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Abstract—Quantum Conference Key Agreement (QCKA) pro-
tocols are designed to allow multiple parties to agree on a
shared secret key, secure against computationally unbounded
adversaries. In this paper, we consider a high-dimensional QCKA
protocol and prove its information theoretic security against
arbitrary, general, attacks in the finite-key scenario. Our proof
technique may be useful for other high-dimensional multi-
party quantum cryptographic protocols. Finally, we evaluate the
protocol in a variety of settings, showing that high-dimensional
states can greatly benefit QCKA protocols.

I. INTRODUCTION

Quantum key distribution (QKD) allows for the establish-

ment of a shared secret key between two parties, Alice and

Bob, secure against computationally unbounded adversaries

(whom we refer to as Eve). Progress in these protocols

has rapidly advanced, leading to both a rich theory along

with practical commercial systems [1], [2], [3]. Quantum

conference key agreement (QCKA) protocols are designed to

allow multiple parties to establish a common, shared, secret

key secure against computationally unbounded adversaries.

Starting from early work in this field [4], [5], QCKA protocols

have advanced substantially with new protocols and security

proofs [6], [7], [8]; it is also experimentally feasible [9].

Interestingly, it has been shown that there are some scenarios

where such multiparty protocols hold an advantage over the

naive use of multiple two-party protocols run in parallel [5].

For a recent survey on quantum conference key agreement

protocols and the state of the art in security proofs, the reader

is referred to [10].

High-dimensional quantum cryptography has been shown

to exhibit numerous advantages over qubit-based protocols,

especially in two-party QKD [11], [12], [13], [14], [15],

[16], [17], [18], [19], [20], [21], [22]. Encouraged by this,

it is worth investigating whether high-dimensional states can

benefit QCKA. To our knowledge, only one high-dimensional

QCKA protocol exists which was introduced in [23], however

no rigorous finite key security analysis exists for it (instead,

[23] developed layered QKD protocols and was not concerned

with the explicit finite-key analysis of this particular QCKA

protocol - in fact, our analysis done in this paper may be useful

in proving security of those other protocols introduced in [23],

though we leave that as interesting future work).

In this work, we consider a high-dimensional QCKA proto-

col and prove its security against arbitrary, general attacks in

the finite key setting. The protocol we analyze is an extension

of the qubit-based protocol from [24] to higher dimensions and

also a specific instance of a protocol introduced in [23]. For

the security proof, we utilize the quantum sampling framework

introduced by Bouman and Fehr in [25], along with proof

techniques we developed in [26] to derive sampling-based

entropic uncertainty relations. Our proof, though using these

two frameworks as a foundation, introduces several new meth-

ods which may also be useful when analyzing other quantum

cryptographic protocols, both those involving two users and

those for multi-users, especially in higher dimensions.

Finally, we evaluate the performance of this protocol in a va-

riety of scenarios, showing some very interesting behavior and

shedding new light on the benefits of high-dimensional quan-

tum states. In particular, we show that, as the dimension of the

quantum signal increases, the noise tolerance also increases.

Interestingly, the key-rate also increases beyond what would

be possible by simply running multiple, lower-dimensional,

protocols in parallel. This shows that high-dimensional states

can greatly benefit QCKA protocols. Our contributions in this

work are not only in developing a security proof for a high

dimensional QCKA protocol, but also in showing even more

benefits to high-dimensional quantum states when applied to

quantum cryptography. Our methods may also spur future

research in this area, as our proof techniques may be highly

adaptable to other scenarios.

A. Notation and Definitions

We begin with some notation and definitions that we will

use in this work. Let d ∈ N, then we write Ad to be a d-

character alphabet with a distinguished 0 element. Given a

word q ∈ An
d , and a subset t ⊂ {1, · · · , n}, we write qt to

mean the substring of q indexed by t; we use q−t to mean

the substring of q indexed by the complement of t. We write

w(q) to be the relative Hamming weight of q, namely w(q) =
|{i : qi ̸=0}|

n - that is the number of characters in q that are not

zero, divided by the length of q. Given two words x, y in this

alphabet, we write xy to mean the concatenation of x and y.

Finally, given a, b, numbers between 0 and d − 1, we write

a+d b to mean the addition of a and b modulo d.

We use Hd to mean a Hilbert space of dimension d.

The standard computational basis will be denoted Z =
{|0⟩ , |1⟩ , · · · , |d− 1⟩}. If we are refering to an alternative



basis we will write the basis label as a superscript. One

important basis we will use is the Fourier basis consisting

of elements F = {|0⟩F , · · · , |d− 1⟩F}, where: |j⟩F =
1√
d

∑

k exp(2πijk/d) |k⟩ . If given a word q ∈ An
d , we write

|q⟩ to mean |q1⟩⊗· · ·⊗|qn⟩. Similarly, we write |q⟩F to mean

|q1⟩F ⊗ · · · ⊗ |qn⟩F . Note that if there is no superscript, then

|q⟩ is assumed to be the computational Z basis. Finally, given

pure state |ψ⟩, we write [ψ] to mean |ψ⟩ ⟨ψ|.
A density operator is a positive semi-definite Hermitian

operator of unit trace acting on some Hilbert space. If ρAE
acts on Hilbert space HA ⊗ HE , then we write ρA to mean

the operator resulting from tracing out the E system, namely

ρA = trEρAE . Similarly for other, or multiple, systems.

The Shannon entropy of a random variable X is denoted

H(X). The d-ary entropy function is denoted Hd(x), for x ∈
[0, 1], and is defined to be:

Hd(x) = x logd(d− 1)− x logd x− (1− x) logd(1− x).

Note that when d = 2 this is simply the binary Shan-

non entropy. Given density operator ρAE , the conditional

quantum min entropy is defined to be [27]: H∞(A|E)ρ =
supσE

max{λ ∈ R : 2−λIA ⊗ σE − ρAE ≥ 0}, where the

supremum is over all density operators acting on the E system.

If ρ = [ψ] is a pure state, then we often write H∞(A|E)ψ .

Given ρAE , we write H∞(AZ |E)ρ to mean the min entropy of

the resulting state following a measurement of the A register

in the Z basis.

There are many important properties of quantum min en-

tropy we will use. In particular, if the E system is trivial or

independent of the A system, then H∞(A)ρ = − log2 maxλ,

where the maximum is over all eigenvalues λ of ρA. Given

a state ρAEC =
∑M
c=0 pcρ

(c)
AE ⊗ [c] (i.e., the C register is

classical), then:

H∞(A|EC)ρ ≥ min
c
H∞(A|E)ρ(c) . (1)

An important result proven in [25], based on a lemma in

[27], is the following which allows one to compute the min

entropy of a superposition state based on the min entropy of

a suitable mixture state:

Lemma 1. (From [25]): Let Z and X be two orthonormal

bases of Hd. Then for any pure state |ψ⟩AE =
∑

i∈J α |i⟩X⊗
|Ei⟩, with J ⊂ AN

d , it holds that: H∞(AZ |E)ψ ≥
H∞(AZ |E)ρ− log2 |J |, where ρAE =

∑

i∈J |αi|2[i]
X ⊗ [Ei],

and where the entropies above are computed on the state

following a Z basis measurement.

Quantum min-entropy is a vital resource in QKD security

used to measure the amount of uniform independent random-

ness that may be extracted from a classical-quantum state. In

particular, let σKE be the resulting state after using privacy

amplification on a state ρAE , then it was shown in [27] that:
∣
∣
∣
∣σKE − I/2ℓ ⊗ σE

∣
∣
∣
∣ ≤ 2−

1
2 (H∞(A|E)ρ−ℓ). (2)

In our security proof, we will utilize a quantum sampling

framework originally introduced in 2010 by Bouman and Fehr

[25] and used by us recently to prove novel sampling-based

entropic uncertainty relations [26], [28] and proofs of security

for high-dimensional BB84 [29]. We review some of the

terminology and results from [25] here; for more information

on these results, the reader is referred to that original reference.

Fix d ≥ 2 and N ≥ 1. A classical sampling strategy is a

tuple (PT , f, g) where PT is a distribution over all subsets

of {1, · · · , N} and f, g : A∗
d → R. Given q ∈ AN

d , the

strategy will first choose t according to PT ; it will then observe

qt and evaluate f(qt). This evaluation should be a “guess”

as to the value of some target function, g, evaluated on the

unobserved portion. Namely, for a good sampling strategy,

with high probability over the choice of subset t, it should

hold that f(qt) is δ-close to g(q−t) for given δ > 0.

More formally, fix a subset t with PT (t) > 0. We define

the set of “good” words Gt to be:

Gt = {q ∈ AN
d : |f(qt)− g(q−t)| ≤ δ} (3)

Note that, given q ∈ Gt, if subset t were to be chosen

by the sampling strategy, it is guaranteed that the strategy

will succeed (the guess will be δ-close to the target value).

The error probability of the sampling strategy, then, is:

ϵcl = maxq∈AN
d
Pr (q ̸∈ Gt) , where the probability is over

all subsets chosen according to PT . One sampling strategy we

will need later is summarized in the following lemma:

Lemma 2. (From [25]): Let δ > 0 and m ≤ N/2. De-

fine PT to be the uniform distribution over all subsets of

{1, · · · , N} of size m. Define f(x) = g(x) = w(x). Then:

ϵcl ≤ 2 exp
(

−δ2mN
N+2

)

.

These definitions may be promoted to the quantum case.

Fixing a sampling strategy and a d-dimensional basis B, we

define span(Gt) = span(|q⟩B : q ∈ Gt). The main result

from [25] may then be stated as follows:

Theorem 1. (From [25] though reworded for our application

in this work): Let (PT , f, g) be a classical sampling strategy

with error probability ϵcl for a given δ > 0 and let |ψ⟩AE be a

quantum state where the A register lives in a Hilbert space of

dimension dN . Then, there exist ideal states |ϕt⟩ ∈ span(Gt)⊗
HE (with respect to some given, fixed, d-dimensional basis

B) such that: 1
2

∣
∣
∣
∣
∑

t PT (t)[t]⊗
(
[ψ]−

[
ϕt
])∣
∣
∣
∣ ≤ √

ϵcl, where

the above summation is over all subsets t ⊂ {1, · · · , N}.

Note that the above is a slight rewording of the main result

from [25]. For a proof that Theorem 1 follows from the main

result in [25], the reader is referred to [29].

II. PROTOCOL

The protocol we consider is a high-dimensional variant

of the QCKA agreement protocol originally introduced and

analyzed in [24]. It is also a specific instance of a proto-

col introduced for a layered QKD system in [23] (though

without a complete proof of security). We assume there are

p Bob’s and one Alice all of whom wish to agree on a

shared secret group key. The protocol begins by having Alice

prepare the following high-dimensional GHZ state: |ψ0⟩ =



1√
d

∑d−1
a=0 |a, · · · , a⟩AB1··· ,Bp

. Above, d is the dimension of a

single system (d = 2 in the protocol analyzed in [24]). The Bi
system is sent to the i’th Bob while Alice retains the A register.

Randomly, Alice and the p Bob’s will measure their registers

in the Fourier basis F resulting in outcome qAB1···Bp
∈ Ap+1

d .

If there is no noise in the channel, it should hold that whenever

parties measure in the F basis, the results should sum to

0 modulo d, namely: qA +d qB1
+d · · · +d qBp

= 0; any

non-zero sum will be considered noise and factored into our

key-rate analysis. Otherwise, if Alice and the p Bob’s choose

not to measure in the Fourier basis, they will measure in

the computational basis, the result of which will be used

to add log2 d bits to their raw key. Note that the choice of

whether to measure in the Fourier basis or the computational

Z basis may be made randomly by all parties (discarding

events when choices are not consistent) or by using a pre-

shared secret key (as was done in [24]). The above process

is repeated for a freshly prepared and sent |ψ0⟩ until a raw

key of sufficient length has been established. Following the

establishment of the raw key, Alice and the p Bob’s will run

a pair-wise error correction protocol followed by a standard

privacy amplification protocol.

III. SECURITY PROOF

To prove security of our protocol, we analyze the security of

an equivalent entanglement based version where Eve prepares

a quantum signal and sends it to all parties (as opposed

to Alice preparing and sending a signal). We also use as

a foundation, a proof methodology we introduced in [26],

though making several modifications for the multi-party proto-

col being analyzed here. Our proof of security, at a high level,

proceeds in three steps; note that, due to space constraints,

we have removed several details; for complete details on the

proof, please see the full version of this paper [30].

Entanglement Based Protocol - Let |ψ⟩ ∈ HA ⊗ HB1 ⊗
· · · ⊗ HBp

⊗ HE be the state Eve prepares where each

HA
∼= HBi

∼= H⊗N
d . Here N is the user-specified number

of rounds used by the protocol and is a parameter users may

optimize. Ideally |ψ⟩ = |ψ0⟩⊗N . At this point, the users

choose a random subset t ⊂ {1, 2, · · · , N} of size m < N/2
for sampling. This can be done by having Alice choose the

subset and sending it to the Bob’s (the option we assume

here) or by using a small pre-shared key (the option used in

[24]). Each party will measure their respective d dimensional

signals, indexed by t, in the d-dimensional Fourier basis, F ,

resulting in outcome q = qAqB1 · · · qBp
∈ Am(p+1)

d . Here,

each qA, qB1
, · · · , qBp

is an m character string which we may

enumerate as qA = q1A · · · qmA and qBi
= q1Bi

· · · qmBi
.

Let si(q) = qiA+d q
i
B1

+d · · ·+d qiBp
. That is, si is the sum,

modulo the dimension d, of all user measurement outcomes

for signal i. Also, define s(q) = s1(q) · · · sm(q) ∈ Am
d . If

the source E were honest, it should be that w(s(q)) = 0
since this will be the case in the event Eve prepared copies of
1√
d

∑d−1
a=0 |a, a, · · · , a⟩AB1···Bp

as discussed earlier.

Step 1: Classical Sample Strategy Analysis - We now

wish to use Theorem 1 to analyze the security of this protocol.

To do so, we require a suitable classical sampling strategy

which corresponds to the sampling done by the actual protocol,

and a bound on its error probability. Consider the following

classical sampling strategy: given a word q = q0q1q2 · · · qp ∈
A(p+1)·N
d (i.e., each qj ∈ AN

d ), then first choose a subset t ⊂
{1, · · · , N} of size m ≤ N/2 and observe qt = q0t q

1
t q

2
t · · · qpt

(namely, one observes the t portion of each of the p+1 strings).

From this, compute f(qt) = w(s(qt)) to estimate the value of

g(q−t) = w(s(q−t)). Putting this into the notation introduced

earlier, we have the set of “good” words (see Equation 3)

as: Gt = {q ∈ A(p+1)·N
d : |w(s(qt)) − w(s(q−t))| ≤ δ}.

This is exactly the sampling strategy we wish to use in our

QCKA protocol. Users will observe a value based on their

measurement in the Fourier basis, in particular, they observe

the number of outcomes that do not sum to 0 modulo d. We

wish to argue that the remaining, unmeasured portion, satisfies

a similar restriction in the F basis, thus placing a constraint on

the form of the state Eve prepared, needed to compute the min

entropy later. In order to use Theorem 1, needed to construct

suitable ideal quantum states, we require a bound on the error

probability of this classical sampling strategy. In particular,

we require: ϵcl = max
q∈A(p+1)N

d

Pr (q ̸∈ Gt) . We show in the

full version of the paper [30] that ϵcl ≤ 2 exp
(

−δ2mN
N+2

)

.

Step 2: Ideal State Analysis - We now return to the

security analysis of our protocol. Let ϵ > 0 be given (it

will, as we discuss later, determine the security level of

the secret key). From Theorem 1, using the above sampling

strategy with respect to the Fourier basis, there exists an ideal

state of the form 1
T

∑

t [t] ⊗
[
ϕt
]

where T =
(
N
m

)
and:

|ϕt⟩ ∈ span{|q⟩F : |w(s(qt)) − w(s(q−t))| ≤ δ}. (Here,

q ∈ A(p+1)N
d ). If we set

δ =

√

(m+ n+ 2) ln(2/ϵ2)

m(m+ n)
. (4)

then, we have that the real and ideal states are ϵ-close in trace

distance (on average over the subset choice as described in

Theorem 1) with the real-state being 1
T

∑

t [t]⊗ [ψ].
We first analyze the ideal case and then use this analy-

sis to argue about security of the actual given input state

from Eve. In the ideal case, the event of choosing subset t,
measuring those systems in the Fourier basis and observing

outcome q ∈ A(p+1)m
d , causes the ideal state to collapse to:

|ϕtq⟩ =
∑

x∈Jq αx |x⟩
F ⊗ |Ex⟩ , where: Jq = {x ∈ A(p+1)n

d :
|w(s(x)) − w(s(q))| ≤ δ} By manipulating the above state,

we may write it in the following form which will be more

useful for us in our analysis:

|ϕtq⟩ ∼=
∑

x∈Apn
d

βx |x⟩FB1···Bp
⊗

∑

y∈J(q : x)

βy|x |y⟩FA |Fx,y⟩E

(5)

where: J(q : x) = {y ∈ An
d : |w(s(yx))− w(s(q))| ≤ δ}.

Note that some of the β’s in the above expression may be

zero; also note that we permuted the subspaces above to place

the A register to the right of the B registers - this was done



only to make the algebra in the remainder of the proof easier

to follow.

Our goal now is to compute a lower bound on the condi-

tional quantum min entropy following a Z basis measurement

on the collapsed ideal state (that is, the entropy in the above

state |ϕtq⟩, but following Alice’s Z basis measurement on her

A register). Tracing out B’s system yields:

σAE =
∑

x∈Ap·n
d

|βx|2 P




∑

y∈J(q : x)

βy|x |y⟩FA |Fx,y⟩E





︸ ︷︷ ︸

σ
(x)
AE

, (6)

where P (|z⟩) = [z].
From Equation 1, we have H∞(AZ |E)σ ≥

minxH∞(AZ |E)σ(x) . Fix a particular x and consider the

mixed state: χ
(x)
AE =

∑

y∈J(q : x) |βy|x|2[y]
F
A ⊗ [Fx,y]E . From

Lemma 1, we have: H∞(AZ |E)σ(x) ≥ H∞(AZ |E)χ(x) −
log2 |J(q : x)|. We first compute a bound on the size of

J(q : x). Let I = {y ∈ An
d : |w(y) − w(s(q))| ≤ δ}.

We claim |J(q : x)| ≤ |I|. Indeed, pick y ∈ J(q : x)
and let z = s(yx). Then z ∈ I. Furthermore, for any

y, y′ ∈ J(q : x) with y ̸= y′, it holds that s(yx) ̸= s(y′x).
Thus the claim follows. Now, since |I| ≤ dnHd(w(s(q))+δ) by

the well known bound on the volume of a Hamming ball,

we have an upper-bound on the size of the set J(q : x)
as a function of the observed value q. Note that, ideally,

w(s(q)) = 0 with non-zero values representing error in the

channel, and so the size of this set should be “small” for low

noise levels. As the noise increases, our entropy bound will

decrease (thus ultimately decreasing the overall key-rate as

expected).

What remains is to compute H∞(AZ |E)χ. Following a Z
basis measurement on the A register in χ, we are left with the

post-measured state:

χAZE =
∑

y

|βy|x|2
∑

z∈An
d

p(z|y)[z]A[Fx,y]E , (7)

where p(z|y) is the conditional probability of observing out-

come |z⟩ given input state |y⟩F . Now, consider the following

state where we add an additional, classical, ancilla:

χAZEY =
∑

y

|βy|x|2[y]Y ⊗
∑

z∈An
d

p(z|y)[z]A[Fx,y]E

︸ ︷︷ ︸

χ(y)

.

Then we have H∞(AZ |E)χ ≥ H∞(AZ |EY )χ ≥
minyH∞(AZ |E)χ(y) where we used Equation 1 for the

last inequality. Since the E and AZ registers are indepen-

dent in χ(y) we have H∞(AZ |E)χ(y) = H∞(AZ)χ(y) =
− log2 maxz p(z|y). It is not difficult to see that p(z|y) = d−n

for all y, z ∈ An
d . Thus H∞(AZ |E)χ ≥ n log2 d. Note that

our bound here, and also on |J(q : x)|, are independent of x.

Thus, concluding, we have the following bound on the entropy

in the ideal state:

H∞(AZ |E)σ ≥ n

(

log2 d−
Hd(w(s(q)) + δ)

logd 2

)

. (8)

Of course, this was only the ideal state analysis, however,

Equation 8 holds for any choice of subset t and observation q.

We now use this result to derive the final security of the real

state produced by Eve and show that, with high probability

over the choice of subset t and measurement outcome q, the

final secret key produced by the protocol will be secure.

Step 3: Real State Security - The QCKA protocol (and,

indeed, most if not all QKD protocols) may be broken into

three distinct modules or CPTP maps: first is a sampling

module S which takes as input a quantum state ρTABE where

the T register represents the sampling subset t used and B
represents all p Bobs. Here, this module measures the T
register which chooses a subset t; from this, all qudits indexed

by t are measured in the Fourier basis, producing outcome

q ∈ Am·(p+1)
d . The output of this process is the subset chosen

t, the observed q, and also the post-measured state ρABE(t, q).
Following this, the raw-key generation module is run, denoted

R, which takes as input the previous post measured state and

measures the remaining systems in the Z basis resulting in raw

keys for all parties. The output of this module is the raw key

produced along with a post-measured state for Eve. Finally, a

post-processing module is run, denoted P , which will run an

error correction protocol and privacy amplification, yielding

the final secret key. The output of this last CPTP map is the

actual secret key produced along with Eve’s final quantum

ancilla. This module requires as input the raw keys along with

q (needed to determine the final secret key size). We want to

show, with high probability over the choice of sampling subset

and test measurement outcome, that the final secret key is ϵPA-

close to the ideal secret key as defined by Equation 2.

Recall, |ψ⟩AB1···BpE
is the actual state produced by the

adversary and sent to each of the parties. We may assume

this is a pure state as a mixed state would lead to greater

uncertainty for Eve. Of course, in the real case, the choice

of subset is independent of the state produced by Eve and so

we write the complete real state as ρTABE =
∑

t
1
T [t] ⊗ [ψ]

where T =
(
N
m

)
. From this, an ideal state of the form

∑

t
1
T [t] ⊗

[
ϕt
]

ABE
may be defined as was analyzed previ-

ously in the second step of the proof. We may write the action

of the composition P ◦ R ◦ S = PRS as follows:

PRS
(
∑

t

1

T
[t]T [ψ]

)

=
∑

q,t

p(q, t)[q, t]PqR
([
ψt
q

]

ABE

)

PRS
(
∑

t

1

T
[t]T

[
ϕt
]

)

=
∑

q,t

p̃(q, t)[q, t]PqR
([
ϕtq
]

ABE

)

.

Above, p(q, t) is the probability of choosing subset t and

observing outcome q in the real state and p̃(q, t) is similar

but for the ideal state. The post-measured state after sampling

are denoted |ψtq⟩ in the real case and |ϕtq⟩ in the ideal case (see

Equation 5 for what this state looks like in the ideal case). Note

that, conditioning on a particular q, t, these states are pure.

Let ℓ(q, λ) = n(log2 d − 1
logd 2Hd(w(s(q)) + δ)) −

λ − 2 log2
(
1
ϵ

)
where λ will be used to denote the leaked

information due to error correction. Then, from Equation 2



and our analysis on the min entropy of the post-measured

ideal state in Equation 8, we know that for any t and observed

q, if privacy amplification shrinks the raw key to a size of ℓ,
it holds that:

∣
∣
∣
∣PqR

([
ϕtq
])

− Uℓ(q,λ) ⊗ trAPqR
([
ϕtq
])∣
∣
∣
∣ ≤

ϵ, where Uk = 1
2k

∑2k−1
i=0 [i]. Finally,

note that the above of course implies that:∣
∣
∣

∣
∣
∣
∑

q,t p̃(q, t)[q, t]
(
PqR

([
ϕtq
])

− Uℓ(q,λ)trAPqR
([
ϕtq
]))
∣
∣
∣

∣
∣
∣

is upper-bounded by ϵ.
We now claim that, with high probability over t and

measurement outcome q, it holds that:

∣
∣
∣
∣PqR

([
ψt
q

])
− Uℓ(q,λ) ⊗ trAPqR

([
ψt
q

])∣
∣
∣
∣ ≤ ϵPA (9)

where ϵPA = 5ϵ+ (20ϵ)
1/3

. Thus, the resulting secret key is

ϵPA-secure.

Let ∆t,q = 1
2

∣
∣
∣
∣PqR(

[
ψt
q

]
)− Uℓ(q,λ) ⊗ trAPqR(

[
ψt
q

]
)
∣
∣
∣
∣.

Then, it can be shown (see the full paper for details [30]) that:
5ϵ
2 ≥ ∑

q,t p(q, t)∆q,t. We now consider ∆q,t as a random

variable over q and t. From the above, its expected value is

upper-bounded by 5ϵ/2. Furthermore, since ∆t,q ≤ 1 for all

t, q (by properties of trace distance), the variance may also be

upper-bounded by 5ϵ/2. Using Chebyshev’s inequality:

Pr

[∣
∣
∣
∣
∆t,q −

5ϵ

2

∣
∣
∣
∣
≤
(
5ϵ

2

)1/3
]

≥ 1−
(
5ϵ

2

)1/3

, (10)

From this, and simple algebra, it follows that, except with

probability at most ϵfail = (5ϵ/2)1/3, Equation 9 holds. This

implies that, with high probability over the choice of subset

t and test measurement outcome in the Fourier basis q, Alice

and the p Bob’s are left with an ϵPA = 5ϵ+ (20ϵ)1/3 secure

key of size:

ℓ = n

(

log2 d−
Hd(w(s(q)) + δ)

logd 2

)

− λ− 2 log2
1

ϵ
, (11)

concluding the security proof.

A. Evaluation

We now evaluate our key-rate bound for this protocol

assuming a depolarization channel. This assumption is not

required for our security proof which works for any channel.

However, we will consider depolarization channels in order to

compare with prior work (which also assume depolarization

channels when evaluating key-rates). This also allows us to

easily bound the error correction leakage using results in [24]

and [31]. More details on our evaluation settings and how to

bound the error correction leakage in this scenario may be

found in the full paper [30].

In dimension two (d = 2), a comparison of our key-rate

bound, and that derived in [24] through alternative means, is

shown in Figure 1 (Left). We note that, except for a slight

deviation, the two results agree (with prior results from [24]

surpassing ours by a small amount). Of course, the proof and

results in [24] apply only to d = 2; to our knowledge, we are

the first to derive a high-dimensional QCKA protocol along

with a rigorous finite-key proof of security.

Fig. 1. Left: Comparing our new bound with that from [24] for the qubit
case (d = 2) with 10% depolarization noise. We note that our result is
slightly lower than in [24] for this dimension though they tend to converge
as the number of signals increases (Inset). However, the advantage to our
approach is that it can readily handle higher dimensions. Right: Showing that
the advantage in key-rate for higher dimensions cannot be recovered simply by
using lower-dimensional systems and increasing the number of rounds/signals.

We also evaluate our key-rate bound in higher-dimensions.

In higher dimensions, we cannot compare to any other QCKA

protocols as we are not aware of any other finite key security

results for such protocols in high (greater than 2) dimensions.

However, we note several interesting properties here. First, as

the dimension increases, the number of signals needed before

a positive key-rate is achieved, decreases, and the general key-

rate increases, making the protocol potentially more efficient.

Note that one explanation for the increased key-rate is due to

the fact that one receives, for each signal, a larger number of

raw-key bits as the dimension increases. However this, alone,

does not explain the great increase in key-rate as the signal

dimension increases. For instance, if we compare d = 2 and

d′ = 4, a single iteration of the protocol, in the first case,

produces at most one raw key bit, while the second case would

produce at most 2 raw key bits. If this were the only reason

for the increase in secret key-rates, one would expect that

running twice the number of iterations for the d = 2 case

would produce the same secret key length as the d′ = 4 case.

However this is clearly not the case, as shown in Figure 1

(Right). We also note that the number of Bob’s, p, does not

noticeably affect the key-rate regardless of d - interestingly,

this was also discovered in [24] for the qubit, d = 2, case.

IV. CLOSING REMARKS

In this paper, we proved the security of a high-dimensional

QCKA protocol, allowing multiple parties to establish a shared

secret key. We proved security using a combination of the

quantum sampling framework of [25], along with sample-

based entropic uncertainty relation techniques from [26]. Our

proof introduced several new methods needed to use those

two frameworks in this multi-user scenario and our methods

may be applicable to other multi-user quantum cryptographic

protocols, especially in higher dimensions. Our work here,

has shown even more evidence, beyond that already known

(as discussed in the Introduction), of the potential benefits, at

least in theory, of high-dimensional quantum states.
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