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Abstract

The melting point is a fundamental property that is time-consuming to measure or compute,
thus hindering high-throughput analyses of melting relations and phase diagrams over large sets
of candidate compounds. To address this, we build a machine learning model, trained on a
database of ~10,000 compounds, that can predict the melting temperature in a fraction of a second.
The model, made publicly available online, features graph neural network and residual neural
network architectures. We demonstrate the model's usefulness in diverse applications. For the
purpose of materials design and discovery we show that it can quickly discover novel
multicomponent materials with high melting points. These predictions are confirmed by density
functional theory calculations and experimentally validated. In an application to planetary science
and geology, we employ the model to analyze the melting temperatures of ~4,800 minerals to

uncover new correlations relevant to the study of mineral evolution.

Significance Statement

High temperature materials properties, such as melting temperature, are generally
challenging to measure or compute rapidly. As a result, melting points are known for less than 10
% of the ~200,000 known inorganic compounds. Here we employ machine learning methods to fill
this gap by building a rapid and accurate mapping from chemical formula to melting temperature.
The model, which we have made publicly available, will facilitate large-scale data analysis involving
melting temperature in a wide range of areas, including the discovery of refractory materials, the
design of novel extractive metallurgy processes, the modeling of mineral formation and evolution

over geological time and the prediction of exoplanet structure.



Main Text
Introduction

Melting points play an important role in a wide variety of disciplines. High-performance
refractory materials 1-°> have applications ranging from gas turbines to heat shields for hypersonic
vehicles. In this context, high melting points correlate with desirable mechanical properties, e.g.,
high-temperature materials strength as well as good ablation and creep resistance. In geology and
planetary science, knowledge of the melting points of minerals provides insight into their formation
and evolution in addition to shedding light into the structure of exoplanets.

In these examples, the melting points tend to be high, which considerably complicates their
experimental measurement (due to containment and calibration issues). For minerals, these issues
are compounded but the fact that many new species are identified from small grains and are thus
accessible in limited amounts. Complex phase equilibria and incongruent melting lead to further
complications. As a result, the melting temperature is known for less than 10 % of the more than
200,000 inorganic substances with known crystal structures.

In light of these limitations, it would be natural to turn to computational methods.
Unfortunately, the calculation and prediction of melting temperatures also an expensive and
complex procedure because it involves sampling a large number of configurations.

Numerous efficient methods have been devised to capture melting temperatures from
computations 6. Using empirical potentials is relatively inexpensive, but it depends on availability
and reliability of such potentials. It is both complicated and time-consuming to build a new classical
interatomic potential for every new material, not to mention the issue of reliability regarding
accuracy. Density functional theory (DFT) calculations are clearly better in terms of generalizability
and reliability. However, they remain notoriously expensive, despite increasing power and
capability of our computers. The large-size coexistence method 7-8, which is generally considered
the gold standard and widely utilized as a benchmark, typically requires a system size too large for
DFT simulations, rendering this approach prohibitively expensive in practice. The single-phase
small-size “Z method” °, which heats a solid until it melts, seeks to address this, but suffers from
well-documented practical and conceptual problems 0. Alternatively, one can compute melting
temperatures via the free energy method 7 ', which locates the intersection of the free energy
curves of the solid and the liquid. This approach requires highly accurate free energy calculation of
the liquid phase, because the two curves cross at a very shallow angle and thus a small free energy
shift will result in a large error in melting temperature. Unfortunately, all methods for liquid state
free energy computation, such as thermodynamic integration 2, the particle insertion method '3 14,
and the two-phase thermodynamics method 15, are expensive and challenging. In earlier work, we
proposed the accurate and relatively more efficient small-size coexistence method & ¢, and

developed the SLUSCHI (Solid and Liquid in Ultra Small Coexistence with Hovering Interfaces)
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package ' to automate the computation process. We have utilized this method to calculate melting
temperatures of hundreds of materials, at the cost of several days of computations per compound.
Despite such progress, these efforts still fall short of providing a comprehensive view of the melting
point landscape.

To overcome these limitations, we turn to machine learning (ML) methods, which are
increasingly used for the prediction of materials properties and missing thermodynamic data '8 1°.
We build a ML model to predict melting temperature, with an ultimate goal of integrating DFT and
ML, which complement each other in terms of speed and accuracy. The ML model allows us to
rapidly estimate melting temperatures, at a speed on the order of milliseconds per material, while
the DFT calculation provides robustness and accuracy at a much higher cost on the order of several
days of computations per material.

To provide training data for our ML procedure, we first build a melting temperature
database via web crawling. Melting temperatures are collected and included in our database mostly
from Ref. 20, DFT melting temperature calculations are included in the database as well. Our current
melting temperature database contains 9375 materials, out of which 982 compounds are high-
melting-temperature materials with melting points above 2000 Kelvin. The database consists of
chemical compositions, i.e., elements and concentrations, or equivalently chemical formula, of the
materials, and their corresponding melting temperatures.

To illustrate the usefulness of our software tool, two application examples are described: i)
the prediction of melting temperatures for 4828 mineral species, and ij) the prediction of

compositions with melting temperatures above 3500 K.

Architecture of neural network model for melting temperature prediction

The majority of entries for melting temperatures used for machine learning were collected
by parsing data for ~26,000 single-phase compounds from a ten volume compilation of
thermodynamic constants of substances 20. The values are based on experimental data from
~51,500 publications before 1982. Only congruent melting temperatures were included in the
current version of the database used for machine learning. The data were complemented by results
obtained from ab initio molecular dynamic calculations within the SLUSCHI framework 7.

In our machine learning model, we seek to build a mapping from chemical formula to
melting temperature. The minimal requirement of input, only chemical formula here, should facilitate
the model’s extensive application in the future: no additional materials properties are required as
input, and thus neither computational nor experiment data are needed. In our view, relying on input
feature would reduce the broad applicability of the method, especially in high-throughput

exploration or screening applications, where chemistry is typically the only a priori known input.
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The machine learning model combines the Graph Neural Network (GNN) 2' and residual neural
network (ResNet) 22 architectures within the Tensorflow 23 framework. (Fig. 1). The GNN
architecture is designed to impose permutation invariance (e.g., ZrO2 and O2Zr are the same
material), which drastically reduces model complexity and thus improves efficiency. The ResNet
architecture avoids the problem of vanishing gradient by skipping connections, which also
effectively simplifies the network. When a material, i.e., its elements and composition, is fed to the
neural network, each element is first converted to 14 features, such as atomic radius, atomic mass,
electronegativity, core and valence electrons, ionization energy, electron affinity, density, and
position in the periodic table. These features are encoded and passed to the next layer, which we
expect to include the key determinants of the individual atomic contributions to the melting
temperature. In addition, elemental features interact with each other via the GNN connections, thus
leading to contributions from the binary, ternary, and higher-order combination of elements. These
encoded contributions are passed to the next layer as well. This layer, consisting of unary, binary,
and ternary interactions of the elements and compositions of the material of interest, is fed into a
4-layer ResNet, which leads to the regression and the estimation of melting temperature. Currently
the number of elements is limited to four, but this constraint can be removed if a larger combination
of elements is needed. For instance, the limit is relaxed to five in the study of minerals later in this
paper. More elements increase the complexity of the model and thus the risk of overfitting. The
GNN architecture undergoes two iterations of communication among elements, as we find more
rounds do not significantly improve performance of the model. Dropout layers are heavily employed
in the architecture to avoid overfitting.

The 9375 materials are randomly assigned to training and testing sets, with 8635 materials
in the training set, and 740 materials for testing. The training process takes 2000-4000 epochs of
optimization. As shown in Fig. 2, the root mean square errors (RMSE) of melting temperature are
110 and 160 K for the training and testing sets, respectively. These surprisingly small errors (DFT
error is typically 100K ¢ due to imperfect density functionals) represent the method’s accuracy over
the ranges of composition that are included in the database. While the testing set is a holdout
dataset and thus it provides an unbiased evaluation of the final model, we note that accuracy could
degrade for prediction request in relatively poorly sampled regions of composition space, which
would demand considerable extrapolation. The errors for materials of different types are shown in
Fig. S1 (Sl Appendix).

We benchmarck our GNN model with XGBoost, one of the most popular gradient boosting
methods. Our model score (R2: 0.933, RMSE: 160K) outperforms that of XGBoost (R2: 0.919,
RMSE: 183K). This observation is consistent with our expectation and understanding of the two
methods. With only chemical formula and elemental features as input, data features are very limited

in this work, and thus it favors the neural networks method, which is more capable of combining
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and generating features by itself. The moderately large size of our dataset also works well with the
neural networks method.

The model is currently hosted at the ASU Research Computing Facilities and available
through a web page 2* and Application Programming Interface (API) interface. To use the model, a
user needs to visit the webpage and input the chemical compositions of the material of interest.
The model will respond with a predicted melting temperature in seconds, as well as the actual
melting temperatures of the nearest neighbors (i.e., the most similar materials) in the database.
Thus this model serves as not only a predictive model, but a handbook of melting temperature as
well. A user may also run batch calculations via command line with much shorter latency, by
sending an HTTP POST request to the API server and providing JSON data (elements and
compositions of multiple materials) in the body of the POST message. Detailed instruction is

available at the webpage.

Mineral melting temperatures: structure and deep time correlations

There are currently more than 5700 approved minerals 25, all naturally occurring compounds
which include phases identified exclusively in meteorites and formed during geological
processes on Earth. While the composition and structure of all minerals are known (as required
for approval of new mineral species), thermodynamic properties, such as melting or
decomposition temperatures, are only available for a small fraction of them. The field of mineral
evolution, pioneered by Hazen 26, studies occurrence of new mineral species and their
increasing chemical and structural complexity as a function of geologic time 2627, Recently, the
oldest known ages were assigned for 4828 mineral species based on more than 190,000 dated
mineral locality occurrences 28 29, The dataset is constantly updated and made openly available

to promote data-driven discovery in mineralogy 3% 31,

We employed our melting temperature database and model (based on 9375 compounds) to
analyze the mineral dataset, as well as a subset of 412 minerals containing rare earth elements
(lanthanides, Y and Sc). Approximately 6 % of the minerals in the dataset have direct matches
in our melting temperature database. For them, experimentally measured values were used in
the analysis. For the rest of the minerals, melting temperature (ML Tm) was predicted based
on our ML model. Since the maijority of minerals are ternary and higher order compounds,
containing structural water and carbonate groups, they are unlikely to melt congruently and in
this case ML Tm correlates with their decomposition temperature. We interpret ML Tm as the
upper boundary of decomposition temperature, as these materials decompose before melting.

The dataset is included in the Supplementary Information.

Figure 3A shows the average ML Tm versus oldest known age, grouped with an interval of

250 million years. As expected, the oldest minerals, interstellar and solar nebula condensates



predating Earth formation 4.5 billion years ago, are the most refractory, with average and
median melting temperatures around 1700 K. The gradual overall decrease in ML Tm of
minerals formed during Earth history is interrupted with two anomalies, which are distinctly
pronounced in average and medium ML Tm using 250 or 500 Ma binning. The spike at 3.75 Ga
correlates to the proposed timing of late heavy bombardment, hypothesized exclusively from
dating of lunar samples and currently debated 32 33, The dip at 1.75 Ga is related to the first
known occurrences of a large number of hydrous minerals and correlates with the Huronian
glaciation 34, the longest ice age and thought to be the first time Earth was completely covered
in ice.

The rise in average ML melting temperature with increase in symmetry from ftriclinic to cubic
structures (Fig. 3B) is consistent with the observations of the predominant stability of high symmetry
structures at high temperatures, as suggested by established experimental phase diagrams. Low
symmetry minerals with complex composition typically do not melt congruently, but instead
decompose, often to phases with higher symmetry. Analysis of melting temperatures of 412 rare
earth containing minerals gives a higher average ML Tm compared to the overall mineral dataset
(1296 vs 1005 K, respectively). This is expected due to high melting temperatures of rare earth
oxides. Consistent with the full dataset, cubic and tetragonal rare earth minerals represent the
smallest fraction, and the highest average melting temperatures, but there is not a clear sequence
among monoclinic, hexagonal and orthorhombic minerals (Fig. S2).

The approach based on Shannon’s entropy 3 is increasingly used in thermodynamic modeling
36,37, Krivovichev’s index 38 provides a quantitative evaluation of structural complexity in bits of
Shannon’s information per atom. In addition to symmetry, it accounts for the size of the unit cell
and chemical diversity. The higher the bit/atom values, the lower the entropy of the structure 3°. For
rare earth containing minerals, predicted melting temperature shows a strong negative correlation
with the structure complexity index (Fig. 3C). The rare earth minerals with index below 2.5 bits/atom

have predicted melting temperatures above 1500 K.

Discovery of new high temperature materials

Based on this moderately accurate but extremely rapid model, we run simulations to
showcase its possible applications. Here we present one potential application in the design and
discovery of high-melting-point materials. We run Monte Carlo (MC) simulations to generate a
list of ternary compounds, which are predicted by the model as top candidates for high-melting-
point materials. Since the model takes inputs in the form of elements and compositions, there
are only five variables, three elements and two compositions (the sum of mole fractions must
equal 1), to describe a ternary compound. Any combination of any element and composition is

allowed in our simulation, i.e., any element in the periodic table. The Metropolis algorithm and



simulated annealing technique are employed to maximize melting temperature. The simulation
explores the surface of melting temperature and searches for the global maximum of the surface,
which is defined by the elements and composition and estimated by the GNN model. The initial
MC temperature is set to 100 K, sufficiently high to allow the exploration to escape local minima.
The temperature is linearly decreased to 0 K over 10,000 MC steps. We allow changes in both
elements and compositions. After each MC run, we obtain a candidate, which presumably is the
global maximum of the melting temperature surface as long as the MC trajectory is sufficiently
long. In order to generate a list of top high-melting-temperature materials, we run a series of MC
simulations in sequence, in which we exclude materials already found from the search in the next
iterations, i.e., in the (n + 1)th iteration, the top n material systems already discovered in the
previous n iterations are excluded from the search, in order to encourage the exploration of new
materials. After this series of MC simulations, we generate a list of top candidates, ranked by
their melting temperatures.

As illustrated in Fig. S3, the top twenty candidates are overwhelmingly carbides and nitrides
(i.e., two metallic elements plus C or N), with the only exception being the Hf-C-N system, exactly
the carbonitride we previously predicted as the material with the world’s highest melting
temperature, based on DFT molecular dynamics (MD) calculations using the SLUSCHI package
40, This discovery was also later confirmed independently from experiment 443, We note that the
DFT melting points of the Hf-C-N system were deliberately excluded from the database and the
GNN model, in order to challenge the model and examine its predictive capability. The outcome,
that the model accurately discovers the Hf-C-N system, is promising and this approach arguably
outperforms our human intuition: when we found the Hf-C-N system from DFT, we searched among
possible combinations of five elements, Hf, Ta, B, C, and N, and discovered Hf-C-N as the best
compound. In contrast, the model correctly predicts Hf-C-N as the most promising candidates,
which could have saved us significant time and effort in DFT MD simulations. This capability
suggests the model’'s potential application in materials design and discovery. The melting
temperature predicted by the GNN model is at least 500 K lower than that from DFT, which is not
surprising since there is no explicit information of the new material system in the dataset and this
melting temperature must be pieced together from other similar material systems.

In the next step, we will include DFT melting temperature of the Hf-C-N system, re-train and
improve the ML model, and repeat the MC simulations to search for even higher melting
temperatures. As summarized in Fig. 4, the new list of top candidates now suggests possibilities
with other nonmetals in addition to C and N. We plan to calculate DFT melting temperatures for
these materials, which will not only corroborate the discovery of high melting temperature, if indeed
favorable, but also further improve our melting temperature database when we include the new

DFT results. This work is beyond the scope of this paper but it will be carried out in the near future.
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Summary and future directions

We built a melting temperature database and an ML GNN model to predict melting
temperature from chemical formula. We demonstrated the utility of prediction of melting
temperature by providing new correlations for mineral evolution and directions for further
experimental and computational search for new high temperature materials. The model is openly
available through web interface and will be updated as new data for neural network training will be
collected. We have built a next version of the model and deployed it online at our webpage, which
further improves the model’s performance. The model is an ensemble model of 30 GNN models

based on re-shuffling training and testing datasets using bootstrap, which further reduces overfiting.
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Figures and Tables
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Figure 1. Architecture of the GNN model for ML melting temperature prediction. Each circle
represents an element and its composition in the material. Up to four elements are connected in
this graph (denoted as A, B, C, and D). First, each element and composition are converted to 14
features, which are then encoded and fed to the ResNet input layer. The circles communicate with
each other in order to account for higher order contributions. For example, each circle (element
and composition) pulls information from other circles via the GNN. The outputs are then sent to the
ResNet. The latter consists of four fully connected layers with skipping connections and leads to
the regression analysis for melting temperature prediction
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completed after 2000 epochs. B) Predicted vs. actual melting temperatures in the testing

dataset. The root-mean-square errors are 110 and 160 K for the training and testing sets,

respectively. Compounds with large errors are labeled for further investigation.
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Figure 3. Machine learned melting temperature (ML Tm) for minerals from RRUFF dataset A)
Mean ML Tm vs. oldest known age. The highlights correspond to the timing of hypothesized Late
Heavy Bombardment (LHB) and Huronian Glaciation (HG) events. B) ML Tm vs. oldest known age
for all minerals grouped by crystal systems. The size of the circles scaled with the number of
minerals: (cubic: 500; tetragonal: 383; hexagonal: 855; orthorombic: 932; monoclinic: 1600; triclinic:
509. C) Mean structural complexity index vs. predicted melting temperature for 412 rare earth
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Fig. S1. Median error and root mean square error (RMSE) for materials of different types,
evaluated over all data points. Stronger elemental interactions, as observed in oxides, nitrides,

and carbides tend to incur relatively larger errors, since these contributions are diverse and more
difficult to capture.
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Fig. S2. Predicted melting temperature! vs. oldest known age for 401 rare earth containing
minerals from RRUFF dataset (https://rruff.info/ima/)2 3, averaged by crystal system (cubic: 21;
tetragonal: 23; orthorhombic: 80; hexagonal: 112, monoclinic: 138). Melting temperature model
was built based on a dataset of 9375 compounds.
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Fig. S3. Prediction of high melting temperatures in ternary systems, based on the GNN model’
and MC simulated annealing. The top candidates are dominated by carbides and nitrides. The
only exception is a carbonitride, the Hf-C-N system, which is exactly the material of the highest
melting temperature predicted in 2015 based on DFT MD simulations.* The DFT melting
temperatures of the Hf-C-N system were deliberately excluded from the database and ML model
to test the method’s predictive capability.
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Legends for datasets

DATASET_S1_Minerals_ML_Tm_20220503.xlIsx

Microsoft Excel spreadsheet with melting temperatures for 5793 mineral species calculated on
May 8, 2022 using Melting Temperature Predictor Based on Machine Learning Graph Neural
Networks (GNN).! The list of mineral species with compositions, crystal systems, and oldest
known age was downloaded from RRUFF database (https://rruff.info/ima/)? 3 on 05/03/2022. The
values of melting temperatures for compositions directly matched with the database used for
training of GNN are selected in bold. Melting temperature model was built based on a dataset of
9375 compounds.

DATASET_S2_RE_minerals_ML_Tm_20220503.xlIsx

Microsoft Excel spreadsheet with melting temperatures for 412 rare earth containing mineral
species calculated on May 8, 2022 using Melting Temperature Predictor Based on Machine
Learning Graph Neural Networks (GNN)." The list of mineral species with compositions, crystal
systems, and oldest known age was downloaded from RRUFF database (https://rruff.info/ima/)% 3
on 05/03/2022. The structural complexity indexes received from S.V. Krivovichev (also partially
available at https://info.deepcarbon.net//vivo/gemi_minerals (Deep Carbon Observatory Data
Portal).® The values of melting temperatures for compositions directly matched with the database
used for training of GNN are selected in bold. Melting temperature model was built based on a
dataset of 9375 compounds.
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