−1

i=0 be two

orthonormal bases of Hd. Furthermore, let (t, q, ρ(t, q)) ←
Exp(

∑
t PT (t) |t〉 〈t| ⊗ ρAE , X), where the sum is over all

possible subsets of {1, 2, . . . , N} that could be chosen by

Ψ and PT (t) is the probability of subset t being chosen as

determined by the given classical sampling strategy. Finally,

let γ = − log2 maxa,b | 〈za|xb〉 |2. Then, it holds that:

Pr
(
H4ǫ+2ǫβ

min (Z|E)ρ(t,q) + log2 |J (N−|t|)
q | ≥ (N − |t|)γ

)

≥ 1− 2ǫ1−2β , (13)

where

J (n)
q = {i ∈ And | max

j
|fj(q)− gj(i)| ≤ δ}. (14)

Above the probability is over the randomness in the experi-

ment (namely the subset chosen and the resulting measurement

outcome q).

Proof. The proof follows the same two-step argument we first

developed in [2]. In fact, most of the proof is identical to the

weaker relation we proved in our recent conference paper [3]

with the exception of a few generalizations; we provide the

complete proof here for completeness.
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First Step - Ideal Analysis: We begin by considering the case

when the input state ρAE is pure; the mixed case then follows

through standard purification techniques.

By applying Theorem II.1 with respect to the given X basis

and sampling strategy Ψ, there exist ideal states {|φtAE〉}
such that for every t, the state |φtAE〉 ∈ span{|xi〉 | i ∈
ANd and maxj |fj(it) − gj(i−t)| ≤ δ} ⊗ HE . Note that the

target function g(x) = (g1(x), · · · , gk(x)) also depends on the

sampling strategy. Furthermore, from this application of Theo-

rem II.1, if we define σTAE =
∑
t PT (t) |t〉 〈t|⊗|φtAE〉 〈φtAE | ,

then it holds that:
∣∣∣∣∣

∣∣∣∣∣
∑

t

PT (t) |t〉 〈t| ⊗ ρAE − σTAE

∣∣∣∣∣

∣∣∣∣∣ ≤
√
ǫclδ (Ψ) = ǫ. (15)

Consider the output of running (t, q, σ(t, q)) ← Exp (σ,X).

Here q ∈ A|t|
d . It is not difficult to see that the resulting state,

after tracing out the measured portion, is of the form:

σ(t, q) = P




∑

i∈J(N−|t|)
q

αi |xi〉 ⊗ |Ei〉


 , (16)

where P (|z〉) = |z〉 〈z| and where J
(n)
q = {i ∈

And | maxj |fj(q) − gj(i)| ≤ δ} (note that some of the

αi’s may be zero). This state is found by observing that,

conditioning on subset t being chosen, the state collapses to

the pure ideal state |φt〉. Now, conditioning on observing a

particular q (or, rather, |xq〉), due to the definition of the ideal

state, namely that it lives in the before mentioned spanning set,

it must be that the remaining, unmeasured portion, consists of

states that are δ close to the guessing function f(q) in all

coordinates. Note that, conditioning on the given observation,

this state is also pure.

Let n = N − |t|. From Lemma I.1, we have

Hmin(Z|E)σ(t,q) ≥ H(Z|E)χ − log |J (n)
q |, where χ is the

mixed state:

χAE =
∑

i∈J(n)
q

|αi|2 |xi〉 〈xi| ⊗ |Ei〉 〈Ei| .

We claim that Hmin(Z|E)χ = (N − |t|)γ. After measuring

the A register of χAE in the Z basis, the resulting state

becomes:

χZE =
∑

i∈J(n)
q

|αi|2

∑

j∈An
d

p(zj |xi) |zj〉 〈zj |


⊗ |Ei〉 〈Ei|

where p(zj |xi) is the probability of observing outcome |zj〉 =
|zj1 · · · zjn〉 given state |xi〉 = |xi1 · · ·xin〉. Clearly:

p(zj |xi) = | 〈zj1 |xi1〉 |2 · · · | 〈zjn |xin〉 |2.

We now add an additional register HI spanned by orthonormal

basis {|Ii〉}i∈J
q(n)

and define the state χZEI as:

∑

i∈J(n)
q

|αi|2

∑

j∈An
d

p(zj |xi) |zj〉 〈zj |


⊗ |Ei〉 〈Ei| ⊗ |Ii〉 〈Ii| .

From Equation 4, we have Hmin(Z|E)χ ≥ Hmin(Z|EI)χ ≥
miniHmin(Z|E)χi , where

χiZE =
∑

j∈An
d

p(zj |xi) |zj〉 〈zj | ⊗ |Ei〉 〈Ei| .

Since the Z and E registers are independent in the state χiZE ,

it holds that Hmin(Z|E)χi = Hmin(Z)χi . From this, we can

readily compute:

Hmin(Z|E)χ ≥ min
i
Hmin(Z)χi = −max

i,j
log p(zj |xi)

≥ − log max
a,b∈Ad

| 〈za|xb〉 |2n

= nγ.

Combining everything, we can conclude that

Hmin(Z|E)σ(t, q) ≥ nγ − log |J (n)
q |, thus computing

the min entropy of the ideal state. Note that this works for

any t and observed value q.

Second Step - Real Case Analysis: The second step involves

arguing that the real state cannot behave too differently from

the ideal state we just analyzed. We make use of Chebyshev’s

inequality while also switching to smooth min entropy to

complete the analysis.

Consider the real state ρ =
∑
t PT (t) |t〉 〈t| ⊗ ρAE where

ρAE is given as input to the theorem (note that, here, the

input state is independent of the subset chosen unlike in the

ideal case). The process of choosing a subset t, measuring,

and observing q (resulting in post-measurement state ρ(t, q))
may be described, entirely, by the mixed state:

ρTQR =
∑

t

PT (t) |t〉 〈t| ⊗
∑

q∈A|t|
d

p(q|t) |q〉 〈q| ⊗ ρ(t, q),

where p(q|t) is the probability of observing outcome q given

that the subset t was sampled; here we use the “R” register

to denote the remaining, unmeasured, portion of the state.

Likewise, the ideal state, after performing this experiment,

may be written as the mixed state: σTQR =
∑
t PT (t) |t〉 〈t|⊗∑

q p̃(q|t) |q〉 〈q| ⊗ σ(t, q). We define ∆q,t = 1
2 ||ρ(t, q) −

σ(t, q)||, which may be treated as a random variable over the

choice of t and observed q. We want to show that, with high

probability, ∆q,t is “small.”

We first claim that the expected value E(∆q,t) = µ ≤ 2ǫ.
Since quantum operations do not increase trace distance, and

using basic properties of trace distance, it holds that:

ǫ ≥ 1

2
||ρTQR − σTQR||

=
1

2

∑

t

PT (t)

∣∣∣∣∣

∣∣∣∣∣
∑

q

p(q|t)ρ(t, q)− p̃(q|t)σ(t, q)
∣∣∣∣∣

∣∣∣∣∣

=
1

2

∑

t

PT (t)

×
∣∣∣∣∣

∣∣∣∣∣
∑

q

p(q|t)(ρ(t, q)− σ(t, q))− (p̃(q|t)− p(q|t))σ(t, q)
∣∣∣∣∣

∣∣∣∣∣

≥
∑

t,q

p(q ∧ t)∆t,q −
1

2

∑

t

PT (t)|p̃(q|t)− p(q|t)|.
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Since partial trace is a quantum operation, it is clear that,

by tracing out the T and Q registers, we have:

ǫ ≥ 1

2

∑

t

PT (t)|p̃(q|t)− p(q|t)|.

So, we conclude that:

E(∆t,q) = µ =
∑

t,q

p(t ∧ q)∆t,q ≤ 2ǫ.

Finally, the variance V 2 can be bounded by:

V 2 =
∑

t,q

p(t ∧ q)∆2
t,q − µ2 ≤

∑

t,q

p(t ∧ q)∆t,q = µ ≤ 2ǫ,

where, above, we used the fact that ∆t,q ≤ 1.

Now, by Chebyshev’s inequality, we have:

Pr(|∆q,t − µ| ≥ ǫβ) ≤
V 2

ǫ2β
≤ 2ǫ1−2β , (17)

(the last inequality follows since β < 1
2 ); note that this

probability is over all subsets t and measurement outcomes q.

Thus, except with probability at most 2ǫ1−2β , after choosing t
and observing q, it holds that |∆q,t − µ| ≤ ǫβ which implies:

1

2
||ρ(t, q)− σ(t, q)|| = ∆q,t ≤ µ+ ǫβ ≤ 2ǫ+ ǫβ .

Thus, we may conclude that, except with probability 2ǫ1−2β ,

it holds that H4ǫ+2ǫβ

min (AZ |E)ρ ≥ Hmin(AZ |E)σ ≥ nγ −
log |J (n)

q |, completing the second step of the proof.

Of course, the above analysis assumed the input state ρAE
was pure. However, if the state is not pure, it may be purified

and, incorporating this extra system to E, the result above

follows.

Notice that one may choose sampling strategies suitable to

a particular application and, then, need only to analyze the

classical strategy to attain a result in the quantum setting.

Furthermore, arbitrary sampling strategies may be employed

with arbitrary target functions, leading to a potential wide-

range of applications. One simply needs to analyze the failure

probabilities of the resulting classical sampling strategy (Equa-

tion 9). We demonstrate this by analyzing a QRNG protocol

in the next section.

A. Application to Quantum Random Number Generators

Quantum Random Number Generators (QRNG) are pro-

tocols which, by utilizing a physical source of randomness

in particular quantum sources, attempt to distill a uniform

random string. For a cryptographic QRNG, the string should

be uniform random and also independent of any adversary.

At the most basic level, a QRNG protocol could consist of

a source emitting a photon passing through a beam splitter

connected to two photon counters. Such a system will lead to

a random measurement on one detector or the other, producing

a random stream of 0’s and 1’s. Such a setup assumes fully

trusted devices (both the source and measurement apparatus

are fully trusted and characterized and outside the control or

influence of any adversary).

On the opposite extreme is the fully device independent

model [24], [25] whereby the source and measurement appa-

ratus are not trusted (perhaps manufactured by the adversary -

though one must still assume, of course, that the actual mea-

surement outcome reported by the untrusted device cannot be

sent to the adversary). Fully device independent protocols are

obviously highly desirable from a cryptographic standpoint;

however in practice, they are slow to implement [26], [27].

This leads to a middle-ground between these two extremes

known as the source-independent (SI) model introduced orig-

inally in [10] and studied further in several works including

[28], [29]. Here, the quantum source is not trusted, however

the measurement devices used are trusted and characterized.

Such protocols are a step up from the fully trusted scenario

(as they can take into account physical imperfections, but

also the fact that an adversary may be entangled with the

source and, thus, attempt to gain information on the resulting

random string). Furthermore, they are highly practical, leading

to Gbps implementations [30]. Finally, by not trusting the

source, several fascinating possibilities are open, including

the use of sunlight as the source [31]. For a general survey

of QRNG protocols and their security models, the reader is

referred to [32].

In previous work, we showed that sampling-based entropic

uncertainty relations provide optimistic results for QRNG

protocols. In [2], we analyzed a qubit-based protocol but

without an adversary. In our recent conference paper [3], we

analyzed a SI-QRNG protocol with an adversarial source and

qudits (d-level systems), however where Alice was restricted

to performing only a partial basis measurement (our previous

relation could not take into account a full basis measurement

for the sampling stage of the protocol). Here, we show how

our entropic uncertainty relation can be used to provide highly

optimistic bit generation rates for the full high-dimensional

SI-QRNG protocol introduced in [10] (where a full basis

measurement is required for the test stage). The protocol we

analyze requires Alice to be able to measure in two bases

Z = {|0〉 , · · · , |d− 1〉} and X = {|x0〉 , · · · , |xd−1〉}. We

assume the measurement devices are fully characterized and

so maxi,j | 〈i|xj〉 | is known. In the following we will assume

that | 〈i|xj〉 | = 1/
√
d for all i, j however our analysis works

identically for other scenarios. The protocol, then, operates as

follows:

1) Preparation: An adversary prepares a quantum state

|ψ0〉 ∈ HA⊗HE , where the HA portion is an (n+m)-
fold tensor of Hd (i.e., the A register consists of n+m
qudits of dimension d for a known d ≥ 2). The A
portion is sent to Alice while the E portion remains with

the adversary. An ideal source should prepare the state

|ψ0〉 = |x0〉⊗(n+m)⊗|χ〉E - that is, a state independent

of Eve and with n+m perfect copies of the qudit state

|x0〉. As the source is adversarial, we do not assume

anything about the structure of |ψ0〉 other than it lives

in HA ⊗HE .

2) Sampling and Measurements: Alice chooses a random

subset t of size m and measures those qudits indexed by

t in the X basis, recording the outcome as q ∈ Amd . The
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character counts of this will be used to determine how

much information an adversary has (it should be that

c0(q) is high). The remaining qudits she measures in the

Z basis, saving the resulting string as r ∈ And . Note we

are not considering experimental imperfections on the

devices such as dark counts or low-efficiency detectors

- we are only interested in the theoretical bound of

ideal measurements, leaving these interesting practical

measurement concerns as potential future work.

3) Post-Processing: Alice runs a privacy amplification pro-

tocol, applying a two-universal hash function f to the

string r, resulting in her final random string s = f(r).
As proven in [33], for a QRNG protocol of this nature,

the hash function f need only be chosen randomly once

and then reused, so no additional randomness is needed

here.

The sampling portion of this protocol is easily seen to be

Ψ1 introduced in Section II-A with target function g(x) =
(c0(x), · · · , cd−1(x)). In this case, the size of the chosen

subset t is always m leaving n qudits unmeasured. So we write

Jq in place of J
(n)
q from Theorem III.1 and its definition is:

Jq = {i ∈ And | max
j
|cj(i)− cj(q)| ≤ δ}. (18)

To apply the sampling based entropic uncertainty relation

of Theorem III.1, we first bound the size of this set. Of

course Jq ⊂ Iq = {i ∈ And | |w(i) − w(q)| ≤ δ} where

w(x) is the relative Hamming weight of x. Then, using

the well-known volume of a Hamming ball, we may bound

|Jq| ≤ |Iq| ≤ dnH̄(w(q)+δ). This is the bound we used

in our entropic uncertainty relation in our conference paper

[3] (which was based on the set Iq not the full Jq since

full measurements were not supported in our earlier work).

However, when we have full information on the string q, we

may attempt to derive a tighter bound on Jq itself for use

in analyzing this QRNG protocol. Theorem III.2 provides an

alternative bound on |Jq| which is tighter in some scenarios

as we discuss later.

Theorem III.2. Let 1
d > δ > 0 and q ∈ Amd be given. Define

the functions νi for each i ∈ Ad, dependent on the choice of

q, to be

νi =

{
0, ci(q)− δ ≤ 0

ci(q)− δ, otherwise.

then, for Jq = J
(n)
q defined in Equation 18, we have:

log2 |Jq| ≤ − n
∑

i∈Ad

νi log2 νi + n log2 n

(
1−

∑

i∈Ad

νi

)

(19)

+ (d+ 1) log2 e−
d

2
log2

(
1− dδ
d

)
.

Proof. To prove this, we count the total number of ways one

may construct a string with the required counts. Let Kq ={
(x0, . . . , xd−1) ∈ N

d : |xi − nci(q)| ≤ nδ and
∑
xi = n

}

and observe that

|Jq| =
∑

k∈Kq

∏

ki∈k

(
n−∑i−1

j=0 kj

ki

)

=
∑

k∈Kq

n!

k0!(n− k0)!
· (n− k0)!
k1!(n− k0 − k1)!

· · ·

=
∑

k∈Kq

n!

k0!k1!k2! . . .
= n!

∑

k∈Kq

∏

ki∈k

1

ki!
.

Let Mq = {(x0, . . . , xd−1) ∈ N
d : |xi−nci(q)| ≤ nδ}. Of

course Kq ⊂Mq . This immediately implies

n!
∑

k∈Kq

∏

ki∈k

1

ki!
≤ n!

∑

x∈Mq

∏

xi∈x

1

xi!
.

Now let {x1i , x2i , . . . , xmi

i } ⊂ N be the values in increasing

order which satisfy |xji−nci(q)| ≤ nδ for all j ∈ {1, . . . ,mi}.
We can enumerate the set Mq as

Mq = {(xj00 , xj11 , . . . , x
jd−1

d−1 ) | ji ∈ {1, . . . ,mi}}.
Then

∑

x∈Mq

d−1∏

i=0

1

xi!
=

∑

j0,...,jd−1

(
1

xj00 !
· 1

xj11 !
· . . . · 1

x
jd−1

d−1 !

)

=

d−1∏

i=0

(
1

x1i !
+

1

x2i !
+ . . .+

1

xmi

i !

)

=

d−1∏

i=0

mi∑

ji=1

1

xjii !

The benefit of isolating these partial sums of 1/xjii ! is that

we can take advantage of the Taylor series for ex to bound

this partial sum. We can expand on this to get the following:

n!
d−1∏

i=0




mi∑

ji=1

1

xjii !


 = n!

d−1∏

i=0

1

x1i !




mi∑

ji=1

1

(xjii !)/(x
1
i !)




≤ n!

d−1∏

i=0

1

x1i !




mi∑

ji=1

1

ji!




≤ n!

d−1∏

i=0

e

x1i !
= n! · ed ·

d−1∏

i=0

1

x1i !
.

Since each xi ≥ 0, we replace the value of x1i with the value

nνi for each i, where νi is defined in the Theorem statement.

Furthermore, below, since 0! = 1, we only need to multiply

by those νi > 0. Then,

log2 |Jq| ≤ log2

(
n! · ed ·

d−1∏

i=0

1

x1i !

)

= log2


n! · ed ·

∏

νi 6=0

1

⌈nνi⌉!




= log2(n!) + d log2 e−
∑

νi 6=0

log2(⌈nνi⌉!)
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≤ log2

(
enn+1/2e−n

)
+ d log2 e

−
∑

νi 6=0

log2

(√
2π(nνi)

nνi+1/2e−nνi
)

(20)

≤ n log n+ (d+ 1− n) log2 e+
1

2
log2 n

−
∑

νi 6=0

((nνi + 1/2) log2 nνi − nνi log2 e)

≤ −n
∑

νi 6=0

νi log2 νi + n log2 n


1−

∑

νi 6=0

νi




+ (d+ 1) log2 e

+
1

2


log2 n−

∑

νi 6=0

log2 nνi


 (21)

≤ −n
∑

i∈Ad

νi log2 νi + n log2 n

(
1−

∑

i∈Ad

νi

)

+ (d+ 1) log2 e

+
1

2

(
log2 n− d log2

(
n(1− dδ)

d

))
(22)

≤ −n
∑

i∈Ad

νi log2 νi + n log2 n

(
1−

∑

i∈Ad

νi

)

+ (d+ 1) log2 e−
d

2
log2

(
1− dδ
d

)
.

Inequality 20 follows from the Stirling upper and lower

bounds. Then, the (d + 1) in inequality 21 follows from

−n(1 −∑i νi) log2 e ≤ 0. Jensen’s Inequality and concavity

of the logarithm imply inequality 22.

Now we use Theorems III.1 and III.2 to analyze the protocol

described above. Let ǫ > 0 be arbitrarily chosen by the user

(this will determine the user’s desired failure probability and

security properties). We use

δ =

√
(m+ n+ 2) ln(2d/ǫ2)

m(m+ n)
, (23)

which, by Lemma II.2 implies that the failure probability will

be ǫ2 (and so the ǫ in Theorem III.1 will match the chosen

value of ǫ here). Finally, let ǫPA = 4ǫβ + 9ǫ be the distance

from an ideal uniform random string of size ℓ independent of

E’s system.

Using Theorem III.1 along with privacy amplification

(Equation 6), we have that, except with probability at most

2ǫ1−2β , the number of uniform random bits extracted from

the protocol leading to an ǫPA secure string is:

ℓours = n log2 d− log2 |Jq| − 2 log2
1

ǫ
, (24)

where

log2 |Jq| ≤ min {F ,G} , (25)

F = −n
∑

i∈Ad

νi log2 νi + n log2 n

(
1−

∑

i∈Ad

νi

)

+ (d+ 1) log2 e−
d

2
log2

(
1− dδ
d

)
, (26)

and

G = nH̄d(1− ν0) log2 d (27)

by Theorem III.2 and the standard bound on the volume of a

Hamming ball as discussed earlier. In our evaluations, we set

ǫ = 10−36 and β = 1/3 which balances the failure probability

of Theorem III.1 (namely, the probability of failure is 2ǫ1−2β)

and the smoothing parameter used in the min entropy. With

these settings, the failure probability and the value of ǫPA are

on the order of 10−12.

We compare our new lower bound ℓours for this protocol

against the lower bound provided in [10] using alternative

methods and an alternative entropic uncertainty relation. We

also compare with another high-dimensional SI-QRNG from

[34]. Note that, due to our bound on Jq in Equation 25,

our new result here will never be worse then the SI-QRNG

protocol analyzed in our conference paper [3] (which used

Equation 27 only) and so we do not compare with that here.

A lower bound for the SI-QRNG protocol of [10], which

we denote here as ℓ1, was given in that reference by:

ℓ1 ≥ n
(
log2 d− 2 log2

[
Γ(m+ d)

Γ(m+ d+ 1
2 )

d−1∑

i=0

Γ(ci +
3
2 )

Γ(ci + 1)

])
,

where m is the test size and ci represents the number of

measurement outcomes that result in outcome |xi〉.
The protocol of [34] is slightly different from the one we

analyze. Here, an adversarial source prepares an entangled

high-dimensional state (if the source were honest, it would

prepare n+m copies of the state |ψ0〉 = 1√
d

∑d−1
i=0 |i, i〉A1A2

)

sending the A1 and A2 registers to Alice. Alice chooses a

random subset and measures the A1 and A2 qudit systems each

in a d-dimensional basis X resulting in classical characters

cA1
(i) and cA2

(i) corresponding to the ith iteration of registers

A1 and A2. For the remaining unmeasured systems, she

discards the A2 system and measures only the A1 system in

the Z basis resulting in her secret string. If the source were

honest, it should be that the X basis measurement outcomes

of the A1 and A2 register are fully correlated. She then applies

privacy amplification to the result of the Z basis measurement.

A lower bound for the number of random bits that may be

extracted from this protocol, which we denote here as ℓ2, was

computed in [34]:

ℓ2 = n log2 d− log2 γ(d0 + δ′),

where

γ(x) = (x+
√

1 + x2)

(
x√

1 + x2 − 1

)x
(28)

and

δ′ = d

√
N2

n2m
ln

(
4

ǫ

)
. (29)
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(used in our earlier work in [3]). How much slower our bound

grows asymptotically depends on the observed relative counts

from the sampled q.

Theorem III.3. Let ρ be a quantum state acting on Hd and

pk be the probability of observing outcome k in some d-

dimensional basis X . Let νi = max{ci(q) − δ, 0} for any

i ∈ Ad and G(q, n, d, δ) = nH̄d(1−νa)
logd 2 , where a is the element

of Ad such that ca(q) = maxi∈Ad
ci(q). Define F(q, n, d, δ)

to be our upper bound on |Jq| from Theorem III.2, namely:

F(q, n, d, δ) = −n
∑

i∈Ad

νi log2 νi + n log2 n

(
1−

∑

i∈Ad

νi

)

+ (d+ 1) log2 e−
d

2
log2

(
1− dδ
d

)
.

Finally, let δ = O
(

1√
n

)
. Then, if a measurement is performed

on ρ⊗n in the given X basis resulting in outcome q, it holds

that:

lim
n→∞

F(q, n, d, δ)
G(q, n, d, δ) ≤ 1

where equality holds if and only if pi =
1−pa
d−1 for all i 6= a.

Proof. Notice that by the proof of Lemma III.2

lim
n→∞

F(q, n, d, δ)
G(q, n, d, δ) = lim

n→∞
logd 2

H̄d(1− νa)
· lim
n→∞

F(q, n, d, δ)
n

≤ H(X)ρ · lim
n→∞

logd 2

H̄d(1− νa)
.

Then, by Lemma III.1 and the definition of H̄d, it follows that

H̄d(1− νa) ≥ Hd(1− νa) ≥ logd 2 ·H(X)ρ

and hence

H(X)ρ · lim
n→∞

logd 2

H̄d(1− νa)
= lim
n→∞

logd 2 ·H(X)ρ
H̄d(1− νa)

≤ 1.

where equality holds if and only if logd 2 · H(X) =
limn→∞ H̄d(1− νa). This is true if and only if pi =

1−pa
d−1 by

Lemma III.1 and the fact that νa → pa as n→∞.

1) Alternative Proof of Maassen-Uffink Relation: With the

above analysis, our Theorems III.1 and III.2 can be used

to provide an alternative proof of the Maassen and Uffink

entropic uncertainty relation for projective basis measurements

of d-dimensional states. Note that in [2] we showed quantum

sampling can be used to provide an alternative proof of

this relation but only for the qubit case. Furthermore, our

earlier work in our conference paper [3] also cannot lead to

an alternative proof of this relation in the high dimensional

(d ≥ 3) case as Theorem III.3 shows.

Corollary III.1. Let Z = {|zi〉}i∈Ad
and X = {|xi〉}i∈Ad

be

two orthonormal bases and let ρ be a density operator acting

on Hd ⊗HE . Then it holds that

H(Z|E)ρ +H(X)ρ ≥ H(Z)ρ +H(X)ρ ≥ γ,
where γ = − logmaxi,j | 〈zi|xj〉 |2.

Proof. Consider the state ρ′ = ρ⊗2n. We apply Theorem III.1

to ρ′ using sampling strategy Ψ1 with m = n. Since ρ′ is i.i.d.,

for any subset t of size n and any measurement outcome q on

that subset, the post-measurement state is simply ρ⊗n.

Fix ǫ̂ > 0 and 0 < β < 1/2. Then, for any n and ǫ ≤
ǫ̂, setting δ =

√
(n+1) ln(2d/ǫ2)

n2 , Theorem III.1 implies that,

except with probability at most ǫ̂1−2β , the inequality

1

n
H4ǫ+2ǫβ

min (Z|E)ρ(t,q) +
1

n
log2 |J (n)

q | ≥ γ

holds, where q is the observed value after measuring using Z.

Then, by the asymptotic equipartition property, it follows that

lim
ǫ→0

lim
n→∞

1

n
H4ǫ+2ǫβ

min (Z|E)ρ⊗n = H(Z|E)ρ.

This, combined with Lemma III.2 and the fact that H(Z) ≥
H(Z|E), completes the proof.

It is interesting to note that, though we were able to use our

method to derive a version of the Maassen and Uffink relation

involving H(A|E), our method does not immediately work to

show the standard tripartite version of H(A|E)+H(A|B) ≥ γ
from [35]. However, we believe our method can be used to

prove this stronger version perhaps using alternative classical

sampling strategies, or a better bound on Jq .

IV. A TRIPARTITE SAMPLING-BASED ENTROPIC

UNCERTAINTY RELATION

We now turn our attention to deriving a new tripartite

sampling-based entropic uncertainty relation involving Alice,

Bob, and Eve. Later we show an application to a finite

key analysis of the high-dimensional BB84 [15]. To begin,

consider the following experiment, extending an earlier ver-

sion to this three party case: on an input state of the form

ρTABE =
∑
tA,tB

p(tA, tB) |tA, tB〉 〈tA, tB | ⊗ ρtA,tBABE , choose

a random subset t = (tA, tB) by measuring the T register,

causing the state to collapse to ρtA,tBABE (though, as before, this ρ
portion may be independent of the chosen subset in which case

a random subset is chosen which does not affect the rest of

the input state). We assume |tA| = |tB | = m. Next, a portion

of the A and B registers, indexed by the chosen subsets, are

measured in basis X = {|x0〉 , · · · , |xd−1〉} resulting in out-

come qA, qB ∈ Amd . This measurement causes the remaining

state to collapse to ρABE(t, qA, qB). The experiment outputs

(t, qA, qB , ρABE(t, qA, qB))← Exp (ρTABE , X).
Note that technically, by considering Alice and Bob as

one party for the sampling portion, one could potentially use

Theorem III.1 with a suitable sampling strategy similar to Ψ0

or Ψ1. However, this would bound the resulting min entropy as

a function of the set JqA,qB = {(i, j) ∈ A2n
d | |∆H(qA, qB)−

∆H(i, j)| ≤ δ}. It is not difficult to see that |JqA,qB | ≥ dn

(since for any fixed qA and qB , and for every i ∈ And , one

may find a j ∈ And satisfying (i, j) ∈ JqA,qB ). Recalling from

our Theorem that the min entropy is higher when the size

of this set is smaller. This would always produce the trivial

bound of Hmin(A|E) ≥ 0 and so Theorem III.1 cannot be

used for the three-party case. We prove that sampling can

provide an entropic uncertainty relation in this scenario for

high-dimensional states by suitably modifying the first step
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of our proof method. Furthermore, we show how our proof

method can lead to relations incorporating more than one

overlap, useful in case the two bases have a shared vector

in common (e.g., a “vaccuum” state vector for QKD).

Theorem IV.1. Let ǫ > 0, 0 < β < 1/2, and ρABE be an

arbitrary quantum state acting on HA ⊗ HB ⊗ HE , where

HA ∼= HB ∼= H⊗(n+m)
d with d ≥ 2 and m ≤ n. Let Z and

X be two orthonormal bases of Hd and define the maximal

overlap γ̂ as γ̂ = − log2 maxa,b | 〈za|xb〉 |2. Let a∗ and b∗ be

a pair that attains this maximum, then we define the second-

greatest overlap as:

γ = − log2 max
a 6=a∗
b 6=b∗
| 〈za|xb〉 |2.

(It is possible that γ = γ̂ for some bases.) Let

δ =

√
(m+ n+ 2) ln(4/ǫ2)

m(m+ n)
.

Finally, let ρTABE = 1
T

∑
t |t〉 〈t| ⊗ ρABE , where the

sum is over all subsets of the form t = (tA, tB) with

tA = tB (over their respective subspaces) and T =
(
n+m
m

)
.

Then, except with probability at most 2ǫ1−2β , after running

(t, qA, qB , ρABE(t, qA, qB)) ← Exp (ρTABE , X), it holds

that:

H4ǫ+2ǫβ

min (AZ |E)ρ(t,qA,qB) +
nH̄(∆H(qA, qB) + δ)

logd 2

≥ n(cb∗(qA) + δ)γ̂ + n(1− cb∗(qA)− δ)γ

where AZ above, denotes the random variable resulting from

measuring the remainder of the A system of ρ(t, qA, qB) in

the Z basis and the probability is over all choices of subsets

and measurement outcomes within the experiment. If γ̂ = γ,

then the above simplifies to:

H4ǫ+2ǫβ

min (AZ |E)ρ(t,qA,qB) +
nH̄(∆H(qA, qB) + δ)

logd 2
≥ nγ

Proof. As with our other proofs of sampling based entropic

uncertainty relations, this one follows the same two-step

structure where, first, we analyze the ideal case, proving the

result there; then, finally, we argue that the real case must

follow the ideal except with small probability of failure. For

this tripartite version, only the first step changes from our

proof of Theorem III.1, the second step is identical.

Consider sampling strategy Ψ2+0 defined in Section II-A

with the count index set to b∗ which is the classical strategy

we will employ in this scenario. By Theorem II.1, there exist

ideal states {|φtABE〉}, indexed over all subsets t = (tA, tB),
such that |φtABE〉 ∈ span(Gt,δ) ⊗ HE and, in this case

as we are using Ψ2+0, the set Gt,δ = {(i, j) ∈ ANd ×
ANd | |∆H(itA , jtB ) − ∆H(i−tA , j−tB )| ≤ δ and |cb∗(itA) −
cb∗(i−tA)| ≤ δ}. Furthermore, by our choice of δ, and the

failure probability of Ψ2+0 (from Equation 12), we have:
1
2 ||ρTABE − σTABE || ≤ ǫ, where σTABE is the ideal state

defined over all subsets and individual ideal states above (as in

Theorem II.1). If we consider performing the given experiment

on this ideal state, afterwards, we will receive as output the

chosen subset t, the measurement results qA, qB , and the post-

measurement state |φt(qA, qB)〉ABE which is guaranteed to be

of the form:

|φt(qA, qB)〉 =
∑

(i,j)∈JqA,qB

αi,j |i〉A |j〉B |Ei,j〉 ,

where the above |i〉A and |j〉B are X basis vectors (i.e., |xi〉
and |xj〉), and: JqA,qB = {(i, j) ∈ A2n

d | |∆H(qA, qB) −
∆H(i, j)| ≤ δ and |cb∗(qA)− cb∗(i)| ≤ δ}.

Rearranging terms and permuting the A and B subspaces,

we may write the above state as:

|φt(qA, qB)〉 ∼= |φ̃t(qA, qB)〉
=
∑

j∈Y
α̃j |j〉B ⊗

∑

i∈J(j)
qA,qB

β
(j)
i |i〉A |Ẽi,j〉 ,

where Y ⊂ And and J
(j)
qA,qB ⊂ {i ∈ And | |∆H(i, j) −

∆H(qA, qB)| ≤ δ and |cb∗(qA)−cb∗(i)| ≤ δ}. Note that some

of the α̃ and β’s may be zero. Tracing out B leaves us with:

σAE =
∑

j∈Y
|α̃j |2 P




∑

i∈J(j)
qA,qB

β
(j)
i |i〉A |Ẽi,j〉




︸ ︷︷ ︸
σ
(j)
AE

where P (z) = zz∗. At this point, A measures the remaining

portion of her register in the Z basis, resulting in
∑
j σ

(j)
AZ ,E

.

By appending a suitable classical system and conditioning on

it, we may use Equation 4, to show that

Hmin(AZ |E)σ ≥ min
j
Hmin(AZ |E)σ(j) .

Consider a particular j and define χ
(j)
AE =∑

i∈J(j)

(qA,qB)

|β(j)
i |2 |i〉 〈i| ⊗ |Ẽi,j〉 〈Ẽi,j |. From Lemma

I.1, we have:

Hmin(AZ |E)σ(j) ≥ Hmin(AZ |E)χ(j) − log2 |J
(j)
(qA,qB)|

We first bound Hmin(AZ |E)χ(j) . Taking χ(j) and measuring

in the Z basis yields:

χ
(j)
ZE =

∑

i∈J(j)

(qA,qB)

|β(j)
i |2


∑

z∈An
d

p(z|i) |z〉 〈z|


⊗ |Ẽi,j〉 〈Ẽi,j |

where

p(z|i) = | 〈z|xi〉 |2 =

n∏

k=1

| 〈zk|xk〉 |2

We wish to find an upper bound on p(z|i) for any z and i
(within our constraints on i) which will be used shortly to

bound the min entropy of the system. Recall, we have two

particular overlaps we are considering: one for 〈za∗ |xb∗〉 and

one for the remaining possible pairs. It is not difficult to see

that p(z|i) is maximized if, whenever ik = b∗ that we have

zk = a∗. This can happen at most n(cb∗(qA)+δ) times due to
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our constraint on i and so the remaining counts (namely n(1−
cb∗(qA)− δ)) will be bounded using γ. Thus, we conclude:

p(z|i) =
n∏

k=1

| 〈zk|xk〉 |2 ≤
(
| 〈za∗ |xb∗〉 |2

)n(cb∗ (qA)+δ)

×


max
a 6=a∗
b 6=b∗
| 〈za|xb〉 |2



n(1−cb∗ (qA)−δ)

.

(30)

Finally, we append a classical system spanned by orthonormal

basis {|i〉I} for all i ∈ J (j)
(qA,qB) producing state:

χ
(j)
ZEI =

∑

i

|β(j)
i |2

(
∑

z

p(z|i) |z〉 〈z|
)
⊗|Ẽi,j〉 〈Ẽi,j |⊗|i〉 〈i|I .

Then, using Equation 4 and the definition of min entropy, we

conclude:

Hmin(AZ |E)χ(j) ≥ Hmin(AZ |EI)χ(j)

≥ min
i
(− logmax

z
p(z|i))

≥ n(cb∗(qA) + δ)γ̂ + n(1− cb∗(qA)− δ)γ.
Finally, it is clear that:

|J (j)
qA,qB | ≤ |{i ∈ A

n
d | |∆H(i, j)−∆H(qA, qB)| ≤ δ}

= |{i ∈ And | |∆H(i, 0)−∆H(qA, qB)| ≤ δ}
≤ dnH̄(∆H(qA,qB)+δ),

where the last inequality follows from the well-known bound

on the volume of a Hamming sphere. Since the above analysis

holds for any j, we have therefore computed the resulting

min entropy of the ideal case, namely for any chosen t and

observed qA, qB , it holds that:

Hmin(AZ |E)σ

≥ n
(
(cb∗(qA) + δ)γ̂ + (1− cb∗(qA)− δ)γ

− H̄(∆H(qA, qB) + δ)

logd 2

)
(31)

The second step of the proof involves arguing that the

smooth min entropy H4ǫ+2ǫβ

min (AZ |E)ρ, for the given input

state ρABE , is bounded by the same quantity with high

probability. This can be done in the same way as the second

step in Theorem III.1. Since the trace distance between the

real and ideal states, for our chosen δ, is no greater than ǫ,
the same error and smoothing bounds apply as in the second

step in Theorem III.1. thus completing the proof.

A. Application to QKD Security

Entropic uncertainty relations involving three parties, A,

B, and E have numerous applications, especially in quan-

tum cryptography. Here we demonstrate how our bound

produces improved finite-key rate bounds for the High-

Dimensional BB84 protocol (HD-BB84) introduced in [15].

High-dimensional QKD protocols have been shown to exhibit

several advantages over qubit based protocols in some scenar-

ios, including in noise tolerance. For a general survey of QKD

protocols, the reader is referred to [36], [37] while for a survey

specific to high-dimensional QKD, the reader is referred to

[18].

HD-BB84 involves two orthonormal bases, which we denote

Z = {|0〉 , · · · , |d− 1〉} and X = {|x0〉 , · · · , |xd−1〉}, each

of dimension d; we will assume the bases are mutually unbi-

ased and so | 〈i|xj〉 | = 1/
√
d for all i, j. If we are considering

lossy channels, then we will also add a |vac〉 vector to both

these bases. Alice chooses a random basis and a random state

within that basis (though not the |vac〉 state if it is there),

sending it to B. B, on receipt of a quantum state will measure

it in the Z or X basis, choosing randomly. Afterwards, a clas-

sical authenticated communication channel is used allowing A
and B to inform each other of their basis choices. If they are

incompatible, the round is discarded; otherwise, assuming B
did not observe |vac〉, they add log d bits to their raw key.

Repeating N times, each A and B has a raw key of size

n bits. However, this key is only partially correlated (there

may be errors due to natural noise or adversarial interference)

and only partially secret. Thus, an Error Correction protocol

is run (leaking additional information to the adversary) and,

finally, Privacy Amplification (as discussed in Section I-A),

resulting in a secret key of size ℓ bits. Maximizing ℓ is vital

to efficient performance of QKD systems and, from Equation

6, this involves maximizing our estimate of the min entropy

Hǫ
min(A|E).

To analyze this protocol, we consider an equivalent entan-

glement based version, parameterized by Z, X , n and m.

We also consider an asymmetric version whereby only Z
basis measurements contribute to the raw key, while X basis

measurements are used only for estimating the error in the

channel. The entanglement based HD-BB84 runs as follows:

1) An adversary prepares a quantum state |ψ0〉 ∈ HA ⊗
HB⊗HE , where HA ∼= HB ∼= H⊗n+m

d . The A portion

is sent to Alice; the B portion is sent to Bob; while Eve

keeps the E portion to herself.

2) A chooses a random subset t of size m and sends it to B;

both parties measure their systems indexed by t in the

X basis resulting in outcomes qA and qB respectively

(these are strings in Amd ). These values are disclosed to

one another using the authenticated channel.

3) A and B measure the remaining portion of their systems

in the Z basis resulting in their raw-keys rA and rB of

size at most n bits each (if there are |vac〉 observations,

those will not contribute to the raw key and so it may

be smaller than n in a lossy channel).

4) A and B run an error correction protocol capable of

correcting up to Q errors in their raw keys, leaking

leakEC bits to Eve.

5) Finally, privacy amplification is run on the error cor-

rected raw key resulting in their secret key.

Note that when d = 2 this is exactly the BB84 protocol.

Note also that, by increasing the basis dimension to d+1, we

can add an additional “vacuum” state |vac〉 to both the Z and

X basis, such that 〈i|vac〉 = 〈xi|vac〉 = 0. In this case the

maximal overlap function is γ̂ = − log2 1 = 0 and the second

maximal overlap function is γ = − log2 1/d = log2 d. (Note
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typically needs to only analyze the classical strategy and solve

some sort of combinatorial counting problem afterwards in

order to attain an entropic uncertainty relation which may be

used to analyze quantum protocols. Note that our methods

can potentially be used inside the framework of [42] which

provides a general framework for QKD security using entropic

uncertainty - we develop new entropic uncertainty relations

which may be used by other frameworks for security proofs.

Ultimately, our work demonstrates a novel proof approach for

tripartite entropic uncertainty relations utilizing the quantum

sampling framework of Bouman and Fehr which may hold

other interesting applications.

Several interesting future problems remain open. So far we

only considered projective basis measurements. Generalizing

these results to arbitrary POVM’s would be greatly interesting.

However, this would require extending the quantum sampling

technique to support such measurements. Furthermore, im-

proving the tripartite relation (Theorem IV.1) with a tighter

sampling strategy would produce even more beneficial results.

Finding other interesting theoretical and cryptographic appli-

cations of quantum sampling and our sampling-based entropic

uncertainty relations would also be highly interesting. We feel

that the framework of quantum sampling is powerful and can

be employed successfully in other areas of quantum infor-

mation science, and further exploration of quantum sampling

in the domain of quantum information theory can yield even

more exciting results in quantum cryptography.
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