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Abstract Quantum key distribution (QKD) allows two parties to establish
a shared secret key that is secure against all-powerful adversaries. One such
protocol named B92 is quite appealing due to its simplicity but is highly sen-
sitive to channel noise. In this work, we investigate a high-dimensional variant
of an extended version of the B92 protocol and show that it can distill a key
over high noise channels. The protocol we consider requires that Alice send
only three high-dimensional states and Bob only perform partial measure-
ments. We perform an information-theoretic security analysis of our protocol
and compare its key rate to that of a high-dimensional BB84 protocol over
depolarization and amplitude damping channels.

Keywords Quantum Key Distribution · Quantum Information

1 Introduction

The need for perfect security necessitated the development of cryptographic
systems where there are no computational constraints on the capabilities of
the adversary. Quantum key distribution (QKD) is one such system that is
extensively studied and is increasingly maturing to the point of real-world
adoption. In QKD, using quantum mechanical properties of communication
resources, two parties Alice (A) and Bob (B), following a specified set of steps,
generate a shared secret that is secure from an all-powerful adversary Eve (E).

Since the first QKD protocol by Bennett and Brassard in 1984 (BB84) [1],
there have been numerous advances in both theoretical and practical aspects
[2–4]. However, because generating, maintaining, and manipulating quantum
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resources are exceptionally hard with current technologies, people have strived
to create conceptually simpler protocols that also require less quantum re-
sources. For instance, BB84 itself uses four quantum states and two measure-
ment bases. In 1992, Bennett proposed an even simpler QKD protocol called
B92, that uses only two non-orthogonal states and measurement bases [5].

The unconditional security of this protocol has been investigated by several
authors [6,7] with continually improving results (for instance, in [7], a noise
tolerance of 6.5% is reported). However, B92 is very noise sensitive compared
to other protocols like BB84 as was already noted in the original paper [5].
Lucamarini et al. [8], proposed an extended version of B92 (Ext-B92) which
added two additional non-informative states to better bound Eve’s information
gain. Depending on the user-defined choice for key encoding states, the noise
tolerance of that protocol can approach 11% in the asymptotic scenario [8],
similar to BB84, and at least 7% in the finite key scenario [9].

These protocols mentioned above use qubits (dimension two systems) as
the communication resource between Alice and Bob. However, higher dimen-
sional quantum systems (see [10] for a brief survey) have been shown to have
several advantages and interesting properties over qubit-based protocols. Some
protocols have been shown to withstand a high channel noise level as the di-
mension of the system increases [11–14]. Others exhibit interesting theoretical
properties such as the so-called “Round Robin” protocol which can bound
Eve’s information based only on the dimension of the system and not neces-
sarily through observing channel noise [15]. In addition to several theoretical
results that prove the unconditional security of HD-QKD protocols, the ac-
tual technology to implement high-dimensional systems is also becoming more
mature with recent high-dimensional protocols proving to be feasible to imple-
ment [16–20]. Thus, it is worth studying protocols that are highly susceptible
to noise, like B92 based variants (in our case the extended B92), to see if
HD-systems give an advantage.

In this work, we propose a high-dimensional variant of the Ext-B92 proto-
col of [8]. Keeping in mind that certain high-dimensional states are difficult to
create or distinguish, we make sure in our protocol to limit the required state
preparations and measurement operations required. In particular, Alice need
only be able to send three high dimensional states while Bob need only be
able to perform a computational basis measurement (distinguishing any com-
putational state {|0〉 , |1〉 , · · · , |D − 1〉}) or be able to perform a partial basis
measurement in an alternative basis - this partial measurement need only dis-
tinguish a particular superposition state defined in the protocol and need not
be capable of distinguishing all D possible states. As far as we are aware, this
is a novel high-dimensional QKD protocol.

Despite these limitations on Alice and Bob’s capabilities, we show that
these higher dimensional states do help improve noise tolerance in this proto-
col as the dimension of the system increases which agrees with recent research
on high-dimensional BB84. We perform an information-theoretic security anal-
ysis and show that it can maintain a positive key rate while withstanding noise
levels of 5.35% for qubits (dimension 2) to 15.5% for dimension 214 in a depo-
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larizing channel. Thus, we show that higher dimensions can aid in depolariza-
tion noise tolerance for a B92 style encoding scheme with (partial) extended
test cases in the form of a third basis state being transmitted for testing the
channel. Moreover, we consider an amplitude damping channel and show that
choosing the distinguished superposition state carefully in a high-dimensional
QKD protocol is of significant importance as different choices lead to different
noise tolerances.

We make several contributions in this work. First, we describe and analyze
a high-dimensional version of the Ext-B92 protocol originally introduced for
qubits [8]. We perform an information theoretic security analysis against col-
lective attacks (a powerful class of attacks against QKD protocols) to derive
its key rate in the asymptotic scenario for arbitrary dimensions and channel
parameters. Our methods here may have a broader impact in other QKD proto-
col security analyses, especially for high-dimensional systems with only partial
basis measurements or state preparations as with our protocol here. Finally,
we evaluate our resulting key rate and compare it with a high-dimensional
version of the BB84 protocol, showing how the choice of states to send can
greatly affect the key rate depending on the channel.

2 Notation

For a quantum system A we will use ρA to denote its density operator. Its
von Neumann entropy will be denoted by S(A) = S(ρA) and is defined by
− tr(ρA log ρA). Given a bipartite quantum state ρAE shared by two systems A
and E, we will denote the conditional von Neumann entropy of A given access
to E, by S(A|E)ρ. We will often forgo writing the subscript ρ when the context
is clear. This conditional entropy is defined as S(AE) − S(E). The Shannon
entropy of A will be denoted by H(A) and the conditional Shannon entropy of
two systems A and B, will be denoted byH(A|B). The binary entropy function
will also be represented by H(p) where H(p) = −p log(p)− (1− p) log(1− p)
for p ∈ [0, 1]. All logarithms presented in this work are base 2. For an arbitrary
quantum state |ψ〉, we use P (|ψ〉) to denote its projector |ψ〉〈ψ|. Finally, given
a vector |x〉 and a numerical value such as 1

2 we sometimes write
∣

∣

1
2x
〉

to mean
1
2 |x〉.

Later, to compute the lower bound of the conditional von Neumann entropy
of a classical-quantum state ρAE , we make use of the following theorem:

Theorem 1 (From [21]): Let HA ⊗HE be a finite dimensional Hilbert space.
Consider the following density operator.

ρAE =
1

N

(

|0〉〈0|A ⊗
τ
∑

i=1

∣

∣e0i
〉〈

e0i
∣

∣+ |1〉〈1|A ⊗
τ
∑

i=1

∣

∣e1i
〉〈

e1i
∣

∣

)

,

where N > 0 is a normalization term, τ < ∞, and each
∣

∣

∣
eji

〉

∈ HE (these

are not necessarily normalized, nor orthogonal, states; also it might be that
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∣

∣

∣e
j
i

〉

≡ 0 for some i and j). Let nj
i =

〈

eji

∣

∣

∣e
j
i

〉

≥ 0. Then:

S(A|E)ρ ≥
τ
∑

i=1

(

n0
i + n1

i

N

)

· Si,

where:

Si =

{

h
(

n0

i

n0

i
+n1

i

)

− h(λi) if n0
i > 0 and n1

i > 0,

0 otherwise.

and:

λi =
1

2
+

√

(n0i − n1
i )

2 + 4Re2 〈e0i |e1i 〉
2(n0

i + n1
i )

.

As an interesting observation, we can see that the bound in Theorem 1 is
non-negative. While not proven in [21], this is easy to show. In particular, we
show that each Si term is non-negative. First assume n0i ≥ n1

i (the other case

is similar). Then n0
i −n1i ≤

√

(n0
i − n1i )

2 + 4x, where x = Re2
〈

e0i
∣

∣e1i
〉

is a non-

negative value. This of course implies that 2n0i ≤ n0
i + n1

i +
√

(n0i − n1i )
2 + 4x

which further implies that
n0

i

n0

i
+n1

i

≤ λi. Since n
0
i ≥ n1

i , we have
n0

i

n0

i
+n1

i

≥ 1
2 .

Thus, it holds that each Si ≥ 0 since the entropy function is a decreasing
function on the interval [1/2, 1]. The case when n0i < n1i is similar.

3 The Protocol

The protocol we propose here is a high-dimensional variant of the Ext-B92 pro-
tocol originally described in [8]. In that protocol, two non-orthogonal states,
similar to B92, are used for key encoding while two additional states are used
for quantum tomography (these four states together come from two distinct
bases). In the higher dimensional case we analyze here, we will use two non-
orthogonal states for key encoding; for error testing, we adopt a simplification
from [9] (done there for the qubit case) and not require users to be able to con-
trol two complete bases. More specifically, in our high-dimensional extended
B92, Alice sends |i〉 and |φ〉 = 1√

2
(|i〉 + |j〉) to encode classical key bits of 0

and 1 respectively, where |i〉 , |j〉 are fixed and chosen from the D-dimensional
computational basis states {|0〉 , ..., |D − 1〉}. We ask that Alice send only |j〉
as the additional uninformative state. Thus, Alice need only be able to prepare
and send three distinct quantum states. On Bob’s part, we require his ability
to measure in two POVMs. These are Z = {|0〉〈0| , ..., |D − 1〉〈D − 1|} (the
complete computational basis) and X = {|φ〉〈φ| , I − |φ〉〈φ|} where of course,
the identity operator I is understood to be D-dimensional. Hence, Bob would
be able to detect any computational basis state but would only need to de-
tect |φ〉. Our protocol, which we call here HD-Ext-B92, in detail appears in
Protocol 1.
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Protocol 1 High-dimensional Extended B92 (HD-Ext-B92)

Public Parameters: The dimension of a signal state D ≥ 2 and the choice of distinct
i, j ∈ {0, 1, · · · , D − 1} are arbitrary, but are fixed at the start of the protocol and known
to all parties (including the adversary).
Quantum Communication Stage: The quantum communication stage of the protocol
will repeat the following until a sufficiently large raw-key has been distilled:

1. Alice chooses randomly whether this round will be a “key-round”, where a raw key bit
will attempt to be established, or a “test” round, which will be used for error testing
later. If this is a key-round, she will choose a random key bit and if this is 0, she will
prepare and send the state |i〉; otherwise, she sends the state |φ〉. If this is a test round,
she will prepare |i〉, |j〉, or |φ〉 choosing uniformly at random.

2. Bob measures in either the Z basis or using POVM X. In a key-round, if he uses Z

and observes any outcome other than |i〉, then he sets his bit to be 1. Otherwise, if he
uses POVM X and observes I− |φ〉〈φ|, then he sets his bit to be 0. All other results are
considered inconclusive.

3. Alice informs Bob over the authenticated channel whether this was a test round or a
key-round. If this is a key-round, Bob also tells Alice if his result was inconclusive (in
which case both parties discard the iteration). On test-rounds, both parties disclose
their choices and measurement outcomes to determine the error rate in the channel.
In particular, they will observe those statistics enumerated in Table 1. Note that we
will not discard mismatched basis events; i.e., events where Alice and Bob use different
bases. Indeed, such events can greatly improve key generation rates [22–26] and so we
use this technique here.

Classical Communication Stage: Alice and Bob will next run an error correction protocol
and a privacy amplification protocol resulting in a secret key of size ℓ bits (possibly ℓ = 0
if it is determined that Eve has too much information, to be discussed later in this paper,
and so parties abort the protocol).

Table 1 Definition of Alice and Bob’s directly observable parameters (|b〉 ∈
{|0〉 , ..., |D − 1〉})

Parameter Description of Probability Value
pib Bob observes |b〉 if Alice sends |i〉 and he chooses the Z basis
pjb Bob observes |b〉 if Alice sends |j〉 and he chooses the Z basis
pφb Bob observes |b〉 if Alice sends |φ〉 and he chooses the Z basis
piφ Bob observes |φ〉 if Alice sends |i〉 and he chooses the POVM X

pjφ Bob observes |φ〉 if Alice sends |j〉 and he chooses the POVM X

pφφ Bob observes |φ〉 if Alice sends |φ〉 and he chooses the POVM X

4 Security Analysis

In the quantum communication stage of our protocol, Alice and Bob use the
quantum channel to establish a raw-key. Because Eve has total control over this
channel, she may attack the traveling signals arbitrarily while only respecting
the laws of physics. In this paper, we consider collective attacks whereby Eve
attacks each round of the protocol independently and identically, but may
delay her measurements until the end of the protocol. These are a powerful
class of attack which often imply security of general coherent attacks [27,28],
though we leave a complete proof of whether this applies to our protocol as
future work.
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The goal of our analysis is to obtain a lower bound on the conditional von
Neumann entropy S(A|E), which represents how much entropy is left in Alice’s
register A, given Eve’s (quantum) memory E. Then, we will find how much
this quantity differs from the conditional Shannon entropy H(A|B), which
represents how much entropy is left in Alice’s register given Bob’s memory B.
These two terms will ultimately let us calculate our quantity of interest from
this protocol, which is, the key rate r (namely, the number of secret key bits,
denoted ℓ over the size of the produced raw key denoted M). To compute the
key rate we use the Devetak Winter key rate [29,30], which states the key rate
r in the asymptotic setting is:

r = lim
M→∞

ℓ

M
= inf[S(A|E)−H(A|B)], (1)

where the infimum is over all collective attacks performed by Eve that fall
within the range of observed noise statistics (in our case, those statistics
shown in Table 1). Note that the above entropy functions are computed over a
single key-round. However S(A|E) is not straightforward to calculate, unlike
H(A|B), because it involves Eve’s quantum memory on which we only have
partial information. Nevertheless, we can obtain a lower bound on S(A|E)
which will be the main goal of our security analysis.

We begin by modeling the state of the joint quantum system held between
Alice, Bob, and Eve at the end of one key-round of the protocol. That is,
to compute Equation 1, we need the von Neumann entropy of the resulting
density operator conditioned on a key bit being distilled and so we must model
the joint quantum state, conditioning on the event that Alice and Bob establish
a key bit.

At the beginning of the protocol, Alice decides on her classical bit and
sends her qudit accordingly to Bob. If she wants to send classical bit 0, she
sends a |i〉 and if she wants to send 1, she sends a |φ〉. So when she sends
the qudits, her own classical register, denoted by A and the transit register,
denoted by T (used to model the traveling qudit), is in the following state:

ρ
(0)
AT =

1

2
|0〉〈0|A ⊗ |i〉〈i|T +

1

2
|1〉〈1|A ⊗ |φ〉〈φ|T .

Eve attacks this traveling qudit with a unitary attack operator U , which acts
on Hilbert space HT ⊗HE . Here, HE models Eve’s memory space. We assume
that, at the start of every iteration, Eve’s private ancilla is initialized to some
default pure state |χ〉E of Eve’s choice, independent of Alice and Bob’s registers
(this is before Alice sends anything). Note that, this is to Eve’s advantage in
a collective attack scenario (as holding a mixed state, or an unknown initial
state, can only increase her uncertainty). Note that we make no assumptions
on this state (including its dimension), other than Eve knows exactly what it
is. In this case, whenever a quantum signal |ψ〉T is sent from Alice, the joint
state is simply |ψ〉T ⊗ |χ〉E . From this, we can describe U ’s action on basis
states as follows:



Analysis of a High-Dimensional Extended B92 Protocol 7

U |a〉T ⊗ |χ〉E =

D−1
∑

b=0

|b, eab 〉TE ,

where D is the dimension of each qudit and each |eab 〉 is an arbitrary state
in Eve’s ancilla. Because U is unitary, we note that the following must hold:
∑D−1

b=0

〈

eib
∣

∣eib
〉

= 1. Additionally, by linearity of U we have:

U |φ〉T ⊗ |χ〉E = U
1√
2
(|i〉T + |j〉T )⊗ |χ〉E

=
1√
2

D−1
∑

b=0

|b〉T ⊗
(

∣

∣eib
〉

E
+
∣

∣

∣e
j
b

〉

E

)

=
1√
2

D−1
∑

b=0

|b〉T ⊗ |fb〉E , (2)

where, |fb〉E :=
∣

∣eib
〉

E
+
∣

∣

∣e
j
b

〉

E
. So the result of Eve’s attack on ρ

(0)
AT is the

following:

ρ
(1)
ATE =

1

2
|0〉〈0|A ⊗ U (|i〉〈i|T ⊗ |χ〉〈χ|E)U † +

1

2
|1〉〈1|A ⊗ U (|φ〉〈φ|T ⊗ |χ〉〈χ|E)U†

=
1

2
|0〉〈0|A ⊗ P

(

D−1
∑

b=0

∣

∣b, eib
〉

TE

)

+
1

2
|1〉〈1|A ⊗ P

(

1√
2

D−1
∑

b=0

|b〉T ⊗ |fb〉E

)

,

where, recall, P (|z〉) = |z〉〈z| is the projection operator. Henceforth, we will
forgo writing the subscript for a register when the context is clear. Now, after
the qudit arrives at Bob’s lab, he measures the transit register T in either
POVM Z or X with equal probability. Let’s consider the case when he uses
X and gets the outcome I − |φ〉〈φ| (we are conditioning on a successful key-
round for this analysis). This is the case when Bob sets his key-bit to 0,
because in a noiseless scenario, this outcome could only be obtained when
Alice would have sent an |i〉. Let’s define the measurement operator in this
case asM0 = IA⊗(I−|φ〉〈φ|)⊗IE . Then the un-normalized post-measurement
state, conditioned on him observing M0 (again, we are only interested, for the
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moment, in a successful key distillation round) is:

ρXATE =M0 · ρ(1)ATE ·M†
0

=
1

2
|0〉〈0| ⊗ P

(

((I− |φ〉〈φ|)⊗ I)
∑

b

∣

∣b, eib
〉

)

+
1

2
|1〉〈1| ⊗ P

( 1√
2

(

(I− |φ〉〈φ|)⊗ I
)

∑

b

|b〉 ⊗ |fb〉
)

=
1

2
|0〉〈0| ⊗ P

(

∑

b

∣

∣b, eib
〉

− 1

2
(
∣

∣i, eii
〉

+
∣

∣i, eij
〉

+
∣

∣j, eii
〉

+
∣

∣j, eij
〉

)
)

+
1

2
|1〉〈1| ⊗ P

( 1√
2

(

∑

b

|b, fb〉 −
1

2
(|i, fi〉+ |i, fj〉+ |j, fi〉+ |j, fj〉)

)

)

=
1

2
|0〉〈0| ⊗ P

(

∑

b 6=i,b 6=j

∣

∣b, eib
〉

+
1

2
(|i〉 ⊗ (

∣

∣eii
〉

−
∣

∣eij
〉

))

− 1

2
(|j〉 ⊗ (

∣

∣eii
〉

−
∣

∣eij
〉

))
)

+
1

2
|1〉〈1| ⊗ P

( 1√
2

(

∑

b 6=i,b 6=j

|b, fb〉+
1

2
(|i〉 ⊗ (|fi〉 − |fj〉))

− 1

2
(|j〉 ⊗ (|fi〉 − |fj〉))

)

)

=
1

2
|0〉〈0| ⊗ P

(

∑

b 6=i,b 6=j

∣

∣b, eib
〉

+
1

2
|i, g〉 − 1

2
|j, g〉

)

+
1

2
|1〉〈1| ⊗ P

( 1√
2

(

∑

b 6=i,b 6=j

|b, fb〉+
1

2
|i, h〉 − 1

2
|j, h〉

)

)

, (3)

where in the last equality, we have defined |g〉 =
∣

∣eii
〉

−
∣

∣eij
〉

and |h〉 = |fi〉−|fj〉.
Now that Bob has his X basis measurement result at his hand, we can trace
out the transit register T and add Bob’s register B to hold his measurement
result. Then the resulting state is:

ρXAEB =
1

2
|0〉〈0|A ⊗

(

∑

b 6=i,b 6=j

∣

∣eib
〉〈

eib
∣

∣+
1

2
|g〉〈g|

)

⊗ |0〉〈0|B

+
1

2
|1〉〈1|A ⊗ 1

2

(

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

2
|h〉〈h|

)

⊗ |0〉〈0|B .

Similarly, if he uses POVM Z and gets outcome I− |i〉〈i|, he can be certain in
a noiseless scenario that Alice has sent a |φ〉. With the measurement operator
M1 := IA ⊗ (I − |i〉〈i|) ⊗ IE , in this case we get the following un-normalized
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post-measurement state:

ρZATE =M1 · ρ(1)ATE ·M†
1

=
1

2
|0〉〈0| ⊗ P

(

(I− |i〉〈i|)
∑

b

∣

∣b, eib
〉

)

+
1

2
|1〉〈1| ⊗ P

( 1√
2
(I− |i〉〈i|)

∑

b

|b, fb〉
)

=
1

2
|0〉〈0| ⊗ P

(

∑

b 6=i

∣

∣b, eib
〉

)

+
1

2
|1〉〈1| ⊗ P

( 1√
2

∑

b 6=i

|b〉 ⊗ |fb〉
)

.

Following a similar procedure as before, we trace out the transit register T
and add Bob’s register holding his measurement result. The resulting density
operator is:

ρZAEB =
1

2
|0〉〈0|A ⊗

∑

b 6=i

∣

∣eib
〉〈

eib
∣

∣⊗ |1〉〈1|B +
1

2
|1〉〈1|A ⊗ 1

2

∑

b 6=i

|fb〉〈fb| ⊗ |1〉〈1|B .

Then the total (still non-normalized) density operator that represents a key-bit
generation round, is the following:

ρAEB = ρXAEB + ρZAEB

=
1

2
|0〉〈0|A ⊗

(

∑

b 6=i,b 6=j

∣

∣eib
〉〈

eib
∣

∣+
1

2
|g〉〈g|

)

⊗ |0〉〈0|B

+
1

2
|1〉〈1|A ⊗ 1

2

(

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

2
|h〉〈h|

)

⊗ |0〉〈0|B

+
1

2
|0〉〈0|A ⊗

∑

b 6=i

∣

∣eib
〉〈

eib
∣

∣⊗ |1〉〈1|B +
1

2
|1〉〈1|A ⊗ 1

2

∑

b 6=i

|fb〉〈fb| ⊗ |1〉〈1|B

=
1

2
|0〉〈0|A ⊗

(

(

∑

b 6=i,b 6=j

∣

∣eib
〉〈

eib
∣

∣+
1

2
|g〉〈g|

)

⊗ |0〉〈0|B

+
∑

b 6=i

∣

∣eib
〉〈

eib
∣

∣⊗ |1〉〈1|B
)

+
1

2
|1〉〈1|A ⊗

(1

2

(

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

2
|h〉〈h|

)

⊗ |0〉〈0|B

+
1

2

∑

b 6=i

|fb〉〈fb| ⊗ |1〉〈1|B
)

. (4)

Keeping in mind that, our ultimate goal is to bound Eve’s entropy about
Alice’s register, i.e. S(A|E), in the case where Alice and Bob shares a key-bit,
we trace out Bob’s register too, keeping only the registers of Alice and Eve.
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Thus, we calculate the final required density operator as:

N · ρAE =
1

2
|0〉〈0|A ⊗

(

∑

b 6=i,b 6=j

∣

∣eib
〉〈

eib
∣

∣+
1

2
|g〉〈g|+

∑

b 6=i

∣

∣eib
〉〈

eib
∣

∣

)

+
1

2
|1〉〈1|A ⊗

(1

2

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

4
|h〉〈h|+ 1

2

∑

b 6=i

|fb〉〈fb|
)

= |0〉〈0|A ⊗
(1

2

∑

b 6=i,b 6=j

∣

∣eib
〉〈

eib
∣

∣+
1

4
|g〉〈g|+ 1

2

∑

b 6=i,b 6=j

∣

∣eib
〉〈

eib
∣

∣+
1

2

∣

∣eij
〉〈

eij
∣

∣

)

+ |1〉〈1|A ⊗
(1

4

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

8
|h〉〈h|+ 1

4

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

4
|fj〉〈fj |

)

= |0〉〈0| ⊗
(

∑

b 6=i,b 6=j

∣

∣eib
〉〈

eib
∣

∣+
1

2

∣

∣eij
〉〈

eij
∣

∣+
1

4
|g〉〈g|

)

+ |1〉〈1| ⊗
(1

2

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

4
|fj〉〈fj |+

1

8
|h〉〈h|

)

, (5)

where the normalization term N can be calculated as:

N =
∑

b 6=i,b 6=j

〈

eib
∣

∣eib
〉

+
1

2

〈

eij
∣

∣eij
〉

+
1

4
〈g|g〉+ 1

2

∑

b 6=i,b 6=j

〈fb|fb〉+
1

4
〈fj |fj〉+

1

8
〈h|h〉

(6)

Now, using Theorem 1, we may compute the conditional entropy as:

S(A|E) ≥
∑

b 6=i,b 6=j

(

n0
b + n1b
N

)

sb +

(

n0
i + n1

i

N

)

si + (
n0
j + n1

j

N
)sj , (7)

where:

n0
b :=

〈

eib
∣

∣eib
〉

, n1b :=
1

2
〈fb|fb〉 , for all b 6= i, j

n0
i :=

1

2

〈

eij
∣

∣eij
〉

, n1i :=
1

8
〈h|h〉 ,

n0
j :=

1

4
〈g|g〉 , n1j :=

1

4
〈fj |fj〉 .
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and:

sb = H2

(

n0
b

n0b + n1
b

)

−H2









1

2
+

√

(n0
b − n1

b)
2 + 4× Re2

〈

eib

∣

∣

∣

1√
2
fb

〉

2(n0
b + n1

b)









si = H2

(

n0
i

n0i + n1
i

)

−H2









1

2
+

√

(n0
i − n1

i )
2 + 4× Re2

〈

1
2e

i
j

∣

∣

∣

1
2
√
2
h
〉

2(n0
i + n1

i )









sj = H2

(

n0
j

n0j + n1
j

)

−H2





1

2
+

√

(n0
j − n1

j )
2 + 4× Re2

〈

1
2g
∣

∣

1
2fj
〉

2(n0
j + n1j )



 .

Thus, to find a lower bound on S(A|E) (thus giving us a lower bound on
the protocol’s key rate), we must determine bounds for the inner-products ap-
pearing in the above expressions. Of course, these inner products are functions
of Eve’s quantum ancilla. We show how to determine suitable bounds on these
systems based only on parameters that are directly observable in our protocol
during test rounds (see Table 1).

4.1 Parameter Estimation

To calculate the conditional entropy of ρAE , we need to estimate all the inner
products appearing in equation (6). This can be done by connecting these
inner products with observable noise statistics that arise from test rounds of
Alice and Bob’s quantum communication. Let us see the statistics that can be
observed directly in a test round. For example, in a round where Alice sends an
|i〉 or a |j〉, Eve attacks with U , and Bob measures in Z; the probability that
Bob gets a particular outcome |b〉〈b| in Z can be used to estimate partial Z
basis channel noise. In the following, by pib and pjb, we denote the probability
that, given that Alice prepares |i〉 or |j〉 and Bob measures the transit register
in basis Z then the outcome is |b〉〈b| for a particular b ∈ {0, ..., D − 1}. (See
also Table 1.)

pib = 〈i|U†(|b〉〈b| ⊗ I)U |i〉 =
〈

eib
∣

∣eib
〉

(8)

pjb = 〈j|U †(|b〉〈b| ⊗ I)U |j〉 =
〈

ejb

∣

∣

∣e
j
b

〉

(9)

thus giving us {n0b} as needed in the entropy equation. Now, we trace the
evolution of the quantum system when Alice prepares |i〉 and Bob measures in
POVM X. For example, we can not observe the inner product

〈

eii
∣

∣eij
〉

directly.
But we consider the probability that Alice sends an |i〉, Eve attacks with U ,
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and Bob measures in X to find a |φ〉, denoted as piφ:

piφ = 〈i|U†(|φ〉〈φ| ⊗ I)U |i〉
=
∑

b,c

〈b| |φ〉〈φ| |c〉
〈

eib
∣

∣eic
〉

=
1

2

∑

b,c

〈b| (|i〉〈i|+ |i〉〈j|+ |j〉〈i|+ |j〉〈j|) |c〉
〈

eib
∣

∣eic
〉

=
1

2
(
〈

eii
∣

∣eii
〉

+
〈

eii
∣

∣eij
〉

+
〈

eij
∣

∣eii
〉

+
〈

eij
∣

∣eij
〉

)

=
1

2
(pii + 2Re

〈

eii
∣

∣eij
〉

+ pij), (10)

where, we have used equation (8) for pii, pij and an elementary property of
complex inner products. Notice that, even though we could not observe

〈

eii
∣

∣eij
〉

,
equation (10) will imply:

2Re
〈

eii
∣

∣eij
〉

= 2piφ − pii − pij . (11)

Using this estimation of Re
〈

eii
∣

∣eij
〉

, we can now estimate the inner product
〈g|g〉, which appears in the normalizer N in equation (6). This is:

〈g|g〉 = (
〈

eii
∣

∣−
〈

eij
∣

∣)(
∣

∣eii
〉

−
∣

∣eij
〉

)

=
〈

eii
∣

∣eii
〉

−
〈

eii
∣

∣eij
〉

−
〈

eij
∣

∣eii
〉

+
〈

eij
∣

∣eij
〉

= pii − 2Re
〈

eii
∣

∣eij
〉

+ pij

= 2pii + 2pij − 2piφ. (12)

Now let’s focus on calculating 〈fb|fb〉. Remembering that |fb〉 =
∣

∣eib
〉

+
∣

∣

∣e
j
b

〉

(See equation (2)), we can easily derive the following:

〈fb|fb〉 = (
〈

eib
∣

∣+
〈

ejb

∣

∣

∣
)(
∣

∣eib
〉

+
∣

∣

∣
ejb

〉

)

=
〈

eib
∣

∣eib
〉

+
〈

eib

∣

∣

∣
ejb

〉

+
〈

ejb

∣

∣

∣
eib

〉

+
〈

ejb

∣

∣

∣
ejb

〉

= pib + 2Re
〈

eib

∣

∣

∣
ejb

〉

+ pjb, (13)

where we have used equation (8) and (9) for pib, pjb. Now if we look closely
at equation (2), we see that 〈fb|fb〉 is actually directly observable. Because it
is the probability that Alice sends a |φ〉, Eve attacks with U , and conditioned
on the case that Bob measures in Z, gets an outcome |b〉. We denote it by pφb
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and see that:

pφb = 〈φ|U†(|b〉〈b| ⊗ I)U |φ〉

=
( 1√

2

D−1
∑

c=0

〈c| ⊗ 〈fc|
)

(|b〉〈b| ⊗ I)
( 1√

2

D−1
∑

d=0

|d〉 ⊗ |fd〉
)

=
1

2

D−1
∑

c,d=0

〈c| |b〉〈b| |d〉 〈fc|fd〉

=
1

2
〈fb|fb〉 , (14)

and consequently, 〈fb|fb〉 = 2pφb. So, from equations (13) and (14) we infer
the following:

2Re
〈

eib

∣

∣

∣e
j
b

〉

= 2pφb − pib − pjb. (15)

Notice that equation (13) and consequently (15), holds for all b = 0, ..., D− 1.
So we immediately get 〈fj |fj〉 for normalizer N . Now let’s calculate the last
inner product in N which is 〈h|h〉. First let’s discover the constituent inner
products for 〈h|h〉. Then we will connect each of those to Alice and Bob’s
observables.

〈h|h〉 = (〈fi| − 〈fj |)(|fi〉 − |fj〉)
= 〈fi|fi〉 − 〈fi|fj〉 − 〈fj |fi〉+ 〈fj |fj〉
= 〈fi|fi〉 − 2Re 〈fi|fj〉+ 〈fj |fj〉 . (16)

Now, let us take advantage of another directly observable quantity. Which is
the probability that Bob would measure a |φ〉 in the X basis if Alice indeed
sent a |φ〉. We denote it as pφφ and see that:

pφφ = 〈φ|U †(|φ〉〈φ| ⊗ I)U |φ〉

=
1√
2

(

∑

b

〈b, fb|
)

(

|φ〉〈φ| ⊗ I
) 1√

2

(

∑

c

|c, fc〉
)

=
1

4

(

∑

b,c

(

〈b| |i〉〈i| |c〉 ⊗ 〈fb|fc〉+ 〈b| |i〉〈j| |c〉 ⊗ 〈fb|fc〉

+ 〈b| |j〉〈i| |c〉 ⊗ 〈fb|fc〉+ 〈b| |j〉〈j| |c〉 ⊗ 〈fb|fc〉
)

)

=
1

4
(〈fi|fi〉+ 〈fi|fj〉+ 〈fj |fi〉+ 〈fj |fj〉)

=
1

4
(〈fi|fi〉+ 2Re 〈fi|fj〉+ 〈fj |fj〉)

=
1

2
(pφi +Re 〈fi|fj〉+ pφj). (17)

Equation (17) implies that:

Re 〈fi|fj〉 = 2pφφ − pφi − pφj . (18)
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Along with the fact that 〈fi|fi〉 = 2pφi and 〈fj |fj〉 = 2pφj from equation (14),
we can say from equation (16) and (18) that:

〈h|h〉 = 4(pφi + pφj − pφφ).

This concludes the estimation of inner products appearing in the normalizer
N of ρAE in (6). We need to estimate the real parts of three more classes
of inner products to calculate each of the λ-terms appearing in Theorem 1.

These are {Re
〈

eib

∣

∣

∣

1√
2
fb

〉

}b,Re
〈

1
2g
∣

∣

1
2fj
〉

,Re
〈

1
2e

i
j

∣

∣

∣

1
2
√
2
h
〉

. In the following we

connect these inner products to observable statistics. Let’s focus on the first
one:

Re

〈

eib

∣

∣

∣

∣

1√
2
fb

〉

=
1√
2
Re(
〈

eib
∣

∣)(
∣

∣eib
〉

+
∣

∣

∣e
j
b

〉

)

=
1√
2
Re(
〈

eib
∣

∣eib
〉

+
〈

eib

∣

∣

∣e
j
b

〉

)

=
1√
2
(pib + pφb −

pib
2

− pjb
2

), (19)

where we have used the definition of |fb〉 in the first equality and have used

equation (8) and (15) to insert the value of Re
〈

eib
∣

∣eib
〉

,Re
〈

eib

∣

∣

∣e
j
b

〉

. Now let’s

focus on the second inner product Re
〈

1
2g
∣

∣

1
2fj
〉

:

Re

〈

1

2
g

∣

∣

∣

∣

1

2
fj

〉

=
1

4
Re(
〈

eii
∣

∣−
〈

eij
∣

∣)(
∣

∣eij
〉

+
∣

∣

∣e
j
j

〉

)

=
1

4
Re(
〈

eii
∣

∣eij
〉

+
〈

eii

∣

∣

∣e
j
j

〉

−
〈

eij
∣

∣eij
〉

−
〈

eij

∣

∣

∣e
j
j

〉

)

=
1

4
(piφ − pii

2
+ Re

〈

eii

∣

∣

∣e
j
j

〉

− pij − pφj +
pjj
2

). (20)

The value of Re
〈

eii
∣

∣eij
〉

and Re
〈

eij

∣

∣

∣e
j
j

〉

is found in (11) and (15) respectively.

Furthermore,
〈

eij
∣

∣eij
〉

is simply pij because of equation (8). Noticeably, the term
〈

eii

∣

∣

∣e
j
j

〉

is not observable. We will deal with this a bit later. Now we move on

to the last of the necessary inner products for the theorem, Re
〈

1
2e

i
j

∣

∣

∣

1
2
√
2
h
〉

.

1

2
× 1

2
√
2
Re
〈

eij
∣

∣h
〉

=
1

4
Re
〈

eij
∣

∣ (|fi〉 − |fj〉)

=
1

4
Re
〈

eij
∣

∣ (
∣

∣eii
〉

+
∣

∣

∣
eji

〉

−
∣

∣eij
〉

−
∣

∣

∣
ejj

〉

)

=
1

4
Re(
〈

eij
∣

∣eii
〉

+
〈

eij

∣

∣

∣e
j
i

〉

−
〈

eij
∣

∣eij
〉

−
〈

eij

∣

∣

∣e
j
j

〉

)

=
1

4

(

piφ − pii
2

+ Re
〈

eij

∣

∣

∣e
j
i

〉

− pij − pφj +
pjj
2

)

, (21)

where the unknown terms Re
〈

eij
∣

∣eii
〉

= Re
〈

eii
∣

∣eij
〉

,Re
〈

eij

∣

∣

∣e
j
j

〉

can be found in

equations (11) and (15) respectively. In equation (21), we are again faced with
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a term Re
〈

eij

∣

∣

∣e
j
i

〉

for which we do not have a direct observation. Now we deal

with this term and the other unobservable term from equation (20), which is

Re
〈

eii

∣

∣

∣e
j
j

〉

. Although it is not hard to see, we need to take several steps to

find an equation that relates these two inner products. Consider 〈fi|fj〉 which
we may expand as:

2Re 〈fi|fj〉 = 2Re(
〈

eii
∣

∣eij
〉

+
〈

eii

∣

∣

∣e
j
j

〉

+
〈

eji

∣

∣

∣eij

〉

+
〈

eji

∣

∣

∣e
j
j

〉

) (22)

First let’s deal with the unobservable term
〈

eji

∣

∣

∣e
j
j

〉

. It is easy to see that, the

probability of Alice sending a |j〉, Eve attacking with U and Bob measures in
X to find a |φ〉, denoted by pjφ is:

pjφ = 〈j|U†(|φ〉〈φ| ⊗ I)U |j〉

=
∑

b,c

〈b| |φ〉〈φ| |c〉
〈

ejb

∣

∣

∣ejc

〉

=
1

2

∑

b,c

〈b| (|i〉〈i|+ |i〉〈j|+ |j〉〈i|+ |j〉〈j|) |c〉
〈

ejb

∣

∣

∣ejc

〉

=
1

2
(
〈

eji

∣

∣

∣
eji

〉

+
〈

eji

∣

∣

∣
ejj

〉

+
〈

ejj

∣

∣

∣
eji

〉

+
〈

ejj

∣

∣

∣
ejj

〉

)

=
1

2
(pji + 2Re

〈

eji

∣

∣

∣
ejj

〉

+ pjj). (23)

From equation (23), it is clear that:

2Re
〈

eji

∣

∣

∣e
j
j

〉

= 2pjφ − pji − pjj . (24)

The value of one of the other three unobservable terms appearing in equation

(22), i.e.,
〈

eii
∣

∣eij
〉

can be found in equation (11). However, Re
〈

eii

∣

∣

∣e
j
j

〉

,Re
〈

eji

∣

∣

∣eij

〉

)

are unobservable at this point. With the help of equations (11) and (24), we
can rewrite equation (22) as:

2Re 〈fi|fj〉 = 2piφ − pii − pij + 2Re(
〈

eii

∣

∣

∣e
j
j

〉

+
〈

eji

∣

∣

∣eij

〉

) + 2pjφ − pji − pjj ,

(25)

We further notice from equation (18),

2Re 〈fi|fj〉 = 4pφφ − 2pφi − 2pφj . (26)
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Then, we equate the previous two equations (25), (26) to ultimately find:

4pφφ − 2pφi − 2pφj = 2piφ−pii − pij + 2Re(
〈

eii

∣

∣

∣e
j
j

〉

+
〈

eji

∣

∣

∣eij

〉

)

+ 2pjφ − pji − pjj

=⇒ 2Re(
〈

eii

∣

∣

∣e
j
j

〉

+
〈

eji

∣

∣

∣eij

〉

) = 4pφφ − 2pφi − 2pφj − 2piφ + pii + pij

− 2pjφ + pji + pjj

=⇒ Re(
〈

eii

∣

∣

∣e
j
j

〉

+
〈

eji

∣

∣

∣eij

〉

) = 2pφφ − pφi − pφj − piφ +
pii
2

+
pij
2

− pjφ +
pji
2

+
pjj
2

:= K.

(27)

Where we define the right-hand side of equation (27) to be K, the value of
which may be computed by Alice and Bob based only on observed statistics
of the quantum channel. Now we have all the pieces necessary to compute the
conditional entropy S(A|E) according to Theorem 1.

We minimize S(A|E) given by Equation (7) over one of the two unobserv-
able values stated on the left side of equation (27). More specifically, based on

equation (27), we can say that, Re
〈

eii

∣

∣

∣e
j
j

〉

= K − Re
〈

eji

∣

∣

∣eij

〉

and then opti-

mize over Re
〈

eji

∣

∣

∣eij

〉

. Note that we minimize over these unobservable quan-

tities as we must assume that Eve choose the attack strategy that gives her
the most information. However, her attack must be constrained by the above

analysis. The independent unobservable inner-product Re
〈

eji

∣

∣

∣eij

〉

is further

restricted by Cauchy-Schwarz in that −Re
(〈

eji

∣

∣

∣e
j
i

〉

〈

eij
∣

∣eij
〉

)

≤ Re
〈

eij

∣

∣

∣e
j
i

〉

≤

Re
(〈

eji

∣

∣

∣e
j
i

〉

〈

eij
∣

∣eij
〉

)

, which in terms of observable probabilities from equa-

tions (8) and (9), can be seen to be −√
pij · pji ≤ Re

〈

eij

∣

∣

∣e
j
i

〉

≤ √
pij · pji.

A method for computing the minimization of S(A|E) and subsequently, the
key rate, is presented in algorithm (2). Note that to perform the minimization
we discretized the continuous search interval of the one free parameter into
points of distance ǫ. For small enough ǫ, this algorithm will approach the ac-
tual minimum to an arbitrary level of accuracy set by the user (note that von
Neumann entropy is a continuous function [31–33]). Finally, we also confirmed
these results by performing the minimization using Mathematica’s NMinimize
command.

With the bound on S(A|E) calculated, we can focus on the Shannon en-
tropy of Alice’s register given Bob’s register, i.e. H(A|B). However, this is easy
to compute as it is based entirely on Alice and Bob’s probability distribution
on their raw key bits. In particular, let pab be the probability that Alice’s raw
key bit is “a” and Bob’s raw key bit is “b” conditioned on them not rejecting
the iteration. This is clearly something that Alice and Bob can estimate by
classical sampling and, so, may directly computeH(A|B). To actually evaluate
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Algorithm 2 An algorithm for calculating the key rate
Input: All observable parameters: pib, pjb, piφ, pjφ, pφb, pφφ ∀b ∈ {0, 1, ..., D − 1}
Output: Key rate given observed parameters.
Algorithm:

Compute N (From equation (6))
Compute p00, p01, p10, p11 (From equations (28), (29), (30), (31) respectively)
Compute K (From Equation (27))

v1 ← −√pij · pji (Here, v1 represents Re
〈

eij

∣

∣

∣
e
j
i

〉

)

minSAE ←∞
while v1 ≤ √pij · pji do

v2 ← K − v1 (Here, v2 represents Re
〈

eii

∣

∣

∣
e
j
j

〉

)

Compute p1, p2, p3 (From equations (19), (20), (21) respectively using v1 and v2)
tmpSAE ← S(A|E) (From equation (7) using p1, p2, p3)
if tmpSAE < minSAE then

minSAE ← tmpSAE

end if

v1 ← v1 + ǫ (For small ǫ)
end while

return minSAE − [H(p00, p01, p10, p11)−H(p00 + p10)]

our bound, we will require numerical values for these under simulated chan-
nels. For this, we can use ρAEB from Equation (4) and our earlier analysis to
derive the following:

p00 =
1

2N

(

∑

b 6=i,b 6=j

〈

eib
∣

∣eib
〉

+
1

2
〈g|g〉

)

=
1

2N
(1− piφ) , (28)

p01 =
1

2N

∑

b 6=i

∣

∣eib
〉〈

eib
∣

∣ =
1

2N
(1− pii) , (29)

p10 =
1

2N

(1

2

∑

b 6=i,b 6=j

|fb〉〈fb|+
1

4
|h〉〈h|

)

=
1

2N
(1− pφφ) , (30)

p11 =
1

4N

∑

b 6=i

|fb〉〈fb| =
1

2N
(1− pφi) . (31)

Importantly, the values pab may be directly observed by Alice and Bob. The
above expressions are what Alice and Bob should expect these values to be
(and so they may actually estimate them using these expressions and proba-
bility values, already required by the rest of our proof, instead of sacrificing
additional key material for sampling to learn pab directly). Taken together, we
may now easily compute a lower-bound on the min-entropy S(A|E) and also
directly compute H(A|B) thus giving us a lower-bound on the key rate of this
protocol.

4.2 Comment on General Attacks

The above assumed collective attacks which is a standard assumption in the
majority of QKD security proofs. Often, security against such attacks may be
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promoted to security against general coherent attacks through post-selection
methods [28] or de Finetti techniques [27]. We strongly suspect the same holds
for our protocol. To prove this rigorously, however, an equivalent entanglement
based version of the prepare and measure protocol must be derived and se-
curity against general attacks there must be proven to imply security against
general attacks for the prepare and measure protocol. We attempted to apply
standard techniques for qubit-style B92 protocols for this (see, for instance, [6,
34,30]), however the higher dimensional system does complicate the proof of
the entanglement reduction. Thus, though we suspect these standard tools can
be applied to promote our security analysis to general attacks, we leave this
investigation, and a rigorous proof, as interesting future work. However our
analysis in the previous sections for collective attacks should be immediately
applicable to that case. We further comment that our results in the previous
sections are also applicable if one wished to perform a finite key analysis using
methods in [35] for which collective attacks are commonly assumed.

4.3 Evaluation

Note that the above security analysis and bound of S(A|E) andH(A|B), would
hold for an arbitrary quantum channel; one need only observe those values
listed in Table 1 in order to minimize S(A|E) as described in the previous
section. As examples, and to compare with other protocols, we will evaluate our
protocol in two different channels, commonly used in QKD protocol evaluation.
These are the depolarizing channel and the amplitude damping channel. First,
let’s consider the depolarization channel. Given a density operator σ acting on
a Hilbert space of dimension D, the depolarization channel with parameter Q,
denoted here as EQ acts as follows:

EQ(σ) =
(

1− D

D − 1
Q

)

σ +
Q

D − 1
I. (32)

To calculate the key rate of our protocol, we calculate the required observable
statistics assuming the adversary uses this channel (in particular, the statistics
indexed in Table 1). These are easily found to be:

pii = pjj = pφφ = 1−Q

pib = pjb = pφb =
Q

D − 1

piφ = pjφ = pφi = pφj =
1

2

(

1− DQ

D − 1

)

+
Q

D − 1
.

This is sufficient to evaluate the key rate of our protocol as shown in
Figure 1. Note that, as with other high-dimensional QKD protocols, as the
dimension of the system increases, the tolerance to depolarization noise also
increases. In our numerical evaluations, the noise tolerance approaches 15.5%
as the dimension increases thus showing that, as with other high-dimensional
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Fig. 1 The key rate of the HD-Ext-B92 protocol for various dimensions D assuming a
depolarization channel. Here the dimension increases from left-to-right from D = 21 to
D = 25 in powers of two. We observe numerically, as the dimension continues to increase,
the noise tolerance for this channel tends towards 15.5%.

QKD protocols, the extended-B92 style scheme can also benefit from higher
dimensional systems, at least against this particular channel type.

We also compare with the HD-BB84 protocol [36] which we now state for
completeness. Similar to the qubit case, the qudit based HD-BB84 uses two
bases, namely, the computational basis Z = {|0〉 , |1〉 , ..., |D − 1〉} and another
basis denoted by X where X = {|x0〉 , |x1〉 , ..., |xf 〉}. We assume the two bases
are mutually unbiased. Alice sends basis states from these two bases and Bob
measures in X or Z. If both parties chose the Z basis, the result is used for
their raw key; otherwise, if both parties choose the X basis, they use this to
measure the noise in the quantum channel. The unconditional security of this
protocol has been proven [37,38]. An entropic uncertainty relation presented
in [39] can be used to easily derive the following asymptotic key rate r for
HD-BB84 assuming a depolarization channel with a noise parameter Q. The
final equation reads:

r = logD − 2(H2(Q) +Q log(D − 1)),

The result of this comparison is presented in Figure 2. As expected, BB84
outperforms our protocol. However, this is not surprising as BB84 at the qubit
level also outperforms the B92 and Extended B92 protocol. Furthermore, our
high-dimensional protocol is not even utilizing two complete bases as HD-
BB84 does; instead, we are using a weak version where Alice need only send
three states and Bob need only perform partial measurements in the second
basis. Note also that we did not choose an optimal basis choice and, indeed,
alternative encoding selections for the X state may lead to higher key rates
for our HD-Ext-B92 protocol as demonstrated at least for the qubit case [8,
21].

Another channel of interest is the amplitude damping channel. Our primary
curiosity of analyzing our protocol in this channel stems from the fact that
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Fig. 2 key rate comparison between our HD-Ext-B92 protocol (solid lines) and the HD-
BB84 protocol (dashed lines). Here the dimension for each protocol line individually increases
left-to-right fromD = 21 up toD = 24. Note that forD = 21, HD-BB84 has a noise tolerance
of 11% (as expected since, in that case, it is standard BB84) while the HD-Ext-B92 protocol
does not attain that level of noise tolerance until D = 23. See text for further discussion.

we suspected that in some channels, the choice of public parameters i, j may
not be trivial. This channel confirmed our suspicion on which we elaborate
a bit later. Amplitude damping channel is used in physics to model energy
dissipation and in quantum information, it can be used to model low-noise
scenarios [40]. It has seen usage in QKD context in [41,23], for teleportation
in [42] and for error correcting codes in [43]. This channel can be described its
Kraus operators:

E0 =















1 0 0 · · · 0
0
√
1− p 0 · · · 0

0 0
√
1− p · · · 0

...
...

...
. . .

...
0 0 0 · · · √1− p















(33)

and:

E1 =















0
√
p 0 · · · 0

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...
. . .

...
0 0 0 · · · 0















, · · · , ED−1 =















0 0 0 · · · √p
0 0 0 · · · 0
0 0 0 · · · 0
...
...
...
. . .

...
0 0 0 · · · 0















. (34)

As before, we can compute those observable parameters in Table 1 under
this channel and then use our analysis in the previous section to derive a lower-
bound on the key rate of our protocol. We can see that the key rate of our
protocol can vary significantly with the choice of basis states, in particular the
distinguished |i〉 and |j〉 as shown in Table 2. Since these are set by the users,
they may choose basis states based on the channel properties to maximize the
key rate.
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Table 2 Key rates for high-dimensional extended B92 protocol with D = 4 and different
choices of |i〉 and |j〉 under an amplitude damping channel with parameter p = .08.

|φ〉 = 1
√

2
(|i〉+ |j〉) key rate

|i〉 = |0〉 , |j〉 = |1〉 .85
|i〉 = |0〉 , |j〉 = |2〉 .85
|i〉 = |1〉 , |j〉 = |2〉 .29
|i〉 = |1〉 , |j〉 = |3〉 .29

5 Closing Remarks

In this work, we have presented the usage of high-dimensional quantum sys-
tems as communication resources between Alice and Bob in the extended B92
protocol, originally introduced in [8] for qubits. When extending that protocol
to higher dimensions we took care to attempt to minimize the quantum re-
sources used by parties. In particular, our protocol only requires Alice to send
three different states while Bob need only perform partial measurements.

We performed an information theoretic security analysis against collective
attacks and evaluated under two different channels, the depolarization channel
and the amplitude damping channel. We showed that, as with other high-
dimensional protocols, under a depolarization channel the noise tolerance tends
to increase with the dimension of the system. For the HD-Ext-B92 protocol,
this tolerance eventually converges to 15.5% (as observed by our numerical
computations). Under an amplitude damping channel, we showed how the
choice of basis states used can greatly affect the key rate of the overall protocol.

Perhaps the biggest open question at the moment is to determine the effects
of alternative superposition states on the protocol. We only considered a state
of the form 1√

2
|i〉 + 1√

2
|j〉. One obvious candidate to consider would be the

effect of having Alice send an equal superposition state. Unfortunately, the
security analysis of such a protocol proved to be highly difficult, especially
when using the technique of mismatched measurements (as we used here).
The analysis might be simplified by having Alice send complete basis states
instead of only a small subset of basis states in which case alternative proof
methods may be applied. We leave this interesting question as future work. We
also only performed an asymptotic key rate analysis - performing a finite key
analysis, taking into account also, perhaps, less ideal measurement devices,
would also be interesting to consider.
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