
 

 

1 

 

Melting temperature prediction using a graph neural network model: 
from ancient minerals to new materials 
Qi-Jun Honga*, Sergey V. Ushakovc, Axel van de Walleb, and Alexandra Navrotskyc,* 

aSchool for Engineering of Transport, Energy and Matter, Arizona State University, Tempe, AZ 
85287, USA; bSchool of Engineering, Brown University, Providence, RI 02912, USA; cCenter for 
Materials of the University, School of Molecular Sciences, Arizona State University, Tempe, AZ 
85287, USA 

*Contact authors: Qi-Jun Hong qhong7@asu.edu; Alexandra Navrotsky  <anavrots@asu.edu> 

Author Contributions: Q.H. proposed the main concepts and developed computational tests 
and implementation of the approach. S.V.U. proposed the application of the model to minerals 
datasets. A.v.d.W. and A.N. contributed to conceptual discussions and analysis of results. All 
authors contributed to the writing of the manuscript. 

Competing Interest Statement: The authors declare no competing interests. 

Classification: Applied Physical Sciences  

Keywords: machine learning, melting temperature, mineral evolution 

This PDF file includes: 

Main Text 
Figures 1 to 4 
 

  



 

 

2 

 

 
Abstract 

 

The melting point is a fundamental property that is time-consuming to measure or compute, 

thus hindering high-throughput analyses of melting relations and phase diagrams over large sets 

of candidate compounds. To address this, we build a machine learning model, trained on a 

database of ~10,000 compounds, that can predict the melting temperature in a fraction of a second. 

The model, made publicly available online, features graph neural network and residual neural 

network architectures. We demonstrate the model’s usefulness in diverse applications. For the 

purpose of materials design and discovery we show that it can quickly discover novel 

multicomponent materials with high melting points. These predictions are confirmed by density 

functional theory calculations and experimentally validated. In an application to planetary science 

and geology, we employ the model to analyze the melting temperatures of ~4,800 minerals to 

uncover new correlations relevant to the study of mineral evolution. 

Significance Statement 
 

High temperature materials properties, such as melting temperature, are generally 

challenging to measure or compute rapidly. As a result, melting points are known for less than 10 

% of the ~200,000 known inorganic compounds. Here we employ machine learning methods to fill 

this gap by building a rapid and accurate mapping from chemical formula to melting temperature. 

The model, which we have made publicly available, will facilitate large-scale data analysis involving 

melting temperature in a wide range of areas, including the discovery of refractory materials, the 

design of novel extractive metallurgy processes, the modeling of mineral formation and evolution 

over geological time and the prediction of exoplanet structure. 
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Main Text 
 
Introduction 
 

Melting points play an important role in a wide variety of disciplines. High-performance 

refractory materials 1-5 have applications ranging from gas turbines to heat shields for hypersonic 

vehicles. In this context, high melting points correlate with desirable mechanical properties, e.g., 

high-temperature materials strength as well as good ablation and creep resistance. In geology and 

planetary science, knowledge of the melting points of minerals provides insight into their formation 

and evolution in addition to shedding light into the structure of exoplanets. 

In these examples, the melting points tend to be high, which considerably complicates their 

experimental measurement (due to containment and calibration issues). For minerals, these issues 

are compounded but the fact that many new species are identified from small grains and are thus 

accessible in limited amounts. Complex phase equilibria and incongruent melting lead to further 

complications. As a result, the melting temperature is known for less than 10 % of the more than 

200,000 inorganic substances with known crystal structures. 

In light of these limitations, it would be natural to turn to computational methods. 

Unfortunately, the calculation and prediction of melting temperatures also an expensive and 

complex procedure because it involves sampling a large number of configurations. 

Numerous efficient methods have been devised to capture melting temperatures from 

computations 6. Using empirical potentials is relatively inexpensive, but it depends on availability 

and reliability of such potentials. It is both complicated and time-consuming to build a new classical 

interatomic potential for every new material, not to mention the issue of reliability regarding 

accuracy. Density functional theory (DFT) calculations are clearly better in terms of generalizability 

and reliability. However, they remain notoriously expensive, despite increasing power and 

capability of our computers. The large-size coexistence method 7, 8, which is generally considered 

the gold standard and widely utilized as a benchmark, typically requires a system size too large for 

DFT simulations, rendering this approach prohibitively expensive in practice. The single-phase 

small-size “Z method” 9, which heats a solid until it melts, seeks to address this, but suffers from 

well-documented practical and conceptual problems 10. Alternatively, one can compute melting 

temperatures via the free energy method 7, 11, which locates the intersection of the free energy 

curves of the solid and the liquid. This approach requires highly accurate free energy calculation of 

the liquid phase, because the two curves cross at a very shallow angle and thus a small free energy 

shift will result in a large error in melting temperature. Unfortunately, all methods for liquid state 

free energy computation, such as thermodynamic integration 12, the particle insertion method 13, 14, 

and the two-phase thermodynamics method 15, are expensive and challenging. In earlier work, we 

proposed the accurate and relatively more efficient small-size coexistence method 6, 16, and 

developed the SLUSCHI (Solid and Liquid in Ultra Small Coexistence with Hovering Interfaces) 
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package 17 to automate the computation process. We have utilized this method to calculate melting 

temperatures of hundreds of materials, at the cost of several days of computations per compound. 

Despite such progress, these efforts still fall short of providing a comprehensive view of the melting 

point landscape. 

To overcome these limitations, we turn to machine learning (ML) methods, which are 

increasingly used for the prediction of materials properties and missing thermodynamic data 18, 19. 

We build a ML model to predict melting temperature, with an ultimate goal of integrating DFT and 

ML, which complement each other in terms of speed and accuracy. The ML model allows us to 

rapidly estimate melting temperatures, at a speed on the order of milliseconds per material, while 

the DFT calculation provides robustness and accuracy at a much higher cost on the order of several 

days of computations per material. 

To provide training data for our ML procedure, we first build a melting temperature 

database via web crawling. Melting temperatures are collected and included in our database mostly 

from Ref. 20. DFT melting temperature calculations are included in the database as well. Our current 

melting temperature database contains 9375 materials, out of which 982 compounds are high-

melting-temperature materials with melting points above 2000 Kelvin. The database consists of 

chemical compositions, i.e., elements and concentrations, or equivalently chemical formula, of the 

materials, and their corresponding melting temperatures. 

To illustrate the usefulness of our software tool, two application examples are described: i) 

the prediction of melting temperatures for 4828 mineral species, and ii) the prediction of 

compositions with melting temperatures above 3500 K. 

 
Architecture of neural network model for melting temperature prediction 

The majority of entries for melting temperatures used for machine learning were collected 

by parsing data for ~26,000 single-phase compounds from a ten volume compilation of 

thermodynamic constants of substances 20. The values are based on experimental data from 

~51,500 publications before 1982. Only congruent melting temperatures were included in the 

current version of the database used for machine learning. The data were complemented by results 

obtained from ab initio molecular dynamic calculations within the SLUSCHI framework 17.  

In our machine learning model, we seek to build a mapping from chemical formula to 

melting temperature. The minimal requirement of input, only chemical formula here, should facilitate 

the model’s extensive application in the future: no additional materials properties are required as 

input, and thus neither computational nor experiment data are needed. In our view, relying on input 

feature would reduce the broad applicability of the method, especially in high-throughput 

exploration or screening applications, where chemistry is typically the only a priori known input. 
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The machine learning model combines the Graph Neural Network (GNN) 21 and residual neural 

network (ResNet) 22 architectures within the Tensorflow 23 framework. (Fig. 1). The GNN 

architecture is designed to impose permutation invariance (e.g., ZrO2 and O2Zr are the same 

material), which drastically reduces model complexity and thus improves efficiency. The ResNet 

architecture avoids the problem of vanishing gradient by skipping connections, which also 

effectively simplifies the network. When a material, i.e., its elements and composition, is fed to the 

neural network, each element is first converted to 14 features, such as atomic radius, atomic mass, 

electronegativity, core and valence electrons, ionization energy, electron affinity, density, and 

position in the periodic table. These features are encoded and passed to the next layer, which we 

expect to include the key determinants of the individual atomic contributions to the melting 

temperature. In addition, elemental features interact with each other via the GNN connections, thus 

leading to contributions from the binary, ternary, and higher-order combination of elements. These 

encoded contributions are passed to the next layer as well. This layer, consisting of unary, binary, 

and ternary interactions of the elements and compositions of the material of interest, is fed into a 

4-layer ResNet, which leads to the regression and the estimation of melting temperature. Currently 

the number of elements is limited to four, but this constraint can be removed if a larger combination 

of elements is needed. For instance, the limit is relaxed to five in the study of minerals later in this 

paper. More elements increase the complexity of the model and thus the risk of overfitting. The 

GNN architecture undergoes two iterations of communication among elements, as we find more 

rounds do not significantly improve performance of the model. Dropout layers are heavily employed 

in the architecture to avoid overfitting. 

The 9375 materials are randomly assigned to training and testing sets, with 8635 materials 

in the training set, and 740 materials for testing. The training process takes 2000-4000 epochs of 

optimization. As shown in Fig. 2, the root mean square errors (RMSE) of melting temperature are 

110 and 160 K for the training and testing sets, respectively. These surprisingly small errors (DFT 

error is typically 100K 6 due to imperfect density functionals) represent the method’s accuracy over 

the ranges of composition that are included in the database. While the testing set is a holdout 

dataset and thus it provides an unbiased evaluation of the final model, we note that accuracy could 

degrade for prediction request in relatively poorly sampled regions of composition space, which 

would demand considerable extrapolation. The errors for materials of different types are shown in 

Fig. S1 (SI Appendix). 

We benchmarck our GNN model with XGBoost, one of the most popular gradient boosting 

methods. Our model score (R2: 0.933, RMSE: 160K) outperforms that of XGBoost (R2: 0.919, 

RMSE: 183K). This observation is consistent with our expectation and understanding of the two 

methods. With only chemical formula and elemental features as input, data features are very limited 

in this work, and thus it favors the neural networks method, which is more capable of combining 
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and generating features by itself. The moderately large size of our dataset also works well with the 

neural networks method. 

The model is currently hosted at the ASU Research Computing Facilities and available 

through a web page 24 and Application Programming Interface (API) interface. To use the model, a 

user needs to visit the webpage and input the chemical compositions of the material of interest. 

The model will respond with a predicted melting temperature in seconds, as well as the actual 

melting temperatures of the nearest neighbors (i.e., the most similar materials) in the database. 

Thus this model serves as not only a predictive model, but a handbook of melting temperature as 

well. A user may also run batch calculations via command line with much shorter latency, by 

sending an HTTP POST request to the API server and providing JSON data (elements and 

compositions of multiple materials) in the body of the POST message. Detailed instruction is 

available at the webpage. 

Mineral melting temperatures: structure and deep time correlations 

There are currently more than 5700 approved minerals 25, all naturally occurring compounds 

which include phases identified exclusively in meteorites and formed during geological 

processes on Earth. While the composition and structure of all minerals are known (as required 

for approval of new mineral species), thermodynamic properties, such as melting or 

decomposition temperatures, are only available for a small fraction of them. The field of mineral 

evolution, pioneered by Hazen 26, studies occurrence of new mineral species and their 

increasing chemical and structural complexity as a function of geologic time 26, 27. Recently, the 

oldest known ages were assigned for 4828 mineral species based on more than 190,000 dated 

mineral locality occurrences 28, 29. The dataset is constantly updated and made openly available 

to promote data-driven discovery in mineralogy 30, 31. 

We employed our melting temperature database and model (based on 9375 compounds) to 

analyze the mineral dataset, as well as a subset of 412 minerals containing rare earth elements 

(lanthanides, Y and Sc). Approximately 6 % of the minerals in the dataset have direct matches 

in our melting temperature database. For them, experimentally measured values were used in 

the analysis. For the rest of the minerals, melting temperature (ML Tm) was predicted based 

on our ML model. Since the majority of minerals are ternary and higher order compounds, 

containing structural water and carbonate groups, they are unlikely to melt congruently and in 

this case ML Tm correlates with their decomposition temperature. We interpret ML Tm as the 

upper boundary of decomposition temperature, as these materials decompose before melting. 

The dataset is included in the Supplementary Information.  

Figure 3A shows the average ML Tm versus oldest known age, grouped with an interval of 

250 million years. As expected, the oldest minerals, interstellar and solar nebula condensates 
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predating Earth formation 4.5 billion years ago, are the most refractory, with average and 

median melting temperatures around 1700 K. The gradual overall decrease in ML Tm of 

minerals formed during Earth history is interrupted with two anomalies, which are distinctly 

pronounced in average and medium ML Tm using 250 or 500 Ma binning. The spike at 3.75 Ga 

correlates to the proposed timing of late heavy bombardment, hypothesized exclusively from 

dating of lunar samples and currently debated 32, 33. The dip at 1.75 Ga is related to the first 

known occurrences of a large number of hydrous minerals and correlates with the Huronian 

glaciation 34, the longest ice age and thought to be the first time Earth was completely covered 

in ice. 

The rise in average ML melting temperature with increase in symmetry from triclinic to cubic 

structures (Fig. 3B) is consistent with the observations of the predominant stability of high symmetry 

structures at high temperatures, as suggested by established experimental phase diagrams. Low 

symmetry minerals with complex composition typically do not melt congruently, but instead 

decompose, often to phases with higher symmetry. Analysis of melting temperatures of 412 rare 

earth containing minerals gives a higher average ML Tm compared to the overall mineral dataset 

(1296 vs 1005 K, respectively). This is expected due to high melting temperatures of rare earth 

oxides. Consistent with the full dataset, cubic and tetragonal rare earth minerals represent the 

smallest fraction, and the highest average melting temperatures, but there is not a clear sequence 

among monoclinic, hexagonal and orthorhombic minerals (Fig. S2). 

The approach based on Shannon’s entropy 35 is increasingly used in thermodynamic modeling 
36, 37. Krivovichev’s index 38 provides a quantitative evaluation of structural complexity in bits of 

Shannon’s information per atom. In addition to symmetry, it accounts for the size of the unit cell 

and chemical diversity. The higher the bit/atom values, the lower the entropy of the structure 39. For 

rare earth containing minerals, predicted melting temperature shows a strong negative correlation 

with the structure complexity index (Fig. 3C). The rare earth minerals with index below 2.5 bits/atom 

have predicted melting temperatures above 1500 K. 

 
Discovery of new high temperature materials  

Based on this moderately accurate but extremely rapid model, we run simulations to 

showcase its possible applications. Here we present one potential application in the design and 

discovery of high-melting-point materials. We run Monte Carlo (MC) simulations to generate a 

list of ternary compounds, which are predicted by the model as top candidates for high-melting-

point materials. Since the model takes inputs in the form of elements and compositions, there 

are only five variables, three elements and two compositions (the sum of mole fractions must 

equal 1), to describe a ternary compound. Any combination of any element and composition is 

allowed in our simulation, i.e., any element in the periodic table. The Metropolis algorithm and 
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simulated annealing technique are employed to maximize melting temperature. The simulation 

explores the surface of melting temperature and searches for the global maximum of the surface, 

which is defined by the elements and composition and estimated by the GNN model. The initial 

MC temperature is set to 100 K, sufficiently high to allow the exploration to escape local minima. 

The temperature is linearly decreased to 0 K over 10,000 MC steps. We allow changes in both 

elements and compositions. After each MC run, we obtain a candidate, which presumably is the 

global maximum of the melting temperature surface as long as the MC trajectory is sufficiently 

long. In order to generate a list of top high-melting-temperature materials, we run a series of MC 

simulations in sequence, in which we exclude materials already found from the search in the next 

iterations, i.e., in the (n + 1)th iteration, the top n material systems already discovered in the 

previous n iterations are excluded from the search, in order to encourage the exploration of new 

materials. After this series of MC simulations, we generate a list of top candidates, ranked by 

their melting temperatures. 

As illustrated in Fig. S3, the top twenty candidates are overwhelmingly carbides and nitrides 

(i.e., two metallic elements plus C or N), with the only exception being the Hf-C-N system, exactly 

the carbonitride we previously predicted as the material with the world’s highest melting 

temperature, based on DFT molecular dynamics (MD) calculations using the SLUSCHI package 
40. This discovery was also later confirmed independently from experiment 41-43. We note that the 

DFT melting points of the Hf-C-N system were deliberately excluded from the database and the 

GNN model, in order to challenge the model and examine its predictive capability. The outcome, 

that the model accurately discovers the Hf-C-N system, is promising and this approach arguably 

outperforms our human intuition: when we found the Hf-C-N system from DFT, we searched among 

possible combinations of five elements, Hf, Ta, B, C, and N, and discovered Hf-C-N as the best 

compound. In contrast, the model correctly predicts Hf-C-N as the most promising candidates, 

which could have saved us significant time and effort in DFT MD simulations. This capability 

suggests the model’s potential application in materials design and discovery. The melting 

temperature predicted by the GNN model is at least 500 K lower than that from DFT, which is not 

surprising since there is no explicit information of the new material system in the dataset and this 

melting temperature must be pieced together from other similar material systems. 

In the next step, we will include DFT melting temperature of the Hf-C-N system, re-train and 

improve the ML model, and repeat the MC simulations to search for even higher melting 

temperatures. As summarized in Fig. 4, the new list of top candidates now suggests possibilities 

with other nonmetals in addition to C and N. We plan to calculate DFT melting temperatures for 

these materials, which will not only corroborate the discovery of high melting temperature, if indeed 

favorable, but also further improve our melting temperature database when we include the new 

DFT results. This work is beyond the scope of this paper but it will be carried out in the near future. 
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Summary and future directions 
 

We built a melting temperature database and an ML GNN model to predict melting 

temperature from chemical formula. We demonstrated the utility of prediction of melting 

temperature by providing new correlations for mineral evolution and directions for further 

experimental and computational search for new high temperature materials. The model is openly 

available through web interface and will be updated as new data for neural network training will be 

collected. We have built a next version of the model and deployed it online at our webpage, which 

further improves the model’s performance. The model is an ensemble model of 30 GNN models 

based on re-shuffling training and testing datasets using bootstrap, which further reduces overfiting. 
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Figures and Tables 
 
 

 
 
 
 
Figure 1. Architecture of the GNN model for ML melting temperature prediction. Each circle 

represents an element and its composition in the material. Up to four elements are connected in 

this graph (denoted as A, B, C, and D). First, each element and composition are converted to 14 

features, which are then encoded and fed to the ResNet input layer. The circles communicate with 

each other in order to account for higher order contributions. For example, each circle (element 

and composition) pulls information from other circles via the GNN. The outputs are then sent to the 

ResNet. The latter consists of four fully connected layers with skipping connections and leads to 

the regression analysis for melting temperature prediction 
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Figure 2. A) Root mean square error during model training. The training process was 

completed after 2000 epochs. B) Predicted vs. actual melting temperatures in the testing 

dataset. The root-mean-square errors are 110 and 160 K for the training and testing sets, 

respectively. Compounds with large errors are labeled for further investigation.  
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Figure 3. Machine learned melting temperature (ML Tm) for minerals from RRUFF dataset A) 

Mean ML Tm vs. oldest known age. The highlights correspond to the timing of hypothesized Late 

Heavy Bombardment (LHB) and Huronian Glaciation (HG) events. B) ML Tm vs. oldest known age 

for all minerals grouped by crystal systems. The size of the circles scaled with the number of 

minerals: (cubic: 500; tetragonal: 383; hexagonal: 855; orthorombic: 932; monoclinic: 1600; triclinic: 

509. C) Mean structural complexity index vs. predicted melting temperature for 412 rare earth 

containing minerals. The error bars correspond to standard errors. 
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Figure 4. Constituent elements in ternary carbides (A) and nitrides (B) with predicted melting 

temperatures above 3500 K. Each dot represents one ternary compound, M1-M2-C, or M1-M2-N 

with M1 and M2 being the corresponding elements on the axes.  

 

 

  



 

 

14 

 

References 
 

1. N. P. Padture, M. Gell, E. H. Jordan, Thermal barrier coatings for gas-turbine engine 
applications. Science 296, 280-284 (2002) https://doi.org/10.1126/science.1068609. 

2. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, I. Talmy, UHTCs: Ultra-High 
Temperature Ceramic materials for extreme environment applications. Electrochemical 
Society Interface 16, 30-36 (2007) https://doi.org/10.1149/2.F04074IF. 

3. J. H. Perepezko, The hotter the engine, the better. Science 326, 1068-1069 (2009) 
https://doi.org/10.1126/science.1179327. 

4. K. Lu, The Future of Metals. Science 328, 319-320 (2010) 
https://doi.org/10.1126/science.1185866. 

5. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, E. Ma, Nanostructured high-
strength molybdenum alloys with unprecedented tensile ductility. Nature Materials 12, 
344-350 (2013) https://doi.org/10.1038/nmat3544. 

6. Q.-J. Hong, Methods for Melting Temperature Calculation. Ph.D. Thesis, California 
Institute of Technology,  (2015). 

7. J. Mei, J. W. Davenport, Free-energy calculations and the melting point of Al. Physical 
Review B 46, 21-25 (1992) https://doi.org/10.1103/PhysRevB.46.21. 

8. J. R. Morris, C. Z. Wang, K. M. Ho, C. T. Chan, Melting line of aluminum from simulations 
of coexisting phases. Physical Review B 49, 3109-3115 (1994) 
https://doi.org/10.1103/PhysRevB.49.3109. 

9. A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, B. Johansson, Melting and critical 
superheating. Physical Review B - Condensed Matter and Materials Physics 73, 1-3 
(2006) https://doi.org/10.1103/PhysRevB.73.012201. 

10. D. Alfè, C. Cazorla, M. J. Gillan, The kinetics of homogeneous melting beyond the limit of 
superheating. Journal of Chemical Physics 135,  (2011) 
https://doi.org/10.1063/1.3605601. 

11. O. Sugino, R. Car, Ab initio molecular dynamics study of first-order phase transitions: 
Melting of silicon. Phys Rev Lett 74, 1823-1826 (1995) 
https://doi.org/10.1103/PhysRevLett.74.1823. 

12. G. de Wijs, G. Kresse, M. Gillan, First-order phase transitions by first-principles free-
energy calculations: The melting of Al. Physical Review B 57, 8223-8223 (1998) 
https://doi.org/10.1103/PhysRevB.57.8223. 

13. B. Widom, Potential-distribution theory and the statistical mechanics of fluids. Journal of 
Physical Chemistry 86, 869-872 (1982) https://doi.org/10.1021/j100395a005. 

14. Q. J. Hong, A. Van De Walle, Direct first-principles chemical potential calculations of 
liquids. Journal of Chemical Physics 137,  (2012) https://doi.org/10.1063/1.4749287. 

15. S. T. Lin, M. Blanco, W. A. Goddard, The two-phase model for calculating 
thermodynamic properties of liquids from molecular dynamics: Validation for the phase 
diagram of Lennard-Jones fluids. Journal of Chemical Physics 119, 11792-11805 (2003) 
https://doi.org/10.1063/1.1624057. 

16. Q.-J. Hong, A. van de Walle, Solid-liquid coexistence in small systems: A statistical 
method to calculate melting temperatures. Journal of Chemical Physics 139, 094114 
(2013) https://doi.org/10.1063/1.4819792. 

https://doi.org/10.1126/science.1068609
https://doi.org/10.1149/2.F04074IF
https://doi.org/10.1126/science.1179327
https://doi.org/10.1126/science.1185866
https://doi.org/10.1038/nmat3544
https://doi.org/10.1103/PhysRevB.46.21
https://doi.org/10.1103/PhysRevB.49.3109
https://doi.org/10.1103/PhysRevB.73.012201
https://doi.org/10.1063/1.3605601
https://doi.org/10.1103/PhysRevLett.74.1823
https://doi.org/10.1103/PhysRevB.57.8223
https://doi.org/10.1021/j100395a005
https://doi.org/10.1063/1.4749287
https://doi.org/10.1063/1.1624057
https://doi.org/10.1063/1.4819792


 

 

15 

 

17. Q.-J. Hong, A. van de Walle, A user guide for SLUSCHI: Solid and Liquid in Ultra Small 
Coexistence with Hovering Interfaces. Calphad: Computer Coupling of Phase Diagrams 
and Thermochemistry 52, 88-97 (2016) https://doi.org/10.1016/j.calphad.2015.12.003. 

18. A. M. Krajewski, J. W. Siegel, J. Xu, Z.-K. Liu, Extensible structure-informed prediction of 
formation energy with improved accuracy and usability employing neural networks. 
Computational Materials Science 208, 111254 (2022) 
https://doi.org/https://doi.org/10.1016/j.commatsci.2022.111254. 

19. D. Jha, L. T. Ward, A. Paul, W.-k. Liao, A. N. Choudhary, C. Wolverton, A. Agrawal, 
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition. 
Scientific Reports 8,  (2018). 

20. V. P. Glushko, Editor, Thermodynamic Properties of Individual Substances, Vol. 1-10.  
(VINITI, Moscow, 1965-1982). 

21. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini, The Graph Neural 
Network Model. IEEE Transactions on Neural Networks 20, 61-80 (2009) 
https://doi.org/10.1109/TNN.2008.2005605. 

22. K. He, X. Zhang, S. Ren, J. Sun, in 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). (2016), pp. 770-778. 

23. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. 
Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. 
Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, paper presented at the 
Proceedings of the 12th USENIX conference on Operating Systems Design and 
Implementation, Savannah, GA, USA,  2016. 

24. Melting temperature predictor based on machine learning. 
https://faculty.engineering.asu.edu/hong/melting-temperature-predictor/ (accessed 
6/02/2022) https://faculty.engineering.asu.edu/hong/melting-temperature-predictor/). 

25. IMA Database of Mineral Properties rruff.info/ima/ (acessed 06-02-2022)). 
26. R. M. Hazen, D. Papineau, W. Bleeker, R. T. Downs, J. M. Ferry, T. J. McCoy, D. A. 

Sverjensky, H. Yang, Mineral evolution. Am. Mineral. 93, 1693-1720 (2008) 
https://doi.org/10.2138/am.2008.2955. 

27. S. V. Krivovichev, V. G. Krivovichev, R. M. Hazen, Structural and chemical complexity of 
minerals: correlations and time evolution. Eur. J. Mineral. 30, 231-236 (2018) 
https://doi.org/10.1127/ejm/2018/0030-2694. 

28. J. J. Golden, Mineral Evolution Database: Data Model for Mineral Age Associations. . 
M.S. Thesis, University of Arizona, Tucson AZ,  (2019). 

29. J. J. Golden, R. T. Downs, R. M. Hazen, A. J. Pires, J. Rlph, in Geological Society of America 
(GSA). (Phoenix, Arizona, 2019). 

30. R. M. Hazen, R. T. Downs, A. Eleish, P. Fox, O. C. Gagne, J. J. Golden, E. S. Grew, D. R. 
Hummer, G. Hystad, S. V. Krivovichev, C. Li, C. Liu, X. Ma, S. M. Morrison, F. Pan, A. J. 
Pires, A. Prabhu, J. Ralph, S. E. Runyon, H. Zhong, Data-driven discovery in mineralogy: 
recent advances in data resources, analysis, and visualization. Engineering (Beijing, 
China) 5, 397-405 (2019) https://doi.org/10.1016/j.eng.2019.03.006. 

31. A. Prabhu, A. Eleish, H. Zhong, K. Fontaine, P. Fox, S. M. Morrison, R. M. Hazen, F. 
Huang, J. J. Golden, R. T. Downs, S. N. Perry, D. R. Hummer, J. Ralph, S. E. Runyon, S. 
Krivovichev, Global earth mineral inventory: A data legacy. Geosci Data J 8, 74-89 (2021) 
https://doi.org/10.1002/gdj3.106. 

https://doi.org/10.1016/j.calphad.2015.12.003
https://doi.org/https:/doi.org/10.1016/j.commatsci.2022.111254
https://doi.org/10.1109/TNN.2008.2005605
https://faculty.engineering.asu.edu/hong/melting-temperature-predictor/
https://faculty.engineering.asu.edu/hong/melting-temperature-predictor/
https://doi.org/10.2138/am.2008.2955
https://doi.org/10.1127/ejm/2018/0030-2694
https://doi.org/10.1016/j.eng.2019.03.006
https://doi.org/10.1002/gdj3.106


 

 

16 

 

32. P. Boehnke, T. M. Harrison, Illusory Late Heavy Bombardments. Proceedings of the 
National Academy of Sciences of the United States of America 113, 10802-10806 (2016) 
https://doi.org/10.1073/pnas.1611535113. 

33. A. Mann, Bashing holes in the tale of Earth's troubled youth. Nature 553, 393-395 
(2018). 

34. H. Tang, Y. Chen, Global glaciations and atmospheric change at ca. 2.3 Ga. Geoscience 
Frontiers 4, 583-596 (2013) https://doi.org/10.1016/j.gsf.2013.02.003. 

35. C. E. Shannon, A mathematical theory of communication. The Bell system technical 
journal 27, 379-423 (1948). 

36. M. Pfleger, T. Wallek, A. Pfennig, Constraints of Compound Systems: Prerequisites for 
Thermodynamic Modeling Based on Shannon Entropy. Entropy 16,  (2014) 
https://doi.org/10.3390/e16062990. 

37. V. Vanchurin, Y. I. Wolf, E. V. Koonin, M. I. Katsnelson, Thermodynamics of evolution and 
the origin of life. Proceedings of the National Academy of Sciences 119, e2120042119 
(2022) https://doi.org/doi:10.1073/pnas.2120042119. 

38. S. Krivovichev, Topological complexity of crystal structures: quantitative approach. Acta 
Crystallographica Section A 68, 393-398 (2012) 
https://doi.org/doi:10.1107/S0108767312012044. 

39. S. Krivovichev, Structural complexity and configurational entropy of crystals. Acta 
Crystallographica Section B 72, 274-276 (2016) 
https://doi.org/doi:10.1107/S205252061501906X. 

40. Q.-J. Hong, A. van de Walle, Prediction of the material with highest known melting point 
from ab initio molecular dynamics calculations. Physical Review B - Condensed Matter 
and Materials Physics 92, 1-6 (2015) https://doi.org/10.1103/PhysRevB.92.020104. 

41. V. S. Buinevich, A. A. Nepapushev, D. O. Moskovskikh, G. V. Trusov, K. V. Kuskov, S. G. 
Vadchenko, A. S. Rogachev, A. S. Mukasyan, Fabrication of ultra-high-temperature 
nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma 
sintering. Ceramics International 46, 16068-16073 (2020) 
https://doi.org/10.1016/j.ceramint.2020.03.158. 

42. O. Cedillos-Barraza, D. Manara, K. Boboridis, T. Watkins, S. Grasso, D. D. Jayaseelan, R. J. 
M. Konings, M. J. Reece, W. E. Lee, Investigating the highest melting temperature 
materials: A laser melting study of the TaC-HfC system. Scientific Reports 6, 37962-
37962 (2016) https://doi.org/10.1038/srep37962. 

43. Z. Peng, W. Sun, X. Xiong, Y. Xu, Z. Zhou, Z. Zhan, H. Zhang, Y. Zeng, Novel nitrogen-
doped hafnium carbides for advanced ablation resistance up to 3273 K. Corrosion 
Science 189, 109623 (2021) https://doi.org/10.1016/j.corsci.2021.109623. 

 

  

https://doi.org/10.1073/pnas.1611535113
https://doi.org/10.1016/j.gsf.2013.02.003
https://doi.org/10.3390/e16062990
https://doi.org/doi:10.1073/pnas.2120042119
https://doi.org/doi:10.1107/S0108767312012044
https://doi.org/doi:10.1107/S205252061501906X
https://doi.org/10.1103/PhysRevB.92.020104
https://doi.org/10.1016/j.ceramint.2020.03.158
https://doi.org/10.1038/srep37962
https://doi.org/10.1016/j.corsci.2021.109623


 

 

17 

 

Supplementary Information 
 

 

 

 
 
Fig. S1. Median error and root mean square error (RMSE) for materials of different types, 
evaluated over all data points. Stronger elemental interactions, as observed in oxides, nitrides, 
and carbides tend to incur relatively larger errors, since these contributions are diverse and more 
difficult to capture. 
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Fig. S2. Predicted melting temperature1 vs. oldest known age for 401 rare earth containing 
minerals from RRUFF dataset (https://rruff.info/ima/)2, 3, averaged by crystal system (cubic: 21; 
tetragonal: 23; orthorhombic: 80; hexagonal: 112, monoclinic: 138). Melting temperature model 
was built based on a dataset of 9375 compounds. 
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Fig. S3. Prediction of high melting temperatures in ternary systems, based on the GNN model1 
and MC simulated annealing. The top candidates are dominated by carbides and nitrides. The 
only exception is a carbonitride, the Hf-C-N system, which is exactly the material of the highest 
melting temperature predicted in 2015 based on DFT MD simulations.4 The DFT melting 
temperatures of the Hf-C-N system were deliberately excluded from the database and ML model 
to test the method’s predictive capability. 
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Legends for datasets 

 

DATASET_S1_Minerals_ML_Tm_20220503.xlsx 

 

Microsoft Excel spreadsheet with melting temperatures for 5793 mineral species calculated on 
May 8, 2022 using Melting Temperature Predictor Based on Machine Learning Graph Neural 
Networks (GNN).1 The list of mineral species with compositions, crystal systems, and oldest 
known age was downloaded from RRUFF database (https://rruff.info/ima/)2, 3 on 05/03/2022. The 
values of melting temperatures for compositions directly matched with the database used for 
training of GNN are selected in bold. Melting temperature model was built based on a dataset of 
9375 compounds. 

 

DATASET_S2_RE_minerals_ML_Tm_20220503.xlsx 

 

Microsoft Excel spreadsheet with melting temperatures for 412 rare earth containing mineral 
species calculated on May 8, 2022 using Melting Temperature Predictor Based on Machine 
Learning Graph Neural Networks (GNN).1 The list of mineral species with compositions, crystal 
systems, and oldest known age was downloaded from RRUFF database (https://rruff.info/ima/)2, 3 
on 05/03/2022. The structural complexity indexes received from S.V. Krivovichev (also partially 
available at https://info.deepcarbon.net//vivo/gemi_minerals (Deep Carbon Observatory Data 
Portal).5 The values of melting temperatures for compositions directly matched with the database 
used for training of GNN are selected in bold. Melting temperature model was built based on a 
dataset of 9375 compounds. 
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