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Abstract—The Internet of Things (IoT) has enabled an abun-
dance of geographically distributed physical devices or “things”
equipped with sensors and actuators to exchange information
with the Cloud. However, this paradigm remains largely under-
exploited for real-time analytic applications. The benefit of real-
time data acquisition at the Edge becomes fruitless as it is
not readily accessible to more powerful data analytic tools in
the Cloud due to wide-area network delays. In this paper,
we present VRebalance, a virtual resource orchestrator that
provides an end-to-end performance guarantee for concurrent
stream processing workloads at the Edge. VRebalance employs
Bayesian Optimization BO to quickly identify near-optimal
resource configurations. Experimental results with a real-time
open-source IoT benchmark for Distributed Stream Processing
Platforms (RIoTBench) and a representative stream processing
engine (Apache Storm) demonstrate the superior performance,
resource efficiency and adaptiveness of our BO-based resource
management system. VRebalance meets the performance SLO
(service level objective) targets for stream processing workloads
even in the presence of acute system dynamics. It decreases
the SLO violation rate by at least 34% for static workloads
and by 62.5% for dynamic workloads compared to a hill
climbing method. Compared to Storm’s default resource scaling
mechanism, our method decreases the SLO violation rate by
83.7%.

Index Terms—Internet of Things, Stream Processing, Bayesian
Optimization, Resource Management.

I. INTRODUCTION

The Internet of Things (IoT) applications need to continu-
ally process data streams produced by devices for data integra-
tion and control operations within intelligent systems [1]–[3].
However, IoT systems that rely on the cloud for data pro-
cessing can not reap the benefits of real-time data acquisition
at the edge due to wide-area network delays and jitters [4],
[5]. In most cases, such data needs to be processed with very
strict time constraints to extract useful information for future
actions. In some cases, data must be processed in almost real-
time to attain any meaningful insights or detect patterns of
interest. For example, making the power grid “smart” depends
on the ability to wrangle the unprecedented influx of sensing
data to identify critical events and automate the available
controls to maintain grid stability [6]. Similarly, IoT based
traffic control in smart cities will require real-time analysis
of live video streams from cameras deployed at myriad of
intersections within major cities [7]. Hence, it is desirable to
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Fig. 1: IoT: Device to Cloud.

perform data processing at the Edge, for instance using IoT
gateways which are one-hop away from the IoT devices [8].

Stream processing has emerged as a dominant distributed
computing paradigm for processing and analysis of high-
volume, heterogeneous, and continuous data streams to extract
insights and actionable results in real time [9]. A stream
processing application is described by a directed acyclic graph,
called a topology, whose vertices are data processing opera-
tions and edges indicate data flow as shown in Fig. 1. However,
popular stream processing engines (SPEs), such as Apache
Storm 1, Apache Spark 2 etc. are designed for resource-rich
cloud environments. Hence, they may not perform optimally
in a resource-constrained Edge environment. For instance,
our motivational case study in Section II shows that Storm’s
default resource scaling mechanism for a running topology is
very slow (takes several minutes to take effect) and can also
lead to inefficient resource usage.

Recent studies [10]–[12] have shown that IoT workloads
from different application domains can have diverse and highly
dynamic characteristics in which the arrival rate of events can
change drastically with time. Therefore, the need for adapting
the resource configuration of a stream processing engine at
the Edge in an agile and efficient manner becomes critical.
Existing works [13], [14] on resource scaling for distributed
stream processing mainly focus on removing bottlenecks in
a single stream processing topology to maximize the average

1http://storm.apache.org/
2https://spark.apache.org/
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performance. Furthermore, these techniques are often limited
by the latency of the scaling mechanism of the SPEs. On the
other hand, this paper aims to meet the end-to-end tail latency
targets of concurrent stream processing workloads through
agile and fine-grained resource control at the system level.

We present VRebalance, a virtual resource management
system that provides an end-to-end performance guarantee for
concurrent stream processing applications at the Edge. VRe-
balance employs Bayesian Optimization BO [15] to quickly
identity near-optimal resource configurations that minimize
the violation of performance SLO targets in terms of 95th-
percentile latency. It is noteworthy to mention that VRebalance
does not require prior knowledge about the application or
expensive workload profiling. Furthermore, it meets the perfor-
mance SLO targets for stream processing workloads even for
changing system dynamics. Experimental results with an open-
source IoT benchmark (RIoTBench) [16] and a representative
stream processing engine (Apache Storm), demonstrate the
superior performance, resource efficiency and adaptiveness of
our resource management system.

Our key contributions are:
• We analyze the limitations of existing SPEs (i.e Apache

Storm) in quickly adapting the parallelism of a running
stream processing topology and highlight its resource
inefficiency in the Edge settings.

• We design and develop a SLO-aware virtual resource
orchestrator based on BO that can quickly identify and
deploy near-optimal resource configurations for stream
processing applications at the Edge.

• We develop an algorithm for coordinated resource con-
figuration of concurrent stream processing applications
based on suggestions collected from multiple BO models.
Furthermore, we handle dynamic workloads by efficiently
utilizing BO models corresponding to different ranges of
workload intensity.

• We implement and evaluate our system utilizing a
laboratory-sized real testbed as an edge server using the
RIoT benchmark. By comparing a hill-climbing method
with BO, experimental evaluations demonstrate that the
latency SLO violations were reduced from 31.3% to
11.3% at the exploration phase of BO and to 8.5%
at the exploitation phase of BO. Compared to Storm’s
default resource scaling technique, our method decreases
the SLO violation rate by at least 83.7%.

The remainder of the paper is organized as follows. Section
II discusses the background of stream processing model and
describes the challenges that we address. Section III elaborates
the key design and implementation details. Section IV details
the testbed setup and experimental results. In Section V, we
present the related work. Finally, conclusions are drawn in
Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we provide background on stream processing
models, limitations of existing SPEs in Edge settings, and the
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challenges of choosing the best resource configuration for a
stream processing topology.

A. Edge Stream Processing Model

1) Edge Data Stream Model: We consider edge SPEs
on an IoT Gateway, similar to the model considered in a
recent work [17]. These IoT Gateways have limited computing
resources compared to the Cloud; however, are with more
resources than those available to embedded, wireless sensor
networks, etc. As shown in Fig. 1, data streams produced
by IoT devices are processed by an IoT Gateway running
multiple topologies. Stream processing follows the dataflow
programming model [18], where each application is packaged
as a directed acyclic graph (DAG) data structure, called a
topology. Individual data points (tuples) flow through a topol-
ogy from sources to sinks. Each inner node is an operation
that performs arbitrary computation on the data, ranging from
simple filtering to complex operations like Machine Learning
(ML)-based classification algorithms. We assume that each
application has an SLO target in terms of the 95th-percentile
end-to-end latency of data tuples flowing through the topology.

2) Stream Processing Engines: In this paper, we use
Apache Storm as a representative SPE. Storm is a distributed
real-time computation system to process unbounded streams of
data. A Storm topology is a DAG of spouts and bolts, where a
spout is a source of data streams and a bolt is a data processing
unit. Storm is typically deployed on a cluster using the master-
worker architecture as shown in Fig. 2. On the master node,
a process called Nimbus is responsible for distributing code
within the cluster, assigning tasks to workers, and monitoring
for failures. A worker node consists of a supervisor process
and some worker processes. The supervisor listens for work
assigned to the worker node and starts and stops worker
processes as necessary. A worker process belongs to a specific
topology and may run one or more executors (threads) for one
or more components of this topology. An executor may run
one or more tasks belonging to a particular component.

3) Containerization of SPE: As shown in Fig. 2, we deploy
a Storm cluster composed of Docker containers running on an
IoT Gateway, where each container serves as a worker node.
This deployment methodology benefits from the resource iso-
lation and fine-grained resource control features provided by
container-based virtualization while incurring minimal over-
heads as compared to hardware virtualization.
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Fig. 3: Storm rebalance with and without executor scaling.
Both case rebalanced from 3 to 5 workers at time 20 minutes
and from 5 to 7 workers at time 40 minutes. ETL topology
from RIoTBench benchmark suite is used to process CITY
dataset. SLO target is 200ms. All workers is running the same
node equipped with 4 CPU cores and 8GB memory.

B. Limitations of Existing SPEs in Edge Settings

Although existing SPEs provide the mechanism to change
the parallelism of a running topology for dynamic resource
allocation, they can be quite inefficient. Changing the paral-
lelism of a running topology means that users can increase
or decrease the number of worker processes and/or executors
without a restart of the cluster or topology. This act is called
rebalancing. Rebalancing a running topology is associated with
significant latency as it involves checkpointing the dataflow,
deactivating the topology for the certain duration, redistribut-
ing the worker processes evenly around the cluster, and
restoring the topology from the checkpoint. The rebalancing
latency can get even worse with increasing workload intensity.
To demonstrate this limitation of existing SPEs, we conducted
an experiment using a containerized Storm cluster running on
a prototype testbed (more details in Section IV-A). We used
the ETL(Extraction, Transform, and Load) topology from the
RIoTBench benchmark suite [16] to process the “Sense your
City” [19] dataset. The workload intensity was set to 100K
tuples per minute.

First, we used Storm’s default rebalancing mechanism to
scale up the number of workers from 3 to 5 at time 20 minutes,
and from 5 to 7 at time 40 minutes. Initially one executor was
spawned for each component. The total number of executors
was not changed. As shown in Fig. 3, Storm rebalancing was
able to slowly improve the 95th-percentile end-to-end latency
of this application. However, it took several minutes to take
effect. This is mainly due to the overheads associated with
rebalancing the topology. Next, we repeated the experiment but
this time we also doubled the number of executors for selected
components with increase in the number of workers. In this
case, the tail latency did not show any improvement. This is
because having more executor threads per worker increases
thread-scheduling overheads in a resource-constrained worker.

C. Challenges of Resource Allocation

Due to limited Edge resources, it is important to allocate
resources efficiently while satisfying the SLO target of each
application (topology) running on the Edge node. This is a

challenging problem. Since each component of a topology
performs a different operation and have different resource
demands, arbitrary allocation of resources can easily violate
the SLO target. There are strawman solutions for finding an
optimal solution. One is to model the application performance
and then pick the best configuration. However, this method-
ology has poor adaptivity. Building a model that works for a
variety of applications and configurations can be difficult and
tedious because prior knowledge of the internal structure of
a specific application is needed to make the model effective.
Another way is to exhaustively search for the best config-
uration without relying on an accurate performance model.
However, this methodology has a high overhead. When the
running environment changes (a new application is added or
the workload is changed for one of the applications), we must
search again to make sure that our SLO target is not violated.

III. METHODOLOGY

In this section, we present the key design principles and
implementation of VRebalance — an adaptive SLO-aware
system that aims to provide a strong performance guarantee
for Edge stream processing.

A. VRebalance: Overview

VRebalance adopts the following design principles to over-
come the limitations of existing SPEs and the challenges of
Edge resource allocation. (1) “Be frugal and be agile”. In
a resource-constrained environment, it is important to allocate
only the minimum resources required to meet the SLO target
of each application. This will allow more applications to ben-
efit from the limited resources. Furthermore, there should be
minimum delay between resource allocation and performance
improvement. VRebalance focuses on dynamically configuring
resource usage limits of containerized SPE workers to meet
the SLO targets instead of scaling the number of workers. This
approach is not only resource-efficient but also agile since it
completely avoids the latency of rebalancing a topology. (2)
“Use models that are just accurate enough to separate
near-optimal solutions from the rest”. This strategy allows
VRebalance to quickly identify good resource configurations
for concurrent stream processing topologies without requir-
ing a priori knowledge about them or conducting expensive
workload profiling. In particular, it uses BO to intelligently
explore efficient resource configurations while observing their
respective performance.

B. Problem Formulation

Considering an Edge stream processing application and
workload, we aim to find a near-optimal resource configuration
that satisfies the specified SLO target while minimizing the
amount of resource allocated. In this paper, resource config-
urations include the CPU usage limits of containerized SPE
workers and the SLO target is set in terms of the end-to-end
tail latency of an application. We did not include Memory as a
candidate for dynamic resource configuration. This is because
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Fig. 4: An illustration of BO procedure over 3 iterations that minimize an objective function C(x⃗) with a 1-dimensional
continuous input.

to achieve low latency an SPE must be able to perform mes-
sage processing without having costly storage operations in the
critical processing path [20]. Exploring Memory configuration
online could lead to thrashing or other unpredictable behaviors.

We formulate the problem as follows:

minimize
x⃗

C(x⃗) = max (tail latency, target− tail latency)

×
∑︂

x⃗

subject to
∑︂

x⃗ ≤ CPU total,
(1)

where C(x⃗) is the total cost associated with resource con-
figuration x⃗ and CPU total is the maximum available CPU
resource at the edge server. x⃗ is a vector of normalized CPU
usage limits of containerized SPE workers. For configurations
that meet the SLO target, the cost function C(x⃗) accounts for
possible over-provisioning of resources. If SLO target is not
met, then C(x⃗) is dominated by the measured tail latency.

C. BO
BO is a method of optimizing an expensive black-box func-

tion [21], which is well-suited for VRebalance. Here, black-
box implies to the unknown relationship between the input and
objective function; however, the relationship can be derived
through observations (experiments, probing, monitoring, etc.).
In the context of VRebalance, evaluation of the objective
function involves applying a candidate resource configuration
and measuring its impact on the end-to-end tail latency of an
application. This is indeed an expensive process as exploring
resource configurations iteratively can either lead to SLO
violations due to under-provisioning or resource wastage due
to over-provisioning. The strength of BO lies in finding near-
optimal solutions in only few iterations.

As BO explores the search space by evaluating the objective
function with different input samples (configurations), it builds
a probabilistic model (aka surrogate model) for the objective
function to estimate the performance of different configura-
tions. This probabilistic model is iteratively updated based on
subsequent evaluations of the objective function. As shown
in Fig. 4a, the dashed red line is the actual function C(x⃗).
BO computes a confidence interval, which is marked green,
with three observed points. The green solid line shows the
expected value of C(x⃗) and the value of C(x⃗) at each input
point x⃗ falls within the confidence interval of 95% probability.

The confidence interval is updated (posterior distribution in
Bayesian Theorem) after new samples are taken in Fig. 4b
and Fig. 4c. The estimate of C(x⃗) improves as the area of the
confidence interval decreases.

Next, BO explores different neighborhoods of the search
space with the help of a pre-defined acquisition function,
which strikes a balance between “exploration” (exploring
the areas of the search space with large uncertainty) and
“exploitation” (exploiting the non-sampled areas where the
predicted mean value of the surrogate model is high). In Fig. 4,
the blue dash line with a blue area is the acquisition function.
The point x⃗ with the highest value of the acquisition function
is chosen as the next sampling point. Note that as more points
are sampled, the surrogate model is updated and the acquisition
function is reevaluated after each sample.

D. Design Options and Optimizations

Surrogate Model. We use Gaussian Process (GP) as the
surrogate model to define the prior/posterior distribution over
the objective function. GP is a non-parametric model that
provides probability distribution over all the possible func-
tions that are consistent with the observed data. Although
the prior/posterior in BO can be defined by a variety of
conjugate distributions, we pick GP because it is flexible
enough to approach the actual function given enough data
samples, and is also computationally tractable. Furthermore,
it is broadly accepted as a surrogate model [22]–[24]. Based
on our empirical results, we choose RationalQuadratic [21]
kernel as the covariance kernel function with GP model. The
covariance function determines the similarity between two
resource configurations. We use the terms surrogate model
and BO model interchangeably. Acquisition function. There
are various strategies for designing an acquisition function.
Popular methods include: probability of improvement (PI),
expected improvement (EI) and upper confidence bounds
(UCB) [24]. We use EI to design an acquisition function
so that it picks the next sampling point with the aim of
maximizing the expected improvement over the current best.
EI is chosen for VRebalance as it provides practical balance
between exploration vs. exploitation at a low evaluation cost.
Other options such as PI often gets stuck in local optima, and
UCB requires additional parametric tuning [24].



Expected improvement is defined as:

EI(x⃗) = E
[︁
max

{︁
f(x⃗)− f(x⃗+), 0

}︁]︁
, (2)

where f(x⃗+) is the value of the best sample (until now)
and x⃗+ is the location of that sample i.e. f(x⃗+) =
minx⃗ {C(x⃗)|x⃗ ∈ Xt}. Therefore, we can calculate EI as [25]:

EI(x⃗) =

{︃
(µ(x⃗)− f(x⃗+))Φ(Z) + σ(x⃗)ϕ(Z) ifσ(x⃗) > 0

0 ifσ(x⃗) = 0,
(3)

where

Z =

{︄
(µ(x⃗)−f(x⃗+))

σ(x⃗) if σ(x⃗) > 0

0 if σ(x⃗) = 0,
(4)

where µ(x⃗) and σ(x⃗) are the mean and the standard deviation
of GP posterior distribution at x⃗, respectively. Φ(Z) and ϕ(Z)
are the cumulative distribution and probability density function
of the (multivariate) standard normal distribution, respectively.

Reducing the Search Space. To facilitate faster BO con-
vergence, we reduce the search space through quantization
of resource configuration. We use a quantization step of 50
millicores for the CPU usage limit of a containerized SPE
worker, where 1000 millicores is equivalent to 1 CPU core 3.
Furthermore, we set the minimum CPU limit as 150 millicores
and maximum CPU limit as 4,000 millicores. The maximum
CPU limit represents the total CPU resource available at the
edge server. As a result of the quantization, the overall search
space is reduced from 3, 850 × n configurations to 77 × n
configurations, where n is the number of SPE workers.

Exploration, Exploitation, and Stopping Condition. The
stopping condition for BO search in VRebalance is defined
as follows. After observing Nmin resource configurations,
VRebalance switches from exploration to exploitation phase.
In the exploitation phase, VRebalance starts to select the
best configuration observed so far. However, if there are two
consecutive SLO violations, VRebalance starts BO search
again until a total of Nmax resource configurations have
been observed. After observing Nmax resource configurations,
VRebalance will stay in the exploitation phase even if SLO
violations occur. Such a situation indicates that there is not
enough resources available, and further exploration of resource
configuration can be counter-productive. In current setup, we
empirically choose Nmin and Nmax as 5 and 16 respectively.

Handling workload changes. The overheads associated
with BO exploration can be significant if the workload
changes very often. This issue is partly addressed by the
fact that VRebalance switches from exploration to exploita-
tion phase after observing Nmin resource configurations, and
remains in this phase until it observes two consecutive SLO
violations. Hence, small fluctuations in the workload will not
trigger unnecessary BO search. Instead, when the workload
intensity changes drastically, the BO model gets updated with
new observations. This enables BO to find good resource
configuration that meets the SLO target in the face of a

3https://kubernetes.io/docs/concepts/configuration/
manage-resources-containers/
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Fig. 5: The Architecture of VRebalance.

dynamic workload. For further speeding up BO adaptation to
changing workload, we use separate BO models for different
ranges of workload intensity. Each range of workload intensity
is considered as a workload level (l). VRebalance keeps track
of the number of resource configurations observed at each l.
When the workload changes back to a previously seen level,
VRebalance reuses the corresponding BO model.

E. Putting It All Together

Fig. 5 shows the interaction between various components
of VRebalance and containerized SPE workers running on
an Edge node. Apache Storm is used as a representative
SPE in our work. We consider multiple stream processing
applications sharing the Edge node, where each application
(topology) consists of a group of SPE workers. We assume
that each container hosts only one SPE worker. We will refer
to various line numbers in Algorithm 1 to describe the overall
operation of VRebalance. The Performance Monitor collects
data (line 7) for each application running on the Edge server
at a sampling interval of one minute. The performance data
includes the average throughput and the end-to-end tail latency
of concurrent stream processing workloads. The throughput
of a topology is measured by counting the number of tuples
produced by the farthest downstream components. The end-
to-end latency of a topology is measured by assigning each
tuple a unique ID and calculating the difference between their
timestamps recorded at the spout and the sink. It is possible
for VRebalance to operate in the exploration phase for some
applications, while operating in the exploitation phase for oth-
ers. This depends on the number of resource configurations or
SLO violations observed so far (lines 8-12). In the exploration
phase (lines 9-10), the Bayesian Optimization Engine updates
the workload-specific BO model for an application a based
on observed data, and uses its acquisition function to fetch a
resource configuration candidate cai to be evaluated next. In
the exploitation phase (lines 11-12), VRebalance bypasses the
BO models and selects the best configuration observed so far
for an application at the particular workload level. It also keeps
track of the set of applications A′

i for which it is operating in
the exploitation phase (line 12).

The Co-ordinated Virtual Rebalancer calculates the total
CPU resources to be allocated CPUfinalized for the set
of applications A′

i (line 14). These applications are given

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/


Algorithm 1: VRebalance Algorithm.
1: Let A′

i denote a set of apps whose resource config(CPU
limit for each container) at
interval i has been finalized.

2: for i = 1 to infinity do
3: Ai ← {a|app running on the edge node};
4: A′

i ← Ø;
5: for all a ∈ Ai do
6: l← workload level(tuple per minute) of app a;
7: p← performance score based on latency and

throughput of app a;
8: if BO iterationl

a < Nmin or
(BO iterationl

a < Nmax and
two consecutive SLO violations occur) then

9: use p and ci−1
a to update BO modella;

10: cia ← ask next config from BO modella
based on Eq.1;

else
11: cia ← best config observed for workload l;
12: A′

i ← A′
i ∪ {a};

end
13: end for
14: CPUfinalized ←

∑︁
a∈A′

i
cia;

15: CPUavail ← CPU total − CPUfinalized;
16: CPUneed ←

∑︁
a∈Ai−A′

i
cia;

17: for all a ∈ Ai do
18: if CPUneed > CPUavail and a /∈ A′

i then
19: c← (cia/CPUneed)× CPUavail;

else
20: c← cia;

end
21: use c to update the resource config of app a;
22: end for
23: end for

a higher priority for resource allocation than others. This
is because good-enough resource configurations are already
found for these applications. Then, it calculates the amount
of CPU resources that would still be available after allocating
CPUfinalized, and the total CPU resources needed CPUneed

by the remaining applications (lines 15-16). If CPUneed is
greater than the available resources, resources are allocated
to each remaining application in proportion to its need
(lines 18-19). If SLO violations continue to occur over
multiple intervals, adding more nodes may be required.
We explore resource management with multiple edge nodes
in the future work. The resource configuration of each applica-
tion(/sys/fs/cgroup/cpu,cpuacct/kubepods/burstable/pod/cpu.cfs
quota us) is updated through cgroup CPU subsystem4.

IV. EVALUATION

A. Experimental Testbed

1) Edge node Configuration.: We setup a prototype testbed
to represent an IoT Gateway by using a Ubuntu 16.04 machine

4https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt
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Fig. 6: DAG adapted from RIOTBench.

equipped with 4 CPU cores and 8 GB RAM. We used
Docker container engine (Version 18.06.2-ce) and Kubernetes
(Version 1.18.2) container orchestration system to deploy an
Apache Storm cluster composed of 12 containers. Two of the
containers were used for Nimbus and Zookeeper, while the
remaining containers were running as worker nodes. In our
experiments, the default CPU limit of each container was set
to 400 millicore (equal to 0.4 CPU core) and the requested
CPU was 200 millicore.

2) Datasets.: We used two IoT datasets including Sense
your City [19] and NY city taxi trips [26]. Sense your City
(CITY) is a real-world Smart Cities data stream that was
collected from crowd-sourced sensors deployed across seven
cities in three continents, with about 12 sensors per city [16].
Six timestamped observations including temperature, humid-
ity, ambient light, sound, dust and air quality, are reported
every minute by each sensor along with metadata on sensor ID
and geolocation. The New York City taxi trips (TAXI) data
offers a stream of smart transportation messages that arrive
from 2M trips taken in 2013 on 20,355 New York city taxis
equipped with GPS. Each trip provides the pickup and drop-off
dates, the taxi and license details, the start and end coordinates
and timestamp, the metered distance records by the taximeter,
the taxes, and tolls paid. We used aggregated data from January
2013 for our benchmark runs [11], [27]. Throughout the paper,
we used CITY dataset to generate a static workload and TAXI
dataset to generate a dynamic workload.

3) Benchmarks.: We used the RIoTBench benchmark suite
[16], which includes four IoT applications based on common
IoT patterns for data pre-processing, statistical summarization,
and predictive analytics. We choose two applications ETL
(Extraction, Transform, and Load) and PRED (Predictive
Analytics) to analyze our datasets as shown in Fig. 6. We
do not use the other two applications (STATS and TRAIN)
because they are integrated with public cloud services and
are unsuitable for low-latency Edge stream processing. To
produce a dynamic workload in our experiments, we modified
RIoTBench’s input generator as follows. At each one minute
interval, the input generator feeds multiple fixed-sized batches
(10 tuples) of data into Storm’s source task (Spout). These
data batches are interspersed with random delays that follow
a Poisson distribution [28]. We change the total number of
data batches at each interval to change the workload intensity.

4) Measuring tail latency: The simplest way to calculate
the 95th-percentile latency is to sort all the measured latencies

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt
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per tuple, and take the 95/100th value. However, this method
has a significant overhead when the workload arrival rate is
high. We address this issue by using a histogram approxima-
tion method [29]. Instead of storing and sorting all values, we
bin them into groups. Our sampling interval is one minute so
latency values will be in the range of 0 to 60,000ms. We can
use histogram bins that double in size from 1ms to 60,000ms,
for example(0-1ms], (1,2ms], (2,4ms], ..., (512, 1024ms], etc.
Extending to 65536ms (216) would give us 18 bins. Each bin
will record the count of values that belong to its range. Thus
we only need to store 18 counts, instead of the unbounded
latency values. Table I illustrates this method. Here, the first
column represents the range of the bin, and the second column
is the count of values within that bin. The third column
shows a running total of counts seen until that row. Finally,
the eCDF(x) represents the empirical cumulative distribution
function, which is calculated as the running total divided by the
sum of all counts. In this example, the 95th-percentile latency
lies between 128ms and 256ms. We use linear interpolation to
find its exact position (the value is 136.7ms) in the bin. Since
the accuracy of this method relies on the number of bins, we
doubled the number of bins (from 18 to 36). This method gives
us a good trade-off between speed and accuracy.

B. Performance Comparison under Static Workload

We evaluate the performance and resource efficiency of
our BO-based resource management system under a static
workload of 100k tuples per minute using CITY dataset and

TABLE I: Example for histogram bin.

Bin Range Count Total eCDF(x)
... ... ... ...

(16, 32ms] 2026 5435 58.8%
(32, 64ms] 1269 6704 72.5%
(64, 128ms] 2061 8765 94.7%

(128, 256ms] 403 9168 99.1%
... ... ... ...
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Fig. 10: Resource usage comparison under static workload.

ETL topology. The SLO target for the end-to-end tail latency is
set to be 200 ms. For performance comparison, we use the hill
climbing-based search method with different step sizes (HC-
50 and HC-200) to find the optimal resource configuration.
We also use Storm Rebalance without executor scaling (SR1)
and with executor scaling (SR2). Both SR1 and SR2 adds one
worker to the Storm cluster every 30 minutes.

Fig. 7 shows that BO outperforms all other methods in
quickly meeting the SLO target. As shown in Fig. 8, it
decreases the SLO violation rate by at least 34% compared
to hill climbing method. This is because hill climbing method
suffers from decision making based on local behavior of
the objective function. On the other hand, BO makes more
informed decisions by modeling the global behavior of the
objective function based on sampled data. Compared to the
Storm Rebalancing method, BO decreases the SLO violation
rate by 83.7%. SR1 and SR2 are too slow in reducing the tail
latency due to overheads associated with rebalancing the ETL
topology whenever new workers are added. It is also worth
mentioning that increasing the number of workers increases
the inter-process communication cost as well. Unlike Storm
Rebalance, our method which updates Container CPU limits
has an immediate impact on the tail latency.

Fig. 9 shows that the throughput achieved with the various
methods are similar for most of the experiment duration.
However, in the beginning of the experiment, BO causes the
throughput to drop on few sampling intervals. This is due to
some aggressive configuration changes made by BO during
initial exploration phase. Fig. 10 shows that BO is comparable
to hill climbing method and significantly better than Storm
Rebalancing method in terms of resource efficiency. This is
because unlike Storm Rebalancing, both BO and hill climbing
methods perform fine-grained resource allocation instead of
scaling the number of workers.

C. Performance Comparison under Dynamic Workload in the
presence of Multiple Applications

Next, we evaluate BO’s ability to meet the SLO targets
of multiple stream processing applications hosted on an Edge
node under dynamic workload conditions. We run four appli-
cations (ETL-TAXI, ETL-CITY, PRED-CITY, PRED-TAXI)
from the RIoTBench benchmark suite using different topology
and dataset combinations. As shown in Fig. 11 (a), ETL-TAXI
and PRED-TAXI face a dynamic workload, whereas ETL-
CITY and PRED-CITY face a static workload. The total work-
load duration is 48 hours with repeating workload patterns.
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Fig. 11: Using BO to find near-optimal resource configurations under dynamic workloads.
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Fig. 12: Tail latency under dynamic workload with static
resource allocation and hill-climbing methods.
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The SLO target latency is set to 200 ms for each application.
For performance comparison, we use the hill climbing methods
HC-50, HC-200 and static resource allocation methods that set
the CPU limit of each worker to 400 millicores (CPU-400) and
4000 millicores (CPU-4000) respectively.

Fig. 11 (b) and (d) show that BO is able to adapt the
resource configuration of ETL-TAXI and PRED-TAXI in
response to dynamic workload variations. Although there are
some SLO violations during the exploration phase, the ex-
ploitation phase provides very strong performance guarantee.
In the cases of ETL-CITY and PRED-CITY shown in Fig. 11
(c), there are minimal SLO violations in both exploration and
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Fig. 14: Total CPU limit for each app with hill climbing.

exploitation phases. This is because it is easier to quickly
find near-optimal configurations under static workloads. Note
that some of the SLO violations could not be avoided due
to limited resources available on the Edge node. Such cases
can be potentially addressed by using multiple Edge nodes
and increasing the number of workers when needed. This
will be explored in our future work. Due to space limitation,
Fig. 11 (d) only shows the total CPU limits allocated to each
application instead of showing the breakdown of CPU limits
for its individual workers.

Fig. 12 shows the impact of hill climbing and static resource
allocation methods on the end-to-end tail latency of the four
applications. The SLO violation rates for all methods are
compared in Fig. 13. Table II shows the improvement in SLO
violation rate due to BO as compared with HC-200, HC-50,
CPU-4000 and CPU-400 respectively. BO decreases the SLO
violation rate by 62.5% to 75% when compared to the hill
climbing method, and by 64.7% to 88.6% when compared
to static resource allocation method. For CPU-400, ETL-taxi
shows severe SLO violations since it is under-provisioned in
the face of increasing workload. In the case of CPU-4000,
each application has unrestricted access to use the total CPU
resource available in the Edge server when possible. As a
result, the competition for CPU resources and interference
between the applications when facing high workloads cause
several SLO violations. When compared to BO, the hill
climbing methods (HC-200 and HC-50) underperform due to
the lack of a global model for the objective function behavior.
Fig. 14 (a) and (b) show the total CPU limits allocated to
the four applications by HC-200 and HC-50 respectively.

TABLE II: Improvement in SLO violation rate.

vs. HC-200 HC-50 CPU-4000 CPU-400
BO-exploration 63.3% 67% 64.7% 84.3%
BO-exploitation 62.5% 75% 73.4% 88.6%
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Fig. 15: Throughput achieved with different methods under dynamic workloads for ETL-TAXI and PRED-TAXI, and static
workloads for ETL-CITY and PRED-CITY.
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Figure 15 shows that each method including BO, HC-200,
HC-50, CPU-4000 and CPU-400 achieve similar throughput
for the four applications.

D. Computational Overhead Analysis

We analyze the computational overhead of our VRebalance
system, which runs as a daemon process on the Edge node
and interacts with containerized SPE workers as illustrated by
Fig. 5 and Algorithm 1. Fig. 16 shows the running time for
performance monitoring, BO execution and resource recon-
figuration at each sampling interval. These overheads increase
with the increase in workload intensity and the number of
applications running on the Edge node. The running time for
performance monitoring is dominated by data collection time
and the time taken to calculate the end-to-end tail latency for
each application. Nevertheless, the overall computational over-
head of VRebalance remains much smaller than its sampling
interval even at a high workload intensity. In terms of resource
usage, VRebalance brings an additional 4% CPU overhead and
its memory usage is less than 200Mb.

V. RELATED WORK

A. Resource Management in Edge Computing

Xu et al. [30] proposed an auction-based mechanism for re-
source contract establishment, and a latency-aware scheduling
technique that maximizes the utility for both Edge computing
infrastructures and the service providers. In a recent work,
Araldo et al. [31] implemented a polynomial-time resource
allocation algorithm that allows the Edge network operator
to maximize its utility, which can be inter-domain traffic

savings, improved QoE (Quality of Experience) for users, or
other metrics of interest. Wang et al. [32] explored client
workload reduction and server resource allocation to manage
application quality of service in the face of contention for
cloudlet resources. Unlike these works that focus on resource
allocation in a set of small-scale micro-datacenters (cloudlets),
this paper addresses the challenges of meeting the performance
SLO targets for real-time stream processing in a resource-
constrained Edge node (e.g IoT Gateway), which are one-hop
away from IoT devices.

B. Auto-scaling Techniques for Stream Processing

These works focused on auto-scaling distributed stream pro-
cessing systems by monitoring performance model of stream-
ing dataflows [13], [33]. Kalavri et al. [14] present an auto-
matic scaling controller that relies on a general performance
model of streaming dataflows and lightweight instrumentation
to estimate the true processing and output rates of individual
dataflow operators. Unlike these works that mainly focus on
removing bottlenecks in a single stream processing topology
to maximize the average performance, we develop a BO-
based resource management system that meets the end-to-end
tail latency targets of concurrent stream processing topologies
through agile and fine-grained system-level resource control.

C. Task-scheduling for Stream Processing

R-Storm [34] handles the problem of task assignment in
Apache Storm by providing custom resource-aware scheduling
schemes. Shieh et at. [35] propose a topology-based scaling
mechanism for Apache Storm. Khare et al. [36] present an
algorithm that first transforms any arbitrary stream processing
DAG into an approximate set of linear chains to predict
the placement of operators. These studies are complementary
to our work where we focus on the resource management
of stream processing workloads while being agnostic to the
underlying task scheduling policies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present VRebalance, a virtual resource
orchestrator that provides an end-to-end performance guaran-
tee for concurrent stream processing workloads in a resource-
constrained Edge computing environment. Our main contri-
butions are in the design and implementation of an agile
and efficient resource management system based on BO.



VRebalance is able to coordinate resource configuration of
concurrent workloads and meet their performance SLO targets
even for changing system dynamics. Experimental results with
RIoT benchmark and Apache Storm deployed on a Edge node,
demonstrate the superior performance, resource efficiency and
adaptiveness of our BO-based resource management system.
In the future, we will extend this work to include co-operation
between multiple Edge nodes and explore various stream
processing engines apart from Apache Storm.
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