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Abstract
Arctic vegetation communities are rapidly changing with climate warming, which impacts wildlife, carbon cycling, and

climate feedbacks. Accurately monitoring vegetation change is thus crucial, but scale mismatches between field and satellite-
based monitoring cause challenges. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between
field data and satellite-based mapping. We assessed the viability of using high-resolution UAV imagery and UAV-derived Struc-
ture from Motion to predict cover, height, and aboveground biomass (henceforth biomass) of Arctic plant functional types
(PFTs) across a range of vegetation community types. We classified imagery by PFT, estimated cover and height, and modeled
biomass from UAV-derived volume estimates. Predicted values were compared to field estimates to assess results. Cover was
estimated with a root-mean-square error (RMSE) of 6.29%–14.2%, and height was estimated with an RMSE of 3.29–10.5 cm de-
pending on the PFT. Total aboveground biomass was predicted with an RMSE of 220.5 g m−2, and per-PFT RMSE ranged from
17.14 to 164.3 g m−2. Deciduous and evergreen shrub biomass was predicted most accurately, followed by lichen, graminoid,
and forb biomass. Our results demonstrate the effectiveness of using UAVs to map PFT biomass, which provides a link towards
improved mapping of PFTs across large areas using earth observation satellite imagery.

Key words: Arctic tundra, vegetation mapping, drones, UAV, structure from motion

Résumé
Les communautés végétales de l’Arctique changent rapidement avec le réchauffement climatique, ce qui influence la faune, le

cycle du carbone et les rétroactions climatiques. Il est donc crucial de surveiller avec précision les changements de la végétation,
mais les disparités d’échelle entre la surveillance sur le terrain et la surveillance par satellite posent des défis. La télédétection
à partir de véhicules aériens sans pilote (UAV) est apparue comme un pont entre les données de terrain et la cartographie
par satellite. Les auteurs évaluent la viabilité de l’utilisation de l’imagerie haute résolution par des UAV et de la structure
acquise à partir du mouvement (SfM – Structure from Motion) d’UAV pour prédire la couverture, la hauteur et la biomasse hors-
sol (ci-après biomasse) de types fonctionnels de plantes (PFT——Plant functional types) de l’Arctique dans une gamme de types
de communautés végétales. Ils ont classé l’imagerie par PFT, estimé la couverture et la hauteur, et modélisé la biomasse à
partir des estimations de volume obtenues par UAV. Les valeurs prédites ont été comparées aux estimations sur le terrain
pour évaluer les résultats. La couverture a été estimée avec écart moyen quadratique (EMQ) de 6,29-14,2 % et la hauteur a
été estimée avec un EMQ de 3,29-10,5 cm, selon le PFT. La biomasse hors-sol totale a été prédite avec un EQM de 220,5 g
m-2, et l’EQM par PFT variait de 17,14 à 164,3 g m-2. La biomasse des arbustes à feuilles caduques et à feuilles persistantes
a été prédite avec le plus de précision, suivie par la biomasse des lichens, des graminoïdes et des herbes non graminéennes.
Ces résultats démontrent l’efficacité de l’utilisation d’UAV pour cartographier la biomasse de PFT, ce qui établit un lien vers
cartographie améliorée des PFT sur de grandes superficies grâce à l’imagerie satellitaire d’observation de la terre. [Traduit par la
Rédaction]
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Introduction
Arctic regions are experiencing some of the fastest rates

of climate warming in the world (Richter-Menge et al. 2019),
leading to significant changes in vegetation composition and
structure (Berner et al. 2020; Bjorkman et al. 2018; Myers-
Smith et al. 2019; Pearson et al. 2013). Increasing vegetation
productivity and deciduous shrub expansion are among the
most prevalent of these changes. Shifts in vegetation commu-
nities are expected to have cascading effects: i.e., impacting
wildlife forage and habitat (Mallory and Boyce 2018; Post et al.
2009), carbon cycling and storage (Abbott et al. 2016; Lafleur
and Humphreys 2018; Mack et al. 2004), permafrost dynamics
(Abbott et al. 2016; Lawrence and Swenson 2011; Nauta et al.
2015; Schuur et al. 2015), and potentially contributing to fur-
ther warming (Chapin et al. 2005; Loranty and Goetz 2012).
As such, accurate and precise monitoring of Arctic vegetation
is crucial.

Because vegetation species do not respond uniformly to
shifts in climate, and because changes in species composi-
tion do not have uniform downstream effects, it is useful
to monitor and map vegetation across ecologically mean-
ingful groups. For example, vegetation community types de-
scribe assemblages of plant species that co-occur, typically
due to similar environmental requirements (Lortie et al.
2004; Viereck et al. 1992). These groupings provide insight
into the landscape context within which individual plants
exist and define dominant plant species. However, because
these groupings are categorical, large variations in species
composition can occur within vegetation community types
(Macander et al. 2017). In contrast, plant functional types
(PFTs) group plants based on their function within ecosys-
tems, determined by morphological, phylogenetic, and (or)
phenological traits (Chapin et al. 1996; Thomas et al. 2018).
PFTs can be monitored and mapped individually, providing
precise quantitative measures of plant cover across land-
scapes. Monitoring and mapping vegetation structure add
an important dimension to our understanding of vegetation
change. In particular, vegetation biomass is a high-priority
trait for monitoring because it is closely tied with ecolog-
ical function and determines carbon storage (Houghton et
al. 2009). Therefore, deriving fine grain information on veg-
etation biomass, partitioned by PFT, may help Arctic ecolo-
gists understand the consequences of climate change on car-
bon and nutrient cycling, patterns of shrub expansion and
corresponding declines in other PFTs (e.g., lichens), distur-
bance regimes, and wildlife/vegetation interactions (Bernes
et al. 2015; Bjorkman et al. 2018; Chapin 2003; Myers-
Smith et al. 2020; Olofsson and Post 2018; Schmitz et al.
2018).

Field measurements of vegetation cover, height, and above-
ground biomass (henceforth biomass) are widely used to ac-
curately monitor vegetation changes over time (Bjorkman et
al. 2020; Myers-Smith et al. 2019). However, such measure-
ments are time and resource intensive and therefore lim-
ited in spatial scope and coverage (Bjorkman et al. 2020). In
contrast, remote sensing from satellites can provide regional

or even global-scale monitoring of vegetation communities.
However, vegetation monitoring with satellites is typically
conducted at moderate to coarse spatial resolution (10 m–
1 km), which makes mapping challenging across heteroge-
nous landscapes. Higher resolution satellite data exist but are
generally not freely available (Langford et al. 2016; Räsänen et
al. 2018). The scale discrepancy between field data and readily
available satellite imagery makes it difficult to link plot-level
observations to regional- or global-scale satellite observations
(Cunliffe et al. 2020; Siewert and Olofsson 2020).

Remote sensing from unmanned aerial vehicles (UAVs)
provides high-resolution imagery (sub-centimeter to several
meters) at landscape scales and has emerged as a natu-
ral “bridge” between highly detailed but spatially sparse
field measurements and coarse resolution but spatially ex-
tensive satellite remote sensing (Poley and McDermid 2020;
Riihimäki et al. 2019; Siewert and Olofsson 2020). UAVs show
promise for measuring structural traits, such as vegetation
height and biomass (Cunliffe et al. 2021; Poley and McDermid
2020), especially in tundra ecosystems (Alonzo et al. 2020;
Cunliffe et al. 2021; Fraser et al. 2016). Capable UAV platforms
are now reasonably priced ($1600 + USD) and can be outfitted
with a variety of sensors: high-resolution RGB, multispectral,
hyperspectral, thermal, and even lidar (light detection and
ranging).

Structure from Motion (SfM) is emerging as a cost-effective
method for capturing vegetation structure (Alonzo et al.
2020; Cunliffe et al. 2021). SfM works by identifying match-
ing features in overlapping images and triangulating these
features to create three-dimensional reconstructions. Most
software for processing UAV imagery (e.g., Pix4 D, Agisoft) in-
clude SfM in their processing workflow, which allows users
to create detailed point clouds. In fact, SfM point clouds are
typically denser than lidar point clouds (Poley and McDer-
mid 2020). The main drawback of SfM is its inability to pene-
trate overlying vegetation. However, discrete return lidar can
also fail to penetrate the canopy where vegetation is short in
stature and canopy gaps are small relative to the instrument’s
footprint (Greaves et al. 2015).

Tundra vegetation communities are ideal candidates for
SfM because vegetation is often sparse, and tree/shrub
canopies rarely obscure the ground completely. However, the
understory of lichens and mosses can make it challenging to
define the “ground” surface in tundra ecosystems (Greaves
et al. 2016). Deciduous shrub biomass has been mapped in
the Arctic using satellite imagery (Berner et al. 2018; Chen
et al. 2012), terrestrial and airborne lidar (Alonzo et al. 2020;
Greaves et al. 2015, 2016), airborne SfM (Alonzo et al. 2020),
and UAV-based SfM (Alonzo et al. 2020; Cunliffe et al. 2021).
Although to our knowledge biomass has not been estimated
with SfM for non-shrub Arctic PFTs specifically, SfM-derived
canopy height was a strong predictor of graminoid and
forb biomass across a global study of non-forest ecosystems
(Cunliffe et al. 2021). Furthermore, SfM results in dryland
ecosystems resolved grass tussock volume to within 1 cm3

(Cunliffe et al. 2016), providing a reasonable and promising
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analog to cottongrass (Eriophorum spp.) tussock tundra, which
is widespread in the Low Arctic (Walker et al. 2005).

Here, we explore the feasibility of employing UAVs for map-
ping biomass of several PFTs (deciduous shrubs, evergreen
shrubs, graminoids, lichens, forbs) in tundra ecosystems and
at the tundra/taiga ecotone. We focused on one primary re-
search question: (1) How accurately can biomass be mod-
eled across PFTs using UAVs? We recognize, however, that
landscape context could influence how well particular PFTs
are modeled. For example, graminoid biomass might be bet-
ter modeled in tussock tundra, where sedges form distinct
clumps, versus non-tussock tundra where graminoids are dis-
persed across the landscape, even if the same amount of
graminoid biomass is present. For this reason, we include
a secondary research question: (2) Does the accuracy with
which PFT biomass is modeled differ depending on which
vegetation community type the PFT is situated in?

Methods

Study area
We visited 44 sites during the summer of either 2018

or 2019 to collect field data and UAV imagery (Table S1).
Study sites were located across interior Alaska and northwest
Canada and were selected to represent the variety of vegeta-
tion community types present on the landscape, focusing on
arctic and alpine tundra (Fig. 1, Table S1). Our study area en-
compassed the Alaska and Yukon North Slope, several moun-
tain ranges (Brooks Range, Richardson Mountains, Ogilvie
Mountains) and interior Alaska–Yukon lowlands. The arctic
and subarctic sites in our study are characterized by low pre-
cipitation, short, cool summers and long, cold winters with
mean annual temperature ranging from −13 ◦C to −5 ◦C, and
annual precipitation ranging from 150 to 330 mm. Growing
seasons are short, ranging from 126 to 177 days (Scenarios
Network for Alaska and Arctic Planning 2009). We aimed to
visit sites close to peak summer greenness, but this was not
always possible due to site access constraints.

Data collection

Site setup

We collected data at ten 0.25 m2 quadrats per site, spaced
10 m apart along a 100 m transect (Fig. 1C). The transect tape
was run parallel to topographic contour lines to minimize
variation in elevation across the site. The tape was staked to
avoid movement in the wind, and care was taken to not tram-
ple vegetation within quadrats. Wood stakes/PVC pipe were
placed at the lower left corner of each quadrat so that the
quadrats could be located in the UAV imagery (Fig. 1B).

Quadrat photos

Ground-based, nadir-oriented photos were taken of each
quadrat with a handheld digital camera. Under sunny con-
ditions, a tarp was used to shade the quadrats to ensure con-
sistent lighting and minimize shadows.

Cover data

At each quadrat, we recorded ocular estimates of top cover
(cover sums to 100%; Wilson 2011) by species. To reduce ob-
server bias in cover estimates, all observers were trained in
ocular estimation. We discussed estimates among observers
to “calibrate” estimates, provided reference material show-
ing different arrangements of known cover percentages, and
used quadrats with edge markings every 10 cm so quadrats
could be easily subdivided visually (Morrison 2016). Each
quadrat was assigned a vegetation community type designa-
tion based on The Alaska vegetation classification (Viereck et al.
1992) level III classes (Table S2). Classes were assigned using
ground-based quadrat photos and ocular cover estimates for
reference, following the key provided by The Alaska vegetation
classification (Viereck et al. 1992). These vegetation community
type designations expand on those listed in Table S1 because
sites were sometimes heterogenous with more than one veg-
etation community type present.

Height data

At each quadrat, we recorded three height measurements
per species to allow for estimation of average height across
the quadrat. Measurements were taken using a ruler and
lowering until firm resistance was met at the duff/soil layer.
Height was recorded as the location where the ruler was in-
tersected by the tallest plant part (stem, leaf, inflorescence).
When tussocks were present, we took two separate measure-
ments: (1) from the ground to the top of the tussock and
(2) from the top of the tussock to the top of the live sedge
blades/stems.

Biomass harvest

Plant aboveground biomass was harvested at five 0.25 m2

quadrats per site (Fig. 1C). Within each quadrat, we clipped
biomass to ground level, where ground was considered the
rock, bare soil, duff, or moss surface. While harvesting, the
quadrat sides were treated as strict boundaries——vegetation
segments that extended outside the quadrat boundary were
excluded from harvest, even if they were rooted in the plot,
and vegetation segments that branched into the quadrat were
included, even if they were rooted outside the plot. Har-
vested biomass was sorted into PFTs: shrubs, graminoids,
forbs, and lichens (crustose lichens and lichens growing on
rock were excluded) for 2018 harvests; shrubs were further
partitioned into deciduous shrubs and evergreen shrubs in
2019. During data entry, 2018 shrub biomass data were par-
titioned into deciduous shrubs and evergreen shrubs when
it was possible to do so (e.g., only evergreen shrub cover
was recorded at the quadrat). When these data could not be
confidently partitioned, they were excluded from data pro-
cessing and analysis. Harvested biomass was stored in pa-
per bags, dried in a ventilated drying oven at 65 ◦C for 48
h (to a constant weight), and weighed to the nearest 0.001 g.
Mosses were excluded from harvest due to time constraints
at sites. At our remote sites, access was dictated by aircraft
and time-limited. Although we recognize the importance of
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Fig. 1. (A) Site locations (red dots) where UAV imagery and vegetation plot data were collected. (B) Inset showing quadrat layout
and dimensions. (C) Layout of sites——black squares represent quadrat locations with green dots denoting quadrats at which
biomass was harvested, red lines represent the lawnmower flight path of the UAV, crossed rectangles represent the location of
ground control points (not to scale). Map sources (A): Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org,
and other contributors, (B) and (C): Created in ArcGIS Pro software.

mosses in boreal and Arctic ecosystems (Turetsky et al. 2012),
we excluded them here because they were the most time
consuming to harvest, and we did not feel we could con-
fidently distinguish them from the ground surface in our
modeling.

Unmanned aerial vehicle flights

We used a DJI Phantom 4 Pro quadcopter UAV (P4P) for
imagery collection. The P4P was equipped with the stock
RGB camera, a MicaSense RedEdge-M multispectral camera

with red, green, blue, red edge, and near-infrared bands,
and a downwelling light sensor linked to the MicaSense
and mounted atop the UAV. At each site, we conducted au-
tonomous flights in a “lawnmower” pattern (Fig. 1C). Flights
were centered around the 100 m quadrat transect and aver-
aged 0.02 km2 in area (0.005–0.177 km2). We flew the UAV at
30 m above ground level (agl) (Cunliffe et al. 2016; Fraser et
al. 2016; Poley and McDermid 2020). Test flights confirmed
that 30 m agl produced consistent image-processing results.
Ground sampling distances were approximately 0.75 cm for
RGB imagery and approximately 2 cm for multispectral im-
agery. Front and side image overlap were set at 85%, flight
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speed was capped at 2 m/s, and white balance was set to sunny
or cloudy, depending on weather conditions. The RGB camera
captured images in JPG format, and the MicaSense captured
images in TIF format. We oriented the RGB camera and MicaS-
ense sensor to nadir for all flights. In 2018, we gathered addi-
tional imagery with the RGB camera pointed 30◦ off-nadir for
one pass around the outside of the site. In 2019, we flew an
additional flight across the entire site with the RGB camera
pointed at 30◦ off-nadir and flight lines perpendicular to the
nadir flight. Off-nadir imagery provided additional viewing
angles and improved reconstruction of the ground surface
(Cunliffe et al. 2016). We aimed to fly close to solar noon and
under consistent lighting conditions (Assmann et al. 2019;
Poley and McDermid 2020), but this was not always possible
due to site access constraints. Before and after each flight, we
used the MicaSense sensor to take an image of a MicaSense
calibrated reflectance panel, ensuring no shadows were cast
upon the panel. To georeference our imagery, we placed five
ground control points across each site in a quincunx pattern
(Fig. 1C) and recorded their X, Y, and Z locations with a Trim-
ble GeoXH handheld unit with satellite-based augmentation
systems (SBAS) enabled to increase accuracy (X, Y accuracies
10–50 cm, Z accuracies 10–150 cm with SBAS).

Unmanned aerial vehicle imagery processing

Preprocessing

Initial UAV image processing was conducted using
Pix4mapper (Pix4D SA 2021) (Fig. 2A). We calibrated the
multispectral imagery using reflectance values from the
downwelling light sensor and from the calibrated reflectance
panel photos. We then marked and added geolocation in-
formation for ground control points. Finally, we processed
the imagery to produce site orthophoto mosaics and densi-
fied point clouds. Point clouds from the RGB imagery were
used in all future analyses, as they were denser than those
produced from multispectral imagery. The multispectral
mosaics were manually co-registered to the RGB mosaics
in ArcMap Pro (Environmental Systems Research Institute
Inc.. 2021). Additional preprocessing details are provided in
Supplementary Text 1.

Plant functional type classification

For each site, we generated a database of calibra-
tion/validation samples by manually delineating polygons
of target PFTs (deciduous shrubs, evergreen shrubs, forbs,
graminoids, lichens) and non-target classes (bryophytes, non-
vegetated, trees) on top of RGB imagery in ArcGIS Pro
(Environmental Systems Research Institute Inc.. 2021). We
used the ground-based quadrat photographs as a reference
to identify PFTs in the imagery but did not create calibra-
tion/validation data within quadrat boundaries. Each site was
modeled separately using pixel-based scikit-learn (Pedregosa
et al. 2011) random forest classifier models in Python 3.7 (Van
Rossum and Drake 2009), with spectral predictors derived
from UAV imagery (Table S3). Additional information about
these predictors is given in Supplementary Text 2.

First, we performed nested cross-validation (5 inner splits,
10 outer splits) on a subset of eight sites to determine
optimal hyperparameters (Table S4). These sites were cho-
sen to represent the variety of vegetation community types
found across all 44 sites. For hyperparameter tuning, we fo-
cused on the number of variables available for splitting at
each node (max_features), the size of each bootstrap sam-
ple (max_samples), and the minimum number of observa-
tions in a terminal node (min_samples_leaf) as previous re-
search indicates these are often the most influential param-
eters (Huang and Boutros 2016; Probst et al. 2019). Using
the optimal hyperparameters, we performed a 10-fold cross-
validation for each site to determine the overall and per-PFT
accuracy (Table S5). Cross-validation models were run with
500 trees, used an 80%/20% calibration/validation split, were
stratified by PFT, and were grouped by calibration/validation
polygon to minimize spatial autocorrelation. Because our
classification groups were imbalanced, we oversampled cali-
bration sets using the Synthetic Minority Oversampling Tech-
nique (SMOTE) from the imblearn Python package (Lemaître
et al. 2017; Sun et al. 2009). Finally, we used the optimal
hyperparameters to build models on the full predictor set
and produced PFT classifications for each site (Figs. 2B, 3B).
For the final models, we assessed predictor importance with
Shapely values using the SHAP (SHapley Additive exPlana-
tions) Python package (Lundberg et al. 2020). This method
reduces bias from correlated and (or) differently scaled pre-
dictors (Nandlall and Millard 2020).

Evaluating PFT classification error

To understand how PFT impacted the accuracy of pre-
dicted cover we aggregated both our ground-based ocular
estimates of cover and our pixel-based classifications at the
quadrat, PFT level. Species-specific ocular estimates of cover
were aggregated into PFTs, producing % cover estimates for
each PFT within each quadrat. Classifications were aggre-
gated at the quadrat level, producing % cover estimates for
each PFT within each quadrat. Ground-based estimates were
taken as “truth” and used to validate estimates from the
classification.

The quadrat-level cover data were right skewed and con-
tained a large proportion of zeros. This can make it difficult to
identify an appropriate modeling approach, as many model-
ing approaches of interest do not work well in the presence of
zeros (Fletcher et al. 2005). To overcome this, we filtered the
data into two sets and used a different modeling approach for
each set (Fletcher et al. 2005).

The first data set (henceforth presence/absence data) in-
cluded all the available quadrat-level data. Using these data,
we created two binary response variables denoting whether
a commission error was made for each PFT (commission), and
whether an omission error was made for each PFT (omission).
If the quadrat-level cover from the classification was ≥1% and
the quadrat-level ground-based cover estimate was <1%, com-
mission was assigned a value of 1, otherwise it was assigned
a value of 0. Conversely, if the classification cover was <1%
and the ground-based cover was ≥ 1%, omission was assigned
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Fig. 2. Workflow for processing UAV imagery: (A) pre-processing using Pix4 D software to create site-wide mosaics and densified
point clouds (B) classifying site-wide mosaics using random forest classifier, (C) creating canopy height models using lidR
package in R, (D) modeling biomass using canopy height models and field biomass harvest data, and (E) partitioning biomass
by plant functional type.

a value of 1, otherwise it was assigned a value of 0. We
modeled commission and omission error proportion using
logistic regression via the glm function in R v4.0.2 (R Core
Team 2020) using the binomial family, and PFT as the sole
predictor. We built two separate models, one for commis-
sion error proportion, and one for omission error propor-
tion. We plotted the modeled commission and omission er-
ror proportions (converted to %) along with 95% confidence
intervals and tested for differences in commission/omission
proportions among PFTs using the Kruskal–Wallis test, fol-
lowed by Dunn’s tests with Bonferroni adjustments for multi-

ple pairwise comparison. To test for potential pseudoreplica-
tion introduced by quadrats nested within sites, we used the
intraclass correlation coefficient (ICC) from the ICC package
(Wolak 2016) in R v4.0.2 (R Core Team 2020) to assess simi-
larity in quadrat-level commission and omission values within
sites. The ICC values were 0.05 and 0.04, respectively, in-
dicating low correlation within sites and little evidence of
pseudoreplication.

The second data set (henceforth presence-only data) in-
cluded only quadrat-level observations where a PFT was ac-
curately predicted as present in a quadrat. This data set ex-
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Fig. 3. Example of UAV imagery products: (A) RGB imagery, (B) classification, (C) canopy height model, (D) biomass predictions,
and (E) uncertainty estimates (95% confidence intervals). Created in ArcGIS Pro software.

cluded a large number of instances where cover was cor-
rectly predicted as 0%. These instances confounded inter-
pretation by deflating error for rarer PFTs. The presence-
only data set was assessed using a continuous response
variable representing the magnitude of prediction error.
We used the relative % difference (RPD) in our analysis,
defined as

RPD = 2
|coveractual − coverpredicted|
coveractual + coverpredicted

× 100(1)

The relative % difference metric was useful because it pe-
nalized overpredictions and underpredictions equally.

To test for significant differences in distributions of rel-
ative % difference values we used the Kruskal–Wallis test,
followed by Dunn’s tests with Bonferroni adjustments for
multiple pairwise comparison. We applied these tests to sev-
eral groupings of the presence-only data set: (1) grouped
by PFT only, (2) grouped by vegetation community type
only, and (3) grouped by PFT and vegetation commu-

nity type. We again tested for pseudoreplication using the
ICC to assess similarity in quadrat-level relative % differ-
ence values within sites. The ICC value was 0.01, indi-
cating low correlation within sites and little evidence of
pseudoreplication.

Canopy height model generation for biomass
estimation

Point cloud filtering
Point clouds were automatically filtered to exclude noise

and outliers in Pix4Dmapper (Pix4D SA 2021). In addition,
we manually inspected point clouds in CloudCompare 2.11.3
(CloudCompare 2021) and clipped out any visibly erroneous
points.

Ground/canopy segmentation
To produce accurate digital terrain models (DTMs), we sep-

arated point clouds into “ground” and “canopy” points using
a three-step process (Fig. 2C). First, we applied a focal maxi-
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mum and focal minimum function to each point cloud. For
each pass, the lowest/highest values in a 1–2 cm × 1–2 cm
rolling window were retained creating a subset of ground
and canopy points, respectively. Next, a nearest neighbor al-
gorithm was applied to the ground and canopy subsets to
filter out erroneous ground/canopy labels. For each point,
this algorithm considered its 24 nearest neighbors and re-
tained the lowest/highest point in this neighborhood. Fi-
nally, the resulting ground and canopy subsets were com-
pared to the results from the PFT classification. Only ground
points that fell within an area classified as non-vegetated
or bryophytes were retained, and only canopy points that
fell within an area classified as deciduous shrubs, evergreen
shrubs, forbs, graminoids, lichens, or trees were retained. Fil-
tering using the PFT classification allowed us to remove erro-
neous ground/canopy labels. For example, in a dense shrub
thicket there might be no legitimate ground points. The low-
est/highest Z and nearest neighbor steps would identify the
lowest point and label it ground even though it is actually
part of the shrub canopy, which would lead to errors when
interpolating the ground surface. Since this point is in an area
classified as deciduous shrub, it is instead discarded in the fi-
nal filtering step.

Point cloud normalization
We created a DTM from the ground points using the

grid_terrain function from the lidR package (Roussel et al.
2020; Roussel and Auty 2020) in R v4.0.2 (R Core Team 2020)
with a k-nearest neighbors inverse distance weighting (kn-
nidw) algorithm (Fig. 2C). This algorithm interpolates across
the entire site, producing a seamless DTM. The DTM was then
subtracted from the point cloud, producing a normalized
point cloud. After normalization any points with height < 0
were discarded since these represented erroneous height val-
ues.

Canopy height model creation
Finally, we created canopy height models (CHMs) using

the grid_canopy function from the lidR package and the
normalized point cloud (Supplementary Text 3; Figs. 2C,
3C). The CHM resolution was the average distance between
points before filtering, typically 1–2 cm. This resolution pro-
vided the best balance between minimizing empty cells and
maximizing product resolution. We used a simple point to
raster algorithm (p2r from the lidR package) to generate
the CHM.

After CHM generation, height values less than zero were
converted to zero and empty cells were filled using a 3 ×
3 pixel focal mean. In areas where normalized point density
was low, processing artifacts were present in the CHM. We
converted these areas to empty cells using the method de-
scribed in Supplementary Text 3. We then filled these data
gaps by creating a random forest regressor for each site us-
ing scikit-learn (Pedregosa et al. 2011) in Python (Van Rossum
and Drake 2009). The regressor predicted height within gaps
using predictors derived from the UAV imagery listed in Table
S3.

Canopy volume calculation
CHMs were converted to volume (cm3) by multiplying each

pixel value (height; cm) by pixel area (cm2).

Aboveground biomass estimation

For each site, we overlaid the volume map and classifica-
tion and summed pixels to determine the total volume per
PFT in each quadrat. These quadrat-level volume observa-
tions were linked with biomass harvest data from the corre-
sponding quadrat and PFT. We then used these observations
to model PFT aboveground biomass using linear mixed-effect
models fit using the lme4 package (Bates et al. 2014) in R (Fig.
2D) as follows:

m = lmer (biomass ∼ 0 + volume : PFT

+ (0 + volume : PFT | site) , data = data)
(2)

PFT was included as a fixed effect, site was included as a
random effect, and intercepts were constrained to the origin
because zero volume corresponds with zero biomass. Both
the response and predictor variables were square root trans-
formed to reduce heteroskedasticity and non-normality of
the residuals. The biomass-volume model was then applied
to each volume raster, producing per pixel biomass predic-
tions (Fig. 3D; for more details, see Supplementary Text 4).
We also calculated 95% confidence intervals for each biomass
prediction (Bolker 2021) producing per pixel estimates of un-
certainty (Fig. 3E; Supplementary Text 4).

The data used for building the biomass-volume models
were filtered to ensure only the highest quality data influ-
enced the model. For each PFT, the quadrat-level observations
were arranged in descending order by cover error (|field ob-
served cover——cover predicted by classification|) and the top
20% of observations (highest error) were excluded from mod-
eling. This prevented the worst misclassifications from be-
ing carried forward in the analysis. We also excluded obser-
vations where volume was equal to zero, and biomass was
greater than zero and vice versa as these represented verifi-
able errors in the volume prediction.

To understand how PFT and vegetation community type
impacted biomass prediction accuracy, we tested for signif-
icant differences following the procedure described in the
section Evaluating PFT classification error. For this analysis, we
again excluded the 20% of quadrat-level observations with the
highest cover error for each PFT. This was done to focus on
prediction errors that were due to errors in the CHM and (or)
uncertainty in the biomass-volume model and not errors in
cover estimation. We used only the presence-only data set as
factors influencing presence/absence were well captured by
the analysis described in the section Evaluating PFT classifica-
tion error.

Results

Plant functional type classification
The normalized difference vegetation index (NDVI) was the

most important predictor for our classification (Table S3),
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Fig. 4. Comparison of field observed % cover (y-axis) and predicted % cover from random forest modeling ( x-axis). Each point
represents a quadrat. The dashed line shows the one-to-one line. The solid black line shows the line of best fit.

likely due to its ability to quantify vegetation greenness. PFTs
were classified with an overall accuracy of 74.7% (SD = 14.2%).
Among target PFTs, deciduous shrubs were classified most
accurately (F1 score = 0.624) and forbs least accurately (F1
score = 0.132; Table S5).

To compare classifications to field estimates of cover, we
calculated the relative root-mean-square error (rRMSE) as the
RMSE between predicted and observed cover % within each
quadrat, divided by the average field estimated cover for each
PFT (Zolkos et al. 2013). This allowed us to compare error
among PFTs systematically. Using rRMSE, the error was low-
est for deciduous and evergreen shrubs and highest for forbs
(Fig. 4). R2 values were highest for deciduous shrubs, lichens,
and graminoids, and best fit line slopes were close to one for
all PFTs (Fig. 4).

Using the presence/absence data, we assessed the pro-
portion of omission and commission errors across PFTs.
Omission errors were most prevalent among lichens and
forbs (Fig. S1, left), whereas commission errors were least
prevalent among lichens (Fig. S1, right). Using the presence-
only data, we compared the relative % difference across
PFTs and found lichens and forbs had higher relative
error than deciduous and evergreen shrubs (α = 0.05;
Fig. S2).

Canopy height models
Ground/canopy segmentation of point clouds was visibly

improved (Fig. S3) using PFT classification to filter point
clouds. This additional filtering step produced a reasonable
CHM in areas with complex terrain, like the polygonized
ground shown in Fig. S4.

When we compared CHM estimates to field measured
height (averaged per quadrat), we found rRMSE was lowest
for deciduous shrubs and graminoids and highest for lichens
and forbs (Fig. S5). Height was underestimated in the CHM in
general and particularly for graminoids (Fig. S5).

Aboveground biomass
The aboveground biomass-volume linear mixed-effect

model relationship was strongest for deciduous shrubs and
graminoids (R2 = 0.78, 0.75; Fig. S6) and weakest for lichens
and forbs (R2 = 0.28, 0.35; Fig. S6). When predicted biomass
values (summed per quadrat) were compared to field har-
vested biomass, RMSE for total biomass was 220.5 g m−2

(extrapolated from g 0.25 m−2). Among PFTs, rRMSE was
lowest for deciduous and evergreen shrubs and highest for
graminoids and forbs (Fig. 5). For graminoids, both rRMSE
and R2 were heavily influenced by a single poorly predicted
data point. Using the presence-only data, lichens had higher
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Fig. 5. Comparison of field observed biomass and predicted biomass (from linear modeling). Each point represents a quadrat.
The dashed line shows the one-to-one line. The solid black line shows the line of best fit.

relative biomass prediction error than all other PFTs, except
forbs (α = 0.05; Fig. S7).

Comparison among vegetation community
types

Differences in cover prediction error among vegetation
community types alone were not statistically significant (Fig.
S8). The biomass prediction error was lowest in closed low
scrub, although the differences were not statistically signif-
icant (Fig. S9). Grouped by PFT, deciduous shrub cover was
best predicted in open low scrub and closed tall and low
scrub communities, lichen cover was best predicted in lichen-
dominated communities, and graminoid cover was best pre-
dicted in mesic graminoid herbaceous communities. How-
ever, most pairwise differences between vegetation commu-
nity types were not statistically significant (Fig. 6). We found
similar patterns when comparing the relative % difference
in biomass across PFTs and vegetation community types (Fig.
S10).

Discussion
There is growing interest in using UAVs to estimate biomass

of short stature vegetation owing to the large extent of such
ecosystems and the many ways vegetation influences ecosys-

tem processes and function. Research by Cunliffe et al. (2021)
demonstrates that UAV-based estimates of canopy height can
be used to estimate biomass across a range of PFTs in a sample
of 36 sites from non-forested ecosystems around the globe.
Here, we focus more intensively on 44 sites in tundra ecosys-
tems and at the tundra/taiga ecotone. To our knowledge,
ours is the first study to use UAVs to estimate aboveground
biomass for a range of tundra PFTs, and the first to compare
biomass predictions across a wide range of tundra vegetation
communities. Our results demonstrate UAV-based structural
metrics are able to accurately predict biomass across most
PFTs in these biomes, illustrating the promise of using UAVs
to improve our understanding of the ecology and conserva-
tion of Arctic vegetation communities. Here we discuss the
challenges and achievements of our PFT UAV-based biomass
estimation approach and the implications of our results for
related UAV-based research.

Plant functional type classification
Our overall classification accuracy (75%) was similar to the

classification by Thomson et al. (2021) (72%) but lower than
the classification by Fraser et al. (2016) (82%), Yang et al. (2020)
(81%), and Yang et al. (2021) (93%–95%). We believe our slightly
lower accuracy (as compared to the latter studies) is due in
part to the larger number of sites we classified. Here we de-
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Fig. 6. Variation in relative % difference in cover estimation among vegetation community types, grouped by plant functional
type. Brackets show a significance level for pairwise comparisons and are only shown for pairings with significant differences
(∗: α ≤ 0.05, ∗∗: α ≤ 0.01, ∗∗∗: α ≤ 0.001, ∗∗∗∗: α ≤ 0.0001). Numbers at the bottom of the plot show the number of quadrats
for each group, and boxplots are shaded to represent the average % cover among all quadrats for each group. Groups with a
number of quadrats ≤2 were omitted for clarity.

veloped a classification methodology that could be readily ap-
plied to a large number of sites (n = 44). In contrast, most pre-
vious UAV-based PFT mapping has been applied to only one
or a few sites. Thus, the classification models can be carefully
tuned to those particular sites, resulting in higher accuracy.
Although the fact that our methodology was applied across
a large range of sites might have resulted in slightly reduced
accuracy, we believe the ability to produce a larger quantity
of data across multiple landscape types was useful for our
analysis and will be useful in future UAV-based research.

Among PFTs, cover of deciduous shrubs, evergreen shrubs,
lichens, and graminoids was predicted best, with best-fit
slopes closer to one, higher R2 and lower rRMSE values (Fig.
4). Predicting at 30 m resolution in a similar Arctic system,
Macander et al. (2017) also found shrub PFTs were predicted
best, likely because shrubs typically occur in the canopy as
opposed to subcanopy or ground cover. However, they re-
ported poor performance predicting graminoids, which high-
lights potential challenges in scaling graminoid predictions
to coarser resolution imagery (e.g., from aircraft to satel-
lites). UAV-based graminoid classification in Arctic ecosys-
tems has had mixed results. Graminoids were predicted best
among PFTs by Yang et al. (2020), but worst among PFTs by

Fraser et al. (2016). This discrepancy was likely due to dif-
ferences in classification schemes. Yang et al. (2020) clas-
sified by PFT and therefore graminoids were easily distin-
guished from shrubs. In contrast, Fraser et al. (2016) clas-
sified by vegetation community type and thus sedge tus-
sock and wet graminoid communities were easily confused
with mixed dwarf shrub communities, which also contained
sedges. Our results and those of Yang et al. (2020), however,
demonstrate that when graminoids are classified discretely;
they can be readily discriminated from other PFTs. UAV-based
models by Macander et al. (2018) classified lichens with sim-
ilar error (RMSE = 13.9%, R2 = 0.71) to ours (RMSE = 12.1%,
R2 = 0.69) when compared to independent field-based valida-
tion data. These results show that lichens can be consistently
classified with reasonable accuracy, although they tend to
be slightly underpredicted. Our models also underpredicted
forb cover (Fig. 4). This was likely due to forbs occurring in
small groupings that are unresolved in the UAV imagery or
occurring in the understory where they were obscured by
canopy or shadows. Additionally, horsetails and graminoids
were nearly indistinguishable in the UAV imagery and we sus-
pect many horsetails (a forb) were incorrectly classified as
graminoids. Grouping forbs and graminoids into a combined
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“herbaceous” class might improve classification accuracy, as
was the case for Macander et al. (2017), predicting at 30 m res-
olution. Our results indicate that most PFTs, with the excep-
tion of forbs, can be classified accurately across entire sites.

We built a separate classification model for each site due to
differences in illumination conditions across sites. This has
the drawback of making these models non-transferable to
other sites or time periods. The multispectral imagery can be
reflectance calibrated in Pix4Dmapper (Pix4D SA 2021) using
light sensors and reflectance panels, but methods for calibrat-
ing the RGB imagery are not as well established. The RGB im-
agery was an important predictor in our classification, likely
because it was very high resolution. Future studies might con-
sider evaluating the transferability of classification models
built from calibrated multispectral imagery as model trans-
ferability might be worth sacrificing some degree of model
accuracy. We suggest the development of transferable models
as a priority for future research and believe this effort will be
bolstered by improving multispectral sensor technology (e.g.,
increases in resolution, decreases in sensor weight), and ef-
forts to standardize UAV protocols, such as the High-Latitude
Drone Ecology Network (HiLDEN, https://arcticdrones.org/).
Nonetheless, standardization across sites remains a challeng-
ing issue as illumination conditions can change quickly, even
within a single flight.

Canopy height models
Vegetation height is an important structural trait that is

influenced by climate warming and is closely tied to compet-
itive ability, soil properties, and carbon cycling (Bjorkman et
al. 2018). Our approach to CHM creation led to underestima-
tion of canopy height when compared to field data (Fig. S5),
which is consistent with most (Chen et al. 2012; Dandois et
al. 2015; Grüner et al. 2019; Wijesingha et al. 2019; Zhang et
al. 2018), but not all (Cunliffe et al. 2020; Fraser et al. 2016)
studies in natural systems. We suspect this was driven by the
inclusion of “ground” points that were not strictly ground
(e.g., moss hummocks). However, it is worth noting that field
measurements might not capture the full range of variability
in canopy height across an area acquired with UAV imagery
(Poley and McDermid 2020).

For many of our sites, the ground surface was a com-
plex mosaic of bryophytes, lichens, bare ground, and pros-
trate vascular plants. This led to complications separating
the ground and canopy surfaces (Greaves et al. 2016). Most
UAV studies segment the ground/canopy by identifying the
lowest/highest points (e.g., progressive morphological filter),
which typically results in height underestimation (Poley and
McDermid 2020). Yang et al. (2020) used PFT classification re-
sults to segment the ground and canopy but also reported
underestimations in the CHM. Although our CHMs underes-
timated vegetation height as well, we found ground/canopy
segmentation using a combined approach (focal min/max
and PFT classification) performed better than either approach
alone. This could be a viable approach for other systems
with low stature vegetation and complex topography. One
drawback of this approach was an increase in processing ar-
tifacts in the CHM. This approach thus has trade-offs that

need to be carefully considered in the context of mapping
objectives.

Ultimately, the goal of point cloud segmentation is to
produce an accurate model of the ground surface (DTM).
Ground/canopy segmentation can be improved by collecting
leaf-off imagery to obtain better ground views (Poley and Mc-
Dermid 2020). DTMs can also be sourced elsewhere, e.g., from
lidar data (Poley and McDermid 2020), or created by collect-
ing high accuracy global navigation satellite system (GNSS)
observations and interpolating between them (Cunliffe et al.
2021; Poley and McDermid 2020). However, these approaches
may require additional equipment and (or) effort in the field
and may be limited by availability in the case of lidar data. Ex-
ternally sourced DTMs might also cause complex alignment
issues in three-dimensional space (Alonzo et al. 2020).

Aboveground biomass
Aboveground biomass is another critical Arctic vegetation

trait related to shrub expansion, disturbance regimes, and
wildlife forage patterns (Epstein et al. 2013) and is also a ma-
jor component of aboveground tundra carbon stores (Schuur
et al. 2018). Our deciduous shrub RMSE of 164.3 g m−2 (Fig. 5)
was similar to a study estimating shrub aboveground biomass
from terrestrial lidar (RMSE = 108–177 g m−2) (Greaves et
al. 2015), and outperformed studies estimating shrub above-
ground biomass from airborne lidar (RMSE = 219 g m−2)
(Greaves et al. 2016) and tall deciduous shrub aboveground
biomass from airborne SfM (RMSE = 1260 g m−2) and UAV
SfM (RMSE = 810 g m−2) (Alonzo et al. 2020). It is worth not-
ing, however, that the average deciduous shrub aboveground
biomass was also higher in those studies. Our deciduous
shrub R2 of 0.71 was on par with the aforementioned stud-
ies (terrestrial lidar: 0.77–0.96 (Greaves et al. 2015), airborne
SfM: 0.75 (Alonzo et al. 2020), and UAV SfM: 0.82 (Alonzo et
al. 2020)).

We were unable to contextualize biomass RMSE for other
PFTs due to limited existing research, but our modeling re-
sults were consistent with a global study estimating the
biomass of low-stature vegetation from canopy heights
(Cunliffe et al. 2021). However, Cunliffe et al. (2021) reported
higher R2 values for graminoids (0.75 vs. 0.32) and forbs
(0.47 vs. 0.21). We suspect the discrepancy in graminoid
R2 can be partially attributed to classification errors. Mis-
classified graminoid pixels might be associated with erro-
neously high (actually deciduous shrub) or low (actually
lichen) canopy height values. Forbs were subject to classifi-
cation error as well, but also suffered from being a rare and
diverse PFT across tundra ecosystems. Forb data were lim-
ited and not well constrained since growth forms and spec-
tral signatures varied considerably among species. Classifica-
tion was not part of the methodology of Cunliffe et al. (2021)
and thus their results were not subject to this source of error.
However, classification was important in our case because it
allowed us to predict PFT biomass across the entire UAV or-
thophoto mosaic rather than just at discrete plot locations
within the mosaic.

A major difficulty in analyzing biomass predictions was
identifying and quantifying sources of error (Alonzo et al.
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2020; Cunliffe et al. 2020, 2021; Poley and McDermid 2020).
Error in our biomass estimation was derived from multiple
sources: classification error, CHM error, uncertainty in the
biomass-volume relationship, error in field data used for com-
parison, and errors in alignment between imagery and field
data. It was not possible to isolate errors from these sources,
but we were able to discern several key sources of error.
First, shorter stature PFTs (lichens, forbs) had higher CHM er-
ror because they were more difficult to distinguish from the
ground surface. Second, PFTs with more diverse growth forms
(evergreen shrubs, forbs) had greater uncertainty in their
biomass-volume relationships. Finally, PFT classification er-
ror had downstream effects on height and biomass error. This
highlights the difficulty of estimating biomass beyond a sin-
gle PFT. However, PFT-specific biomass mapping adds eco-
logically relevant details that are not widely available from
satellite image-based mapping and is thus a worthwhile en-
deavor (Berner et al. 2018; Chen et al. 2012). For example,
our results indicate that UAV-based methods may be able to
track the consequences of Arctic vegetation change such as
shrub expansion on graminoid, forb, and lichen functional
traits (cover, height, biomass, etc.). Tracking such vegetation
changes also has conservation applications such as monitor-
ing wildlife forage (e.g., lichen as a critical food source for
many at-risk Arctic caribou populations) and understanding
how disturbance alters patterns of vegetation distribution.

Comparison among vegetation community
types

When grouped by PFT, cover and biomass prediction er-
ror were lowest in communities where the PFT of inter-
est was abundant and dominant (Figs. 6 and S10). In their
Landsat-based mapping of lichen cover, Macander et al. (2020)
and Kennedy et al. (2020) similarly noted that lichens were
predicted worst at low abundances. Though not statistically
significant, there was some evidence that graminoid cover
and biomass predictions were better in mesic graminoid
herbaceous communities (i.e., tussock tundra) than in other
communities with equally high graminoid abundance (wet
graminoid herbaceous; Figs. 6 and S10). Mapping at 30 m
resolution, Nawrocki et al. (2020) similarly found tussock-
forming sedges were predicted better than non-tussock form-
ing sedges, even though they were equally abundant. How-
ever, UAV-based mapping by Fraser et al. (2016) found the
opposite——non-tussock tundra was predicted slightly better
than tussock tundra.

Overall our results echo previous studies: PFTs were clas-
sified better in communities where they were part of the
canopy, more distinct, and (or) more abundant. However, our
results also highlight the promise of UAV-based cover and
biomass estimation in tussock tundra communities, which
have not been well predicted in the past (Fraser et al. 2016;
Macander et al. 2017).

Conclusion
Our results add to a growing body of work suggesting

that low-cost UAV platforms can be leveraged to estimate

the aboveground biomass of vegetation in tundra landscapes
with reasonably high accuracy (Alonzo et al. 2020; Cunliffe et
al. 2020, 2021; Poley and McDermid 2020; Yang et al. 2020).
The RMSE values we report for deciduous shrub biomass esti-
mates are comparable to previous studies (Alonzo et al. 2020;
Greaves et al. 2015, 2016), but we also went beyond deciduous
shrubs to provide some of the first UAV-based biomass predic-
tions for other Arctic PFTs, with all results validated by field
harvest data. The biomass prediction results for graminoids
in tussock tundra, and evergreen shrubs were encouraging,
but we were unable to robustly compare our prediction ac-
curacy to other studies due to a lack of existing UAV-based
estimates of biomass. Lichens were less well predicted, but
again few UAV-based estimates of biomass exist for com-
parison. This may change in the future with the advance-
ment of HiLDEN (High-Latitude Drone Ecology Network,
2021).

Biomass estimation of tundra PFTs is a valuable area for
future research, particularly in the context of rapid advance-
ments in UAV mapping and application to ecological prob-
lems. As the Arctic landscape continues to change, moni-
toring all PFTs, not just tall shrubs, will be crucial in mak-
ing informed decisions regarding climate policy, land, and
wildlife management. Our results suggest UAV-based esti-
mates of biomass could provide a valuable step from field
measurements to regional scale maps of vegetation biomass,
partitioned by PFT. Such maps would allow researchers to
track ecologically meaningful changes across remote Arctic
landscapes, such as those driven by increases in wildfire fre-
quency and severity, shrub expansion, and (or) human land
use change.
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