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Abstract—It has been shown recently that the framework of
quantum sampling, as introduced by Bouman and Fehr, can
lead to new entropic uncertainty relations highly applicable
to finite-key cryptographic analyses. Here we revisit these so-
called sampling-based entropic uncertainty relations, deriving
newer, more powerful, relations and applying them to source-
independent quantum random number generators and high-
dimensional quantum key distribution protocols. Along the way,
we prove several interesting results in the asymptotic case for our
entropic uncertainty relations. These sampling-based approaches
to entropic uncertainty, and their application to quantum cryp-
tography, hold great potential for deriving proofs of security for
quantum cryptographic systems, and the approaches we use here
may be applicable to an even wider range of scenarios.

Index Terms—Quantum Cryptography, Quantum Entropic
Uncertainty, Quantum Information Theory, High-Dimensional
Quantum Communication.

I. INTRODUCTION

Quantum sampling, as introduced by Bouman and Fehr
in [1], is a framework allowing for the analysis of quan-
tum systems through classical statistical sampling methods.
Informally, it was shown that when sampling a quantum state
(via measuring some subset of it in a particular basis), the
remaining, unmeasured, portion of the state behaves like a
superposition of states that are “close” (with respect to some
target value such as Hamming weight) to the observed sample.
How close they are depends, in fact, on the error probability
of the classical sampling protocol used (where the classical
sampling strategy would observe a portion of a classical
word in some alphabet and argue about how the remaining,
unobserved, portion of the word looks). At a high level,
suppose one measures a random portion of some quantum state
|¢) in the Z = {|0),--- ,|d — 1)} basis and always observes
|0). Then, one would expect that the remainder of the state
(the unmeasured portion) should be a superposition of states
that are relatively close to the all |0---0) state. Bouman and
Fehr’s framework formalizes this notion, even when the state
is entangled with an environment system (e.g., an adversary).

Besides being fascinating on its own, there are now several
interesting applications of this work. In their original paper
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[1], the authors showed some applications to quantum cryp-
tography, namely a security proof of the entanglement-based
BB84 QKD protocol for qubits (dimension two systems).
Recently in [2], [3], we showed how the quantum sampling
framework may be used to derive novel quantum entropic
uncertainty relations which are highly applicable to finite-key
quantum cryptographic security analyses. Informally, quantum
entropic uncertainty relations bound the amount of uncertainty
in two different measurement outcomes performed on some
quantum system. For instance, the famous Maassen and Uffink
relation [4] (which, itself, followed from a conjecture by
Kraus in [5] and was an improvement over an uncertainty
relation proposed first by Deutsch [6]) states that, given a
quantum state p acting on a d-dimensional Hilbert space
Hg, then if two measurements are performed on the system
resulting in random variables M and N respectively, it holds
that H(M) + H(N) > -, where v is a function of the
two measurements performed (namely their overlap, though
we will formally define this later for our applications). In
particular, one cannot in general be certain of the outcome of
both measurements of the system. By now there are numerous
quantum entropic uncertainty relations with various fascinating
properties and applications; for a general survey, the reader is
referred to [7], [8], [9].

The so-called sampling-based entropic uncertainty relations
we introduced in our earlier work [2], [3] turn out to be
highly useful in finding optimistic secure bit generation rates
for quantum random number generation (QRNG) protocols
in the source-independent security model [10]. Our relations
bounded the quantum min-entropy Hpin(A|E) as a function
of the Shannon entropy of a particular measurement outcome
and the measurement overlap. Since min entropy is a highly
valuable resource in quantum cryptography (in particular, it
can be used to determine how many uniform random bits one
may extract from a source, independent of any adversary [11]),
finding tight bounds on this quantity is highly desirable when
analyzing quantum cryptographic protocols. As we’ve shown
in our earlier work, our relations often out-perform prior
work in cryptographic settings, producing more optimistic bit
generation rates for QRNG protocols leading, potentially, to
more rapid implementations of such systems (though here, and
in our prior work, we focus only on theoretical analyses -
practical settings, though interesting, are outside the scope of
this current work). Furthermore, our sampling-based relations
incorporate all needed finite sampling effects thus making
them easy to use “out of the box.”

Here, we revisit sampling-based entropic uncertainty rela-
tions. These relations involve a quantum state p, possibly en-



tangled with an adversary, whereby a random sample is chosen
and a test is performed by measuring a portion of p resulting
in some outcome ¢. In this work, we show a highly general,
two-party entropic uncertainty relation (Theorem III.1) which,
informally, states that with high probability (based on the
failure probability of a classical sampling strategy):

Hyi(A[E) +1ogy | Jg| = v, (1)

min
where J, is the set of all words in some alphabet that are
“close” to the observed string ¢; n is the number of qudits
that were not measured in the test state; and ~y is a function
of the overlap between the two measurements. One of the
strong advantages to our new sampling-based relation is that
one may design classical sampling strategies suitable to a
quantum cryptographic purpose and simply insert it directly
into the above; all one needs to do is analyze the classical
error probability and bound or evaluate the size of the set J,
(which is typically a combinatorial proof). Though this result
is more general than our original, it turns out the proof of this
is nearly identical to our prior work in our conference paper [3]
(itself, building on a proof technique we used originally in [2]
but there for qubit systems only). However the novelty is, first,
in the generality of the result that it works for any classical
sampling strategy (whereas in our recent conference paper
[3] only a particular sampling strategy was proven); second
in its applications, we show that this new bound is powerful
enough to analyze a particular source-independent (a form of
partial device independence introduced first in [10]) QRNG
protocol producing more optimistic bit-generation rates than
prior work using alternative methods and, furthermore, unlike
our previous work, can provide an alternative proof of the
previously mentioned Maassen-Uffink relation for dimensions
strictly greater than 2 (in [2] we showed this for dimension 2
systems only as our older work in [2] was only applicable to
qubit systems).

Our second main contribution is to show a novel sampling-
based entropic uncertainty relation involving Alice, Bob, and
Eve. Here, Alice and Bob perform a test measurement on
some portion of their quantum state, resulting in outcome
qa and qp respectively (these are words in some d-character
alphabet). Then, informally, our new entropic uncertainty
relation (Theorem IV.1) states that, with high probability:

Hiiw(AlE) +naHa [Ar(qa, qB) + 0] = noy +may,  (2)

where ng + ny = n, the number of systems not measured
initially; 74 is a constant depending on the dimension (d)
of the individual systems measured; § takes into account
imperfect, finite samples; H, is the d-ary Shannon entropy;
and Ap(z,y) is the Hamming distance of words = and y.
Our entropic uncertainty relation can actually incorporate the
maximal measurement overlap 4 and the second-maximal
overlap v, making it useful if the two measurement bases have
a similar basis element (e.g., a “vacuum” element, useful in
QKD when considering channel loss - though, of course, this is
not the only way to prove security over lossy channels [12], it
does provide, as we show, a very straight forward and general
relation useful for this application also). This ability shows
the great promise in using the Quantum Sampling framework

of Bouman and Fehr, augmented with our proof techniques
developed here and in our prior work [2], [3] to prove
interesting, and useful, entropic uncertainty relations. Indeed,
our proof method can even be extended to support additional
measurement overlap quantities. Note that the ability to utilize
multiple measurement overlaps is not unique to our relation;
e.g., state-dependent entropic uncertainty relations [13] can
also utilize multiple measurement overlaps in various ways.
However, it does demonstrate the flexibility of our approach
based on Bouman and Fehr’s quantum sampling framework
and does provide a new entropic uncertainty relation using
quantum min entropy and classical Shannon entropy.

Note that, if ¢4 = gp, then our result shows that the min-
entropy conditioned on the adversary’s system £ must be high.
We use our entropic uncertainty relation to provide a proof of
security, in the finite key setting, of the High-Dimensional
BB84 protocol [14], [15], [16], [17]. Our security proof is
valid against arbitrary attacks by an adversary and applies
easily to any dimension d of the signal states and can even
take into account lossy channels. Since high-dimensional QKD
protocols exhibit many fascinating and useful properties (such
as increased noise tolerance [15], [18]), and are experimentally
feasible today [19], [20], [21], [22], our new analysis may
provide even further benefits to these systems. We note that in
[1], the sampling framework was used to provide a proof of
security for the standard (qubit-based) BB84 using alternative
methods which were specific to the qubit-BB84 protocol. Our
method provides, first, a novel entropic uncertainty relation
which may have numerous other applications to quantum
cryptographic protocols outside of HD-BB84; and, secondly,
provides as an application a simple proof of security for the
high-dimensional variant of BB84 for any dimension d of the
system.

This work makes several contributions, not the least of
which is showing yet further fascinating, and highly appli-
cable, connections between the quantum sampling framework
of Bouman and Fehr [1], classical sampling methods, and
quantum information theory, in particular entropic uncer-
tainty. Furthermore, our relations are immediately applicable
to quantum cryptography in the finite key setting, leading to
composable security [11] and, as we show, in most typical
scenarios also highly optimistic secure bit-generation rates for
source-independent QRNG protocols and QKD protocols. In
practice, such sampling-based approaches show that quantum
communication systems may run at higher bit-generation rates
than previously thought. Thus, not only does this work provide
interesting theoretical contributions, but also potential practical
ones (though, as stated, we are not considering practical
experimental imperfections here, leaving this as interesting
future work). We suspect that there are even more connections
and applications of the quantum sampling framework which
may shed further light on problems in general information
theory and applied quantum cryptography. This paper attempts
to take a step forward in that direction.

A. Notation

We start with some notation and definitions that we will use
throughout this work. An alphabet A, is a set of d characters



which we typically label {0,1,---,d—1}. Given a word g €
A", the substring g, indexed by t C {1,...,n} is the string
4t = Gt, G, - - - qt,- The substring g denotes the substring
indexed by the complement of ¢.

Much of our work involves arguing about the properties of
a given word. In particular, given a string g € A7, the relative
Hamming weight is defined as w(q) = Hj‘gliﬁéo}‘ and the
relative character count with respect to i € Ay is defined as
ci(q) = w Note that w(q) = 1 — ¢o(x). We will
use ¢(q) to denote the d-tuple of all relative counts, namely
c(q) = (co(q), -+ ,ca—1(q)). The Hamming distance between
two strings z,y € A7 is Ag(z,y) = W

A density operator p is a positive semi-definite Hermitian
operator with trace equal to one, acting on some Hilbert space
H. If pag acts on some Hilbert space H 4 @ H g, we write pg
to mean the partial trace of psp over A (similarly for other

systems).
We use H,4 to denote a d-dimensional Hilbert space. Given
a basis {|vg), - ,|vg—1)} of Hg, and given a word i € A",

we write |v;) to mean |v;,) ® -+ ® |v; ). If the basis under
consideration is clear, we will sometimes write |¢) to mean
|vi).

The Shannon entropy of a random variable X is denoted by
H(X). The d-ary entropy function H, is defined as Hy(z) =
dlog,(d—1)—zlog,;z— (1 —x)log,(1 — z). Note that when
d = 2 this is simply the binary Shannon entropy. Finally,
we define the extended d-ary entropy Hy(z) to be Hy(x) if
0 <z < 1-1/d; otherwise Hy(x) = 0if x < 0 or Hy(z) = 1
ife>1-1/d.

Given pap acting on Hy ® Hpg, then the conditional
quantum min entropy [11] is defined to be:

Huin(A|E), = supmax{\ € R | 274 ® o — pap > 0}.
(<8 5]

3)
When the E system is trivial, we have Hmin(A|E), =
Hpin(A), = —log max A, where the maximum is taken over
all eigenvalues \ of p 4. In particular, if p 4 is a classical system
(that is, pa = >, Pa |a) (al), then Hpyin(A), = —log max p,.
Note that, for any quantum-quantum-classical state pspc =
Zivzo pcp(Ac])E ® |¢) {c|, then it is easy to prove from the
definition of min entropy that the following holds:

Hmin(A|EC)p Z IniIlein(A|E)p(c). (4)

Though we will not need it here, a useful interpretation of
Hyin(A|E) for classical-quantum states (cq-states) p ag (that
is, states of the form pap =Y, pala) (a| ® pg)) was given
in [23] as:

Hmin<A|E)p = - IOg Pg(pAE)7

where Py(pag) is the maximal guessing probability that Eve
can guess the value of Alice’s register, namely:

Py(paE) = max Za:patr (Mapfg“)) ;

where the maximum is over all POVM operators on Hg.
Finally, the conditional smooth min entropy is defined to be
[11]
Hyin(AlE), =

min

sup Hpin(A|E),. (5)

oele(p)

where T'.(p) = {0 | ||p — || < €} and here || X]|| is the frace
distance of operator X.

For additional notation, given a quantum state p4p and an
orthonormal basis Z of the A register, we write Hmin(Z|E), to
mean the conditional min entropy of p4 g after measuring the
A system using the Z basis. If the state p4p is pure, namely
pae = |¢) (Y| 5. We write Hpin(A|E)y. This notation is
similar for smooth min entropy.

The following Lemma relating the min entropies of mixed
and pure states will be useful to our work later as it will allow
us to bound the min entropy of a superposition of states by,
instead, computing the min entropy of a corresponding mixture
of states:

Lemma I.1. (From [1] based also on a Lemma in [11]) Let
Z ={]i)} and X = {|x;)} be two orthonormal bases of H 4.
Then for any pure state [¢)) = >, @ |i)®|d;) p € Ha®HE
(where |¢;); are arbitrary, normalized states in Hp), if we
define the mixed state p = >, [a;|? |7) (i| @ |ps) (¢3], then

Hmin(X‘E)w Z Hmin(X|E)p - 10g2 |J‘

Quantum min entropy is of vital importance to quantum
cryptography as it allows one to determine how many uniform
random bits one may extract from a cg-state pap that are
also independent of Eve. In particular, given a cq-state (which,
itself, is typically the result of running some quantum cryp-
tographic protocol where the A register may not be uniform
random or completely independent of the F register), one may
apply the process of privacy amplification (typically running
the A register through a randomly chosen two-universal hash
function) to establish the required uniform and independent
random string. If oxg is the result of applying privacy
amplification to the initial p4 g system, where the K register
is of size ¢ bits, it was shown in [11] that:

Ik

OKE — — ®0og

2t 20

min(AlE)pie) =+ 2e. (6)

Thus, by deriving a lower-bound on the min entropy of
the initial state psp before privacy amplification, one may
establish how many uniform and independent bits may be
extracted (namely, ¢) from the state to satisfy the above trace
distance inequality up to a desired level of security; e.g., so
that the difference between the real state o g and the “ideal”
state I /2° ® o (which represents a uniform random string,
independent of any other system) is no more than some ep 4.

II. QUANTUM SAMPLING

In [1], Bouman and Fehr discovered a fascinating con-
nection between classical sampling strategies and quantum
sampling. Since our work utilizes this as a foundation to prove
our entropic uncertainty relations (later used to prove security
of QRNG and QKD protocols), we take the time in this section
to provide a review of their main results. Everything in this
section, definitions, concepts, and theorems, come from [1]
except when explicitly mentioned. Occasionally, we will make
some generalizations and simplifications, however wherever
we do so, it will be made clear in the narrative.



Let A; be an alphabet with d characters and N € N
be fixed. A classical sampling strategy is a triple ¥ =
(Pr, Ps, f), where Pr is a probability distribution over sub-
sets of {1,2,--- N}, Pg is a probability distribution over
some set {0,1}* called seed values, and f is a function:

40,1} x A% — RF, (7

Given a string g € A", the strategy consists of, first, sampling
a subset ¢ according to Pr; sampling a seed value s according
to Pg, observing the value of ¢; and evaluating f(s, g;). This
evaluation should lead to a “guess” of the value of some target
function g : A — R* evaluated on the unobserved portion of
q, namely g_;. Informally, a good sampling strategy will en-
sure that, with high probability, max; | fi(s, ¢:) — gi(q—¢)| < 6
(i.e., the difference in all coordinates of the output function
evaluated on the sampled portion of ¢, compared to the target
function evaluated on the unobserved portion, are no greater
than §). Note that above, we are generalizing the sampling
result of [1] to include more general target and guess functions;
in [1], kK = 1 and g(x) = w(x), the Hamming weight of
x. However, the proof of their main result is easily seen to
hold in this more general case, so long as suitable classical
strategies are analyzed appropriately (as we do later in this
section). Finally, note that in our work, we do not make
use of this additional random seed value (which is useful
when implementing randomized guess functions f); thus, we
disregard writing it from here on out and, instead, our function
f simply maps strings from Agl to values in R¥.

Now, fix a subset ¢t C {1,2,--- N} and § > 0 and consider
the set:

Glf =Gis={ic A} | max |f; (i) = g;(i-¢)| < 0}
This set consists of all “good” words in A} where, for the
given choice of ¢, the estimate produced by f is § close to the
desired target function on the unobserved portion. Note that,
when the context is clear, we will forgo writing the f and
g superscripts. From this, the error probability of the given

classical sampling strategy is defined to be:

/(1) = max Pr(g ¢ Gr.s), ©)
where the probability is over the choice of subsets ¢t drawn
according to Pr (the notation G; s is used to denote the set
defined above for a fixed ¢ whereas Gr s denotes a random
variable over the choice of subset ). Note that the randomness
here is only over the choice of subset; if the function f need
also make random choices, this could be incorporated through
the use of the additional seed value. Since our strategies we
use here do not need this, we forgo considering it.

From the above definition, it is clear that for any ¢ € .Aév R
the probability that the sampling strategy fails to produce an
accurate estimate of the target function is at most egl. The “cl”
superscript is used to denote that this is the failure probability
of the classical sampling strategy.

These notions may be adapted to quantum states. Let H 4 be
the d-dimensional Hilbert space spanned by some orthonormal
basis B = {|0),---,|d —1)}. The choice of basis may be

arbitrary, however all following definitions are taken with
respect to the chosen basis.

Given a classical sampling strategy (Pr, f) (again, disre-
garding the seed Ps which we do not use) and a quantum
input state |¢)) € HTY @ Hp, a quantum sampling strategy
may be constructed as follows: first, sample ¢ according to Pr;
second, measure those qudits in ’H?N indexed by ¢ using basis
B to produce measurement result g, € A‘tl; finally, evaluate
the function f(g;). The main result from [1], informally, is that
the remaining unmeasured portion of the input state should
behave like a superposition of states that are ¢ close in the
target function g(-) to the estimated value f(q;).

More formally, consider:

span (Gy5) = span{|b) | b€ G, s},

where, by |b), we mean |b;)®- - -®|by) (again, with respect to
the given basis). Note that, if [¢) , o € span (Gis) ® HE, and
if subset ¢ is actually the one chosen by the sampling strategy,
then it is guaranteed that, after measuring those qudits indexed
by ¢ in the given basis B resulting in outcome ¢, the remaining
unmeasured portion will be in a superposition of states of the

form:
=S el

i€y

Yada_,p = i) ©|Ei)

where:

Jy={i € AV | max|fi(a) - ;)] < 8).

Formally, the main result from [1] is stated below, which
argues that the input state will be e close in trace distance to
an ideal state where this sampling process always yields the
correct guess and this collapse always happens. Furthermore,
the e depends on the error probability of the underlying
classical sampling strategy.

Theorem II.1. (From [1], though reworded for our applica-
tion): Let ¥ = (Pr, f) be a classical sampling strategy with
classical failure probability egl for given § > 0. Then, for
every state |¢) 4o € Ha @ Hp with Hy = H?N, there
exists a collection of states {|¢% )} indexed by subsets ¢

of {1,---, N} with each |¢% ) € span (Gis) @ Hp such

that
3| S P01 10 () 116t 04D || < 00
(10)

where ¢ represents a sampled subset of {1,..., N}.

Proof. In Bouman and Fehr’s work [1], it was shown that for
a fixed [¢) 4 it holds that

{&m ZPT ) [t) {tl @ (|¢> (WYlap — |04 e) <¢f4E|) ’
<o (11)

where the minimum is over all {|¢% z)} C span (Gi,s) @ HE,
for a sampling strategy where the target function was g(z) =
w(x). However, in their proof, the above is shown directly



by projecting the input [¢)) , » into the space span (Gis) ®
H g, thus directly constructing the ideal states. Namely, the
ideal states were defined by the decomposition ) V) ap =

(04 plar) |04 )+ (S plar) |6) ) where the [, ;) lives
in a space orthogonal to the ideal. This minimum is therefore

attained by these ideal states. Furthermore, there is no specific
reason in this construction to restrict to target functions that
are the Hamming weight, nor to target functions that are
one-dimensional. Indeed, by considering any definition of
G:,5, their construction and the subsequent analysis follows
identically assuming the error probability is defined as in
Equation 9 based on the set G; 5. The important difference
comes in the analysis of the classical sampling strategy in
order to compute €§!. O

The fascinating thing about Theorem II.1 is that, by choos-
ing suitable classical sampling strategies, one may analyze the
behavior of ideal states which always behave appropriately for
the given strategy. From this, and the fact that the real state
is close, in trace distance, to these ideal states (on average
over the randomness in the sampling strategy), one may then
promote the analysis from the ideal state to the actual input.
Already in [2], [3], we used this to prove novel, and useful,
quantum entropic uncertainty relations which were then used
to analyze particular QRNG protocols. We now generalize
these results, analyze a more powerful QRNG protocol, and
also show how this can be used to develop entropic uncertainty
relations involving A, B, and E with applications to high-
dimensional QKD protocols. We show that, furthermore, this
provides highly optimistic secure bit generation rates for both
the QRNG and QKD protocols in a variety of scenarios.
However, to analyze these protocols, we first require some
important classical sampling strategies.

A. Classical Sampling Strategies

As discussed, Theorem II.1 allows us to consider classical
sampling strategies and use these to analyze quantum proto-
cols. Here we discuss four classical sampling strategies which
we denote Wy, Uy, Uy, and Wy (. Strategy ¥y was analyzed
in [1] and we use this to bound the error of the other strategies.
The other strategies involve one party (V) or two parties (Vo
and Wy, o) and will be used later when deriving our entropic
uncertainty relations.

One-Party HD-Restricted-Sampling W,: In [1], the follow-
ing natural sampling strategy was analyzed which we denote
here as Wy. We use this result to bound the error in our other
sampling strategies to be discussed next. Let ¢ € A ™™ be a
string and the target function g(x) = w(x). The strategy, first,
chooses a subset t of {1,--- ,n+m} of size m, uniformly at
random and observes string ¢;. Next, it outputs f(q;) = w(q),
an estimate of the Hamming weight of the unobserved portion,
namely w(q_;). We call this the HD-Restricted-Sampling
strategy as it is high-dimensional, however it only looks at
the Hamming weight, ignoring the counts of other characters.
The following Lemma was proven in [1]:

Lemma IL.1. (From [1]): Let 6 > 0 and d > 2. Then the
failure probability of the above described sampling strategy
Yo for m < n is:

m4+n+2

We comment that there is nothing special in the above
sampling strategy, or their proof, about the use of the Ham-
ming weight in the above Lemma; instead one could replace
the target function g(x) with any single ¢;(x) or 1 — ¢;(x)
(to count the number of letters equal to, or not equal to, j
respectively) and the same bound will follow (for a single,
fixed but arbitrary, 7). See [1].

€§!(Wo) < 2exp (“Vm(’””rm)> .

One-Party HD-Full-Sampling ¥ : In our work, here, we will
need three additional sampling strategies. The first sampling
strategy, which we denote W1, is a one-party strategy involving
Alice only and will be used for our QRNG analysis later. The
strategy works for strings in A%, where N = n + m and the
target function is g(z) = (co(x),...,cq—1(x)) where ¢;(z)
is the relative number of times symbol ¢ appears in the word
z (as defined in Section I-A). First, the strategy Wy chooses
a subset ¢ of size m from {1,---, N} uniformly at random
and observes the string ¢; € A7". Finally, ¥; outputs f(g;) =
(co(gt),---,ca—1(q:)) as an estimate of the relative counts of
the unobserved ¢q_;. The proceeding Lemma determines an
upper bound on the error probability of the sampling strategy
v,

Lemma IL2. Let 6 > 0 and d > 2. Then the failure
probability of the above described sampling strategy ¥; when
m < n is:

c m+n
€§l<\:[11) S Qdexp <—m527’n—’_7®_‘_2> .

Proof. Note that, for any j, (Pr,c;) is exactly the strategy
Wy (though, instead of looking at the number of strings with
a certain Hamming weight, we are looking at the number of
strings with a certain character count). Thus, using the bound
provided by Lemma II.1 we find
€ = e, Pr(a @ Gr.s(V1))
qe
< Z e, P (1fsa) =

< 2dexp (—m52m+n) .
m-—+n+ 2

9i(q—1)| > 9)

O

Two-Party HD-Sampling U5: The second strategy we require
will be used for our two-party applications later and we denote
by Wy. Here, we have an input string ¢ = (¢*, ¢?) € AY x

AY, where N = n+m. The strategy will first choose a subset
t C {1,---, N} of size m uniformly at random. The strategy
will then sample ¢;* and ¢7; that is, it will observe the g*
portion and ¢” portion individually, using the same subset (this
may be written strictly using our earlier definitions, however
such strict formality is not enlightening). The target function is



g(q?,,4%,) = Au(q?,, q5,) (where Ay (z,y) is the relative
Hamming distance of words = and y as defined in Section I-A)
and the output will be f(¢i',¢?) = Au(qf, qP). Again, we
may bound the error probability of this strategy using Lemma
IL.1.

Lemma IL.3. Let U5 be the strategy defined above; § > 0
and m < n. Then € (V) < £ (¥y).

Proof. Let N = n+m and Gis = {(i,j) € AY x
AT 1 1Am (i, 0) = Ar(iog,j—0)] < 6} and G5 = {i €
AN | Jw(iy) — wli_y)| < 6}. Pick g = (¢, q%) € AY x AY
and let z = ¢ — ¢¥, where the subtraction here is character-
wise, modulo d, in the given alphabet. Clearly w(z;) =
Ap (¢, qP), and similarly for z_,. Thus, ¢ € G; s if and
only if = € G, 5. Hence, for every ¢ = (¢, ¢®), it holds that:

Pr(¢*q” ¢ Grs) = Pr(¢" —¢” ¢ Gr.5)
< mix Pr (aﬁ Z Q/T(;) = egl(\llo).
S év ’

Since this holds for any ¢ = (¢4, ¢®), we’re done. O

Finally, we define a second two-party sampling strategy
which combines ¥, with ¥(; we denote this strategy by Wo .
For this strategy, the target function is now g(q?,,q%,) =
(Ar(q?,,45,), co-(¢?,)) for some given, fixed, distinguished
index b* € Ay (we later call this the “count index”). This
sampling strategy chooses a subset according to W, and
outputs a guess f (¢}, ¢?) = (Ar (g, ¢P), co-(¢i)). Tt is not
difficult to show from Lemmas II.1 and II.3 that the error
probability of this strategy is:

—82m(n +m)
cl cl cl

] < \/j Ty) <4 —_— .
€5 (W240) < €5 (V2) + €5 (o) < exp( m4+n—+ 2

)

III. QUANTUM SAMPLING BASED ENTROPIC
UNCERTAINTY

In [2], [3], we showed how the technique of quantum sam-
pling, introduced in [1] and discussed in the previous section,
can be used to prove entropic uncertainty relations bounding
the smooth quantum min entropy and the Shannon entropy, as
a function of the overlap of two projective measurements. Our
first work [2] introduced a novel entropic uncertainty relation
applicable to qubits (i.e., d = 2) only and with a fixed sampling
strategy; in our conference paper [3], we expanded the result
to work for qudits (d > 2), however only with a partial
basis measurement and a particular, fixed, sampling strategy.
Here, we discuss and generalize this result to work with
more general sampling strategies allowing a “plug-and-play”
entropic uncertainty relation for various classical sampling
strategies. Indeed, as shown in this section, one may introduce
an arbitrary classical sampling strategy (perhaps one that is
useful for a particular cryptographic application); one need
only compute the error probability of the given classical
strategy, along with the size of a set similar to G (generally a
classical combinatorial proof) to derive a result applicable to
a quantum system. The proof of this follows the same two-
step approach we introduced in [2], [3] only with suitable
generalizations at certain points.

To describe our sampling based entropic uncertainty rela-
tions, we require an experiment which takes as input a quantum
state p acting on Hp @ H 4o ® Hr where the A portion is an N-
fold tensor of some smaller d-dimensional Hilbert space and
the T register is a Hilbert space spanned by orthonormal basis
{|t)} where t C {1,---, N}. The experiment also requires an
orthonormal basis X = {|xo), - |z4-1)}-

The experiment will first choose a random subset ¢ by
measuring the 7T register. It will then measure the A portion of
p, indexed by ¢, using the given X basis. This measurement re-
sults in outcome ¢ € Aldt‘ and a post-measurement state p(¢, q),
acting on the unmeasured portion of H 4 and H . We denote
this experiment by (¢, q, pa'g(t,q)) + Exp (prag, X ). Note
that the experiment also returns the subset chosen. Sampling
based entropic uncertainty relations allow one to bound the
min entropy in the remaining post-measured state, assuming
an alternative measurement were to be made on the A portion
of it. This bound is a function of the measurement overlap and
the classical measurement outcome q.

The main result from [2], [3] was to relate the min entropy
in the remaining portion of the system as a function of the
measurement overlap and the binary Shannon entropy (or, in
the case of our recent conference paper [3], the d-ary Shannon
entropy) of the relative Hamming weight of the observed
outcome ¢ after running the experiment. However, the proof
technique used there can be applied to a more general setting
allowing for arbitrary sampling strategies and, in particular,
to bound the min-entropy as a function of the measurement
overlap and the size of a particular set J;, of classical strings
that are d-close to the observed gq.

Theorem IIL1. Let 0 < 8 < 1/2 and ¥ be a classical
sampling strategy with error probability ef;l for given § >

0. Let ¢ =

state acting on space H4 ® Hpg, where Hyq = "H(?N for
d > 2 Let Z = {|z)}9=) and X = {|z;)}¢=] be two
orthonormal bases of #Hy. Furthermore, let (¢,q, p(t,q)) «
Exp(}_, Pr(t)|t) (t| ® pag,X), where the sum is over all
possible subsets of {1,2,..., N} that could be chosen by
U and Pr(t) is the probability of subset ¢ being chosen as
determined by the given classical sampling strategy. Finally,

\/€5!, and let pap be an arbitrary quantum

let v = —log, max, p | (za|7s) |>. Then, it holds that:
Pr (H2H (Z]B) ya.q) + loga [N 0] = (N = [t)7)
>1— 2728, (13)
where
T =i e Af | max|fi(q) —g; (D)l <o} (14

Above the probability is over the randomness in the experi-
ment (namely the subset chosen and the resulting measurement
outcome q).

Proof. The proof follows the same two-step argument we first
developed in [2]. In fact, most of the proof is identical to the
weaker relation we proved in our recent conference paper [3]
with the exception of a few generalizations; we provide the
complete proof here for completeness.



First Step - Ideal Analysis: We begin by considering the case
when the input state p o is pure; the mixed case then follows
through standard purification techniques.

By applying Theorem II.1 with respect to the given X basis
and sampling strategy U, there exist ideal states {|¢% )}
such that for every ¢, the state |¢% ;) € span{|z;) | i €
ALY and max; |f;(it) — gj(i—¢)] < 6} ® Hp. Note that the
target function g(z) = (g1(x),- -+, gx(x)) also depends on the
sampling strategy. Furthermore, from this application of Theo-
rem IL1, if we define orap = Y, Pr(t) [t) (¢|®]¢% ) (04U pl .
then it holds that:

>

Consider the output of running (¢,q,0(t,q)) + Exp (0, X).
Here g € .Alj. It is not difficult to see that the resulting state,
after tracing out the measured portion, is of the form:

>

e SV
(n)

where P(|z)) = |z)(z| and where J; = {i €

" | max; |fi(¢) — g;(¢)] < 4} (note that some of the
a;’s may be zero). This state is found by observing that,
conditioning on subset ¢ being chosen, the state collapses to
the pure ideal state |¢'). Now, conditioning on observing a
particular ¢ (or, rather, |z,)), due to the definition of the ideal
state, namely that it lives in the before mentioned spanning set,
it must be that the remaining, unmeasured portion, consists of
states that are J close to the guessing function f(g) in all
coordinates. Note that, conditioning on the given observation,
this state is also pure.

Let n = N — [t
Hmiﬂ(Z|E)U(t,q) > H(Z|E)X
mixed state:

XAE = Z il i) (| @ | Eq) (Eil.
ie g™

We claim that Hyin(Z|E), = (N — |t]). After measuring
the A register of y4p in the Z basis, the resulting state
becomes:

XzE = Z [

iegim

|t t‘@pAE—O'TAE < (\I/):E. (15)

o(t,q) =P ailzi) @ |E;) |, (16)

we have
, where y is the

From Lemma I.1,
(n)

— log|Jq

> pGilea) |2) (2] | @ 1) (Eil

jEAD

where p(z;|z;) is the probability of observing outcome |z;) =
|zj, -+~ 25,) given state |z;) = |x;, - - - x;,). Clearly:

-

p(zilzi) = | (i) |7 - - [ (25 |23,

We now add an additional register /; spanned by orthonormal
basis {|I;)}ics ., and define the state xzgr as:

2 lol

ieg{™

Y plzile) 1) (2] | © 1B (Bil @ L) (L.

JEAL

From Equation 4, we have Hyin(Z|E)y > Hmin(Z|EI)y >

min; Hyin(Z|E),:, where
Xoe = Y p(zlwi) %) (2] ® | E:) (Eil.
JEAR

Since the Z and F registers are independent in the state X 1,
it holds that Hy,(Z|E)y: = Hpin(Z)y:. From this, we can
readily compute:

Hyin(Z|E)y > min Hyin(Z),: = —maxlog p(zj]z;)
1 Y]
> ] “ 2n
> —log max | (za|ap)|
=nny.
Combining  everything, @we can conclude that

Hoin(Z|E)s(t,q) > mny — log |J¢§n)|, thus computing
the min entropy of the ideal state. Note that this works for
any t and observed value q.

Second Step - Real Case Analysis: The second step involves
arguing that the real state cannot behave too differently from
the ideal state we just analyzed. We make use of Chebyshev’s
inequality while also switching to smooth min entropy to
complete the analysis.

Consider the real state p = ), Pp(t) |t) (t|{ ® par where
pPAE 1s given as input to the theorem (note that, here, the
input state is independent of the subset chosen unlike in the
ideal case). The process of choosing a subset ¢, measuring,
and observing ¢ (resulting in post-measurement state p(¢,q))
may be described, entirely, by the mixed state:

PTQR—ZPT Vet > plalt) lg) (gl @ p(t, q),

qG.Athl

where p(q|t) is the probability of observing outcome ¢ given
that the subset ¢ was sampled; here we use the “R” register
to denote the remaining, unmeasured, portion of the state.
Likewise, the ideal state, after performing this experiment,
may be written as the mixed state: orgr = ), Pr(t) |t) (t|®
>, Plalt) |a) (a] @ o(t,q). We define Ay = 3p(t,q) —
o(t,q)||, which may be treated as a random variable over the
choice of ¢ and observed q. We want to show that, with high
probability, A, ¢ is “small.”

We first claim that the expected value E(A, ;) = p < 2e.
Since quantum operations do not increase trace distance, and
using basic properties of trace distance, it holds that:

1
€ > = |lpror — orqrl|

- % > Pr(t) || plalt)e(t.q)
= % ; Pr(t)

—plglt)a(t,q)

p(t,q) —o(t,q)) — (Bqlt) — p(qlt))o(t, q)

> Zp(q A)AL, = 5 =" Pr(t)li(ale) — plale)]



Since partial trace is a quantum operation, it is clear that,
by tracing out the 7" and @ registers, we have:

e> 2 3" Pr(n)lptalt) — plale)|.

So, we conclude that:

E(Arg) =p =Y pltAq)A 4 < 2e

t,q

Finally, the variance V2 can be bounded by:

Ve = Zp(t NQ)AT g —p* < Zp(t AN@)A¢g = p < 2,
t,q

t,q

where, above, we used the fact that A; , < 1.
Now, by Chebyshev’s inequality, we have:
V2
Pr(|Ag; —pul > ¢¥) < 5 <2172, (17)

€
(the last inequality follows since [ < %); note that this
probability is over all subsets ¢ and measurement outcomes q.
Thus, except with probability at most 2¢! =27 after choosing ¢
and observing ¢, it holds that |A,; — u| < €’ which implies:

1
sllo(t,a) = ot a)ll = Agr < p+ e’ <2+ €8

Thus, we may conclude that, except with probability 2¢' =25,
it holds that H < (A4|E), > Hpn(Az|E)y > ny —
log |J(§") , completing the second step of the proof.

Of course, the above analysis assumed the input state psg
was pure. However, if the state is not pure, it may be purified
and, incorporating this extra system to E, the result above
follows. O

Notice that one may choose sampling strategies suitable to
a particular application and, then, need only to analyze the
classical strategy to attain a result in the quantum setting.
Furthermore, arbitrary sampling strategies may be employed
with arbitrary target functions, leading to a potential wide-
range of applications. One simply needs to analyze the failure
probabilities of the resulting classical sampling strategy (Equa-
tion 9). We demonstrate this by analyzing a QRNG protocol
in the next section.

A. Application to Quantum Random Number Generators

Quantum Random Number Generators (QRNG) are pro-
tocols which, by utilizing a physical source of randomness
in particular quantum sources, attempt to distill a uniform
random string. For a cryptographic QRNG, the string should
be uniform random and also independent of any adversary.
At the most basic level, a QRNG protocol could consist of
a source emitting a photon passing through a beam splitter
connected to two photon counters. Such a system will lead to
a random measurement on one detector or the other, producing
a random stream of 0’s and 1’s. Such a setup assumes fully
trusted devices (both the source and measurement apparatus
are fully trusted and characterized and outside the control or
influence of any adversary).

On the opposite extreme is the fully device independent
model [24], [25] whereby the source and measurement appa-
ratus are not trusted (perhaps manufactured by the adversary -
though one must still assume, of course, that the actual mea-
surement outcome reported by the untrusted device cannot be
sent to the adversary). Fully device independent protocols are
obviously highly desirable from a cryptographic standpoint;
however in practice, they are slow to implement [26], [27].
This leads to a middle-ground between these two extremes
known as the source-independent (SI) model introduced orig-
inally in [10] and studied further in several works including
[28], [29]. Here, the quantum source is not trusted, however
the measurement devices used are trusted and characterized.
Such protocols are a step up from the fully trusted scenario
(as they can take into account physical imperfections, but
also the fact that an adversary may be entangled with the
source and, thus, attempt to gain information on the resulting
random string). Furthermore, they are highly practical, leading
to Gbps implementations [30]. Finally, by not trusting the
source, several fascinating possibilities are open, including
the use of sunlight as the source [31]. For a general survey
of QRNG protocols and their security models, the reader is
referred to [32].

In previous work, we showed that sampling-based entropic
uncertainty relations provide optimistic results for QRNG
protocols. In [2], we analyzed a qubit-based protocol but
without an adversary. In our recent conference paper [3], we
analyzed a SI-QRNG protocol with an adversarial source and
qudits (d-level systems), however where Alice was restricted
to performing only a partial basis measurement (our previous
relation could not take into account a full basis measurement
for the sampling stage of the protocol). Here, we show how
our entropic uncertainty relation can be used to provide highly
optimistic bit generation rates for the full high-dimensional
SI-QRNG protocol introduced in [10] (where a full basis
measurement is required for the test stage). The protocol we
analyze requires Alice to be able to measure in two bases
Z =A[0),--,|d=1)} and X = {[xo),- - ,|xa-1)}. We
assume the measurement devices are fully characterized and
$0 max; ; | (¢|z;) | is known. In the following we will assume
that | (i|z;) | = 1/+/d for all i, however our analysis works
identically for other scenarios. The protocol, then, operates as
follows:

1) Preparation: An adversary prepares a quantum state
[tho) € Ha ® Hp, where the H 4 portion is an (n+m)-
fold tensor of Hy (i.e., the A register consists of n+m
qudits of dimension d for a known d > 2). The A
portion is sent to Alice while the F portion remains with
the adversary. An ideal source should prepare the state
[1o) = |x0>®(”+m) ® |x) - that is, a state independent
of Eve and with n + m perfect copies of the qudit state
|zo). As the source is adversarial, we do not assume
anything about the structure of [¢g) other than it lives
in Ha® Hg.

2) Sampling and Measurements: Alice chooses a random
subset ¢ of size m and measures those qudits indexed by
t in the X basis, recording the outcome as ¢ € A%}'. The



character counts of this will be used to determine how
much information an adversary has (it should be that
¢o(q) is high). The remaining qudits she measures in the
Z basis, saving the resulting string as r € A7. Note we
are not considering experimental imperfections on the
devices such as dark counts or low-efficiency detectors
- we are only interested in the theoretical bound of
ideal measurements, leaving these interesting practical
measurement concerns as potential future work.

3) Post-Processing: Alice runs a privacy amplification pro-
tocol, applying a two-universal hash function f to the
string r, resulting in her final random string s = f(r).
As proven in [33], for a QRNG protocol of this nature,
the hash function f need only be chosen randomly once
and then reused, so no additional randomness is needed
here.

The sampling portion of this protocol is easily seen to be
U, introduced in Section II-A with target function g(z) =
(co(x), -+ ,cq—1(x)). In this case, the size of the chosen
subset ¢ is always m leaving n qudits unmeasured. So we write
Jy in place of Jén) from Theorem III.1 and its definition is:

Jo={i € A7 | maxle;() — (@) <o} (18)
To apply the sampling based entropic uncertainty relation
of Theorem III.1, we first bound the size of this set. Of
course J, C I, = {i € A% | |w(i) — w(g)| < 6} where
w(x) is the relative Hamming weight of x. Then, using
the well-known volume of a Hamming ball, we may bound
|Jq] |I,| < drHw@+9) This is the bound we used
in our entropic uncertainty relation in our conference paper
[3] (which was based on the set I, not the full J, since
full measurements were not supported in our earlier work).
However, when we have full information on the string g, we
may attempt to derive a tighter bound on J, itself for use
in analyzing this QRNG protocol. Theorem III.2 provides an
alternative bound on |J,| which is tighter in some scenarios
as we discuss later.

Theorem IIL2. Let < > > 0 and ¢ € A7 be given. Define
the functions v; for each i € Ay, dependent on the choice of

q, to be
v; = 0,
’ CT(Q) - 67

then, for J, = Jén) defined in Equation 18, we have:

logy |Jg| < —n Z v;logs v; + nlogyn <1 — Z I/i>

i€Ag i€Ag
(19)

ci(q)—6<0
otherwise.

d 1—dé
—l—(d—i—1)10g26—510g2 (d)

Proof. To prove this, we count the total number of ways one
may construct a string with the required counts. Let £, =
{(zo,...,a-1) € N : |z; — nc;(q)] <nd and Y x; =n}
and observe that

i—1
n—>"—.k;
@=ZH( =)

k€K, ki€k v

= ko nfkg ]{11 (nfkofkl)!
n!

=2 PATATA I 2 H
ke, ke, k; Gk
Let M, = {(w0,...,24-1) € N?: |z; —nc;(q)| < né}. Of

course K, C M. This immediately implies
ZDSN I FETD O |
ke, ki Ek: TEMg T; Ea:

Now let {z},22,...,2]""} C N be the values in increasing
order which satisfy |27 —nc;(q)| < nd forall j € {1,...,m;}.
We can enumerate the set M, as

Mq:{(l‘éo7.’1,']11,.. .’Efid 11) |ji€{1,...,mi}}.
Then

1 1 1
ST S ()

reMy =0 J0yeeorJd—

=Y ET 1
=11 ﬁ+ﬁ+"'+xmﬂ
i=0 i i
d—1 m;

= O]*l

The benefit of isolating these partial sums of 1/ xi' is that
we can take advantage of the Taylor series for e” to bound
this partial sum. We can expand on this to get the following:

m;
WH
!

i=0 \ji=1 "

1

Tir Ji=1

1
Sn'l_[ 11 Z],l
it \ A it

- e dd_ll

< n!g@ =nl-e g@

Since each z; > 0, we replace the value of xll with the value
ny; for each 7, where v; is defined in the Theorem statement.
Furthermore, below, since 0! = 1, we only need to multiply
by those v; > 0. Then,

d

1
L1z
1=0

1
“l [nv; ]!

I/i;éo

= logy(n!) + dlogy e — » _ logy([n1i]!)
l/i;éo

|
&

log, |J4| < log, (n! et

=log, | n!-e



< log, (en”“me—") + dlogy e
i)nui+1/2€—nw)

- Z log, (\/ﬂ(nl/

I/i;éo

(20)

1
§nlogn+(d+1fn)log26+§log2n

— E ((nv; +

v; 70

1/2)logy nv; — nv; logy €)

§—nZVilog2yi+nlog2n I—Zyi
v; #0 v; #0
+(d+1)logye
+ L Z 1 1)
B 08a 1 - 0go NV;

<-n Z vilogy vy +nlogyn (1 - Z Vi)

€A 1€Aq
+(d+1)logye

1 n(l —dd
+ 5 <1og2ndlog2 <(d)>>

< —-n Z vilogy v; + nlogyn (1 — Z Vi)

i€Aq i€Aq
d 1—dd
+ (d+1)logye — 3 log, () .

(22)

d

Inequality 20 follows from the Stirling upper and lower
bounds. Then, the (d + 1) in inequality 21 follows from
—n(l — >, v;)logy e < 0. Jensen’s Inequality and concavity
of the logarithm imply inequality 22. O

Now we use Theorems III.1 and III.2 to analyze the protocol
described above. Let € > 0 be arbitrarily chosen by the user
(this will determine the user’s desired failure probability and
security properties). We use

5 \/(m+n+2) In(2d/¢2) o3

m(m +n)

which, by Lemma II.2 implies that the failure probability will
be €2 (and so the € in Theorem III.1 will match the chosen
value of € here). Finally, let epy = 4¢P + 9¢ be the distance
from an ideal uniform random string of size ¢ independent of
E’s system.

Using Theorem III.1 along with privacy amplification
(Equation 6), we have that, except with probability at most
2¢1728 the number of uniform random bits extracted from
the protocol leading to an ep 4 secure string is:

(24)

1
Loyrs = nlogy d —logy, |J,| — 21og, =

where

logy |Jq| < min{F,G}, (25)

F=-n Z v;log, v; +nlogyn (1 — Z Vi)

i€Ag i€Ag
d 1—dé
+ (d + 1) IOgQ e — 5 1Og2 (d) N (26)
and
G =nHy(1—vy)logyd 27

by Theorem III.2 and the standard bound on the volume of a
Hamming ball as discussed earlier. In our evaluations, we set
€ = 10735 and B8 = 1/3 which balances the failure probability
of Theorem III.1 (namely, the probability of failure is 2¢!~27)
and the smoothing parameter used in the min entropy. With
these settings, the failure probability and the value of ep 4 are
on the order of 10712,

We compare our new lower bound ¢, for this protocol
against the lower bound provided in [10] using alternative
methods and an alternative entropic uncertainty relation. We
also compare with another high-dimensional SI-QRNG from
[34]. Note that, due to our bound on J, in Equation 25,
our new result here will never be worse then the SI-QRNG
protocol analyzed in our conference paper [3] (which used
Equation 27 only) and so we do not compare with that here.

A lower bound for the SI-QRNG protocol of [10], which
we denote here as /1, was given in that reference by:

A1 3
Z (e —|— 1 >

where m is the test size and c¢; represents the number of
measurement outcomes that result in outcome |x;).

The protocol of [34] is slightly different from the one we
analyze. Here, an adversarial source prepares an entangled
high-dimensional state (if the source were honest it would
prepare n+m copies of the state |) = —= Z i) A, Ay)
sending the A; and As registers to Ahce Alice chooses a
random subset and measures the A; and A5 qudit systems each
in a d-dimensional basis X resulting in classical characters
ca, (7) and c 4, (%) corresponding to the ith iteration of registers
A; and A,. For the remaining unmeasured systems, she
discards the A5 system and measures only the A; system in
the Z basis resulting in her secret string. If the source were
honest, it should be that the X basis measurement outcomes
of the A; and A, register are fully correlated. She then applies
privacy amplification to the result of the Z basis measurement.
A lower bound for the number of random bits that may be
extracted from this protocol, which we denote here as /o, was
computed in [34]:

I'(m+d)
m+d+ }

i >n <log2 d — 2log,

7

> = nlogy d —log, y(do +0'),
where
(@) = (z+ V1 +2?) (x ) (28)
1+22-1
and
2
5 =d ]g In <4>. (29)
n?m €



The term dy is computed as the average difference between
the measurements values of the pairs, ¢4, (¢) and ca, (i) for 4
from 1 to m. That is, do = L 37" |ea, (i) — ca, (i)].

For all protocols, we assume a failure probability on the
order of 1072, The difference from the ideal random string
(Equation 6) is also set to be 10712, As we are only interested
in comparing the relative performance, we do not consider the
additional randomness used to choose a random subset of size
m. Since all protocols in our evaluation are using the same
process for this and same sampling sizes (in particular we use
7% of all signals for sampling), they will each lose the same
amount from their respective ¢ values and so the comparison
remains unchanged.

Note that for each of the three bounds, no assumption is
needed on the noise in the channel - Alice simply uses the
direct measurement result from the test case (in the X basis)
and evaluates ¢. To compare, however, we will simulate certain
noise scenarios. We first compare these protocols assuming
a depolarization channel acting on each qudit state indepen-
dently and identically. Such a channel will cause the qudit
to become the completely mixed state with some probability
@Q; otherwise it remains in its original state. In this setting,
we see the protocol of [10], but augmented using our new
entropic uncertainty relation here outperforms both ¢, and /5.
Since /; is the same protocol we are analyzing with £,,,.s this
shows the great benefit of sampling-based entropic uncertainty
relations. This evaluation is shown in Figures 1, 2. Next, we
evaluate on asymmetric channels which are more likely to add
noise towards one basis vector over another (i.e., it is more
likely to change a |0) to a |1) as opposed to changing a |0)
to a |3)). Depending on the state favored by the channel, our
bound generally outperforms prior work as shown in Figures
3 (right), 4 and 5 (right), though there are scenarios where
the protocol of [34] can outperform our analysis as shown in
Figures 3 (left) and 5 (left). Note, however, that the protocol
of [34] is a different protocol; our methods applied to that
protocol may provide a boost in performance in this scenario
also, a question we leave as future work. Comparing £y s
with ¢;, which is the generation rate for the same protocol of
[10], shows that our new entropic uncertainty relation always
leads to more optimistic bit generation rates in every scenario
we simulated. Also, note that in all cases (including in the
case highlighted in Figures 3 and 5), if we take the number
of signals to be high enough, our bound outperforms.

It is worth discussing why our bound outperforms in some
scenarios and not others. First, our bound does not require a
bound on the quantum max entropy, but instead uses Shannon
entropy; while this is perhaps minor (especially in larger
data sets), it is one potential contribution to this difference.
Second, the statistical testing is automatically incorporated into
our bound while, when using standard entropic uncertainty
relations (used in the proofs of [10] and [34]) alternative
statistical methods to bound the quantum max entropy must be
used and those may not be as tight as our methods. Our bound
on certain asymmetric channels may perform worse than prior
work, this is likely due to our bound on J, which may not be
tight for some asymmetric channels. However, improvements
on this bound can be immediately applied to find improved bit

0.9 Ours

0.8
0.7

0.6

0.5 Vallone et al.

Xu et al.

04

Random Bit Generation Rate

4x10’ 6x107 8x 10’ 1x10°

Number of Signals

0 2x 107

0.9 Ours
Q r’
-
©
-3
c 08
.0
-
(o]
o
207
[}
(U]
=
M 06
£
o
-E Vallone et al
a .
© 05 Serierreeeeiisiiaceeieceecanes aa. . . o —
o Xuetal.
0 2x10° 4x10° 6x10° 8x10° 1x10"

Number of Signals

Fig. 1. Random bit generation rates. z-axis: Total number of signals N
from which .07N are used for sampling; y-axis: Random bit generation
rate £/N. Solid black: £ours/IN; Dotted red: ¢1 /N from [10] (same protocol,
different security analysis); Dashed blue: ¢2 /N from [34] (different protocol
and different security analysis method). Both graphs plot d = 4 with
c(¢) = (0.8,1/15,1/15,1/15) (recall that c(q) denotes the d-tuple of
character counts as discussed in Section I-A). The left and right graphs plot
N < 10% and N < 1010 respectively.

generation rates for those channels. Taken together, our work
here provides a new method of proof approach for QRNG
protocols. Furthermore, it can be used in combination with
other methods - since our method provides a lower-bound,
one may combine with alternative proof techniques to improve
protocol performance under any channel (taking the max of
our methods and prior work).

In summary, Figures 1 and 2 highlight how £, consistently
outperforms ¢; [10] and ¢ [34] on a depolarization channel
for different dimensions d. Our bound for £y, still performs
very well on systems far from depolarization, as shown in
Figure 4. However, there can exist quantum channels which
lead to £,y producing a lower random bit generation rate than
{4 for certain N. Even in these cases, Figures 3 and 5 highlight
that, assuming sufficient computational power to process larger
blocks in the post-processing stage of the protocol, £y can
produce a much higher random bit generation rate than ¢; and
{5 on a large block of signals.
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B. Asymptotic Behavior and Analysis

In Equation 25, we take the bound for log, |J,| to be the
minimum of Theorem III.2 and the size of a Hamming ball.
The reason for doing so is that while the bound on the size of
a Hamming ball is tighter for some scenarios, the bound from
Theorem II1.2 is significantly better in others, especially, as our
numerical simulations show, for large numbers of signals. In
this section, we analyze and compare the asymptotic behavior
of both bounds. We will also use this work to show an
alternative proof of the famous Maassen-Uffink relation [4]
for high dimensional systems.

First, we prove a technical lemma about the relation between
the d-ary entropy function H; and the Shannon entropy, which
will be needed to analyze the asymptotic behavior.

Lemma III.1. Let X be a discrete random variable with d
possible outcomes {zg,...,z4—1} such that the probability
of observing outcome x; is p; for each j. Then for any 4, it
holds that

Hg(1 —pi) > log,2- H(X)

where equality holds if and only if p; = py for all 5,k # 4
(i.e., if the distribution is uniform on the other outcomes not
equal to 7).
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Fig. 3. Random bit generation rates. z-axis: Total number of signals N;
y-axis: Random bit generation rate £/N. Solid black: £ours/N; Dotted red:
£1/N from [10]; Dashed blue: ¢2 /N from [34]. Both graphs plot d = 4 with
c(q) = (0.8,0.19,0.005,0.005). The left and right graphs plot N < 108
and 10° < N < 1010 respectively.

Proof. Fixi € {0,...,d—1} and let Y be the random variable
where the probability of observing z; is ¢; = p; and the

probability of observing x; for any j # i is ¢; = 1 5. Then
Hy(1—p;i)
= (1—pi)logg(d —1) — (1 — p;) log4(1 — p;) — p; log4(pi)
1 —pi
=log,2 | —p;1
0842 | —pilogy (i) Zd <d—1)
i J#i
= IOgd 2| —pi 10g2 pz Z qj 10g2 (IJ
i J#i
= H(Y) log,2.
Moreover, observe that
H(X) = —Pi lOgQ pz ij 10g2 p]
J#i
< —pilogy(pi) — Y gjlogs(gy) = H(Y).
J#i

Note the inequality is shown by recalling that Shannon entropy
is maximal if and only if given a uniform distribution (which
also proves equality if the distribution is uniform on outcomes
other than z;). O
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We now show that our bound for log, |.J;|/n converges to
the Shannon entropy of the random variable induced by a
measurement on some i.i.d. system. This will then lead us
to an alternative proof of the Maassen-Uffink relation from

[4].

Lemma IIL.2. Let p be a quantum state acting on H4 and
consider the n-fold tensor state p’ = p®™. Furthermore, let
0=0 (ﬁ) Consider measuring all n qudits of the state
p' in some d-dimensional orthonormal basis X resulting in
some ¢ € A7 and from this define the set J, = {i € A7 :
max; |c;(i) — ¢;(q)| < 0} as before. Then it follows that

logy |
lim 1282 1Jal H(X),.

n—oo n

Proof. Define v; = max{c;(¢) — 9,0} and let

F(g,n,d,0) =—n Z vilogo v; + nlogogn | 1 — Z Vi
i€Ag i€ Aqg

d 1—dé
+(d+1)10g2€—§10g2 (T) .

Observe that M < — 37, vilogy (i) +ddlogy n + o)

n

where we used the fact that ) .v; > 1 — dd. Since 0 =
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0] (ﬁ) we have

L‘J’Z’d’ ) __ > vilogy(vi) + O <10\g/%n) +0 <%> :

i€Ag

Then, v; = max{c;(q) — 9,0} — p; as n — oo by the law of
large numbers and the assumption on J, where we use p; to
denote the probability of observing |z;), the i’th basis vector
in the measurement basis X. Hence,

Z v;logy(vi) — Z pilogs(pi).
i€Ag i€EAg

Finally, by Theorem IIL.2, we have log, |J,| < F(g,n,d,d),
and so we conclude

lim 10g2 ‘Jq‘ S lim ‘F(q7 TL, d? 6)
n—o00 n n—oo n

. logyn 1
<1 — i1 i 0] Ol -
<t G co(52) o2
==Y pilogy(p) = H(X),

i€Ag

O

Now we are ready to show that our bound for log, |J,|
grows at most as quickly as the volume of a Hamming ball



(used in our earlier work in [3]). How much slower our bound
grows asymptotically depends on the observed relative counts
from the sampled gq.

Theorem IIL.3. Let p be a quantum state acting on H4 and
pr be the probability of observing outcome %k in some d-

dimensional basis X. Let v; = max{c¢;(¢) — 0,0} for any
i€ Aqgand G(g,n,d, ) = %;”“), where q is the element

of Ay such that ¢,(q) = max;ec 4, ¢;(q). Define F(q,n,d, )
to be our upper bound on |J,| from Theorem IIL.2, namely:

F(g,n,d,0) = —n Z v;log, v; + nlogyn (1 - Z I/i>

€A €A

d 1—dd
+ (d+ 1)10@:26—510552 <d>

Finally, let § = O (ﬁ) Then, if a measurement is performed

on p®™ in the given X basis resulting in outcome g, it holds

that:
F(q,n,d,0)

A Glgmd.0) =
where equality holds if and only if p; = ldipf for all i # a.
Proof. Notice that by the proof of Lemma II1.2
I G = ey, T
< H(X),- lim —28d?

n—oo Hy(l —v,)
Then, by Lemma III.1 and the definition of H,, it follows that
I_{d(l —vg) > Hg(1 —v,) >logy2- H(X),

and hence

H(X), - lim 0812y, 10802 H(X)p

n—00 Hd(l_Va) n—00 Hd(l_Va)

where equality holds if and only if log;2 - H(X) =
lim,, 00 H4(1 — v,). This is true if and only if p; = 1d:p1“ by
Lemma III.1 and the fact that v, — p, as n — oo. ]

1) Alternative Proof of Maassen-Uffink Relation: With the
above analysis, our Theorems III.1 and III.2 can be used
to provide an alternative proof of the Maassen and Uffink
entropic uncertainty relation for projective basis measurements
of d-dimensional states. Note that in [2] we showed quantum
sampling can be used to provide an alternative proof of
this relation but only for the qubit case. Furthermore, our
earlier work in our conference paper [3] also cannot lead to
an alternative proof of this relation in the high dimensional
(d > 3) case as Theorem II1.3 shows.

Corollary IIL1. Let Z = {|z;)}ica, and X = {|z;) }ic.a, be
two orthonormal bases and let p be a density operator acting
on H,; ® Hg. Then it holds that

H(Z|E)9+H(X)p 2 H(Z)9+H(X)p >,

where v = —log max; ; | (z;|z;) |

Proof. Consider the state p’ = p®2". We apply Theorem III.1

to p’ using sampling strategy ¥, with m = n. Since p’ is i.i.d.,

for any subset ¢ of size n and any measurement outcome g on
that subset, the post-measurement state is simply p®™.
Fix € > 0 and 0 < 8 < 1/2. Then, for any n and ¢ <

(n+1) 1112(2d/62)

€, setting § = , Theorem III.1 implies that,

except with probability at most €' =27, the inequality
1

—+¥min
n

€ E‘B 1 n
H4 2 (Z|E)p(t,q) + 510g2 |J1§ )| >

holds, where ¢ is the observed value after measuring using Z.
Then, by the asymptotic equipartition property, it follows that

. . 1 28
lim lim —H 52 (Z|B) yor = H(Z|E),.
This, combined with Lemma III.2 and the fact that H(Z) >
H(Z|E), completes the proof.

O

It is interesting to note that, though we were able to use our
method to derive a version of the Maassen and Uffink relation
involving H (A|FE), our method does not immediately work to
show the standard tripartite version of H (A|E)+H(A|B) >~
from [35]. However, we believe our method can be used to
prove this stronger version perhaps using alternative classical
sampling strategies, or a better bound on J,.

IV. A TRIPARTITE SAMPLING-BASED ENTROPIC
UNCERTAINTY RELATION

We now turn our attention to deriving a new tripartite
sampling-based entropic uncertainty relation involving Alice,
Bob, and Eve. Later we show an application to a finite
key analysis of the high-dimensional BB84 [15]. To begin,
consider the following experiment, extending an earlier ver-
sion to this three party case: on an input state of the form

ta,tp
PTABE = D 4, 1+, P(tasts) [ta,t) (ta,ts| ® pipg ., choose
a random subset ¢ = (ta,tp) by measuring the T register,
causing the state to collapse to pf{‘étg (though, as before, this p
portion may be independent of the chosen subset in which case
a random subset is chosen which does not affect the rest of

the input state). We assume |¢4| = |tg| = m. Next, a portion
of the A and B registers, indexed by the chosen subsets, are
measured in basis X = {|zg), - ,|x4—1)} resulting in out-

come g4,qp € Al'. This measurement causes the remaining
state to collapse to papr(t,qa,qp). The experiment outputs
(t,q4,9B,paBE(t,qa,qB)) < EXpP (p1aBE, X).

Note that technically, by considering Alice and Bob as
one party for the sampling portion, one could potentially use
Theorem III.1 with a suitable sampling strategy similar to ¥,
or ¥;. However, this would bound the resulting min entropy as
a function of the set Jy, o, = {(i,5) € A" | |Au(ga,q8) —
Ag(i,7)| < 6} It is not difficult to see that |J,, 4] > d”
(since for any fixed g4 and ¢p, and for every i € A", one
may find a j € A7 satisfying (¢,7) € Jy, ) Recalling from
our Theorem that the min entropy is higher when the size
of this set is smaller. This would always produce the trivial
bound of Hpyn(A|F) > 0 and so Theorem III.1 cannot be
used for the three-party case. We prove that sampling can
provide an entropic uncertainty relation in this scenario for
high-dimensional states by suitably modifying the first step



of our proof method. Furthermore, we show how our proof
method can lead to relations incorporating more than one
overlap, useful in case the two bases have a shared vector
in common (e.g., a “vaccuum” state vector for QKD).

Theorem IV.1. Let ¢ > 0,0 < 8 < 1/2, and papg be an
arbitrary quantum state acting on Ha ® Hp ® Hp, where
HA 2 Hp = 7—[?(”+m) with d > 2 and m < n. Let Z and
X be two orthonormal bases of H; and define the maximal
overlap 4 as 4 = — log, max, p | (24]2p) |2. Let a* and b* be
a pair that attains this maximum, then we define the second-
greatest overlap as:

v = —logy max | (za|zy) |*.
aF#a
b#b*
(It is possible that v = 4 for some bases.) Let

5 \/(m +n+2)In(4/e)

m(m +n)

Finally, let prapeg = %Zf [t) (t| ® papE, where the
sum is over all subsets of the form ¢t = (ta,tp) with
ta = tp (over their respective subspaces) and 7' = ("1™).
Then, except with probability at most 2¢' 28 after running

(t>QA7QBaPABE(tqu7QB)) — EXP(PTABEaX), it holds
that:

nﬁ(AH(qA, qB) + 5)
log, 2
= n(ce~(qa) +0)y + n(l — co=(qa) — 6)y

B
Hoi 2 (Az|E)

p(tiga.as) T

where Az above, denotes the random variable resulting from
measuring the remainder of the A system of p(¢,qa,qp) in
the Z basis and the probability is over all choices of subsets
and measurement outcomes within the experiment. If ¥ = ~,
then the above simplifies to:

nﬁ(AH(qA,qB) + 5) <

H4e+2£ﬂ A E
(421B) ) L) >y

min

p(tyga.as) T

Proof. As with our other proofs of sampling based entropic
uncertainty relations, this one follows the same two-step
structure where, first, we analyze the ideal case, proving the
result there; then, finally, we argue that the real case must
follow the ideal except with small probability of failure. For
this tripartite version, only the first step changes from our
proof of Theorem III.1, the second step is identical.
Consider sampling strategy Voo defined in Section II-A
with the count index set to b* which is the classical strategy
we will employ in this scenario. By Theorem II.1, there exist
ideal states {|¢% z)}, indexed over all subsets t = (t4,tp),
such that [¢Yzr) € span(Gi5) ® Hp and, in this case
as we are using Woo, the set G5 = {(i,j) € AY x
’Aélv | |AH(itA7th) - AH(i—tA7j—tB)| < and |Cb* (itA) -
¢pr(i—t, )| < 0}. Furthermore, by our choice of ¢, and the
failure probability of W, ¢ (from Equation 12), we have:
L |lpraBe — oraBel| < €, where orapp is the ideal state
defined over all subsets and individual ideal states above (as in
Theorem II.1). If we consider performing the given experiment
on this ideal state, afterwards, we will receive as output the

chosen subset ¢, the measurement results g4, ¢g, and the post-
measurement state |¢’(ga, ¢p)) 4 g Which is guaranteed to be
of the form:

19" (qa,9B)) =
(1.9)€Jq 4,0

ijli) 4 19) B | Eig)

where the above |i) , and |j) 5 are X basis vectors (i.e., |x;)
and |z;)), and: Jo,q, = {(i,5) € A" | |An(qa,q8) -
Ap (i, j)| <0 and [ep-(qa) — cp- (i) < 0}

Rearranging terms and permuting the A and B subspaces,
we may write the above state as:

10" (a4,a8)) = 16" (¢4, 45))
=Y @lise > B l)alEy),
JeY i€J) 4y
where Y C A" and JY),, C {i € A7 ||Ax(i,j) —
Apn(ga,qp)| <6 and |cp(ga)—cp(i)] < }. Note that some
of the @ and B’s may be zero. Tracing out B leaves us with:

ST B4 Eig)

i€J) s

(7)
oin

where P(z) = zz*. At this point, A measures the remaining
portion of her register in the Z basis, resulting in y ofg; B
By appending a suitable classical system and conditioning on

it, we may use Equation 4, to show that

Hmin(AZ|E)o' > Injln Hmin(AZ‘E)oU)'
Consider a particular j and define x(ﬁf =
ZiEJ((j) ) \5§J)|2 li) (i| ® |E;;)(E;;|. From Lemma
1.1, we ‘aée:

Huin(Az|E) gy > Huin(Az|E) ) — logy 7

(.05)]

We first bound Hiin(Az|E), ). Taking x) and measuring
in the Z basis yields:

Xgp= >0 BOP Y pali) 12) (2] | @ |Big) (Eryl
iEJ(j) zEAZj
(aa,9B)

where

n

p(zli) = [ {zles) P = TT I alan) 17

k=1

We wish to find an upper bound on p(z|i) for any z and i
(within our constraints on ) which will be used shortly to
bound the min entropy of the system. Recall, we have two
particular overlaps we are considering: one for (zq«|zp+) and
one for the remaining possible pairs. It is not difficult to see
that p(z|i) is maximized if, whenever i), = b* that we have
zr = a*. This can happen at most n(cp+(g4)+9) times due to




our constraint on ¢ and so the remaining counts (namely n(1—
¢p+(ga) — 0)) will be bounded using . Thus, we conclude:

) - n(cy= 46
p(2|’t) = H ‘ <Zk|-%']g> |2 < (| <Za*‘xb*> 2) (cpx (ga)+9)

k=1

n(l—cpx(ga)—9)

[ ma | zalan) 2
a#a

b#b*
(30)
Finally, we append a classical system spanned by orthonormal

basis {|i),} for all i € J((;i,qB) producing state:

g =2 167 (pr) 2) <z|> ®1E: ) (Ei5|81i) Gl -

Then, using Equation 4 and the definition of min entropy, we
conclude:

Huin(Az|E) ) > Huin(Az|ET), )
> min(— log max p(z[i))
> n(cp-(qa) + 6)F +n(l — cp=(qa) — 6)7-
Finally, it is clear that:
T 0p| < (i € A | 18R (0. §) = An(ga, az)| < 6}

={ie Ay | [Au(i,0) — Au(ga,qp)| < 6}
< dnH(AH(qqu)thS)7

where the last inequality follows from the well-known bound
on the volume of a Hamming sphere. Since the above analysis
holds for any j, we have therefore computed the resulting
min entropy of the ideal case, namely for any chosen ¢ and
observed ¢4, ¢p, it holds that:

Hmin(AZ|E)J
> n((cp-(ga) +0)5 + (1 — o= (ga) — )y

_ H(An(ga,98) +5))
log, 2

€29

The second step of the proof involves arguing that the
smooth min entropy H:&F 2¢7 (Az|E),, for the given input
state papp, is bounded by the same quantity with high
probability. This can be done in the same way as the second
step in Theorem III.1. Since the trace distance between the
real and ideal states, for our chosen 4, is no greater than e,
the same error and smoothing bounds apply as in the second
step in Theorem III.1. thus completing the proof.

O

A. Application to QKD Security

Entropic uncertainty relations involving three parties, A,
B, and E have numerous applications, especially in quan-
tum cryptography. Here we demonstrate how our bound
produces improved finite-key rate bounds for the High-
Dimensional BB84 protocol (HD-BB84) introduced in [15].
High-dimensional QKD protocols have been shown to exhibit
several advantages over qubit based protocols in some scenar-
ios, including in noise tolerance. For a general survey of QKD

protocols, the reader is referred to [36], [37] while for a survey
specific to high-dimensional QKD, the reader is referred to
[18].

HD-BB84 involves two orthonormal bases, which we denote
Z ={|0), - ,|[d=1)} and X = {|zo), - ,|Ta—1)}, each
of dimension d; we will assume the bases are mutually unbi-
ased and so | (i|z;) | = 1/+/d for all 4, j. If we are considering
lossy channels, then we will also add a |vac) vector to both
these bases. Alice chooses a random basis and a random state
within that basis (though not the |vac) state if it is there),
sending it to B. B, on receipt of a quantum state will measure
it in the Z or X basis, choosing randomly. Afterwards, a clas-
sical authenticated communication channel is used allowing A
and B to inform each other of their basis choices. If they are
incompatible, the round is discarded; otherwise, assuming B
did not observe |vac), they add logd bits to their raw key.
Repeating N times, each A and B has a raw key of size
n bits. However, this key is only partially correlated (there
may be errors due to natural noise or adversarial interference)
and only partially secret. Thus, an Error Correction protocol
is run (leaking additional information to the adversary) and,
finally, Privacy Amplification (as discussed in Section I-A),
resulting in a secret key of size ¢ bits. Maximizing ¢ is vital
to efficient performance of QKD systems and, from Equation
6, this involves maximizing our estimate of the min entropy
Heo(AIE).

To analyze this protocol, we consider an equivalent entan-
glement based version, parameterized by Z, X, n and m.
We also consider an asymmetric version whereby only Z
basis measurements contribute to the raw key, while X basis
measurements are used only for estimating the error in the
channel. The entanglement based HD-BB84 runs as follows:

1) An adversary prepares a quantum state [1)g) € Ha ®
Hp @Hp, where Ha = Hp = HT" ™. The A portion
is sent to Alice; the B portion is sent to Bob; while Eve
keeps the E portion to herself.

2) A chooses a random subset ¢ of size m and sends it to B;
both parties measure their systems indexed by ¢ in the
X basis resulting in outcomes g4 and gp respectively
(these are strings in A7"). These values are disclosed to
one another using the authenticated channel.

3) A and B measure the remaining portion of their systems
in the Z basis resulting in their raw-keys 74 and rp of
size at most n bits each (if there are |vac) observations,
those will not contribute to the raw key and so it may
be smaller than n in a lossy channel).

4) A and B run an error correction protocol capable of
correcting up to @ errors in their raw keys, leaking
leakgc bits to Eve.

5) Finally, privacy amplification is run on the error cor-
rected raw key resulting in their secret key.

Note that when d = 2 this is exactly the BB84 protocol.
Note also that, by increasing the basis dimension to d+ 1, we
can add an additional “vacuum” state |vac) to both the Z and
X basis, such that (ilvac) = (x;|vac) = 0. In this case the
maximal overlap function is 4 = —log, 1 = 0 and the second
maximal overlap function is v = —log, 1/d = log, d. (Note



that this shows the importance of our relation in being able
to handle both cases individually.) Without this vacuum basis
state, the dimension will be d, and 4 = v = log, d.

Using Equation 6 and results in [11], [38], if A and B wish
to have an ep4-secure key, we have:

1

(= HE, .
epa — 2€¢

min

(A‘E) — leakgec — 210g

Given € > (0 and using our Theorem IV.1, setting epy =
4¢P + 9¢, we have:

Louwr—HD—BB84 = (32)

n(l — pyac — 0) <logd -

H(Ar(g4,98) +5))
loggy, 2

1
— leakgc — 2log —
€

where p,q. is the number of counts in the observed g of
the distinguished vacuum basis state (which is shared between
both the Z and X basis making 4 = 0). In particular, if the
privacy amplification function is chosen to produce an output
of size /s, it is guaranteed, except with probability at most
2¢1728 that the secret key will be ep4 secure according to
Equation 6. Note that if we are not considering lossy channels,
then the key-rate equation becomes simply:

KouerDfBBS4fnofloss = (33)

" (logd H(An(q4,98) +5)>
log,; 2

1
— leakgc — 210g —
€

To compare our new key-rate bound with prior work, we
compare with results in [39] which is, to our knowledge, the
current best bound for the HD-BB84 protocol in the finite key
setting (with composable security, as is ours). Note that they
used an entropic uncertainty relation from [40], resulting in a
key-rate bound of:

gprior—HD—BBS4 = n[log2 d_h(Q+V)_ (Q+V) IOgZ (d—l)],
(34)
where:

L \/(n +m)(m + 1) In(2/¢)
N m2n

Where, for our evaluations, () is the error parameter of a
depolarization channel. Note that this prior work could not
handle an additional vacuum basis state in each of the Z and X
basis (if it were added, the bound from [40] would become the
trivial one as the overlap function would be —log, 1 = 0). So,
when we evaluate, we will compare our bounds both without
the vacuum basis then later by considering this basis state and
loss in the channel.

In practice, the value of Ag(qa,gp) or @ is known and
observed based on the actual channel used. However, to
evaluate and compare our new key-rate bound we will evaluate
assuming a depolarization channel with parameter @) acting on
each qudit independently and identically. Such a channel maps
a quantum state p to:

_ d Q
Eqlp) = <1_H'Q>P+ m[-
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Fig. 6. Showing the secret key generation rates (¢//N) of the HD-BB84
protocol when dimension d = 22 assuming a depolarization channel with
parameter Q = 10%. Here, the z-axis is the total number of qudits N
from which we use m = .07N for sampling. Left and Right are different
ranges in the number of signals. Dashed black line (top most in both
graphs) is the theoretical asymptotic rate (Equation 35); Solid blue line
is our key-rate bound using our new entropic uncertainty relation, namely
eour—HD—BB84—no—loss/N (Equation 33) for pyac = 0 (no loss); Dashed
red line is the previous best known bound for the HD-BB84 key rate
using alternative methods to compute E’s uncertainty, £prior— HD—BB84/N
(Equation 34) with no loss (loss is not supported in that prior work); Finally,
solid-red line (lowest) is our key-rate bound when pyqc = 20% (i.e., a 20%
loss in the channel) using Equation 32. For our key-rate evaluation, we use
B = 1/3 and ¢ = 1036 giving a failure probability and a value of ep 4
both on the order of 10~ 12, For Equation 34, we use a failure probability of
1012, For both finite key results, we use leakgc = 1.2H(A|B) which, in
the case of a depolarization channel, is leakrc = 1.2(Q log(d—1)+h(Q)).
For the theoretical upper-bound we use the leakgc = H(A|B) (without the
additional 1.2 scaling factor).

Of course, our security proof does not require this depolar-
ization assumption - instead, it is simply a channel we use
to evaluate our bound and compare with prior work. It is
also one of the most common noise models considered in
theoretical QKD security proofs. For both protocols, we use
leakg: = 1.2H(A|B) which, for this depolarization channel,
is easily found to be H(A|B) = Qlog(d — 1) + h(Q).

Finally, we compare to the theoretical, asymptotic upper-
bound using the entropic uncertainty relation of [35]. This
disregards all finite-key effects (such as failure probabilities
and sampling imprecision), and takes the number of signals
N — o0. This bound works out easily to be:

Tasym = logd —2H(A|B) = log d — 2(Qlog(d — 1) + h(Q)),

(35
where again we used the easily verified fact that, for a de-
polarization channel with parameter @, H(A|B) = Q log(d —
1)+h(Q) and, furthermore, we assume perfect error correction
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Fig. 7. Similar to Figure 6 but now showing the secret key generation rates
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asymptotic rate (Equation 35); Solid blue line is our key-rate bound with
no loss (pyac = 0); Dashed red line is the previous best known bound for
the HD-BB84 key rate (with no loss); finally, solid red line (lowest) is our
key-rate bound when pygc = 50%.

whereby leakgc = H(A|B).

Comparisons of both our new bound and prior work are
shown in Figure 6 (for d = 22 dimensions) and Figure 7 (for
dimension d = 2'9). We note that when p,q. = 0, our bound
is only slightly lower than Equation 34 and this difference
decreases as the number of signals increases. Indeed, the
difference turns out to be only that our confidence interval,
determined by § is slightly larger for any particular ¢ making
our results asymptotically the same, though slightly lower than
prior work for this case. However, one of the powers of our
new relation is its ability to also handle two overlap functions
allowing us to incorporate loss in both Z and X bases.
Of course, as the loss increases, the key-rate decreases as
expected; our new entropic uncertainty relation can, however,
easily handle this scenario. Further refinements to the classical
sampling strategy used, may further improve our bound (in
both the lossy and loss-less case). Indeed our analysis of
Lemma II.3 is not necessarily tight. Alternative sampling
strategies or improved analyses, may be easily incorporated
through our methods.

It is also worth exploring how our protocol behaves in the
standard qubit case, when d = 2 and compare with current
state of the art. To our knowledge, the best finite key rates for
the standard qubit BB84 are from [41] (an improvement on

work in [42]). There, the keyrate is determined to be:

max q, (36)
2=(a.B.v,C)
where the maximization is over the tuple = = (a,f,v,()

subject to the following constraints:

a€[0,1],8€(0,1/2],v,¢ € (0,1/2 — Q)
(<v
27 4 2f(2) + g(x) <e.

where:

n-+m)m 2
Fo) = Ve(FEHEE) | Corxitmb—che-1)

9(x) = exp <_%)

1
I(z) = (m+m)(Q+¢)+1
1

+n+m—(n+m)(Q+§)+1'

Above, t is a function of the desired error level with 2 =
€/100. In our evaluations, we set ¢ = 10~5 when evaluating
Equation 36. When comparing with our bound (Equation 33),
we set € = 10718 to give a failure probability on the order of
10-6 (due to the setting of § = 2/3 needed for our bound,
the € used must be cubed).

The results of this comparison are shown in Figures 8 and 9.
We note that in most cases the bound from [41] for qubit BB84
vastly outperforms our bound. However, for a large number
of signals, our bound does outperform slightly eventually.
(Though, the number of signals required before our bound
begins to slightly out-perform are larger than those that would
be likely be used in practice.) However, we note that the results
from [41] use a specialized sampling process and key-rate
derivation optimized for this protocol and it is not surprising
that they outperform our work here (as we did not consider
using any optimized sampling process and were only inter-
ested in showing how sampling-based methods can be used
rigorously for novel tripartite entropic uncertainty relations and
proofs of security for high-dimensional BB84). Our work is
showing a novel proof approach for QKD protocols and is the
first time that sampling based entropic uncertainty relations
have been derived for tripartite systems. We suspect with
further refinement, our results can be substantially improved.
Two avenues for improvement are in the underlying sampling
process (namely Lemma II.3 which we did not optimize)
and in better translating the ideal state analysis to the real
state analysis as our current method requires a cubic increase
in the value of € (due to the [ parameter setting of 2/3
which balances the failure probabilities with the smoothening
parameter). Future work in improving both these may be
highly interesting and lead to better key-rate bounds for the
BB84 protocol in all dimensions.

V. CLOSING REMARKS

The quantum sampling framework of Bouman and Fehr,
introduced in [1], provides a promising new tool to develop
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Fig. 8. Comparing our key-rate result (dashed red) for standard, qubit, BB84
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vastly outperforms ours, though for a very large number of signals our result
does outperform slightly eventually. That being said, the result from [41] is
highly specialized for BB84 including a new optimized sampling strategy.
Our work is only interested currently in devising a new entropic uncertainty
relation using the framework of quantum sampling. Many refinements and
optimizations are possible which may greatly improve our work. See text for
further discussion.

results in general quantum information theory and quantum
cryptography. In our prior work [2], [3], we used this frame-
work to introduce so-called sampling-based entropic uncer-
tainty relations. In this paper, we showed how quantum sam-
pling can be used to develop very general quantum entropic
uncertainty relations allowing one to insert arbitrary classical
sampling strategies, perhaps defined for a specific crypto-
graphic task, which may then be “promoted” to analyze results
for quantum systems. Furthermore, we developed an entirely
new entropic uncertainty relation involving Alice, Bob, and
Eve, using the sampling framework as a foundation, which
has applications to high-dimensional QKD as we demonstrated
here. Our new relation can also handle two different measure-
ment overlaps, allowing one to work with bases that share
common vectors (such as a “vacuum” measurement outcome).
Since our relation handles all finite sampling precision, they
provide an easy and general purpose framework for other
researchers to develop finite-key cryptographic security proofs.

It is interesting to compare our approach to others using
standard entropic uncertainty relations, e.g., using a tripartite
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Fig. 9. Comparing our key-rate result (dashed red) for standard, qubit, BB84
(when d = 2) with the state of the art finite key results from Lim et al., in
[41] (solid blue) with a noise level of 5%. As before, [41] outperforms our
work, though for a very large number of signals our result can outperform.
See text for further discussions.

entropic relation for smooth min and max entropy (e.g., from
[35]), and then bounding the max entropy using statistical tests
as in [42], [41]. Asymptotically, the results will agree in both
cases. We claim, however, that there are certain advantages to
our approach, utilizing the framework of quantum sampling
from [1]. First, it is important to develop alternative proof
strategies which may be useful when tackling difficult proto-
cols. Indeed, by delving into the proof method itself (especially
the first step of the proof), one can take advantage of the fact
that one has fairly fine-grained control over the analysis of the
ideal state. Indeed, for QRNG protocols, we showed recently
in [43] that our methodology can be used to prove security of
random number generation protocols where standard entropic
uncertainty relations, relying on the standard overlap function,
have difficulty. This shows the advantage to our method for
the bipartite case (Alice and Eve) and we suspect that, by
extending this to work in the tripartite case as we did in this
paper, the result will be a proof method suitable for analyzing
protocols that are difficult using standard entropic uncertainty
relations. Second, it creates an adaptable framework where
alternative classical sampling strategies may be used and easily
“promoted” to quantum entropic uncertainty relations - one



typically needs to only analyze the classical strategy and solve
some sort of combinatorial counting problem afterwards in
order to attain an entropic uncertainty relation which may be
used to analyze quantum protocols. Note that our methods
can potentially be used inside the framework of [42] which
provides a general framework for QKD security using entropic
uncertainty - we develop new entropic uncertainty relations
which may be used by other frameworks for security proofs.
Ultimately, our work demonstrates a novel proof approach for
tripartite entropic uncertainty relations utilizing the quantum
sampling framework of Bouman and Fehr which may hold
other interesting applications.

Several interesting future problems remain open. So far we
only considered projective basis measurements. Generalizing
these results to arbitrary POVM’s would be greatly interesting.
However, this would require extending the quantum sampling
technique to support such measurements. Furthermore, im-
proving the tripartite relation (Theorem IV.1) with a tighter
sampling strategy would produce even more beneficial results.
Finding other interesting theoretical and cryptographic appli-
cations of quantum sampling and our sampling-based entropic
uncertainty relations would also be highly interesting. We feel
that the framework of quantum sampling is powerful and can
be employed successfully in other areas of quantum infor-
mation science, and further exploration of quantum sampling
in the domain of quantum information theory can yield even
more exciting results in quantum cryptography.
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