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Abstract 
A constitutive model for niobium with the effect of dynamic strain aging is proposed. The crystal structure of metals 
hugely influences the dynamic strain aging phenomenon and causes considerable alterations in the material’s macroscopic 
mechanical responses. Dynamic strain aging needs to be accounted for in a constitutive model to obtain accurate predictions 
of material’s thermo-mechanical behaviors during deformation. The proposed constitutive model attempts to describe the 
material’s flow stress responses during deformation by separating the flow stress contributions into the athermal component, 
thermal component, and dynamic strain aging component. Two different mathematical equations are proposed to model the 
dynamic strain aging component. The proposed model attempts to describe the mechanical response of niobium for a wide 
range of strain rates: from quasi-static loading ( 𝜀̇ = 0.001 s

−1 ) to dynamic loading ( 𝜀̇ = 3300 s
−1 ) across the temperature 

ranges 77 K–800 K.
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1  Introduction

Dynamic strain aging (DSA) is a phenomenon that induces 
strain hardening in metallic materials at specific tempera-
ture ranges. Strain rate and temperature are the main factors 
that influence flow stress during the deformation process. 
A rise in temperature generally causes a decline in the flow 
stress. However, there are temperature ranges where flow 
stress increases with the increase in temperature as shown 
in Fig. 1. As the temperature continues to rise, flow stress 
increases and then starts to decline. As a result, a bell-
shaped peak is formed. The maximum stress caused by DSA 
is dependent on the strain rate, total strain, and the tem-
perature range where DSA occurs. In other words, DSA is 
observed at distinct combinations of temperature and strain 
rate ranges. From the data in Nemat-Nasser and Guo [1], 
DSA was observed at 400K≲T≲800K under 𝜀̇ = 0.001 s−1 , 
but it was not observed at all at this temperature range 
under 𝜀̇ = 3300 s−1 and 𝜀̇ = 8000 s−1 . The temperature range 
where DSA manifests itself is heavily affected by the crystal 

structure of metals. It is also observed that metals with iden-
tical crystal structure even may have different responses.

Nemat-Nasser and coworkers have conducted exten-
sive studies of the thermomechanical behaviors of body-
centered cubic (bcc) and face-centered cubic (fcc) metals 
[1–4]. This work focuses on the experimental data from the 
study of DSA on niobium conducted by Nemat-Nasser and 
Guo [1]. Samples of niobium were subjected to quasi-static 
and dynamic loading under a large range of temperatures 
to investigate the plastic deformation mechanisms. Nemat-
Nasser and Guo [1] proposed a constitutive model in their 
work to describe niobium’s macroscopic behaviors under 
dynamic loading, however, this model did not consider the 
effect of DSA. To our knowledge, the plastic deformation of 
niobium with the consideration of DSA over a wide range 
of strain rates (quasi-static and dynamic) and temperatures 
has not been captured with a reasonable constitutive model. 
The constitutive model for niobium presented in this work 
includes considerations for thermo-mechanical behavior, the 
behavior of dislocations, separation of the flow stress into 
three components [DSA (σD), thermal (σth), and athermal 
(σa)], and application of the probability function to correlate 
model predictions with the experimental results. Using the 
experimental work conducted by Nemat-Nasser and Guo [1], 
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the components of the proposed model were adjusted and 
substantiated to produce accurate model predictions.

Meanwhile, dislocation density tends to decline as tem-
perature increases. However, this is not always the case, as 
shown in the experiments by Keh et al. [5] and model pre-
dictions by Bergstrom and Roberts [6]. Dislocation density 
can be described as a function of the equivalent plastic strain 
[6]. Also, the terms U − A (U: dislocation immobilization 
or annihilation rate; A: annihilation rate of the mobile dis-
locations) and Ω (probability of annihilation of immobile 
dislocations) are heavily dependent on the temperature of the 
material during the deformation process [5, 6]. These terms 
are further defined in Sect. 2.2. A probability density-shaped 
function is employed to provide a more reasonable model for 
the effects of DSA, and the component σD is described as a 
function of three factors: temperature T, equivalent plastic 
strain ɛp, and its rate 𝜀̇p ; this is also further described in 
Sect. 2.2. The range of elastic deformation in the data used 
for this work is assumed to be negligible, therefore, ɛ = ɛp 
and 𝜀̇ = 𝜀̇p are assumed.

The model developed by Voyiadjis and Abed (VA model) 
is used in this study to describe the athermal and thermal 
components of the constitutive model without DSA, i.e. 
σVA = σa + σth [7]. To account for the DSA component, two 
mathematical models, ‘Proposed Model I (PM I)’ and ‘Pro-
posed Model II (or PM II)’ will be implemented. The proposed 
models include the three components discussed previously, 
i.e. �PMI,II = �a + �th + �D. This paper will present the two 
models and describe their development. Section 2 presents 
the mathematical terms in the proposed models for the DSA, 
thermal and athermal components. The parameters used to 
describe Niobium’s physical properties used in the PM I and 
PM II are discerned in Sect. 3 using the experimental data 

performed by Nemat-Nasser and Guo [1]. Section 4 will 
explore the relationship between true stress and true strain to 
examine the hardening effects of DSA. Section 5 discusses 
the strain rate sensitivity of the DSA phenomenon in niobium.

2 � Constitutive Models

A constitutive model that does not consider the DSA ele-
ment will underestimate the flow stress values in the range 
where DSA occurs. Increases in temperature, such as those 
that may be experienced in dynamic manufacturing processes, 
can result in a greater underestimation of the flow stress. The 
microstructural features of materials may play a crucial role in 
the physical characteristics of DSA as well as the dislocation 
behavior, therefore they have to be accounted for to produce an 
accurate model [8–12]. Section 2.1 formulates the flow stress 
in terms of athermal and thermal components based on the 
physical microstructural properties of the bcc crystal structure. 
The DSA component is formulated in Sect. 2.2 based on the 
author’s previous works [9–12].

The VA model for metals with the bcc structure will be 
applied to characterize the plastic deformation behavior of 
niobium under both quasi-static and dynamic strain rates at a 
wide temperature range. The deformation mechanism in the 
bcc metallic crystalline structures is credited to the relationship 
between the short-range interactions (known as Peierls barri-
ers) caused by the crystal structure and dislocation motions. 
As a result, temperature and strain rate are the main factors that 
determine the thermal yield stress in bcc metals, however, they 
are not major factors in the hardening process. The formulation 
of the proposed models considers the relationships between 
these factors.

2.1 � Athermal and Thermal Stress Components

By studying the dislocation dynamics of metals (interac-
tion, multiplication, and motion of dislocations), accurate 
models with the physical characteristics of the metal can be 
established.

Orowan’s equation describes the plastic shear strain rate, 
𝛾̇p , as follows:

where b represents the Burgers vector, ρm represents the 
density of mobile dislocations, and v represents the average 
velocity of mobile dislocations.

The plastic shear strain rate, 𝛾̇p , is related by Eq. (2) to the 
macroscale plastic strain rate tensor [13].

(1)𝛾̇p = b𝜌mv

(2)𝜀̇
p

ij
= 𝛾̇pMij

Fig. 1   Experimental stress–temperature graph for niobium at a strain 
(ɛ) level of 0.1 with three different strain rates ( 𝜀̇ ) [1]. DSA is only 
observed in the case of 𝜀̇ = 0.001 s

−1
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where 𝜀̇p
ij
 is the macroscale plastic strain rate tensor. Mij, the 

symmetric Schmidt orientation tensor, is described by the 
following expression.

where the term � describes the unit vector in the slip direc-
tion and � the unit vector normal to the slip plane.

By combining Eqs. (1) and (2), the equivalent plastic 
strain rate, 𝜀̇p , can be defined as

where m̄ =
√

2MijMij∕3 expresses the Schmidt orientation 
factor.

Dislocation density and equivalent plastic strain are 
related as follows [14]:

where ka denotes the annihilation factor which is dependent 
on temperature and strain rate. ρi denotes the initial dislo-
cation density and ρ denotes the total dislocation density. 
The multiplication factor, M, is defined by M = 1/bl, and l 
describes the dislocation mean free path.

The term v (average dislocation velocity) can be for-
mulated with the thermally activated mechanism [12]. 
The following expression uses the well-known Arrhenius 
equation [15] to express the average dislocation velocity 
in this work [13].

where v0 is defined as the referential velocity of a dislocation 
and v0 = d∕tw . The term d indicates the average distance 
that a dislocation travels between obstacles. The Boltzman’s 
constant is represented by k and T denotes the temperature 
in Kelvin. The term G represents the activation free energy, 
which may be influenced by the internal structure and the 
shear stress. The activation energy G can be related to the 
thermal flow stress σth as follows [16]:

where p and q describe the Peierls barriers. G0 depicts the 
referential Gibbs energy.

The thermal component σth can be formulated using 
Eq. (7) and the substitution of Eqs. (5) and (6) into Eq. (4) 
as follows:

(3)Mij =
1

2

(
ni ⊗ sj + si ⊗ nj

)

(4)𝜀̇p =

√
2

3
𝜀̇
p

ij
𝜀̇
p

ij
= m̄b𝜌mv

(5)
��

��p
= M − ka

(
� − �i

)

(6)v = v0exp
(
−
G

kT

)

(7)G = G0

(
1 −

(𝜎th
𝜎̂

)p)q

where 𝜀̇0
p
 represents the referential equivalent plastic strain 

rate.
Furthermore, β1 and β2 can be expressed as follows:

where the term ρf denotes the forest dislocation density. The 
coefficients �i(i = 1 − 3) are associated with the annihilation 
rate [12]. In this work, Eq. (9) will not be applied as the 
parameter β1 is assumed to be a constant value.

Movement of dislocations within the crystal lattice is 
blocked by two different types of barriers: short-range bar-
rier and long-range barrier. The thermal activation energy 
can be used to overcome the former but cannot be used to 
overcome the latter. Because of this, several works [4, 17, 
18] were able to demonstrate that the total flow stress (σ) can 
be additively decomposed into the thermal (σth) and athermal 
(σa) components as follows:

For the bcc crystalline structure in the current model, the 
athermal component σa(ɛp) can be defined as a function of 
the equivalent plastic strain ɛp, while the thermal component 
𝜎th

(
𝜀̇p, T

)
 is dependent on equivalent plastic strain rate 𝜀̇p 

and temperature T as follows:

where Ya represents the athermal yield stress, and the terms 
B and n describe the athermal hardening process. The ther-
mal yield stress is represented by the term Yd. In Sect. 3, the 
parameters for niobium employed in Eqs. (12) and (13) will 
be determined.

Further, increases in local temperature can be caused by 
inelastic dissipation through adiabatic heating under high 
deformation rates. Under dynamic loading, the temperature 
variation during the deformation process affects the crystal 
lattice structure of metals, known as thermal softening; this 

(8)𝜎th = 𝜎̂

⎛
⎜⎜⎝
1 −

�
𝛽1T − 𝛽2T ln

𝜀̇p

𝜀̇0
p

� 1

q ⎞⎟⎟⎠

1

p

(9)𝛽1 =
k

G0

ln

⎛
⎜⎜⎜⎝

m̄b2𝜌mv0

b − m̄d
�
𝜆1 − b2𝜆2𝜌m − b𝜆3𝜌

0.5
f

�
⎞
⎟⎟⎟⎠

(10)�2 =
k

G0

(11)� = �a + �th

(12)�a
(
�p
)
= Ya + B�n

p

(13)𝜎th
�
𝜀̇p, T

�
= Yd

⎛⎜⎜⎝
1 −

�
𝛽1T − 𝛽2T ln

𝜀̇p

𝜀̇0
p

� 1

q ⎞⎟⎟⎠

1

p
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effect is considered in Eq. (14). Under quasi-static loading, 
conduction and convection terms can dissipate any inelastic 
heating that may occur. Therefore, the deformation process 
may be assumed as an isothermal process. During dynamic 
deformation, adiabatic heating can cause an increase in the 
temperature; this increase in temperature can be calculated 
as follows [7]:

where β represents the Taylor–Quinney empirical coefficient 
and will be taken as 0.9 in this work as commonly assumed 
for most metals [19]. The term cp represents the specific heat 
at constant pressure, and 𝜌̄ denotes the material density. To 
account for the adiabatic heating during plastic deformation, 
the temperature can be updated using Eq. (14). It is only 
necessary to consider the effects of thermal softening on the 
flow stress for dynamic loading conditions ( 𝜀̇ = 3300 s−1 ). 
Conversely, for quasi-static loading ( 𝜀̇ = 0.001 s−1 ), isother-
mal conditions can be assumed.

2.2 � DSA Stress Components

Below the dislocation, atoms are more spread out, leading 
bulky solute atoms to congregate underneath the dislocations 
forming Cottrell atmospheres. These atmospheres restrict 
dislocations motion and hold them in place. This induces an 
increase in strength as dislocations arrested by their solute 
atmospheres are unable to move, and thus unable to produce 
plastic strain. This is the major process of DSA (Fig. 2). Thus, 
the mechanism that creates the DSA effect is related to the 
interaction between diffusing solute atoms and mobile dis-
locations [20]. During deformation, solute atoms are forced 
through the lattice structure creating mobile dislocations that 

(14)ΔT =
𝛽

cp𝜌̄

𝜀p

∫
0

𝜎d𝜀p

eventually become pinned at other dislocations. These mobile 
dislocations remain pinned until a sufficient level of flow stress 
is achieved to dislodge the dislocation. The amount of time 
that a dislocation remains pinned is known as the waiting time 
(tw). When tw meets the aging time (ta), the strain hardening 
due to DSA occurs [21].

The dislocation density can be related to the equivalent 
plastic strain as follows [6]:

The dislocation density, ρ, in Eq. (15) can be calculated by

where ρ0 represents the initial dislocation density.
Bergstrom and Roberts [6] investigated the effects of 

DSA on flow stress through the comparison of experiments 
and model predictions as shown in Fig. 3. The data shows an 
increase in yield stress at certain temperature ranges caused 
by a combination of a large U – A value and a low Ω value. 
The resulting increase in the flow stress can be expressed by 
substituting Eq. (16) into Taylor’s dislocation model [22] 
( � = ��b

√
� , where α is the material constant and μ is the 

shear modulus).

where σ0 is the strain independent friction stress. This leads 
to the conclusion that DSA is a phenomenon with a proba-
bilistic nature and it may be modeled using probability 
function.

To model the probabilistic nature of the DSA phenomenon, 
the term σD is introduced to model the bell-shaped harden-
ing. By assuming 𝜎D

(
𝜀p, 𝜀̇p, T

)
 , the proposed model can be 

expressed as follows:

where Eqs. (12) and (13) define the two components σa and 
σth respectively.

In this work, the DSA component is modeled by two math-
ematical models. The first one, Proposed Model (PM I), was 
employed in the authors’ previous works [9–12]. The second 
one, Proposed Model (PM II), was put forth by the work of 
Wang et al. [23]. Both models are employed in this work to 
describe the hardening induced by DSA.

(15)
d�

d�p
= U − A − Ω�

(16)� =
U − A

Ω

[
1 − exp

(
−Ω�p

)]
+ �0exp

(
−Ω�p

)

(17)
� = �0 + ��b

{
U − A

Ω

[
1 − exp

(
−Ω�p

)]
+ �0 exp

(
−Ω�p

)}1∕2

(18)
𝜎PMI,II

(
𝜀p, 𝜀̇p, T

)
= 𝜎a

(
𝜀p
)
+ 𝜎th

(
𝜀̇p, T

)
+ 𝜎D

(
𝜀p, 𝜀̇p, T

)

Fig. 2   Schematic atomic positions during dynamic strain aging. The 
circles in orange color represent larger substitutional impurities, 
which are driven across the slip plane during dynamic strain aging. 
(Color figure online)
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2.2.1 � Proposed Model I

In the works [9–12], the Weibull distribution probability den-
sity function characterizes σD with the following expression:

where the terms aD > 0 and bD > 0 define the shape and 
scale of σD. The term W is defined by the temperature where 
the relationship between solute atoms and mobile disloca-
tions becomes the strongest. In this work, power-law func-
tions are applied for aD, bD, and W , i.e. aD

(
�p
)
= ka�

na
p  , 

bD
(
�p
)
= kb�

nb
p  , and W

(
𝜀̇p
)
= kW𝜀̇

nW
p  . However, other types 

of functions can also be used [9, 12]. In Sect. 3, the material 
constants (ka, kb, and kW ) and the law’s exponents (na, nb, 
and nW ) are established by comparing the model with the 
experimental data. The function bD defines the temperature 
range at which DSA hardening occurs.

2.2.2 � Proposed Model II

In Wang et al. [23], the effect of DSA with the identical func-
tional form presented in Eq. (19) was modeled. However, the 
terms, aD, bD and W , were all defined as functions of not only 
the equivalent plastic strain ɛp but also the plastic strain rate 𝜀̇p , 
i.e. aD

(
𝜀p, 𝜀̇p

)
 , bD

(
𝜀p, 𝜀̇p

)
 and W

(
𝜀p, 𝜀̇p

)
 , as follows:

(19)𝜎D
(
𝜀p, 𝜀̇p, T

)
= aD

(
𝜀p
)
exp

[
−

{
T −W

(
𝜀̇p
)}2

bD
(
𝜀p
)

]

(20)aD
(
𝜀p, 𝜀̇p

)
=

(
āD ln

𝜀̇p

𝜁̇
+ āD

)
𝜀n2
p

(21)bD
�
𝜀p, 𝜀̇p

�
=

⎛⎜⎜⎜⎝

T2

ln
𝜀̇p

𝜁̇
− 𝜂 ln

𝜀p

𝜀0
p

⎞⎟⎟⎟⎠

2

where the material constants āD , āD , 𝜁̇ , n3, T1, T2, η, and 
ɛp

0 should be calibrated using experimental data. Detailed 
derivations of these constants Eqs. (20)–(22) are discussed 
in detail by Wang et al. [23].

3 � Calibration and Validation 
for the Proposed Models

3.1 � Athermal and Thermal Stress Components

To accurately calibrate the constants for these models, the 
stress-temperature curves for various strain rates and total 
strain levels from the experimental data are examined. As 
discussed previously, flow stress tends to decrease with a rise 
in temperature until a critical temperature value is reached. 
After this critical temperature is reached, flow stress remains 
constant with temperature. The constant flow stress at this 
critical temperature is indicative of the athermal component 
of the flow stress, σa. By examining the experimental data 
provided by Nemat-Nasser and Guo [1], the material param-
eters (Ya, B, and n) in Eq. (12) can be approximated. The 
parameter Ya represents the athermal flow stress in the elastic 
deformation zone, specifically at the initial yield (ɛp = 0). 
Because this study aims to model the plastic behavior of 
niobium, this parameter is set as zero. Figure 4 shows the 
athermal stress–strain curves for both the model predictions 
and experimental data (after refinement of material param-
eters) for comparison.

To compute the flow stress due to the thermal com-
ponent σth, the total flow stress needs to be divided by 
substituting the athermal component and the DSA 

(22)W
(
𝜀p, 𝜀̇p

)
=

T1

ln
𝜀̇p

𝜁̇
− 𝜂 ln

𝜀p

𝜀0
p

Fig. 3   Experimental data (dots) are graphed against model predictions (lines) as a function of temperature: a lower yield stress, b U − A and c Ω 
[6]
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component, i.e. σth = σ – σa – σD. By determining the 
appropriate values of p and q, the thermal degradation 
mechanism can be adequately modeled. These param-
eters generally fall within the following ranges: 0 ≤ p ≤ 1 
and 1 ≤ q ≤ 2. The values of p = 0.15 and q = 1.95 were 
found to produce the most accurate predictions in the 
present work. The thermal yield stress Yd is defined by 
the flow stress at initial yield point ��p=0. To calculate 
Yd, Eqs. (12) and (13) are employed to plot 

(
��p=0 − Ya

)p

 
versus T

1

q for each strain rate. To determine β1 and β2, 

the 
(
1 −

((
��p=0 − Ya

)
∕Yd

)p)q

 versus 𝜀̇p graphs at cer-
tain temperatures are used.

Utilizing the equations discussed above, the thermal flow 
stress component, σth, can be calibrated by comparing the 
model predictions with the experimental data as shown in 
Fig. 5. It is important to mention that the graphed curve 
remains identical regardless of the magnitude of the plastic 
strain, and this demonstrates that the thermal stress com-
ponent σth in the bcc crystalline structure is independent of 
plastic strain, unlike fcc. The dots used in Fig. 5 are from 
the experimental data and are obtained by subtracting the 
athermal stresses (Fig. 4) from the total stresses. The mate-
rial parameters in Table 1 were obtained for the athermal and 
thermal components of the VA model for niobium.

3.2 � DSA Stress Components

To properly capture the behavior of DSA-induced flow stress 
with the constitutive model, the expressions for aD, bD and 
W must be well defined. The experiments conducted by 
Nemat-Nasser and Guo [1] at the strain rates of 𝜀̇ = 0.001 s−1 
and 3300 s−1 show the bell-shaped curve on the flow stresses 
produced by DSA and the data from these experiments are 
used to define these expressions.

3.2.1 � Proposed Model I (PM I)

The parameters aD and bD can be defined by comparing 
the experimental data with the increase in flow stress due 

Fig. 4   Comparison of flow stress due to the athermal component ver-
sus strain from the experiments [1] and the proposed model

Fig. 5   Comparison of true flow stress versus temperature curves predicted by the VA model (Eq.  13) with data from the experiments [1]: a 
𝜀̇ = 0.001 s

−1 and b 𝜀̇ = 3300 s
−1

Table 1   Model parameters for 
niobium employed by the VA 
model

Ya (MPa) B(MPa) n(−) Yd(MPa) β1 (1/K) β2 (1/K) p(−) q(−) 𝜀̇0
p

(
s
−1
)

0 312.7 0.1856 3500 7.8 × 10−4 2.65 × 10−5 0.15 1.95 1.0 × 10−5
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to DSA predicted by Eq. (19) as revealed in Fig. 6. Fur-
ther information is provided in the authors’ previous works 
[9–12] on defining the parameters’ functional forms. The 
expressions for aD and bD are expressed as functions of the 
equivalent plastic strain as follows:

Conversely, W is a function of the strain rate. The expres-
sion for W can be derived in a similar fashion as used for the 
parameters aD and bD as follows (see Fig. 7):

By combining Eqs. (23), (24) and (25) into Eq. (19), the 
PM1 mathematical expression for the DSA-induced flow 
stress is derived as follows:

In Fig. 8, the hardening caused by DSA can be seen accord-
ing to the variation of temperature at various designated 
strain levels. PM I shows consistency with the experimental 
data captured under both quasi-static loading and dynamic 
loading.

The VA model and PM I predictions of the true stress-
temperature responses are displayed in Figs. 9 and 10. The 
model predictions are compared to the experimental data 
at designated total strains and strain rates. It can be seen in 
the figures that the VA model is not able to account for the 
DSA induced hardening, on the other hand, the PM I shows 

(23)aD
(
�p
)
= 153�0.252

p
(MPa)

(24)bD
(
�p
)
= 10852�−0.192

p

(
K2

)

(25)W
(
𝜀̇p
)
= 915𝜀̇0.0611

p
(K)

(26)

𝜎DPMI

�
𝜀p, 𝜀̇p, T

�
= 153𝜀0.252

p
exp

⎡⎢⎢⎢⎣
−

�
T − 915𝜀̇0.0611

p

�2

10852𝜀−0.192
p

⎤⎥⎥⎥⎦

Fig. 6   Plots of aD and bD versus ɛp with trend lines derived by using a 
power-law form. The dots represent values obtained from the experi-
mental results [1]

Fig. 7   Plot of W as a function of 𝜀̇
p
 . The dots represent values 

obtained from the experimental results [1]

Fig. 8   Comparison between PM I predictions of additional flow stress caused by DSA and the experimental results [1]: a 𝜀̇ = 0.001 s
−1 and b 

𝜀̇ = 3300 s
−1
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sufficient predictions of the effects of DSA under quasi-static 
loading. Additionally, the PM I is also capable of capturing 
the experimental results in dynamic loading cases where no 
DSA effect is observed.

3.2.2 � Proposed Model II (PM II)

For the PM II, the DSA effect is approximated using 
Eqs. (20)–(22) along with Eq. (19). Table 2 summarizes the 
model parameters for niobium used in the PM II.

Fig. 9   The VA model and proposed Model I predictions of total true stress versus temperature displayed along with the experimental results [1] 
at a ɛ = 0.05, b ɛ = 0.1, c ɛ = 0.2, d ɛ = 0.3, e ɛ = 0.4 and f ɛ = 0.5. The quasi-static strain rate, 𝜀̇ = 0.001 s

−1 , is applied
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Fig. 10   The VA model and proposed Model I predictions of total true stress versus temperature displayed along with the experimental results [1] 
at a ɛ = 0.05, b ɛ = 0.1, c ɛ = 0.2, d ɛ = 0.3, e ɛ = 0.4 and f ɛ = 0.5. The dynamic strain rate, 𝜀̇ = 3300 s

−1 , is applied

Table 2   Model parameters for 
niobium employed in the PM II

āD(MPa) ̄̄aD(MPa) n
2
(−) 𝜁̇ (∕s) T

1
(K) T

2
(K) �(−) �0

p
(−)

− 5 10 0.22 6.5 × 1010 − 19,500 − 4000 − 0.35 1.0
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After using the abovementioned equations and the param-
eters from Table 2, PM II is defined as follows:

Similar to PM I, PM II models the bell-shaped DSA harden-
ing effect and can capture the experimental data as shown 
in Fig. 11 under both quasi-static and dynamic loading. The 
difference between PM I and PM II is the ability of PM II to 
predict the DSA behavior beyond T = 800K under dynamic 
loading. The DSA phenomenon cannot be detected by PM I 
in this temperature range. Without further experimental data 
in this temperature range, it is not possible to discern which 
model is correct.

The VA model and PM II predictions of total true stress-
temperature curves are shown in Figs. 12 and 13 concur-
rently with the experimental data under varying strain levels 
and applied strain rates. The flow stress predictions made by 
the PM II follow the experimental data closely including the 
DSA phenomenon under quasi-static loading. Figure 13 shows 
the PM II predictions for DSA-induced hardening beyond 
T = 800K . To verify the validity of the PM II predictions 
in this temperature range, further experimental data will be 
required.

4 � Stress–Strain Curves

To verify the accuracy of the proposed models, this section 
will be dedicated to true stress-true strain behaviors. The 
DSA induced hardening is not captured in the stress–strain 

(27)

𝜎DPMII

�
𝜀p, 𝜀̇p, T

�
=

��
āD ln

𝜀̇p

𝜁̇
+ āD

�
𝜀n2
p

�
exp

⎡
⎢⎢⎢⎢⎣
−

⎧⎪⎨⎪⎩

T −
T1

ln
𝜀̇p

𝜁̇
−𝜂 ln

𝜀p

𝜀0p

T2

ln
𝜀̇p

𝜁̇
−𝜂 ln

𝜀p

𝜀0p

⎫⎪⎬⎪⎭

2⎤⎥⎥⎥⎥⎦

curves produced in the model proposed by Voyiadjis and 
Abed [7].

The true stress versus true strain curves produced by 
both PM I and PM II are compared to the experiments [1] 
in Figs. 14 and 15 for the strain rates of 𝜀̇ = 0.001 s−1 and 
𝜀̇ = 3300 s−1 . When DSA becomes active, the VA model 
does not accurately predict the behavior of the stress–strain 
responses, i.e. 𝜀̇ = 0.001 s−1 with T = 600K in Fig. 14a. On 
the other hand, both the PM I and PM II produce predictions 
that follow the experimental data closely.

Figures 16 and 17 show the flow stress surfaces produced 
by PM I and PM II under quasi-static and dynamic strain 
rates ( 𝜀̇ = 0.001 s−1 and 3300 s−1 ) with a temperature range 
between 0 to 1000 K and a strain range from 0.05 to 0.4. The 
experimental data is illustrated by dots on the figures. The 
proposed models produce surfaces that fall near or mostly 
near the experimental results in all cases.

5 � Strain Rate Sensitivity

DSA is related to spatio-temporal instabilities. To study 
these instabilities, the strain rate sensitivity (SRS), expressed 
by m = 𝜕 log 𝜎∕𝜕 log 𝜀̇ , is regarded as a major factor as 
reported in Fressengeas and Molinari [24]. Materials with a 
negative SRS caused by DSA may cause instabilities quicker 
than materials with a positive SRS. This phenomenon is 
caused by the relationship between strain hardening, tem-
perature sensitivity, and strain rate sensitivity as illustrated 
by Fressengeas and Molinari [24].

In Fig. 18, the total true stress versus strain rate responses 
from the VA model, PM I and PM II are plotted. In this 
figure, the experimental data are represented by dots. The 
VA model illustrates a positive SRS (m > 0), and the PM I 

Fig. 11   Comparison between PM II predictions of additional flow stress caused by DSA and the experimental results [1]: a 𝜀̇ = 0.001 s
−1 and b 

𝜀̇ = 3300 s
−1
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and PM II illustrate a negative SRS in the certain ranges of 
(T , 𝜀̇) . The PM I and PM II give agreeable predictions with 
the experimental data, when DSA is active ( T = 600K ), 
whereas the VA model does not give an accurate prediction.

6 � Conclusions

Constitutive modeling for the plastic deformation of nio-
bium was carried out at a broad range of strain rates and 
temperatures. The proposed model includes the effect of 
dynamic strain aging-induced hardening by means of the 

Fig. 12   The VA model and proposed Model II predictions of total true stress versus temperature displayed along with the experimental results 
[1] at a ɛ = 0.05, b ɛ = 0.1, d ɛ = 0.2, d ɛ = 0.3, e ɛ = 0.4 and f ɛ = 0.5. The quasi-static strain rate, 𝜀̇ = 0.001 s

−1 , is applied
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new mathematical formulations. Some noticeable outcomes 
of the current work are summarized below.

•	 In the experiments regarding niobium, the bell-shaped 
hardening due to DSA in stress–temperature curves was 
observed at a low strain rate ( 𝜀̇ = 0.001 s−1 ), but not 
observed at a high strain rate ( 𝜀̇ = 3300 s−1).

•	 To capture the DSA-induced hardening, two constitutive 
models (PM I and PM II) were proposed in this work, and 
compared with the old model (VA model). It was found 
that the DSA-induced hardening cannot be captured by 
the VA model.

Fig. 13   The VA model and proposed Model II predictions of total true stress versus temperature displayed along with the experimental results 
[1] at a ɛ = 0.05, b ɛ = 0.1, c ɛ = 0.2, d ɛ = 0.3, e ɛ = 0.4 and f ɛ = 0.5. The dynamic strain rate, 𝜀̇ = 3300 s

−1 , is applied
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Fig. 14   Predictions of true stress-true strain curves under quasi-static loading (𝜀̇ = 0.001 s
−1) by the VA model, a PM I and b PM II and experi-

mental data Nemat-Nasser and Guo [1]

Fig. 15   Predictions of true stress–true strain curves under dynamic loading (𝜀̇ = 3300 s
−1) by the VA model, a PM I, b PM II and experimental 

data Nemat-Nasser and Guo [1]

Fig. 16   Flow stress surfaces predicted by the PM I at a wide range of temperature and strain with a 𝜀̇ = 0.001 s
−1 and b 𝜀̇ = 3300 s

−1 . The experi-
mental data are from Nemat-Nasser and Guo [1]
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•	 Both the PM I and PM II, on the other hand, provide 
agreeable predictions with the inclusion of the DSA 
effect at all strain rate ranges.

•	 In addition, both the PM I and PM II were able to capture 
the negative strain rate sensitivity due to DSA, which is 
not the case in the VA model.

•	 Based on the findings of the current work, finite ele-
ment algorithms for the proposed models will be devel-
oped and applied to shear band simulations and necking 
problems to investigate instabilities in the future.
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Fig. 17   Flow stress surfaces predicted by the PM II at a wide range of temperature and strain with a 𝜀̇ = 0.001 s
−1 and b 𝜀̇ = 3300 s

−1 . The 
experimental data are from Nemat-Nasser and Guo [1]

Fig. 18   Graph of true stress as a function of strain rate for temper-
atures, 297  K and 600  K, at ɛ = 0.1. Dots indicate the experimental 
data from Nemat-Nasser and Guo [1]
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