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Abstract—Quantum Conference Key Agreement (QCKA) pro-
tocols are designed to allow multiple parties to agree on a
shared secret key, secure against computationally unbounded
adversaries. In this paper, we consider a high-dimensional QCKA
protocol and prove its information theoretic security against
arbitrary, general, attacks in the finite-key scenario. Our proof
technique may be useful for other high-dimensional multi-
party quantum cryptographic protocols. Finally, we evaluate the
protocol in a variety of settings, showing that high-dimensional
states can greatly benefit QCKA protocols.

I. INTRODUCTION

Quantum key distribution (QKD) allows for the establish-
ment of a shared secret key between two parties, Alice and
Bob, secure against computationally unbounded adversaries
(whom we refer to as Eve). Progress in these protocols
has rapidly advanced, leading to both a rich theory along
with practical commercial systems [1], [2], [3]. Quantum
conference key agreement (QCKA) protocols are designed to
allow multiple parties to establish a common, shared, secret
key secure against computationally unbounded adversaries.
Starting from early work in this field [4], [5], QCKA protocols
have advanced substantially with new protocols and security
proofs [6], [7], [8]; it is also experimentally feasible [9].
Interestingly, it has been shown that there are some scenarios
where such multiparty protocols hold an advantage over the
naive use of multiple two-party protocols run in parallel [5].
For a recent survey on quantum conference key agreement
protocols and the state of the art in security proofs, the reader
is referred to [10].

High-dimensional quantum cryptography has been shown
to exhibit numerous advantages over qubit-based protocols,
especially in two-party QKD [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22]. Encouraged by this,
it is worth investigating whether high-dimensional states can
benefit QCKA. To our knowledge, only one high-dimensional
QCKA protocol exists which was introduced in [23], however
no rigorous finite key security analysis exists for it (instead,
[23] developed layered QKD protocols and was not concerned
with the explicit finite-key analysis of this particular QCKA
protocol - in fact, our analysis done in this paper may be useful
in proving security of those other protocols introduced in [23],
though we leave that as interesting future work).

In this work, we consider a high-dimensional QCKA proto-
col and prove its security against arbitrary, general attacks in
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the finite key setting. The protocol we analyze is an extension
of the qubit-based protocol from [24] to higher dimensions and
also a specific instance of a protocol introduced in [23]. For
the security proof, we utilize the quantum sampling framework
introduced by Bouman and Fehr in [25], along with proof
techniques we developed in [26] to derive sampling-based
entropic uncertainty relations. Our proof, though using these
two frameworks as a foundation, introduces several new meth-
ods which may also be useful when analyzing other quantum
cryptographic protocols, both those involving two users and
those for multi-users, especially in higher dimensions.

Finally, we evaluate the performance of this protocol in a va-
riety of scenarios, showing some very interesting behavior and
shedding new light on the benefits of high-dimensional quan-
tum states. In particular, we show that, as the dimension of the
quantum signal increases, the noise tolerance also increases.
Interestingly, the key-rate also increases beyond what would
be possible by simply running multiple, lower-dimensional,
protocols in parallel. This shows that high-dimensional states
can greatly benefit QCKA protocols. Our contributions in this
work are not only in developing a security proof for a high
dimensional QCKA protocol, but also in showing even more
benefits to high-dimensional quantum states when applied to
quantum cryptography. Our methods may also spur future
research in this area, as our proof techniques may be highly
adaptable to other scenarios.

A. Notation and Definitions

We begin with some notation and definitions that we will
use in this work. Let d € N, then we write A, to be a d-
character alphabet with a distinguished 0 element. Given a
word ¢ € A", and a subset t C {1,--- ,n}, we write ¢; to
mean the substring of ¢ indexed by ¢; we use q_; to mean
the substring of ¢ indexed by the complement of . We write
w(q) to be the relative Hamming weight of ¢, namely w(q) =
Mjﬁo}‘ - that is the number of characters in ¢ that are not
zero, divided by the length of ¢. Given two words x, y in this
alphabet, we write xy to mean the concatenation of z and y.
Finally, given a,b, numbers between 0 and d — 1, we write
a +4 b to mean the addition of @ and b modulo d.

We use Hgy to mean a Hilbert space of dimension d.
The standard computational basis will be denoted Z =
{]0),|1),---,|d —1)}. If we are refering to an alternative



basis we will write the basis label as a superscript. One
important basis we will use is the Fourier basis consisting
of elements F = {|O>F ,|d— 1>F}, where: |j)7 =
% Yo exp(2mijk/d)|k) . If given a word ¢ € A7}, we write
|g) to mean |q1) ®- - ®|g,). Similarly, we write |¢)” to mean
l1)” @ - @|gn)” . Note that if there is no superscript, then
|g) is assumed to be the computational Z basis. Finally, given
pure state |¢), we write [¢)] to mean |¢) (¢

A density operator is a positive semi-definite Hermitian
operator of unit trace acting on some Hilbert space. If pag
acts on Hilbert space H 4 ® Hpg, then we write p4 to mean
the operator resulting from tracing out the F' system, namely
pA =trgpag. Similarly for other, or multiple, systems.

The Shannon entropy of a random variable X is denoted
H(X). The d-ary entropy function is denoted H,(x), for z €
[0,1], and is defined to be:

Hy(x) =zlogy(d — 1) —zlogyz — (1 — z)log,(1 — x).

Note that when d = 2 this is simply the binary Shan-
non entropy. Given density operator p4p, the conditional
quantum min entropy is defined to be [27]: Hy(A|E), =
sup,, max{\ € R : 2724 ® o — pag > 0}, where the
supremum is over all density operators acting on the F system.
If p = [¢] is a pure state, then we often write Hoo(A|E)y.
Given pag, we write Ho (Az|E), to mean the min entropy of
the resulting state following a measurement of the A register
in the Z basis.

There are many important properties of quantum min en-
tropy we will use. In particular, if the ' system is trivial or
independent of the A system, then H(A), = —log, max A,
where the maximum is over all eigenvalues A of p4. Given
a state papc = ZC Opcp(ﬁf ® [c] (.e., the C register is
classical), then:

Hoo(A|EC), > min Ho (A|E) - (1)

An important result proven in [25], based on a lemma in
[27], is the following which allows one to compute the min
entropy of a superposition state based on the min entropy of
a suitable mixture state:

Lemma 1. (From [25]): Let Z and X be two orthonormal
bases of H4. Then for any pure state [¢) ,, = >, ;@ i) ®
|E;), with J C AY, it holds thatt Hw(Az|E)y >
Hoo(Az|E), —logy | J|, where pap = ;e |2l @ [Eq],
and where the entropies above are computed on the state
following a Z basis measurement.

Quantum min-entropy is a vital resource in QKD security
used to measure the amount of uniform independent random-
ness that may be extracted from a classical-quantum state. In
particular, let o g be the resulting state after using privacy
amplification on a state p4p, then it was shown in [27] that:

||UKE—I/2e®UEH SQ*%(Hoo(A\E)p*@). )

In our security proof, we will utilize a quantum sampling
framework originally introduced in 2010 by Bouman and Fehr

[25] and used by us recently to prove novel sampling-based
entropic uncertainty relations [26], [28] and proofs of security
for high-dimensional BB84 [29]. We review some of the
terminology and results from [25] here; for more information
on these results, the reader is referred to that original reference.

Fix d > 2 and N > 1. A classical sampling strategy is a
tuple (Pr, f,g) where Pr is a distribution over all subsets
of {1,---,N} and f,g : A5 — R. Given ¢ € AY, the
strategy will first choose ¢ according to Pr; it will then observe
q: and evaluate f(q;). This evaluation should be a “guess”
as to the value of some target function, g, evaluated on the
unobserved portion. Namely, for a good sampling strategy,
with high probability over the choice of subset ¢, it should
hold that f(q:) is d-close to g(q_.) for given ¢ > 0.

More formally, fix a subset ¢ with Pr(t) > 0. We define
the set of “good” words G; to be:

G={qe AY : |f(a)— glg—1)| < 6} 3)

Note that, given ¢ € G;, if subset ¢t were to be chosen
by the sampling strategy, it is guaranteed that the strategy
will succeed (the guess will be J-close to the target value).
The error probability of the sampling strategy, then, is:
el — maxge 4 Pr (¢ € Gt), where the probability is over
all subsets chosen according to Pr. One sampling strategy we
will need later is summarized in the following lemma:

Lemma 2. (From [25]): Let § > 0 and m < N/2. De-
fine Pr to be the uniform distribution over all subsets of

{1,---, N} of size m. Define f(z) = g(x) = w(x). Then:
—52m
el < 2 exp ( ?\,HN

These definitions may be promoted to the quantum case.
Fixing a sampling strategy and a d-dimensional basis B, we
define span(G;) = span(|q> g € G¢). The main result
from [25] may then be stated as follows:

Theorem 1. (From [25] though reworded for our application
in this work): Let (Pr, f,g) be a classical sampling strategy
with error probability ¢! for a given § > 0 and let |1)) Ap bea
quantum state where the A register lives in a Hilbert space of
dimension d”. Then, there exist ideal states |¢*) € span(G;)®
‘Hp (with respect to some given, fixed, d-dimensional basis

B) such that: 2||§:tPT tit] @ (v] - [¢ ])|| <\/§,;vhere

the above summation is over all subsets ¢ C {1

Note that the above is a slight rewording of the main result
from [25]. For a proof that Theorem 1 follows from the main
result in [25], the reader is referred to [29].

II. PROTOCOL

The protocol we consider is a high-dimensional variant
of the QCKA agreement protocol originally introduced and
analyzed in [24]. It is also a specific instance of a proto-
col introduced for a layered QKD system in [23] (though
without a complete proof of security). We assume there are
p Bob’s and one Alice all of whom wish to agree on a
shared secret group key. The protocol begins by having Alice
prepare the following high-dimensional GHZ state: [ig) =



7 SO lay . a) ap, . B, - Above, d is the dimension of a
single system (d = 2 in the protocol analyzed in [24]). The B;
system is sent to the i’th Bob while Alice retains the A register.
Randomly, Alice and the p Bob’s will measure their registers
in the Fourier basis F resulting in outcome ¢4, ..., € Ag“.
If there is no noise in the channel, it should hold that whenever
parties measure in the F basis, the results should sum to
0 modulo d, namely: g4 +4 g5, +a -+ +4 g, = 0; any
non-zero sum will be considered noise and factored into our
key-rate analysis. Otherwise, if Alice and the p Bob’s choose
not to measure in the Fourier basis, they will measure in
the computational basis, the result of which will be used
to add log, d bits to their raw key. Note that the choice of
whether to measure in the Fourier basis or the computational
Z basis may be made randomly by all parties (discarding
events when choices are not consistent) or by using a pre-
shared secret key (as was done in [24]). The above process
is repeated for a freshly prepared and sent |¢)p) until a raw
key of sufficient length has been established. Following the
establishment of the raw key, Alice and the p Bob’s will run
a pair-wise error correction protocol followed by a standard
privacy amplification protocol.

III. SECURITY PROOF

To prove security of our protocol, we analyze the security of
an equivalent entanglement based version where Eve prepares
a quantum signal and sends it to all parties (as opposed
to Alice preparing and sending a signal). We also use as
a foundation, a proof methodology we introduced in [26],
though making several modifications for the multi-party proto-
col being analyzed here. Our proof of security, at a high level,
proceeds in three steps; note that, due to space constraints,
we have removed several details; for complete details on the
proof, please see the full version of this paper [30].

Entanglement Based Protocol - Let |¢)) € Ha @ Hp, ®
-+ @ Hp, ® Hp be the state Eve prepares where each
Ha = Hp, = H?N . Here N is the user-specified number
of rounds used by the protocol and is a parameter users may
optimize. Ideally |1} = |1)0)®". At this point, the users
choose a random subset ¢ C {1,2,--- , N} of size m < N/2
for sampling. This can be done by having Alice choose the
subset and sending it to the Bob’s (the option we assume
here) or by using a small pre-shared key (the option used in
[24]). Each party will measure their respective d dimensional
signals, indexed by ¢, in the d-dimensional Fourier basis, F,
resulting in outcome ¢ = qaqp, ---qB, € Adm(pﬂ). Here,
each qa,qB,, - ,qB, is an m character string which we may
enumerate as g4 = ¢y --- ¢’y and gp, = qp._ - 4} .

Let si(q) = ¢y +adp, +a- - +a qup. That is, s; is the sum,
modulo the dimension d, of all user measurement outcomes
for signal i. Also, define s(q) = s1(q)---sm(q) € A}. If
the source E were honest, it should be that w(s(q)) = 0
since this will be the case in the event Eve prepared copies of

1 d—1 . .
7 2aa—010:0; -+ ,a) o, .., s discussed earlier.

Step 1: Classical Sample Strategy Analysis - We now

wish to use Theorem 1 to analyze the security of this protocol.

To do so, we require a suitable classical sampling strategy
which corresponds to the sampling done by the actual protocol,
and a bound on its error probability. Consider the following
classical sampling strategy: given a word q = ¢°q'q?---¢P €
AEIPH)'N (i.e., each ¢/ € Aév), then first choose a subset ¢ C
{1,--- N} of size m < N/2 and observe q; = ¢°q}q?---q¥
(namely, one observes the ¢ portion of each of the p+1 strings).
From this, compute f(q;) = w(s(q¢)) to estimate the value of
g(q—+) = w(s(g—¢)). Putting this into the notation introduced
earlier, we have the set of “good” words (see Equation 3)
as: G, = {q € ALY Ju(s(ar) — w(slg-r)| < o}
This is exactly the sampling strategy we wish to use in our
QCKA protocol. Users will observe a value based on their
measurement in the Fourier basis, in particular, they observe
the number of outcomes that do not sum to 0 modulo d. We
wish to argue that the remaining, unmeasured portion, satisfies
a similar restriction in the J basis, thus placing a constraint on
the form of the state Eve prepared, needed to compute the min
entropy later. In order to use Theorem 1, needed to construct
suitable ideal quantum states, we require a bound on the error
probability of this classical sampling strategy. In particular,
we require: € = Max, _ 4y Pr(q & G;). We show in the

full version of the paper [30] that el < 2exp (‘j;\?_’ZIQN

Step 2: Ideal State Analysis - We now return to the
security analysis of our protocol. Let ¢ > 0 be given (it
will, as we discuss later, determine the security level of
the secret key). From Theorem 1, using the above sampling
strategy with respect to the Fourier basis, there exists an ideal
state of the form %>, [t] ® [¢t] where T = (V) and:
|¢") € span{lg)” : |w(s(a) — w(s(g—))| < 8}. (Here,
qec Afipﬂ ). If we set

5 \/(m+n+2) In(2/e%)

m(m +n)

“4)

then, we have that the real and ideal states are e-close in trace
distance (on average over the subset choice as described in
Theorem 1) with the real-state being 7 >, [t] ® [¢].

We first analyze the ideal case and then use this analy-
sis to argue about security of the actual given input state
from Eve. In the ideal case, the event of choosing subset £,
measuring those systems in the Fourier basis and observing
outcome q € Agp H)m, causes the ideal state to collapse to:
[68) = e, @ l0)” @ By) , where: J, = {zw € AP

|w(s(z)) —w(s(q))| < §} By manipulating the above state,
we may write it in the following form which will be more
useful for us in our analysis:

0502 > Belt)pm, ® D Byl l9)4 1Fey)i

ze A" ye€J(q: x)

(&)

where: J(q : z)={y € A} : |w(s(yx)) —w(s(q))] < o}.
Note that some of the §’s in the above expression may be
zero; also note that we permuted the subspaces above to place
the A register to the right of the B registers - this was done



only to make the algebra in the remainder of the proof easier
to follow.

Our goal now is to compute a lower bound on the condi-
tional quantum min entropy following a Z basis measurement
on the collapsed ideal state (that is, the entropy in the above
state [¢,), but following Alice’s Z basis measurement on her
A register). Tracing out B’s system yields:

oar= Y |B*P

ze AL

ST Byl i Few)n | ©

yeJ(q : z)

(x)
TAE

where P(|z)) = [z].

From Equation 1, we have Hy(A4z|E), >
min, Ho(Az|E)y @ . Fix a particular x and consider the
mixed state: ), = > yed(q: ) \ﬁy‘x|2[y]i @ [Fx,y] - From
Lemma 1, we have: Hy(Az|E)y@ > Hoo(Az|E)y@ —
log, | (q x)|. We first compute a bound on the size of
Jq @ x). Let T ={y € A : |w(y) —w(s(q)l < 6}
We claim |J(¢ : x)| < |Z|. Indeed, pick y € J(¢ : x)
and let z = s(yx). Then z € Z. Furthermore, for any
v,y € J(qg : =) with y # ¢/, it holds that s(yz) # s(y'x).
Thus the claim follows. Now, since |Z| < d*Ha(w(s(a)+9) py
the well known bound on the volume of a Hamming ball,
we have an upper-bound on the size of the set J(¢ : x)
as a function of the observed value g. Note that, ideally,
w(s(g)) = 0 with non-zero values representing error in the
channel, and so the size of this set should be “small” for low
noise levels. As the noise increases, our entropy bound will
decrease (thus ultimately decreasing the overall key-rate as
expected).

What remains is to compute Hy,(Az|E),. Following a Z
basis measurement on the A register in y, we are left with the
post-measured state:

XAzE = Z |By|m|2 Z p(z|y)[Z]A[FX,y]Ev @)

z€ A}
where p(z|y) is the conditional probability of observing out-

come |2) given input state |y)” . Now, consider the following
state where we add an additional, classical, ancilla:

XAzEY = Z |5y|m|2[3’]y ® Z p(2[9)[2] 4 [Fxy]p -

y 2€AL

x@)

Then we have Ho(Az|E), > Hx(Az|EY), >
min,, HOO(AZ\E)X@) where we used Equation 1 for the
last inequality. Since the E and Ay registers are indepen-
dent in X(y) we have Hoo(AZ|E)X(y) = HOO(Az)X(y) =
—log, max, p(z|y). It is not difficult to see that p(z|y) = d™™
for all y,z € A}}. Thus Ho(Az|E), > nlog,d. Note that
our bound here, and also on |J(g : x)|, are independent of x.
Thus, concluding, we have the following bound on the entropy
in the ideal state:

Heo(A7|E)y > n (1og2 q- IW) C®

Of course, this was only the ideal state analysis, however,
Equation 8 holds for any choice of subset ¢ and observation gq.
We now use this result to derive the final security of the real
state produced by Eve and show that, with high probability
over the choice of subset ¢ and measurement outcome ¢, the
final secret key produced by the protocol will be secure.

Step 3: Real State Security - The QCKA protocol (and,
indeed, most if not all QKD protocols) may be broken into
three distinct modules or CPTP maps: first is a sampling
module S which takes as input a quantum state p7 4 g Where
the T' register represents the sampling subset ¢ used and B
represents all p Bobs. Here, this module measures the T’
register which chooses a subset ¢; from this, all qudits indexed
by t are measured in the Fourier basis, producing outcome
q e AZL'(p D The output of this process is the subset chosen
t, the observed ¢, and also the post-measured state papg(t, ).
Following this, the raw-key generation module is run, denoted
‘R, which takes as input the previous post measured state and
measures the remaining systems in the Z basis resulting in raw
keys for all parties. The output of this module is the raw key
produced along with a post-measured state for Eve. Finally, a
post-processing module is run, denoted P, which will run an
error correction protocol and privacy amplification, yielding
the final secret key. The output of this last CPTP map is the
actual secret key produced along with Eve’s final quantum
ancilla. This module requires as input the raw keys along with
q (needed to determine the final secret key size). We want to
show, with high probability over the choice of sampling subset
and test measurement outcome, that the final secret key is ep 4-
close to the ideal secret key as defined by Equation 2.

Recall, [¢) 4p,...5, 5 18 the actual state produced by the
adversary and sent to each of the parties. We may assume
this is a pure state as a mixed state would lead to greater
uncertainty for Eve. Of course, in the real case, the choice
of subset is independent of the state produced by Eve and so
we write the complete real state as prape = Y., 7[t] @ []
where T = (ﬁ ) From this, an ideal state of the form
>, 7[t] @ [¢*] 5, may be defined as was analyzed previ-
ously in the second step of the proof. We may write the action
of the composition P o R oS = PRS as follows:

PRS (Z ;[ﬂﬂ%) = Zp(%t)[(la t|PR (WEJ ABE)

P (32 1016 = 5t 07 ()

t

Above, p(q,t) is the probability of choosing subset ¢ and
observing outcome ¢ in the real state and p(q,t) is similar
but for the ideal state. The post-measured state after sampling
are denoted [t)!,) in the real case and |¢!) in the ideal case (see
Equation 5 for what this state looks like in the ideal case). Note
that, conditioning on a particular g, ¢, these states are pure.
Let ((g,\) = n(logyd — i5Ha(w(s(q)) + 0)) —
A — 2log, (%) where A will be used to denote the leaked
information due to error correction. Then, from Equation 2



and our analysis on the min entropy of the post-measured
ideal state in Equation 8, we know that for any ¢ and observed
g, if privacy amplification shrinks the raw key to a size of /,
it holds that: [[PyR ([05]) —Usian) @ traPyR ([¢g])|| <
e, where U, = &7 Ul Finally,
note that the above of course implies that:
(|52, 8a: a6 (PR ([64]) — UraytraPuR ([64]) |
is upper-bounded by e.

We now claim that, with high probability over ¢ and
measurement outcome ¢, it holds that:

PR ([Va]) —Uean) @traPeR ([We])][ < epa ©)

where ep4 = He + (206)1/3

€p A-SEcure.
Let Arg = 4 ||PaR([WE]) — Unign) @ traPR([¥E])]]-
Then, it can be shown (see the full paper for details [30]) that:
5 > >t P(@,t)Ag . We now consider Ay as a random
variable over ¢ and ¢. From the above, its expected value is
upper-bounded by 5e/2. Furthermore, since A;, < 1 for all
t, q (by properties of trace distance), the variance may also be
upper-bounded by 5¢/2. Using Chebyshev’s inequality:

1/3 1/3
< (‘Zf) 1 >1—(5;) . (10)

From this, and simple algebra, it follows that, except with
probability at most gy = (5¢/2)/3, Equation 9 holds. This
implies that, with high probability over the choice of subset
t and test measurement outcome in the Fourier basis ¢, Alice
and the p Bob’s are left with an epa = 5e + (20€)'/3 secure
key of size:

. Thus, the resulting secret key is

5e
.

P
" 2

Ha(w(s(q)) +9)

¢ =n(log,d -

1
) —A—2logy,—, (11)
€
concluding the security proof.

A. Evaluation

We now evaluate our key-rate bound for this protocol
assuming a depolarization channel. This assumption is not
required for our security proof which works for any channel.
However, we will consider depolarization channels in order to
compare with prior work (which also assume depolarization
channels when evaluating key-rates). This also allows us to
easily bound the error correction leakage using results in [24]
and [31]. More details on our evaluation settings and how to
bound the error correction leakage in this scenario may be
found in the full paper [30].

In dimension two (d = 2), a comparison of our key-rate
bound, and that derived in [24] through alternative means, is
shown in Figure 1 (Left). We note that, except for a slight
deviation, the two results agree (with prior results from [24]
surpassing ours by a small amount). Of course, the proof and
results in [24] apply only to d = 2; to our knowledge, we are
the first to derive a high-dimensional QCKA protocol along
with a rigorous finite-key proof of security.
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d = 2 with twice the number of rounds
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Fig. 1. Left: Comparing our new bound with that from [24] for the qubit
case (d = 2) with 10% depolarization noise. We note that our result is
slightly lower than in [24] for this dimension though they tend to converge
as the number of signals increases (Inset). However, the advantage to our
approach is that it can readily handle higher dimensions. Right: Showing that
the advantage in key-rate for higher dimensions cannot be recovered simply by
using lower-dimensional systems and increasing the number of rounds/signals.

We also evaluate our key-rate bound in higher-dimensions.
In higher dimensions, we cannot compare to any other QCKA
protocols as we are not aware of any other finite key security
results for such protocols in high (greater than 2) dimensions.
However, we note several interesting properties here. First, as
the dimension increases, the number of signals needed before
a positive key-rate is achieved, decreases, and the general key-
rate increases, making the protocol potentially more efficient.
Note that one explanation for the increased key-rate is due to
the fact that one receives, for each signal, a larger number of
raw-key bits as the dimension increases. However this, alone,
does not explain the great increase in key-rate as the signal
dimension increases. For instance, if we compare d = 2 and
d’ = 4, a single iteration of the protocol, in the first case,
produces at most one raw key bit, while the second case would
produce at most 2 raw key bits. If this were the only reason
for the increase in secret key-rates, one would expect that
running twice the number of iterations for the d = 2 case
would produce the same secret key length as the d’ = 4 case.
However this is clearly not the case, as shown in Figure 1
(Right). We also note that the number of Bob’s, p, does not
noticeably affect the key-rate regardless of d - interestingly,
this was also discovered in [24] for the qubit, d = 2, case.

IV. CLOSING REMARKS

In this paper, we proved the security of a high-dimensional
QCKA protocol, allowing multiple parties to establish a shared
secret key. We proved security using a combination of the
quantum sampling framework of [25], along with sample-
based entropic uncertainty relation techniques from [26]. Our
proof introduced several new methods needed to use those
two frameworks in this multi-user scenario and our methods
may be applicable to other multi-user quantum cryptographic
protocols, especially in higher dimensions. Our work here,
has shown even more evidence, beyond that already known
(as discussed in the Introduction), of the potential benefits, at
least in theory, of high-dimensional quantum states.
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