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Abstract—Semi-source independent quantum random number
generators (SI-QRNG) are cryptographic protocols which at-
tempt to extract random strings from quantum sources where the
source is under the control of an adversary (but with known di-
mension) while the measurement devices are fully characterized.
This represents a middle-ground between fully-trusted and full-
device independence, allowing for fast bit-generation rates with
current-day technology, while also providing a strong security
guarantee. In this paper we analyze a SI-QRNG protocol based
on quantum walks and develop a proof of security. We derive a
novel entropic uncertainty relation for this application which is
necessary since standard relations actually fail in this case.

I. INTRODUCTION

Random number generation is an important process for a va-

riety of application domains. Due to the intrinsic randomness

of quantum processes, quantum random number generation

(QRNG) is an important field of study within quantum infor-

mation science. By now, cryptographically secure QRNG pro-

tocols are well studied under a variety of security models rang-

ing from the “fully trusted device” scenario (whereby all de-

vices used, sources and measurements, are fully characterized)

to the “fully device independent” scenario (where all devices

used are not trusted) [1], [2]. Clearly from a cryptographic

point of view, DI-QRNG protocols are the desirable ideal due

to their minimal assumptions needed for security. However,

though experimental progress has been rapidly improving, the

bit-rates of such protocols cannot compare to other models

[3], [4]. As a compromise, the source independent (SI) model

was introduced in [5] whereby measurement devices are

characterized (though not necessarily ideal) whereas the source

is under the control of the adversary. One may envision the

source being a quantum server, providing a service to users

who wish to distill cryptographically secure random strings

without trusting the server (e.g., the server may be adversarial).

The SI model affords fast experimental bit generation rates [6]

(with a recent paper discussing an implementation with a rate

over 8Gb/s [7]) along with fascinating potential applications,

including the use of sunlight as a source [8]. For a survey of

QRNG protocols, the reader is referred to [9]. Note that we are

actually considering a semi-source independent model where

the dimension of the source is known but no other assumptions

are made (this is exactly the model introduced in [5]).

Outside of QRNG’s, quantum walks (QW), the quantum

analogue of classical random walks, are a highly important

process in quantum computation [10], [11], [12], [13] and,

recently, in quantum cryptography [14], [15], [16], [17].

Recently, a QW-based random number generation protocol

was analyzed in [18], though a rigorous security analysis was

not done. In this paper, we revisit that protocol, minimally

changing it to be a SI-QRNG protocol, and prove its secu-

rity. To our knowledge, this is the first SI-QRNG protocol

with provable composable security based on quantum walks

(we use Renner’s framework for composability in quantum

cryptography [19]). We note that the security analysis of this

protocol is not trivial. Due to certain simplifications we make

to allow for an easier potential experimental implementation,

prior tools are not immediately applicable (though we do not

consider experimental concerns in this work, we keep them in

mind when developing the protocol). In this work we develop

an alternative entropic uncertainty relation which may also

hold applications in other quantum cryptographic protocols.

Naturally, QW’s are random processes and, so, at first glance

designing and proving secure, a QW-QRNG protocol seems a

trivial task. Indeed, the following protocol is a trivial solution

to the problem with an “easy” (using modern information the-

oretic tools) security proof in the SI model: (1) First, a source

prepares a state |ψ0,0〉⊗(n+m)
where |ψ0,0〉 is some quantum

walker state. While we discuss this in detail later, for now it

suffices to consider |ψ0,0〉 = W |0, 0〉 where W is a unitary

operator and |0, 0〉 lives in some Hilbert space of dimension

2P . This state is sent to Alice. (2) Second, Alice chooses a

random subset of size m and measures the systems indexed

by this subset in the “quantum walk basis”, namely the or-

thonormal basis {W |0, 0〉 ,W |0, 1〉 , · · · ,W |1, P − 1〉}. Ide-

ally, this measurement should always produce the zeroth state

of this basis. The remaining n walker systems are measured

in the computational basis {|0, 0〉 , |0, 1〉 , · · · , |1, P − 1〉}. The

first outcome is used to test the fidelity of the received state

while the second is used as a raw-random string. This string is

then further processed through a privacy amplification process,

the output of which is the final cryptographic random string.

Indeed this protocol can be proven secure in a very straight-

forward manner using entropic uncertainty [20], [21], [22].

However, there are two complications with the protocol itself.

First, it would require the ability for Alice to perform a full

basis measurement in the quantum-walk basis (namely, she

would need to distinguish all states of the form W |c, x〉). This



might require complex optics to do experimentally. Second,

for the randomness generation measurement, she needs to be

able to perform a measurement in the full coin and position

basis, namely a measurement that can distinguish all states

of the form |c, x〉. Our goal is to analyze a far simpler

protocol, building off of the one from [18]. The protocol will

only require Alice to be able to distinguish a single walker

state, namely W |0, 0〉 from any other; and, second, she need

only perform a measurement of the position of the walk for

randomness, and she need not also determine the state of the

coin itself. The second restriction is identical to the protocol in

[18] though, since they did not consider the source independent

model, they did not require any other test. We add only this

minimal test ability, namely the ability to distinguish a single

quantum walk state from the 2P − 1 others in the walk basis,

to ensure a cryptographically secure protocol.

Interestingly, standard entropic uncertainty relations of the

form [21]:

Hǫ
∞(A|E)+Hǫ

max(A|B) ≥ − logmax
x,y

||
√

Mx

√

Ny||2op, (1)

where {Mx} and {Ny} are the two POVMs used in the

protocol, are not applicable and can only yield the trivial

bound. Thus a new approach is required to analyze this QW-

QRNG protocol. We develop the approach in this paper using

a technique of quantum sampling as introduced by Bouman

and Fehr in [23] and used by us recently to develop novel

sampling-based entropic uncertainty relations [24], [25]. In

fact, our proof is similar, though with suitable modifications

needed for this scenario and, since the result does not follow

immediately from our previous analysis, it is necessary to state

here.

We make two primary contributions in this paper. First,

we analyze for the first time, a QW-QRNG protocol intro-

duced in [18] from a cryptographic perspective. We adapt

the protocol sufficiently, and minimally, so as to produce a

secure system and prove it is secure in the SI model. This

represents, to our knowledge, the first QRNG protocol based

on quantum walks in the SI model of security and shows even

greater application of quantum walks to other cryptographic

primitives. Second, we develop a proof of security to handle

this scenario when standard approaches are not immediately

applicable. Our security method may also be applicable to

other protocols of this nature where standard relations such

as Equation 1 cannot be used directly. Our proof utilizes

the method of quantum sampling by Bouman and Fehr [23],

augmented with techniques we developed in [24], [25] for

entropic uncertainty, showing even more potential applications

of these methods to complex security analyses. We actually

think this second contribution the more significant as it shows

how this framework of quantum sampling may be used to

tackle cryptographic problems that standard methods would

fail to analyze successfully, thus opening the door to a potential

wider range of applications. Our proof is based on techniques

in our prior work in [25] however with suitable modifications

to handle the quantum measurements that arise in the protocol.

In particular, the main result from [25] cannot be applied

directly here. Modifications to the proof are required to handle

the measurement scenario we introduce in this paper, and

the technique we use may see broad application elsewhere

when proving security of protocols for which standard entropic

uncertainty relations fail.

II. NOTATION AND DEFINITIONS

We now introduce some basic definitions and notation that

we will use throughout this paper. By Ad we mean a d-

dimensional alphabet, namely Ad = {0, 1, · · · , d−1}. Given a

word q ∈ AN
d and some subset t ⊂ {1, 2, · · · , N}, we write qt

to mean the substring of q indexed by t (i.e., those characters

in q indexed by i ∈ t). We write q−t to mean the substring

indexed by the complement of t. The Hamming Weight of q is

denoted wt(q) = |{i : qi 6= 0}| while the relative Hamming

weight is denoted w(q) = wt(q)/|q|.
A density operator is a Hermitian positive semi-definite

operator of unit trace acting on some Hilbert space H. Given

a pure quantum state |ψ〉 ∈ H we write [ψ] to mean |ψ〉 〈ψ|.
The Shannon entropy of a random variable X is denoted by

H(X) while the d-ary entropy function is denoted hd(x). This

function is defined to be hd(x) = x logd(d− 1)− x logd x−
(1−x) logd(1−x). We also define the extended d-ary entropy

function to be H̄d(x) which equals hd(x) for all x ∈ [0, 1 −
1/d] but is 0 for all x < 0 and is 1 for all x > 1− 1/d.

Let ρAE be a quantum state (density operator) acting on

some Hilbert space HA ⊗HE . The conditional quantum min

entropy [19] is defined to be: H∞(A|E)ρ = supσE
max(λ ∈

R : 2−λIA ⊗ σE − ρAE ≥ 0), where IA is the identity

operator on HA. Note that if the E system is trivial and the

A portion is classical (namely ρA =
∑

x px[x]) then it is easy

to show that H∞(A) = − logmaxx px. If the E portion is

classical, namely ρAE =
∑

e peρ
e
A⊗ [e], then it can be shown

that:

H∞(A|E)ρ ≥ min
e
H∞(A)ρe . (2)

Finally, the smooth conditional min entropy is defined to be

[19]: Hǫ
∞(A|E)ρ = supσ∈Γǫ(ρ)H∞(A|E)σ, with: Γǫ(ρ) =

{σ : ||σ − ρ|| ≤ ǫ}. Here, ||X|| is the trace distance of

operator X .

Given a classical-quantum state ρAE , let σKE be the result

of a privacy amplification process on the A register of this

state. Namely, a process of mapping the A register through a

randomly chosen two-universal hash function. If the output of

this hash function is ℓ bits long, then it was shown in [19]

that:
∣
∣
∣
∣σKE − IK/2

ℓ ⊗ σE
∣
∣
∣
∣ ≤ 2−

1
2 (H

ǫ
∞

(A|E)ρ−ℓ) + 2ǫ. (3)

A. Quantum Random Walks

In this work we will consider discrete-time quantum walks

on a cycle graph [26]. Such a process involves a Hilbert

space HW = HC ⊗ HP where HC is the two-dimensional

coin space and HP is the P -dimensional position space. The

walk begins with the walker at some initial position |c, x〉
(e.g., |0, 0〉) from which a walk operator is applied T times.



The walk operator first applies a unitary operator on the coin

space (for us, we only consider the Hadamard operator here,

though other possibilities exist of course). Following this a

shift operator is applied S which maps |0, x〉 7→ |0, x+ 1〉
and |1, x〉 7→ |1, x− 1〉 where all arithmetic in the position

space is done modulo P . Let W = S · (H ⊗ IP ) be the

walk operator; then, after T steps, the walker evolves to state

WT |c, x〉. Generally, at this point, a measurement may be

done on the position space causing a collapse at one of the P
spots.

Later, we will denote by |wc,x〉 to mean the evolved state

WT |c, x〉. We will also use |wi〉 when appropriate, using the

natural relationship of tuples (c, x) to integers i, with (0, 0)
being the first index i = 0. Finally, given a walk state |wc,x〉
we use the notation PrW (|wc,x〉 → z) to denote the probabil-

ity that the walker is observed at position z after measurement.

Namely, PrW (|wc,x〉 → z) = 〈wc,x|IC ⊗ [z]|wc,x〉 . Finally,

we denote by γ to be the maximal positional probability of

the walk which starts at |0, 0〉, namely:

γ = max
z

PrW (|w0,0〉 → z). (4)

Obviously, this is a function of the walk parameters (the

operation W along with the number of steps T ).

B. Quantum Sampling

In [23], Bouman and Fehr discovered a fascinating connec-

tion linking classical sampling strategies with quantum ones,

even when the quantum state is entangled with an environment

system (e.g., an adversary). Here we review some of these

concepts, however for more details the reader is referred to

[23].

Let q ∈ AN
d . A classical sampling strategy is a process of

choosing a random subset t ⊂ {1, · · · , N}, observing qt, and

estimating the value of some target value of the unobserved

portion. Here, as in [23], we consider the target value to be

the relative Hamming weight. One sampling strategy we will

employ consists of choosing a subset t of size m ≤ N/2
uniformly at random, observing qt, and outputting w(qt) as an

estimate of the Hamming weight in the unobserved portion. It

was shown in [23] that, for δ > 0:

ǫclδ := max
q∈AN

d

Pr(q 6∈ Gt,δ) ≤ 2 exp

(−δ2m(n+m)

m+ n+ 2

)

, (5)

where the probability is over all choices of subsets t and Gt,δ

is the set of all “good” words for which this sampling strategy

is guaranteed to produce a δ-close estimate of the Hamming

weight of the unobserved portion, namely:

Gt,δ = {q ∈ AN
d : |w(qt)− w(q−t)| ≤ δ}.

The value ǫclδ is the error probability of the classical sampling

strategy (the “cl” superscript is used to refer to a classical

sampling strategy).

The main result from [23] shows how to promote such a

classical strategy to a quantum one in a way that the failure

probabilities of the quantum strategy are functions of the

classical ones. Fix a basis {|0〉 , · · · , |d− 1〉} (the exact choice

may be arbitrary but then fixed - later when using this result,

we will use the walk basis {WT |c, x〉}c,x). Define:

span(Gt,δ) = span(|i1i2 · · · iN 〉 : |w(it)− w(i−t)| ≤ δ).

This is the quantum analogue of the “good set” of classical

words. In particular, note that if given a state |φ〉AE ∈
span(Gt,δ) ⊗ HE , then if a measurement in the given basis

were performed on those qudits indexed by t leading to

outcome q ∈ Am
d , it must hold that the remaining state is

a superposition of the form: |φt,q〉 =
∑

i∈J αi |i, Ei〉 , where

J ⊂ {i ∈ AN−m
d : |w(i)− w(q)| ≤ δ}.

The main result from [23], reworded for our application

here, was to prove the following theorem:

Theorem 1. (Modified from [23]): Let δ > 0. Given the

above classical sampling strategy and an arbitrary quantum

state |ψ〉AE , there exists a collection of “ideal states” {|φt〉}t,
indexed over all possible subsets the sampling strategy may

choose, such that each |φt〉 ∈ span(Gt,δ)⊗HE and:

1

2

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

T

∑

t

[t]⊗ [ψ]− 1

T

∑

t

[t]⊗
[
φt
]

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤
√

ǫclδ . (6)

where T =
(
N
m

)
and the sum is over all subsets of size m.

Note that the result requires a fixed basis of reference (from

which to define Gt,δ).

III. THE PROTOCOL

We consider a QW-QRNG protocol introduced in [18]. That

protocol was not analyzed rigorously from a cryptographic

standpoint and, in fact, would not be secure in the SI model.

We modify that protocol, adding a minimal testing ability for

Alice, and later show it is secure in the SI model of security.

The protocol operates as follows:

Public Parameters: The quantum walk setting, namely the

dimension of the position space P (defining the overall Hilbert

space of one walker HW = HC ⊗HP ), the walk operator W ,

and the number of steps to evolve by, T .

Source: A source, potentially adversarial, produces a quantum

state |ψ0〉 ∈ HA ⊗ HE , where HA
∼= H⊗N

W . If the source is

honest, the state prepared should be of the form:

|ψ0〉 = |w0〉⊗N ⊗ |0〉E ,

namely, N copies of the walker state |w0〉 = |w0,0〉 =
WT |0, 0〉 unentangled with Eve.

User: Alice chooses a random subset t of size m and measures

those walker states using POVM W = {[w0], I − [w0]} =
{W0,W1} resulting in outcome q ∈ {0, 1}m (equivalently,

she reverses the quantum walk and observes whether the

initial state was |0, 0〉 or anything else). The remaining

states she measures using POVM Z = {IC ⊗ [j]}P−1
j=0 =

{Z0, Z1, · · · , ZP−1} resulting in outcome r ∈ An
P , where

n = N −m.

Postprocessing: Finally, Alice applies privacy amplification to

r, producing a final random string of size ℓ. As proven in [27],

the hash function used for privacy amplification need only be



chosen randomly once and then reused for each run of the

protocol for a QRNG protocol of this nature.

The goal of this protocol is to ensure that, for a given ǫPA

set by the user, after privacy amplification the resulting string

is ǫPA close to an ideal random string, uniformly generated

and independent of any adversary system. Using Equation 3,

this involves finding a bound on the quantum min-entropy.

Note that, for the given POVMs, it is straight-forward to

check that maxx,y ||
√
Wx

√
Zy||2op = 1 and so Equation 1 only

yields the trivial bound on the min entropy. Thus an alternative

approach is required which we develop in the next section.

A. Security Analysis

To prove security, we require a bound on the quantum min

entropy from which, using Equation 3, we may compute the

number of random bits ℓ which may be extracted from N
quantum walk states (prepared by an adversary). We assume

the adversary is allowed to create any initial state, possibly

entangled with her ancilla, however as in [5], the dimension

of the system sent to Alice is known; in our case it is (2P )N ,

namely, N quantum walker states, each of dimension 2P . We

do not assume anything else about this state (for instance, each

of the N walkers may be in different states). Such a scenario

also models natural noise and an honest source - considering

an adversarial source is more general. Finally, we assume that

Alice’s measurement devices are fully characterized.

Theorem 2. Let ǫ > 0. After executing the above QW-

QRNG protocol and observing outcome q during the test stage

(namely, after measuring using W), it holds that, except with

probability at most ǫ1/3 (where the probability here is over

the choice of sample subset and observation q), the protocol

outputs a final secret string of size:

ℓ = −ηq log2 γ−n · H̄2P (w(q) + δ)

log2P (2)
− 2 log2

1

ǫ
− log2

(
N

m

)

,

which is (5ǫ+4ǫ1/3)-close to an ideal random string (i.e., one

that is uniformly generated and independent of any adversary

system as in Equation 3). Above, ηq = (N−m)(1−w(q)−δ)
and:

δ =

√

(N + 2) ln(2/ǫ2)

m ·N . (7)

Proof. Fix ǫ > 0 and let |ψ0〉AE be the state the ad-

versarial source Eve creates, sending the A portion to Al-

ice. Using Theorem 1 (with respect to the reference ba-

sis {WT |0, 0〉 , · · · ,WT |1, P − 1〉}), there exist ideal states

{|φt〉}, indexed over all subsets t ⊂ {1, 2, · · · , N} of size

m, such that |φt〉 ∈ span(|wi1wi2 · · ·wiN 〉 : |w(it) −
w(i−t)| ≤ δ) ⊗ HE and Equation 6 holds. (Note we define

|w0〉 = |w0,0〉 =WT |0, 0〉.) From Equation 5, by setting δ as

in Equation 7, we have

√

ǫclδ = ǫ.

We now use a two-step proof method we developed in

[24], [25] to utilize quantum-sampling for entropic uncertainty

relations. Here, we modify the first step of the proof for

this cryptographic application, while the second step remains

largely the same. The first step is to analyze the security of

the ideal state σTAE = 1
T

∑

t [t]⊗
[
φt
]
. Choosing a subset is

equivalent to measuring the T register in σTAE causing the

state to collapse to the given ideal state |φt〉. At this point,

a measurement using W is made on subset t resulting in

some outcome q. The post-measurement state, discarding those

systems that were measured, is easily seen to be of the form:

φtq =
∑

k∈A
wt(q)
2P−1

pk P






∑

i∈J
(k)
q

αi |wi〉 |Ei〉






︸ ︷︷ ︸

σ
(k)
AE

.

with P (z) = zz∗ and J
(k)
q ⊂ {i ∈ An

P : |w(i)−w(q)| ≤ δ}.
Recall n = N −m.

Let us consider one of the σ
(k)
AE states and perform a

measurement using POVM Z on the remaining A portion.

To compute this state, we write a single quantum walker

|wi〉 ∈ HW as: |wi〉 = |0〉 |φ(0, i)〉 + |1〉 |φ(1, i)〉 , where

|φ(c, i)〉 are (not necessarily normalized) states in HP . Using

this notation, after some algebra, we find that the post-

measurement state, with Alice storing the outcome z ∈ An
P

in a classical register Z and also tracing out the unmeasured

coin register is:

σ
(k)
ZE =

∑

z∈An
P

[z]Z

∑

i,j∈J
(k)
q

αiα
∗
j

∑

c∈{0,1}n

xz,c,ix
∗
z,c,j⊗|Ei〉 〈Ej |

where given a string c ∈ {0, 1}n, z ∈ An
P , and i ∈ J

(k)
q ,

we define xc,z,i as: xz,c,i =
∏

ℓ 〈zℓ|φ(cℓ|iℓ)〉 . To compute

the min-entropy of this state, we will consider the following

density operator:

χZE =
∑

z

[z]
∑

i∈J
(k)
q

|αi|2
∑

c

|xc,z,i|2 ⊗ [Ei]

Using a proof similar to a lemma in [19] which bounds the

min-entropy of a superposition based on the min-entropy of a

suitable mixed state, we find that:

H∞(Z|E)σ(k) ≥ H∞(Z|E)χ − log |J (k)
q |.

Note that, though the lemma in [19] is not immediately

applicable to the above scenario, the proof is, indeed, identical

and so we omit the details for space reasons.

Consider the state χZEI where we append an auxiliary

system spanned by orthonormal basis |i〉:

χZEI =
∑

i∈J
(k)
q

|αi|2
(
∑

z

[z]
∑

c

|xc,z,i|2
)

︸ ︷︷ ︸

χ(i)

⊗[Ei]⊗ [i]

For strings z ∈ An
P and i ∈ An

2P , let p(z|wi) be the probability

that outcome z is observed if measuring the pure, and unen-

tangled state, state |wi1wi2 · · ·win〉 using POVM Z . Simple

algebra shows that this is in fact p(z|wi) =
∑

c |xc,z,i|2. Thus

χ(i) =
∑

z [z]p(z|wi). From Equation 2 and treating the joint

EI register as a single classical register, we have:

H∞(Z|E)χ ≥ H∞(Z|EI)χ ≥ min
i
H∞(Z)χ(i) .



Fix a particular i ∈ J
(k)
q and let η = n − wt(i) (namely, η

is the number of zeros in the string i). Then, it is clear that:

p(z|wi) ≤ maxx∈AP
PrW (|w0〉 → x)η = γη, where γ was

defined in Equation 4. Indeed, any other PrW (|wi〉 → z) ≤ 1
and so we may consider only the |w0〉 terms as contributing

to this upper-bound. From this, it follows that: H∞(Z)χ(i) =

− logmaxz p(z|wi) ≥ − log γn−wt(i).

Now, since i ∈ J
(k)
q , we know that wt(i) ≤ n(w(q) + δ)

and so:

H∞(Z|E)χ ≥ H∞(Z|EI)χ ≥ min
i
H∞(Z)χ(i)

≥ − log γn(1−w(q)−δ) = −ηq log γ.

Finally, we note that |J (k)
q | ≤ dnH̄2P (w(q)+δ) (using the well

known bound on the volume of a Hamming ball), we have:

H∞(Z|E)σ ≥ min
k
H∞(Z|E)σ(k)

≥ −ηq log2 γ − n · H̄2P (w(q) + δ)

log2P (2)

Of course, this is the ideal state analysis. However, we may

use a similar technique that we employed in [24] for translating

this ideal analysis to the real case. Indeed, let ρt,qZE be the state

of the real system, |ψ〉, conditioned on the protocol sampling

subset t and observing outcome q and let σt,q
ZE be the same

for the ideal state. If we define: ∆t,q = 1
2

∣
∣
∣
∣ρt,qZE − σt,q

ZE

∣
∣
∣
∣ ,

then, treating ∆t,q as a random variable over the choice of t
and outcome q, it can be shown (see the proof of Theorem 2

in [24] for explicit details) that except with probability ǫ1/3,

it holds that ∆t,q ≤ ǫ + ǫ1/3 where the probability is over

the choice of t and outcome q. Thus, by switching to smooth

min entropy, we have, except with probability at most ǫ1/3

that H2ǫ+2ǫ1/3

∞ (Z|E)ρ ≥ H∞(Z|E)σ . Privacy amplification

(Equation 3, setting the right-hand-side of that equation equal

to ǫPA = 5ǫ+4ǫ1/3, namely twice the smoothening parameter

plus an additional ǫ), along with the fact that it requires

log
(
N
m

)
, random bits to choose a subset of size m, completes

the proof. Note that bounding Equation 3 as we do proves

composable security [19]

Evaluation: We evaluate the performance of our protocol

under a variety of position dimensions P . Ordinarily, users

would run the protocol and observe q directly; however, to

simulate its execution, we will assume the noise follows a

depolarization channel with parameter Q. We do this only

to evaluate our protocol; furthermore, this noise model is a

standard one to evaluate on in simulations. From this, after

sampling, Alice will have an expected Hamming weight in

her test measurement of w(q) = Q. In our evaluations, we

will set ǫ = 10−36 which will imply a failure probability, and

an ǫPA-secure string, both on the order of 10−12. We also use

a sample size that is the square-root of the total number of

signals N , namely m =
√
N . Finally, to evaluate our bit-

generation rate, we will require γ (Equation 4). Since the

walk settings are chosen by the user, we wrote a program

that, for fixed dimension P , found the minimum γ value over

Fig. 1. Random bit generation rates of the QW-QRNG protocol. x-axis:

number of signals sent N (from which m =
√

N are used for sampling);
y-axis: random bit-generation rate (namely ℓ/N where ℓ is computed using
Theorem 2). Black dashed (top) is P = 51; red-dashed (middle) is P = 11;
blue solid (lowest) is P = 5. Left graph is with 15% noise in the source
(namely w(q) = 0.15); Right graph has 20% noise.

Fig. 2. Comparing the QW-QRNG protocol’s bit generation rate (black-solid)
with that of the SI-QRNG protocol in [28] (red-dashed). Left: P = 5; Right:
P = 51. In both cases we assume 10% noise in the signal state. For the
SI-QRNG protocol’s evaluation from [28], we use a dimension of 2P .

all time settings T = 1, 2, · · · , 5000. The evaluation of the

bit generation rate of this SI-QW-QRNG protocol, using our

analysis in Theorem 2, is shown in Figure 1. A comparison to

an alternative SI-QRNG protocol from [28] is shown in Figure

2. Note that as the dimension of the walker increases, the

bit-generation rates, even under high noise levels, increases.

Interestingly, as shown in Figure 2, depending on the walker

dimension, the QW based protocol can sometimes outperform

the SI-QRNG protocol from [28] (which is based on mutually

unbiased measurements of a highly entangled state).

IV. CLOSING REMARKS

In this paper, we modified, minimally, a QRNG protocol

from [18], based on quantum walks, to be secure in the

semi-source independent (SI) model. Since standard entropic

uncertainty relations cannot be directly applied as discussed,

we develop an alternative entropic uncertainty relation for this

protocol based on our work in [25] but modified to work

with this measurement scenario. Our methods may potentially

find applications in other difficult to analyze quantum cryp-

tographic protocols. There are important reasons for studying

this QW-based protocol. For instance, it is important to harness

alternative quantum processes such as quantum-walk states, as

it is still unclear what future experimental developments will

yield. Second, it is interesting from a theoretical stand-point.

Many exciting open problems remain, in particular a more

rigorous evaluation of the performance of this QW-QRNG

protocol for different walk parameters (such as alternative coin

operators) or alternative models (such as history-dependent

walks [29], [30], [31], [32]) would be very exciting.
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