
32

AutoDSE: Enabling Software Programmers to Design

Efficient FPGA Accelerators

ATEFEH SOHRABIZADEH and CODY HAO YU, Computer Science Department, University of

California, Los Angeles, USA

MIN GAO, Falcon-computing Inc., USA

JASON CONG, Computer Science Department, University of California, Los Angeles, USA

Adopting FPGA as an accelerator in datacenters is becoming mainstream for customized computing, but the
fact that FPGAs are hard to program creates a steep learning curve for software programmers. Even with
the help of high-level synthesis (HLS), accelerator designers still have to manually perform code recon-
struction and cumbersome parameter tuning to achieve optimal performance. While many learning models
have been leveraged by existing work to automate the design of efficient accelerators, the unpredictability
of modern HLS tools becomes a major obstacle for them to maintain high accuracy. To address this prob-
lem, we propose an automated DSE framework—AutoDSE—that leverages a bottleneck-guided coordinate
optimizer to systematically find a better design point. AutoDSE detects the bottleneck of the design in each
step and focuses on high-impact parameters to overcome it. The experimental results show that AutoDSE is
able to identify the design point that achieves, on the geometric mean, 19.9× speedup over one CPU core for
MachSuite and Rodinia benchmarks. Compared to the manually optimized HLS vision kernels in Xilinx Vitis
libraries, AutoDSE can reduce their optimization pragmas by 26.38× while achieving similar performance.
With less than one optimization pragma per design on average, we are making progress towards democratiz-
ing customizable computing by enabling software programmers to design efficient FPGA accelerators.

CCS Concepts: •Computer systems organization→High-level language architectures; •General and
reference→ Reference works; Performance;

Additional Key Words and Phrases: Bottleneck optimizer, customized computing, HLS, Merlin Compiler

ACM Reference format:

Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE: Enabling Software Program-
mers to Design Efficient FPGA Accelerators. ACM Trans. Des. Autom. Electron. Syst. 27, 4, Article 32 (Febru-
ary 2022), 27 pages.
https://doi.org/10.1145/3494534

Atefeh Sohrabizadeh and Cody Hao Yu contributed equally to this research.
The authors would like to thank Dr. Peichen Pan for his invaluable support with the Merlin Compiler and Dr. Lorenzo
Ferretti and Qi Sun for helping with the comparison to their work. This work is supported by the ICN-WEN award jointly
funded by the NSF (CNS-1719403) and Intel (34627365), the CAPA award also jointly funded by NSF (CCF-1723773) and
Intel (36888881), and CDSC industrial partners. (https://cdsc.ucla.edu/partners/).
Authors’ addresses: A. Sohrabizadeh, C. Hao Yu, and J. Cong, Department of Computer Science, University of California,
Los Angeles, Los Angeles, CA 90095, United States; emails: atefehsz@cs.ucla.edu, hyu@cs.ucla.edu, cong@cs.ucla.edu;
M. Gao, Falcon Computing Solutions Inc., 3979 Freedom Circle Suite 530 Santa Clara, CA 95054 United States; email:
mingao@falcon-computing.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1084-4309/2022/02-ART32 $15.00
https://doi.org/10.1145/3494534

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

https://orcid.org/0000-0002-1156-3306
https://doi.org/10.1145/3494534
https://cdsc.ucla.edu/partners/
mailto:permissions@acm.org
https://doi.org/10.1145/3494534

32:2 A. Sohrabizadeh et al.

1 INTRODUCTION

Due to the rapid growth of datasets in recent years, the demand for scalable, high-performance
computing continues to increase. However, the breakdown of Dennard’s scaling [19] has made the
energy efficiency an important concern in datacenters, and has spawned exploration into using
accelerators such as field-programmable gate arrays (FPGAs) to alleviate power consumption.
For example, Microsoft has adopted CPU-FPGA systems in its datacenter to help accelerate the
Bing search engine [38]; Amazon introduced the F1 instance [2], a compute instance equipped
with FPGA boards, in its commercial Elastic Compute Cloud (EC2).

Although the interest in customized computing using FPGAs is growing, they are more difficult
to program compared to CPUs and GPUs because the traditional register-transfer level (RTL)
programming model is more like circuit design rather than software implementation. To improve
the programmability, high-level synthesis (HLS) [13, 59] has attracted a large amount of atten-
tion over the past decades. Currently, both FPGA vendors have their commercial HLS products—
Xilinx Vitis [53] and Intel FPGA SDK for OpenCL [27]. With the help of HLS, one can program
the FPGA more easily by controlling how the design should be synthesized from a high-level view.
The main enabler of this feature is the ability to iteratively re-optimize the micro-architecture
quickly just by inserting synthesis directives in the form of pragmas instead of re-writing the
low-level behavioral description of the design. Because of the reduced code development cycle
and the shorter turn-around times, HLS has been rapidly adopted by both academia and indus-
try [3, 20, 30, 45, 49, 65]. In fact, Code 1 shows an intuitive HLS C implementation of one forward
path of a Convolutional Neural Network (CNN) on Xilinx FPGAs. Xilinx Vitis generates about
5,800 lines of RTL kernel from Code 1 with the same functionality. As a result, it is much more
convenient and productive for designers to evaluate and improve their designs in HLS C/C++.
Even though HLS is suitable for hardware experts to quickly implement an optimal design, it is

not friendly for most of the general software designers who have limited FPGA domain knowledge.
Since the hardware architecture inferred from a syntactic C implementation could be ambiguous,
current commercial HLS tools usually generate architecture structures according to specific HLS
C/C++ code patterns. As a result, even though it was shown in [13] that the HLS tool is capable
of generating FPGA designs with a performance as competitive as the one in RTL, not every C
program gives a good performance and designers must manually reconstruct the HLS C/C++ ker-
nel with specific code patterns and hardware specific pragmas to achieve high performance. As
a matter of fact, the generated FPGA accelerator from Code 1 is 80× slower than a single-thread
CPU. However, the optimized code (shown in Code 3 in Appendix A.1) is able to achieve around
7,041× speedup after we analyze and resolve several performance bottlenecks listed in Table 1 by
applying code transformations and inserting 28 pragmas.
It turns out that the bottlenecks presented in Table 1 occur for most C/C++ programs developed

by software programmers, and similar optimizations have to be repeated for each new application,
which makes the HLS C/C++ design not scalable. In general, there are three levels of optimization
that one needs to employ to get to a high-performance FPGA design. The level one is for increas-
ing the data reuse or reducing/removing the data dependency by loop transformations, which is
common in CPU performance optimizations as well (e.g., for cache locality); therefore, it is well
accepted by software programmers and we expect them to apply such transformations manually
without any problems. The second level is required to enable repetitive architectural optimizations
that most of the designs benefit from, such as memory burst and memory coalescing, as mentioned
in reasons 1-2 in Table 1. Fortunately, the recently developed Merlin Compiler1 [11, 12, 21] from

1The Merlin Compiler is open-sourced at https://github.com/Xilinx/merlin-compiler.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

https://github.com/Xilinx/merlin-compiler

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:3

Table 1. Analysis of Poor Performance in Code 1

Reason Required Code Changes for Higher Performance

1 Low bandwidth util. Manually apply memory coalescing using HLS built-in type ap_int.
2 High access latency to global
memory

Manually allocate local buffer and use memcpy to enable memory
burst.

3 Does not hide communication
latency

Manually create load/compute/store functions and double buffering.

4 Lack of parallelism Manually create parallel coarse-grained processing elements by wrap-
ping the inner loops as a function and setting proper array partition
factors.

5 Sequential execution Apply #pragma HLS pipeline and #pragma HLS unrollwith proper
array partition factors for each processing element.

Code 1. CNN HLS C Code Snippet

1 // Skip const variable initialization and macro definitions for brevity

2 void CnnKernel(const float* input 1 , const float* weight 1 ,

3 const float* bias 1 , float* output 1) {
4
5 float C[ParallelOut][ImSize][ImSize];

6 for (int i = 0; i < NumOut / ParallelOut; ++i) { 4
7 // Initialization
8 for (int h = 0; h < ImSize; ++h) {
9 for (int w = 0; w < ImSize; ++w) {
10 for (int po = 0; po < ParallelOut; po++)
11 C[po][h][w] = bias[(i << shift) + po]; } }
12 // Convolution

13 for (int j = 0; j < NumIn; ++j) { 5
14 for (int h = 0; h < ImSize; ++h) { 5
15 for (int w = 0; w < ImSize; ++w) { 5
16 for (int po = 0; po < ParallelOut; po++) { 5
17 for (int p = 0; p < kKernel; ++p) { 5
18 for (int q = 0; q < kKernel; ++q) 5
19 C[po][h][w] += weight(i, po, j, p, q) * input(j,h + p,w + q); 2 3 } } } } }
20 // ReLU + Max pooling

21 for (int h = 0; h < OutImSize; ++h) { 5
22 for (int w = 0; w < OutImSize; ++w) { 5
23 for (int po = 0; po < ParallelOut; po++) { 5
24 output(i,h,w) = max(0.f, C, po, h, w); } } } } }

Falcon Computing Solutions [21], whichwas acquired by Xilinx in late 2020 [51], can automatically
take care of these kinds of code transformations.
The final and the most critical level deals with FPGA-specific architectural optimizations, de-

tailed in reasons 3-5 in Table 1, that vary from application to application. Although the Merlin
Compiler also helps alleviate this problem to some extent by introducing a few high-level opti-
mization pragmas and applying source-to-source code transformation to enable them, these opti-
mizations are much more difficult for software programmers to learn and apply effectively. More
specifically, choosing the right part of the program to optimize, deciding the type of optimization
and the pragmas to apply for enabling it, and tuning the pragma to get to the design with the
highest quality complicate this level.
Apparently, the requirement of mastering all three levels of optimizations makes the bar for gen-

eral software programmers to use FPGA extremely high. Hence, general software programmers
will lean towards other popular accelerators such as power-consuming GPUs or high-cost ASICs
with less consideration over FPGAs. These obstacles consequently result in huge barriers in the
adoptions of FPGA in datacenters, the expansion of the FPGA user community, and the advances of

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:4 A. Sohrabizadeh et al.

FPGA technology. One possible solution is to apply an automated micro-architecture optimization.
Thus, everyone with decent knowledge of programming is able to try customized computing with
minimum effort. In order to free accelerator designers from the iterations of HLS design improve-
ment, automated design space exploration (DSE) for HLS attracts more and more attention.
However, existing DSE methods face the following challenges:
Challenge 1: The large solution space: The solution space grows exponentially by the num-

ber of candidate pragmas. In fact, only applying pipeline, unroll, and array partition pragmas to
Code 1 produces 1020 design points. This huge number of combinations creates a serious impedi-
ment to exploring the whole design space.
Challenge 2: Non-monotonic effect of design parameters on performance/area: As

pointed out by Nigam, et al. [35], we cannot assume that an individual design parameter will
affect the performance/area in a smooth and/or monotonic way.
Challenge 3: Correlation of different characteristics of a design:When different pragmas

are employed together in a design, they do not affect only one characteristic of a design. We will
use the convolution part of the Code 1 as an example. If we apply fine-grained (fg) pipeline to
w loop and parallelize the loop with a factor of 2, it results in a loop with initiation interval (II)

of 2 when synthesized by Vivado HLS [48]. However, when we change the parallel factor to 4, the
HLS tool increases the II to 3 to optimize resource consumption by reusing some of the logic units
instead of doubling the resource utilization. The analytical models usually fail to capture these
cases. Furthermore, pipelining the j loop is part of the best design configuration. However, it does
not improve the performance until after the fg pipelining is applied on the w loop. It suggests that
the order of applying the pragmas is crucial in designing the explorer.
Challenge 4: Implementation disparity of HLS tools: The HLS tools from different vendors

employ different implementation strategies. Even within the same vendor, the optimization and
implementation rules keep changing across different versions. For example, the past Xilinx SDAc-
cel versions consistently utilize registers to implement array partitions with small sizes to save
BRAMs. However, the latest ones use dual-port BRAMs for implementation to support two reads
in one cycle for achieving full pipelining, or II = 1, even if the array size is small. Such implemen-
tation details are hard to capture and maintain in analytical models and make it difficult to port
an analytical model built on a specific tool to the other.
Challenge 5: Long synthesis time of HLS tools: HLS tools usually take 5-30 minutes to

generate RTL and estimate the performance—and even longer if the design has a high performance.
This emphasizes the need for a DSE that can find the Pareto-optimal design points in fewer
iterations.
In this paper, as our first step to lowering the bar for general software programmers to

make the FPGA programming universally accessible, we focus on automating the final level of
optimization. To solve the challenges 2 to 4 mentioned above, instead of developing an analytical
model, we treat the HLS tool as a black-box. Challenges 1 and 5 imply that we need to explore
the solution space intelligently. For that, we first apply the coordinate descent with the finite
difference method to guide the explorer. However, we show that the general application-oblivious
approaches fail to perform well for the HLS DSE problem. As a result, we present the AutoDSE2

framework that adapts a bottleneck-guided coordinate optimizer to systematically search for
better configurations. Bottleneck-guided optimization approaches have been used successfully
for CPU and GPU compilation optimization [25, 36], however the runtime for evaluation of the
optimized code on CPUs and GPUs is much shorter. To speed up the process, we incorporate
a flexible list-comprehension syntax to represent a grid design space with all invalid points

2All the codes are open-sourced at https://github.com/UCLA-VAST/AutoDSE.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

https://github.com/UCLA-VAST/AutoDSE

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:5

marked which can help us prune the design space. In addition, we also partition the design space
systematically to address the local optimum problem caused by Challenge 2.
In summary, this paper makes the following contributions:

• We propose two strategies to guide DSE. One adapts the commonly used coordinate descent
with the finite difference method and the other exploits a bottleneck-guided coordinate op-
timizer.
• We incorporate list-comprehension to represent a smooth, grid design space with all invalid
points marked.
• We develop the AutoDSE framework on top of the Merlin Compiler to automatically per-
form DSE using the bottleneck optimizer to systematically close in on high-QoR design
points.
• To the best of our knowledge, we are the first ones to evaluate our tool using the Xilinx
optimized vision library [52]. Evaluation results indicate thatAutoDSE is able to achieve the
same performance, yet with 26.38× reduction of their optimization pragmas resulting in less
than one required optimization pragma per kernel, on the geometric mean.
• We evaluate AutoDSE on 11 computational kernels from MachSuite [39] and Rodinia [8]
benchmarks and one convolution layer of Alexnet [29], showing that we are able to achieve,
on the geometric mean, 19.9× speedup over a single-thread CPU—only a 7% performance
gap compared to manual designs.

2 PROBLEM FORMULATION

Our goal is to expedite the hardware design by automating its exploration process. In general,
there are two types of pragmas (using Vivado HLS as an example) that are applied to a program.
One type is the non-optimization pragmas, which are relatively easy for software programmers to
learn and apply. The other type is optimization pragmas, including PIPELINE and UNROLL pragmas.
These pragmas require knowledge of FPGA devices and micro-architecture optimization experi-
ence, which are usually much more challenging for a software programmer to learn and master
as explained in Section 1. The goal of this research is to minimize or eliminate the need to apply
optimization pragmas manually and let AutoDSE insert them automatically. More formally, we
formulate the HLS DSE problem as the following:
Problem 1: Identify the Design Space. Given a C program P as the FPGA accelerator ker-

nel, construct a design space RKP with K parameters that contains possible combinations of HLS
pragmas for P as design configurations.
Problem 2: Find the Optimal Configuration. Given a C program P, we would like to insert

a minimal number of optimization pragmas manually to get a new program P′ as the FPGA accel-
erator kernel along with its design space set RKP′ which is identified in Problem 1, and we let the
DSE tool insert the rest of the pragmas automatically. More specifically, having a vendor HLS tool
H that estimates the execution cycle Cycle (H,P′) and the resource utilization Util (H,P′) of the
given P′ as a black-box evaluation function, the DSE must find a configuration θ ∈ RKP′ in a given
search time limit so that the generated design P′(θ) with θ can fit in the FPGA and the execution
cycle is minimized. Formally, our objective is:

min
θ

Cycle (H,P′(θ)) (1)

subject to

θ ∈ RKP′
∀u ∈ Util (H,P′(θ)),u < Tu

(2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:6 A. Sohrabizadeh et al.

where u is the utilization of one of the FPGA on-chip resources andTu is a user-available resource
threshold on FPGAs. We set all Tu to 0.8, an empirical threshold, in our experiments. Beyond 0.8,
the design will suffer from high clock frequency degradation due to the difficulty in placement and
routing. In addition, the rest of the resources are left for the interface logic of the vendor HLS tool.
Note that we introduce two optimization objectives; one minimizes the optimization pragmas

that have to be inserted manually to obtain P′, and the other maximizes the performance of P′
using AutoDSE by applying pragmas automatically. Obviously, there is a trade-off between the
two. An expert designer can always get an optimized micro-architecture to achieve the best per-
formance by inserting enough HLS optimization pragmas. However, it is time-consuming and not
feasible for software programmers with little or no FPGA design experience. In our evaluation,
our goal is to match the performance of well-designed HLS library code (typically written by ex-
perts) yet insert much fewer optimization pragmas manually. Indeed, our experimental results in
Section 6 show that we can achieve this with 26.38× pragma reduction on the geometric mean,
requiring less than one optimization pragma per kernel.

3 RELATEDWORK

There are a number of previous works that propose an automated framework to explore the HLS
design space, and they can be summarized in two categories: model-based and model-free tech-
niques.

3.1 Model-based Techniques

The studies in this category build an analytical model for evaluating the quality of each explored
design point by estimating its performance and resource utilization. The authors in [50, 60, 62]
build the dependence graph of the target application and utilize traditional graph analysis tech-
niques along with predictive models to search for the best design. Although this approach can
quickly search through the design space, it is inaccurate and it is difficult to maintain the model
and port it to other HLS tools as explained in Challenge 4 of Section 1. Zhong, et al. [64] develops
a simple analytical model for performance and area estimation. However, they assume that the
performance/area changes monotonically by modifying an individual design parameter, which is
not a valid assumption as we explained in Challenge 2 of Section 1. To increase the accuracy of the
estimationmodel, a number of other studies restrict the target application to those that have a well-
defined accelerator micro-architecture template [9, 14, 15, 40, 45, 58], a specific application [55, 61],
or a particular computation pattern [10, 28, 37]; hence, they lose generality.

To the same end, there are other studies that build the predictive model using learning algo-
rithms. They train a model by iteratively synthesizing a set of sample designs and updating the
model until it gets to the desired accuracy. Later on, they use the trained model for estimating
the quality of the design instead of invocations of the HLS tool. To learn the behavior of the HLS
tool, these works adapt supervised learning algorithms to better capture uncertainty of the HLS
tools [28, 31, 32, 43, 56, 63]. While this technique increases the accuracy of the model, it is still hard
to port the model to another HLS tool in a different vendor or version. Often by changing the HLS
tool or the target FPGA, new samples should be collected which can be an expensive step. After
that, for each of them, a new model should be trained to include the new dataset.

3.2 Model-free Approaches

To avoid dealing with the uncertainty of the HLS tools, in this category, the studies treat the HLS
tool as a black box. Instead of learning a predictive model, they invoke the HLS tool every time
to evaluate the quality of the design. To guide the search, they either exploit general application-
oblivious heuristics (e.g., simulated annealing [33] and genetic algorithm [41]) or they develop

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:7

Table 2. Merlin Pragmas with Architecture Structures

Keyword Available Options Architecture Structure

parallel factor=<int> CG & FG parallelism

pipeline
mode=cg CG pipeline
mode=fg FG pipeline

tiling factor=<int> Loop Tiling
CG: Coarse-grained; FG: Fine-grained.

their own heuristics [22, 23, 42]. S2FA [57] employ multi-armed bandit [24] to combine a set of
heuristic algorithms including uniform greedy mutation, differential evolution genetic algorithm,
particle swarm optimization, and simulated annealing. However, as we will present in Section 5.1,
general hyper-heuristic approaches are unreliable for finding the high quality of result (QoR)

design configuration. Moreover, the authors in [22, 23] claim that Pareto-optimal design points
cluster together. They exploit an initial sampling to build the first approximation of the Pareto
frontier and require local searches to explore other candidates. However, the cost of initial sam-
pling is not scalable when the design space is tremendously large (e.g., the scale of 1010 to 1030), as
the ones we have enumerated in this paper are. Sun, et al. [46] adapt a (Gaussian process) GP-
based Bayesian optimization (BO) algorithm to explore the solution space. At each iteration, it
improves a surrogate model to mimic the HLS tool, by sampling the design space. Again, as the
search space grows, it will require more samples to build a good surrogate model which can limit
the scalability. Moreover, the computation of a GP-based BO can be seen to be cubic in the total
number of samples (in addition to the time to evaluate the sampled point using the HLS tool), as it
wants to calculate the inversion of a dense covariance matrix at each step [44] which can further
limit the scalability of the approach.

4 THE AUTODSE FRAMEWORK

To reduce the size of the design space, we build our DSE on top of the Merlin Compiler [11, 12, 21].
Section 4.1 reviews the Merlin Compiler and justifies our choice. Then, we present an overview of
AutoDSE in Section 4.2.

4.1 Merlin Compiler and Design Space Definition

The Merlin Compiler [11, 12, 21] was developed to raise the abstraction level in FPGA pro-
gramming by introducing a reduced set of high-level optimization directives and generating
the HLS code according to them automatically. It uses a simple programming model similar to
OpenMP [17], which is commonly used for multi-core CPU programming. Like in OpenMP, it
defines a small set of compiler directives in the form of pragmas for optimizing the design. Table 2
lists the Merlin pragmas with architecture structures. Note that the fg option in the fine-grained
pipeline mode refers to the code transformation that tries to apply fine-grained pipelining to a loop
nest by fully unrolling all its sub-loops; whereas, the cg option in the coarse-grained pipelining
transforms the code to enable double buffering. Based on these user-specified pragmas, the Merlin
Compiler performs source-to-source code transformation and automatically generates the related
HLS pragmas such as PIPELINE, UNROLL, and ARRAY_PARTITION to apply the corresponding
architecture optimizations.
To reduce the size of the solution space, we chose to utilize the Merlin Compiler as the

backend of our tool. Since the number of pragmas required by the Merlin Compiler is much
smaller (as it performs source level code reconstruction and generates most of the HLS required
pragmas), it defines a more compact design space, which makes it a better fit for developing

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:8 A. Sohrabizadeh et al.

Code 2. CNN Code Snippet in Merlin C

1 void CnnKernel(
2 const float input[NumIn][InImSize][InImSize],
3 const float weight[NumOut][NumIn][kKernel][kKernel],
4 const float bias[NumOut], float output[NumOut][OutImSize][OutImSize]) {
5
6 float C[ParallelOut][ImSize][ImSize];
7 for (int i = 0; i < NumOut/ParallelOut; i++) {
8 // Initialization
9 for (int h = 0; h < ImSize; ++h) {
10 #pragma ACCEL parallel factor=4
11 for (int w = 0; w < ImSize; ++w){
12 for (int po = 0; po < ParallelOut; po++)
13 C[po][h][w] = 0.f; } }
14 // Convolution
15 #pragma ACCEL pipeline
16 for (int j = 0; j < NumIn; ++j) {
17 for (int h = 0; h < ImSize; ++h) {
18 #pragma ACCEL parallel factor=4
19 #pragma ACCEL pipeline FLATTEN
20 for (int w = 0; w < ImSize; ++w) {
21 for (int po = 0; po < ParallelOut; po++){
22 float tmp = 0;
23 for (int p = 0; p < kKernel; ++p) {
24 for (int q = 0; q < kKernel; ++q){
25 tmp += ... } }
26 C[po][h][w] += tmp; } } } }
27 // Skip ReLU + Max Pooling for brevity
28 } }

a DSE as shown in [15, 57]. For instance, Code 2 shows the CNN kernel with Merlin prag-
mas. With inserting only four lines of pragmas and no further manual code transformation,
the Merlin Compiler is able to transform Code 2 to a high-performance HLS kernel with the
same performance as the manually optimized design written in HLS C which has 28 pragmas
(Section A.1).

The Merlin Compiler, by default, applies code transformations to address the bottlenecks 1 and
2 listed in Table 1 and provides high-level optimization pragmas for the rest of them. For exam-
ple, instead of rewriting Code 1 to test whether double buffering would help the performance as
described in reason 3 in Table 1, we just need to use the cg PIPELINE pragma and the Merlin
Compiler will rewrite the code to satisfy it. As a result, our focus in this work is on finding the
best location of each of these high-level pragmas and tuning them, automatically; hence, we can
address reasons 3-5 in Table 1 as well by enabling the architectural optimizations along with the
best pipelining and parallelization attributes. Consequently, our solution to Problem 1 is defined as
in Table 3. We identify the design space for each kernel by analyzing the kernel abstract syntax
tree (AST) to gather loop trip-counts, available bit-widths, etc. The rules we enforce in building
this design space are listed in Section 5.4.
Now that we have defined the design space in Table 3 for Problem 1, we focus on Problem 2 in

the remainder of this paper. Although to some extents, Merlin pragmas alleviate the manual code
reconstruction overhead, a designer still has tomanually search for the best option for each pragma,
including position, type, and factors. In fact, choices for the CNN design in Code 1 contain four
DRAM buffers and thirteen loops, which result in ∼1016 design configurations. The large design
space motivates us to develop an efficient approach to find the best configuration.

4.2 Framework Overview

We develop and implement AutoDSE, a push-button framework, as depicted in Figure 1 based on
the strategies explained in Section 5. The framework first automatically builds a design space by

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:9

Table 3. Design Space Building on Merlin Pragmas

Factor Design Space (Values)

CG-loop parallel {u | 1 < u <= TC (L),u .c = TC (L), c ∈ Z}

FG-loop parallel
{
u |
{
1 < u < TC (L), u .c = TC (L), c ∈ Z, TC(L) > 16

u = TC (L), otherwise

}

CG-loop pipeline
{
p | p ∈ {o f f , cд, f д}}

FG-loop pipeline
{
p | p = f д

}
loop tiling {t | 1 < t < TC (L), t .c = TC (L), c ∈ Z}

CG: Coarse-grained; FG: Fine-grained; TC: Loop trip-count.

Fig. 1. The AutoDSE framework overview.

analyzing the kernel AST according to the rules and the syntax described in Section 5.4. Then,
it profiles and selects representative partitions using K-Means as mentioned in Section 5.5. For
each partition, AutoDSE explorer performs DSE using the proposed bottleneck-based coordinate
strategy in Section 5.2 and the parameter ordering explained in Section 5.3. The explorer can be
tuned to evaluate the quality of design points based on different targets such as performance,
resource, or finite difference (Equation (5)). When the explorer finishes exploring a partition, it
stores the best configuration found by that partition and reallocates the working threads to other
partitions to keep the resource utilization high. Finally, when all partitions are finished, AutoDSE
outputs the design configuration with the best QoR among all partitions.

5 AUTODSE METHODOLOGY

In this section, we first examine the efficiency of application-oblivious heuristics, which were con-
sidered in our initial study, in Section 5.1. As we will discuss, the main drawback of these heuristics
for the HLS DSE problem is the fact that they do not have any knowledge of the semantics of the
program parameter. This problem can potentially linger the DSE process since the explorer may
waste a lot of time on parameters with no impact on the results at that stage of optimization.
As a result, in Section 5.2, we present a bottleneck-guided coordinate optimizer that can mimic an

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:10 A. Sohrabizadeh et al.

Fig. 2. Speedup over the manual design using S2FA [57].

expert’s optimization method and generate high-QoR design points in fewer numbers of iterations.
We propose several optimizations in Sections 5.3 to 5.5 to further improve the performance of our
framework.

5.1 Application-oblivious Heuristics

In our prior work on DSE, S2FA [57], we adapted a popular search engine called OpenTuner [4].
OpenTuner leverages themulti-armed bandit (MAB) approach [24] to assemble multiple meta-
heuristic algorithms - including uniform greedy mutation, differential evolution genetic algorithm,
particle swarm optimization, and simulated annealing - for high generalization. At each iteration,
the MAB selects the meta-heuristic with the highest credit and updates the credit of the selected
meta-heuristic based on the QoR, which means the meta-heuristic that can efficiently find high-
quality design points will be rewarded and activated more frequently by the MAB, and vice versa.
Due to its extensibility, OpenTuner has been adapted to perform DSE for hardware design opti-
mization [54].

S2FA also employs the Merlin Compiler as its backend and further applies more strategies to
improve the OpenTuner’s efficiency when performing DSE for HLS. We use S2FA to perform the
DSE for 24 hours and depict the speedup of our benchmark cases compared to the corresponding
manual design over time in Figure 2. The black dot indicates the time that the S2FA finds the overall
best design point. We can see that S2FA requires on average 16.8 hours to find the best solution.We
further analyze the exploration process and find that most designs have an obvious performance
bottleneck (e.g., low utilization of global memory bandwidth, insufficient parallel factors, etc.),
which usually dominates more than half of the overall cycle counts and is controlled by only
one or two design parameters (pragmas). In this situation, the performance gain of tuning other
parameters is often very limited but it is hard for the problem-independent searching algorithm
to learn that. In fact, it needs many iterations to identify the key parameter and tune it to resolve
the performance bottleneck. After that, it has to spend a large number of iterations again to find
the next key parameter. This phenomenon motivates us to develop a new search algorithm that is
guaranteed to optimize the key parameter (high-impact parameter) prior to others.
Coordinate descent is another well-known iterative optimization algorithm for finding a locally

minimum point. It is based on the idea that one can minimize a multi-variable function by mini-
mizing it along one direction at a time and solving single-variable optimization problems. At each
iteration, we generate a set of candidates, Θcand , as the input to the algorithm. Each candidate
is generated by advancing the value of each parameter in the current configuration by one step.
Formally, the c-th candidate generated from design point θi is:

θci = [p0,p1, . . . ,pc + 1, . . . ,pK] (3)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:11

where K is the total number of parameters, pc is the value of c-th parameter in θi , pc + 1 denotes
the next value of this parameter (the next numeric factor for PARALLEL and TILING pragma and
the next mode of pipelining for PIPELINE pragma). Accordingly, we will generate K candidates at
each iteration, which means we run the HLS tool K times to determine the next configuration as
follows:

θi+1 = arдmin
θ c
i
∈Θcand

д(θci ,θi) (4)

We leverage the finite difference method to approximate the coordinate value by treating the
HLS tool as a black-box. That is, given a candidate configuration θ j deviated from the current
configuration θi , the coordinate value is defined as:

д(θ j ,θi) ∼
Cycle (H,P (θ j)) −Cycle (H,P (θi))
Util (H,P (θ j)) −Util (H,P (θi))

(5)

We calculate Util (H,P (θ)) by taking into account all the different types of resources using the
following formula:

Util (H,P (θ)) =
∑
u

2
1

1−u (6)

whereu is the utilization of one of the FPGA resources.We use exponential function to penalize the
over-utilization of FPGA more seriously. Note that Equation (5) considers not only performance
gain but also resource efficiency, so it could reduce the possibility of being trapped in a local
optimum. For example, we may reduce 10% execution cycle by spending 30% more area if we
increase the parallel factor of a loop (configuration θ1); we can also reduce 5% execution cycle by
spending 10%more area if we enlarge the bit-width of a certain buffer (configuration θ2). Although
θ1 seems better in terms of the execution cycle, it may be more easily trapped by a locally optimal
point because it has a relatively limited resource left to be further improved. On the other hand,
the finite difference values for the two configurations are д(θ1,θ0) =

−10%
30% = −0.3 and д(θ2,θ0) =

−5%
10% = −0.5, so the system prioritizes the second configuration for a better long-term performance.
By leveraging the coordinate descent with a finite difference method, we expect to find a bet-

ter design point every K HLS runs. Unfortunately, as mentioned in Challenge 2 of Section 1, the
performance trend is not always smooth, so the coordinate process can easily be trapped by a
low-quality locally optimal design point. Actually, this approach only achieves 2.8× speedup, on
the geometric mean, for our MachSuite [39] and Rodinia [8] (MR) benchmarks, which is even
worse than the results from S2FA.

Moreover, the efficiency of using the coordinate-based approach for DSE is limited by the num-
ber of parameters. More specifically, at each iteration, we need to evaluate K design points, where
K is the total number of tuning parameters, to determine the next step. On the other hand, in most
cases, only a few of the K tuning parameters have a high impact on the performance, so we should
evaluate only the K ′ impactful parameters at each iteration where K ′ < K . For instance, design
space generator will instrument Code 1 with 27 pragmas based on the rules explained in Section 5.4
and the coordinate-based approach proposed in this section needs to assess the quality of 27 new
designs in each iteration. However, in the early iterations the convolution part takes more than
85% of the total cycle counts of the kernel. As a result, changing the pragmas outside of this part
will have insignificant effect on the performance; hence, it is wasteful to explore them at this stage.

5.2 AutoDSE Exploring Strategy - Bottleneck-guided Coordinate Optimizer

Two main inefficiencies of the approaches reviewed in the previous section are: (1) they must
evaluate many design points to identify the performance bottleneck, (2) they have no knowledge

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:12 A. Sohrabizadeh et al.

Fig. 3. The cycle propagation in the Merlin Compiler.

of the semantics of the parameters, so they have no way to differentiate them and prioritize the
important ones. Identifying the key parameters is not straightforward. Although the HLS report
may provide the cycle breakdown for the loop and function statements, it is hard to map them
to tuning parameters due to the applications of several code transformations applied by the Mer-
lin Compiler. Fortunately, the Merlin Compiler includes a feature that transmits the performance
breakdown reported by the HLS tool to the user input code, allowing us to identify the perfor-
mance bottleneck by traversing the Merlin report and mapping the bottleneck statement to one or
few tuning parameters.
Figure 3 illustrates how the Merlin Compiler generates its report of the cycle breakdown. When

performing code transformation, the Merlin Compiler records the code change step by step so that
it is able to propagate the latency estimated by the HLS tool back to the user input code. In this
example, the i loop corresponds to the compute unit in the transformed code, so the latency of
this unit is assigned to it. Note that the latency of all load, compute, and store units are included
in the task_batch loop which will determine the latency of task loop in both the original and
transformed codes. This feature is helpful for us to analyze the performance bottleneck and identify
the key tuning parameter by running HLS once at each iteration instead of evaluating the effect
of all K parameters.
By exploiting the cycle breakdown, we can develop a bottleneck analyzer to resolve the issues

mentioned above. We first build a map from the loop or function statements in the user input code
to design parameters so that we know which parameters should be focused on for a particular
statement. To identify the critical path and type, we start with the kernel top function statement
and build hierarchy paths of the design by traversing the Merlin report using depth-first search
(DFS). More specifically, for each hierarchy level, we first check to see if the current statement has
child loop statements and sort them by their latency. Then, we traverse each of the child loops and
repeat this process. In case of a function call statement, we dive into the function implementation
to further check its child statements for building the hierarchy paths. Finally, we return a list of

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:13

paths in order. Note that since we sort all loop statements according to their latency by checking
the Merlin report, the hierarchy paths we created will also be sorted by their latency.
Subsequently, for each statement, we check the Merlin report again to determine whether its

performance bottleneck is memory transfer or computation. The Merlin Compiler obtains this
information by analyzing the transformed kernel code along with the HLS report. A cycle is con-
sidered to be a memory transfer cycle if it is consumed by communicating to global memory. As a
result, we can not only figure out the performance bottleneck for each design point, but also iden-
tify a small set of effective design parameters to focus on. Therefore, we are able to significantly
improve the efficiency of our searching algorithm.
When we obtain an ordered list of critical hierarchy paths from the bottleneck analyzer, we start

from the innermost loop statement (because of the DFS traversal) of the most critical entry and
identify its corresponding parameters as candidate parameters to explore, if they are not already
tuned. Based on the bottleneck type, provided by the bottleneck analysis, (i.e., memory transfer
or computation), we pick a subset of the parameters mapped to that statement to work on. For
example, we may have design parameters of PARALLEL and TILING at the same loop level. When
the bottleneck type of the loop is memory transfer, we focus on the TILING parameter for the loop;
otherwise, we focus on PARALLEL parameter. In other words, we reduce the number of candidate
design parameters not only by the bottleneck statement but also by the bottleneck type.
We define each design point as a data structure containing the following information:

curr_point = DesignPoint(configuration, tuned, result, quality, children)

where configuration contains the value of all the parameters and tuned lists the parameters which
the algorithm has explored for the current point. quality stores the quality of design measured by
finite difference value and result includes all the related information gathered from the HLS tool
including the resource utilization and the cycle count. Finally, each design point stores a stack of
the configurations for its unexplored children where each child is generated by advancing one of
the parameters by one step. The children are pushed to the stack in the order of their importance
(from least tomost important) as computed by the bottleneck analyzer so that by popping the stack,
we get to work with the child who has changed the parameter with the most promising impact.

We define level n as a point where we have fixed the value of n parameters, so the maximum
level in our algorithm is equal to the total number of parameters. For each level, we define a heap of
the pending design points that can be further explored and push the design points by their quality
into the heap. Since new design points are sorted by their quality values when they were pushed
into the heap, the design point with a better quality value will be chosen for tuning more of its
parameters prior to other points. As mentioned above, the next point to be explored is chosen by
popping the stack of the unexplored children of this design point so that at each step, we get to
evaluate the most promising design point.
Algorithm 1 presents our exploring strategy. As we will explain in Section 5.5, we partition the

design space to alleviate the local optimum problem. For each partition, we first get its default
point and initialize the heap of the first level (lines 3 to 9). Then, at each iteration of the algorithm,
AutoDSE gets the heap with the highest level, peeks the first node of the heap, and pops its stack of
unexplored children to get the new candidate (lines 11 to 14). Next, each option of the new focused
parameter will be evaluated and the result will be passed to the bottleneck analyzer to generate a
new set of focused parameters for making new children (lines 16 to 21). Since the number of fixed
parameters is increased by one, it will be pushed to the heap of the next level if there is still a param-
eter left that has not been tuned yet (lines 22 to 26). When the stack of unexplored children of the
current design point is empty, it will be popped out of heap (lines 28 to 30). The algorithm continues
either until all the heaps are empty or when the DSE has reached a runtime threshold (Line 10).

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:14 A. Sohrabizadeh et al.

ALGORITHM 1: AutoDSE Explorer: Bottleneck-guided Coordinate Optimizer

Require: A C program P and a set of design space partitions P.
Ensure: A design configuration θ with the best QoR.
1: top_f unc ← GetTopFunction(P)
2: parallel for P ∈ P do
3: best_c f д = c f д ← GetDe f aultPoint (P)
4: report ,hier ← Evaluate (c f д)
5: parameter_order ← BottleneckAnalysis (report ,hier , top_f unc,∅)
6: children ← GetChildren(c f д,parameter_order)
7: LevelHeap ← ∅
8: LevelHeap.append (∅)
9: LevelHeap[0].push(DesiдnPoint (c f д,∅, report .result , 0, children))
10: while LevelHeap � ∅ and elapsed_time < DSE_T IMEOUT do

11: curr_level = GetLastLevel (LevelHeap)
12: curr_point ← LevelHeap[curr_level].peek ()
13: tuned_parameters = curr_point .tuned
14: candidate_c f д, f ocused_parameter ← curr_point .children.pop ()
15: parallel for option ∈ f ocused_parameter do
16: new_c f д ← Manipulate (candidate_c f д, f ocused_parameter ,option)
17: new_tuned ← tuned_parameters + [(f ocused_parameter ,option)]
18: report ,hier ← Evaluate (new_c f д)
19: quality ← CalQuality (report .result , "FiniteDi f f erence")
20: best_c f д ← UpdateBest (new_c f д,quality)
21: parameter_order ← BottleneckAnalysis (report ,hier , top_f unc,new_tuned)
22: if len(parameter_order) > 0 then
23: children ← GetChildren(new_c f д,parameter_order)
24: new_point ← DesiдnPoint (new_c f д,new_tuned, report .result ,quality, children)
25: LevelHeap[curr_level + 1].push(new_point)
26: end if

27: end for

28: if LevelHeap[curr_level].peek ().NumChildren == 0 then
29: LevelHeap[curr_level].pop ()
30: end if

31: end while

32: end for

33: return best_c f д

As an example, when AutoDSE optimizes Code 1, it will see that the convolution part of the
code takes 85.2% of the overall cycle counts. Since that section of the code is a series of nested
loops, the parameters of the innermost loop will take the top of the list produced by the bottleneck
analyzer. We shall explain in Section 5.4 (Rule 1) that we do not consider loops with trip count of
less than or equal to 16 in our DSE since the HLS tool can automatically optimize these loops well.
As a result, the w loop in Line 15 would be the innermost loop with parameters which the Merlin
report tells us it is a computation-bound loop. According to the parameter ordering described in
Section 5.3,AutoDSE first tries to apply fg PIPELINE which would be a successful attempt. In the
next iteration, the last level heap will contain the design point that was just optimized and since
the convolution part is still the bottleneck, AutoDSE would try parallelizing the w loop and will

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:15

Table 4. Performance and Area Compared to The Base Design When Parameters

of Line 15 in Code 1 Change

Optimization Status Perf BRAM LUT DSP FF

Pi-fg PASS (24 min) 175× +7% +23% +24% +15%
PF=4 TIMEOUT - - - - -

Pi-fg + PF=4 PASS (28 min) 218× +17% +44% +33% +25%
Pi: Pipeline, PF: Parallel Factor, fg: fine-grained.
TIMEOUT is set to 60 minutes. The results suggest that applying fine-grained optimization first lets the HLS tool
synthesize the design easier.

choose factor=4 since it achieves the highest quality value. Although factor=8 can reduce the
cycle count by 11%, it increases the overall area (Equation (6)) by 63% which results in a worse
quality; therefore, AutoDSE picks factor=4 to make room for further improvement. By adopting
Algorithm 1,AutoDSE can improve the performance by 218× very quickly, only after two iterations
of the algorithm.

5.3 Parameter Ordering

It often happens that each bottleneck type has more than one applicable design parameter. In these
situations, we sort the parameters by a pre-defined priority. For example, if the bottleneck of a loop
statement is determined to be its computation, one can apply fg or cg pipelining/parallelization, in
general. In this case, we treat the PIPELINE pragma as two different parameters based on its mode
and choose the order of applying the pragmas to be fg PIPELINE, PARALLEL, and cg PIPELINE
which is a heuristic approach to improve the performance by utilizing more fine-grained paral-
lelization units since the HLS tool handles such optimizations better. Here, measuring the quality
of design points with the finite difference value (Equation (5)) helpsAutoDSE not to over-utilize the
FPGA. For a configuration, when the gain of the achieved speedup is not comparable to the loss of
available resources, the quality of design decreases; hence, AutoDSE will not tune that parameter
and the resources are left for applying a design parameter with higher impact.
Moreover, as mentioned in Challenge 3 of Section 1, the order of applying the pragmas is crucial

in order to get to the best design. Our experiments show that evaluating the fine-grained optimiza-
tions first helps AutoDSE reach the best design point in fewer iterations. This is mainly because
HLS tools schedule fine-grained optimizations better than the coarse-grained ones. Table 4 shows
how the performance and resource utilization change when fg PIPELINE and PARALLEL prag-
mas are applied to line 15 in Code 1 compared to the base design where all the pragmas are off.
The time limit to run the HLS tool is set to 60 minutes. The results suggest that in order to get to
the optimal configuration for this loop, we must first apply the fine-grained pipelining. This way,
the HLS tool can better schedule the loop when parallelization is further applied and its synthesis
will finish in 28 minutes. However, if we first apply the other pragma which results in a coarse-
grained parallelization, the synthesis will be timed out and AutoDSE does not tune this pragma at
this stage.
Note that we do not prune the other design parameters. We just change the order of the param-

eters to be explored as these rules cannot be generalized to all cases due to the unpredictability
of the HLS tools. If the bottleneck of a design point is memory transfer, AutoDSE prioritizes cg
PIPELINE over TILING pragma. The Merlin Compiler, by default, caches the data and the former
will further overlap the communication time with computation by applying double buffering; how-
ever, the latter can be used to change the size of the cached data.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:16 A. Sohrabizadeh et al.

Fig. 4. Proposed design space representation and its impact on DSE. P1 and P2 denote the PIPELINE and

PARALLEL pragmas, respectively.

5.4 Efficient Design Space Representation

To further facilitate the bottleneck-based optimizer, we seek to reduce the ineffective parameters.
Intuitively, we can build a grid design space from the Merlin pragmas by treating each pragma as
a tuning parameter and search for the best combination. However, many points in this grid space
may be infeasible. For example, if we have determined to perform coarse-grained pipelining at the
outermost loop of a loop nest, the Merlin Compiler will apply double-buffering on the loop. In
this case, the physical meaning of double-buffering at the outermost loop is to transfer a batch of
data from DRAM to BRAM, which cannot be further parallelized. As a result, pipeline and parallel
pragmas are mutually exclusive in a loop nest. We propose an efficient approach to create a design
space that preserves the grid design space but invalidates infeasible combinations.
Figure 4 illustrates the goal of an efficient design space representation. In this example, we

attempt to explore the best parameter with the best option for loop j of Code 1 with pragma
P1 and P2 denoting the PIPELINE and PARALLEL pragmas, respectively. Pragma P1 and P2 are
exclusive when P1 is used in cg mode; therefore, only one of them should be inserted at a time.
A good design space representation must preserve the grid design space but invalidate infeasible
points. An example of such representation is presented in Figure 4. Assume that we are at the
configuration (P1, P2) = (cg, 1), we only have two candidates to explore in the next step because
the configuration (P1, P2) = (cg, 2) is invalid. This representation is exploration friendly and it is
easy to enforce rules on the infeasible points.
To represent a grid design space with invalid points, we introduce a Python list comprehension

syntax to AutoDSE. The Python list comprehension is a concise approach for creating lists with
conditions. It has the following syntax:

list_name = [expression for item in list if condition]

Formally, we define the design space representation for Merlin pragmas with list comprehensions
as follows:

#pragma ACCEL <pragma-type> <attribute-key>=auto{
options: parameter_name=list-comprehension-expression;
default: default-value }

For our example, the design space can be represented using list comprehensions as follows:

1 // Skip the rest due to page limit
2 #pragma ACCEL PIPELINE auto{
3 options: P1 = [x for x in [off, cg, fg]];
4 default: 'off' }
5 #pragma ACCEL PARALLEL factor=auto{
6 options: P2 = [x for x in [1, 2, 4, 8, 16, 32, 64] if P1!=cg];
7 default: 1 }
8 for (int j = 0; j < NumIn; ++i) {
9 // Skip the rest due to page limit

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:17

where line 6 indicates that the two pragmas are exclusive. In other words, when we set P1 = cg,
the available option for P2 is only the default value, which is 1 in this case. Note that the default
value of each pragma turns it off.

There are three main advantages to adopting list comprehension-based design space represen-
tations. First, we are able to represent a design space with exclusive rules to greatly reduce its size.
Second, the Python list comprehension is general. It provides a friendly and comprehensive inter-
face for higher layers such as polyhedral analysis [66] and domain-specific languages to generate
an effective design space in the future. Third, the syntax of this representation is Python compati-
ble. This means we can leverage the Python interpreter to evaluate the design space and improve
overall stability of the DSE framework.
The Design Space Generator, depicted in Figure 1, adapts the Rose Compiler [1] to analyze the

kernel AST and extract the required information for running the DSE such as the loops in the
design, their trip-count, and available bit-width. Artisan [47] employs a similar approach for ana-
lyzing the code. However, it only considers unroll pragma in code instrumentation. Our approach,
on the other hand, considers a wider set of pragmas as mentioned in Table 2 and exploits the
following rules to prune the design space:

(1) Ignore the fine-grained loops with trip count (TC) of less than or equal to 16 as the HLS
tool can schedule these loops well.

(2) Tiling factors (TF) should be integer divisors of their loop TC.
(3) The allowed parallel factors (PF) for a loop are all sub-divisors of the loop TC up to

min(128,TC) plus the TC itself. PF of larger than 128 causes the HLS tool to run for a long
time and it usually does not result in a good performance.

(4) For each loop, we should have TF ∗ PF ≤ TC .
(5) When fg PIPELINE is applied on a loop, no other pragma is allowed for the inner loops

since this parameter wants to unroll all the inner loops completely.
(6) A parallel pragma is invalid for a loop nest when cg PIPELINE is applied on that loop.
(7) A tiling pragma is added only to the loops with an inner loop.

5.5 Design Space Partitioning

Unfortunately, the third inefficiency of the approaches reviewed in Section 5.1 also exists in our
bottleneck-guided optimizer. We still cannot identify whether the current option of a parameter
is locally or globally optimum. The most promising solution is breaking the dependency between
options and searching a set of them in parallel. Although we need to evaluate multiple design
points at every iteration, each design point will provide the maximum information for improving
the performance because we always evaluate the parameters that have the largest impact on the
performance bottleneck.
By partitioning the design space based on the likely distribution of locally optimal points and ex-

ploring each partition independently, we solve the local optimum issue caused by the non-smooth
performance trend (Challenge 2 in Section 1) since each partition starts exploring from a different
point. Intuitively, we could partition the design space according to the range of values of every
parameter in a design, but it may generate thousands of partitions and result in a long exploration
time. Instead, we partition the design space based on the pipeline mode, as fg PIPELINE unrolls all
sub-loops while the cg PIPELINE exploits double buffers to implement coarse-grained pipelining.
These two modes apparently have the most significant different influence on the generated archi-
tecture and are expected to have non-related performance and resource utilization. According to
the pipeline modes in each loop, we use the tree partition and generate 2m partitions from a design
space withm non-innermost loops.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:18 A. Sohrabizadeh et al.

Fig. 5. Speedup of the Merlin Compiler without any pragmas, proposed approach with different optimiza-

tions, and the manual design over an Intel Xeon CPU core.

Supposing we use t working threads to perform, at most, h hours DSE for 2m design space parti-
tions, we need 2m

t
×h hours to finish the entire process. On the other hand, some partitions that are

based on an insignificant pipeline pragma may have a similar performance, so it is more efficient
to only explore one of them. As a result, we profile each partition by running HLS with minimized
parameter values to obtain the minimum area and performance and use K-means clustering with
performance and area as features to identify t representative partitions among all 2m partitions.

6 EVALUATION

6.1 Experimental Setup

Our evaluation is performed onAmazon Elastic Compute Cloud (EC2) [2]. We use r4.4xlarge
instance with 16 cores and 122 GiB memory to perform the DSE and generate accelerator bit-
streams. The generated FPGA accelerators are evaluated on an F1 instance (f1.2xlarge) with Xil-
inx Virtex UltraScale+TM VU9P FPGA. In addition, we choose the commonly-used MachSuite [39]
benchmark suite and the FPGA-friendly Rodinia [8] benchmark, along with one convolution layer
of Alexnet [29] as our first benchmark. For several common kernels, MachSuite provides C im-
plementation that is programmed without the consideration of FPGA acceleration, which makes
it a natural fit for demonstrating our approach. We evaluate the effect of our optimizations and
compare the designs generated by our tool to the state-of-the-art works using this benchmark.
Furthermore, to the best of our knowledge, we are the first ones to evaluate the performance of
our tool on vision kernels of Xilinx Vitis libraries [52] that are optimized for Xilinx FPGAs, based
on the OpenCV library [5].

6.2 Evaluation of Optimization Techniques

We first measure the performance of the Merlin Compiler without any pragmas and without the
help of AutoDSE to get the impact of its default optimizations. The 1st bar of each case in Figure 5
depicts the speedup gained by the Merlin Compiler with respect to CPU. Then, we evaluate the
original coordinate descent (CD)method described in Section 5.1 and the proposed optimization
strategies explained in Sections 5.4 and 5.5. The 2nd to 4th bars in Figure 5 show the speedup gained
after tuning the pragmas by each of these optimizations. Note that the chart is in logarithmic scale.
We can see that the default optimizations of theMerlin Compiler are not enough and after applying
the candidate pragmas generated by the Original CD, we get 13.52× speedup, on the geometric
mean. Moreover, each of the proposed strategies benefits at least one case in our benchmark and
together further bring a 2.47× speedup. The list-based design space representation keeps the search
space smooth by invalidating infeasible combinations. As a result, we can investigate more design
points in a fixed amount of time. This helps AES, NW, KMP, PATHFINDER, KMEANS, and KNN. Design

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:19

Fig. 6. Speedup over the manual design using AutoDSE for the four cases that the bottleneck-guided opti-

mizer had significant impact.

space partition benefits the designs with many loop nests in which the coordinate process is easily
trapped by the local optimum when changing pipeline modes—such as AES, GEMM, NW, STENCIL-2D,
and STENCIL-3D.
The 5th bar shows the speedup of AutoDSE when the bottleneck-guided coordinate optimizer

detailed in Section 5.2 is adapted along with the parameter ordering explained in Section 5.3, de-
sign space representation introduced in Section 5.4, and design space partitioning described in
Section 5.5. With this setup, AutoDSE further improves the result by 5.5× on the geometric mean
bringing the overall speedup compared to when no pragmas are applied to 182.92×. As a result,
AutoDSE is able to achieve a speedup of 19.9× over CPU and get to 0.93× performance of the
manual designs while running only for 1.1 hours on the geometric mean. The manual designs, de-
picted by the 6th bar, are optimized by applying the Merlin pragmas manually without changing
the source programs.
Figure 6 depicts the AutoDSE process for four cases where the bottleneck-guided optimizer

showed significant improvement in the performance. This shows that our approach can rapidly
achieve a high performance design. AutoDSE does not exactly match the performance of manual
designs for all of the cases because the HLS report may not reflect the accurate computation cycles
when the kernels contain many unbounded loops or while-loops, which in turn affects the Merlin
report. In order to get the importance of the parameters, the bottleneck analyzer (explained in
Section 5.2) needs to receive the accurate cycle estimation of the design. In the absence of the true
cycle breakdown, it cannot determine the high-impact design parameters. Therefore, our search
algorithm may focus on unimportant parameters.

6.3 Comparison with Other DSE Approaches

We further evaluate the overall performance of generated accelerator designs by AutoDSE com-
pared to the previous state-of-the-art works including S2FA [57], lattice-traversing DSE [23], and
Gaussian process-based Bayesian optimization [46] in Table 5. The numbers show the speedup
of the design found by AutoDSE compared to the design that their framework found after run-
ning the tools for the same allotted time. Note that the performance of the other works are not
reported by the authors for all of the kernels we are testing. According to Table 5, by utilizing the
bottleneck-based approach, we can outperform S2FA, lattice-traversingDSE, andGaussian process-
based Bayesian optimization by 3.45× (86.56×), 4.23× (5.11×), 17.92× (43.33×), respectively, on the
geometric (arithmetic) mean.
As we discussed in Section 5.1, the deficiency of S2FA stems from how hard it is for the problem-

independent learning algorithm to find the key parameters. Lattice-traversing DSE needs an initial

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:20 A. Sohrabizadeh et al.

Table 5. Speedup of Our Approach Compared to S2FA [57], Lattice-traversing DSE [23],

and Gaussian Process-based Bayesian Optimization [46]

Approach AES NW GEMM KMP SPMV STENCIL-3D GEO-Mean ARITH-Mean

Lattice (ICCD’18) [23] 1.63 6.32 7.39 - - - 4.23 5.11
S2FA (DAC’18) [57] 512.86 1 1.52 1.74 1 1.26 3.45 86.56

Bayesian (DATE’21) [46] - - 100.17 - 2.07 27.75 17.92 43.33

sampling step to learn the design space. This takes a long time for our benchmark due to the size of
the design space even though the authors only consider unrolling the loops and function inlining.
This constraint makes it hard for the tool to start the exploration process before the time limit
for DSE is met. The Gaussian process-based Bayesian optimization also has to spend some time
to sample the design space and build an initial surrogate model. However, AutoDSE can learn
the high-impact directives by exploring the performance breakdown and thus, is able to find a
high-performance design in a few iterations.
Moreover, adopting the Merlin Compiler as the backend gives further advantage to AutoDSE

compared to other DSE tools. This allows the tool to exploit the automatic code transformations
for applying the common optimization techniques such as memory burst, memory coalescing, and
double buffering; and focus only on high-level hardware changes. Nonetheless, the performance
comparison with S2FA shows that adoption of the Merlin Compiler alone is not enough and we
still need to explore the design space more efficiently. Another source of inefficiency in the S2FA
framework is in translation of code from Scala to a C code to be used by the Merlin Compiler. The
generated C code, in general, may be not efficient enough for HLS especially for applications like
AES that require bit-level optimizations.

6.4 Comparison with Expert-level Manual HLS Designs

To further evaluate the performance of AutoDSE, we use 33 vision kernels from Xilinx Vi-
tis Library [52]. These kernels utilize 14 optimization pragmas, on average (by the geometric
mean), which include UNROLL, PIPELINE, ARRAY_PARTITION, DEPENDENCE, LOOP_FLATTEN, INLINE,
DATAFLOW, and STREAM. For each kernel, we remove all the optimization pragmas except for
DATAFLOW and STREAM. The removed pragmas, which are of the first six types mentioned above, are
used 13.47 times on average (out of 14). As a result, we require less than one optimization pragma
per kernel, on the geometric mean. The only optimization pragmas kept are DATAFLOW and STREAM
pragmas. This is because our search space is built on top of the Merlin Compiler and we do not
search for the DATAFLOW and STREAM pragmas as these pragmas are not among theMerlin-specified
pragmas. In the future, we will expand our search engine to HLS pragmas that are not included in
Merlin. Furthermore, the INTERFACE and LOOP_TRIPCOUNT pragmas are also kept which are not
among the HLS optimization pragmas. They are rather used to specify the connection to AXI bus
and the range of the trip count of the loop, respectively.
To better understand the effect of our optimizer, we tested the performance of the Vitis tool and

the Merlin Compiler on the input to AutoDSE (which does not include the optimization pragmas
mentioned above). The performance comparisons are summarized in Table 6. As the results show,
while the Merlin Compiler can get to a speedup of 3.29× compared to the Vitis tool, it still needs
the help ofAutoDSE to get to the manually optimized kernels in the library. In fact,AutoDSE could
achieve a further speedup of 2.74× by automatically inserting 3.2 Merlin pragmas per kernel, on
the geometric mean. As a result, it could improve the performance of the Vitis tool by 9.04× and
1.04× when the code with reduced set of pragmas and the manual code, respectively, are passed
to the Vitis tool.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:21

Table 6. Average (Geometric Mean) Speedup of the Vitis Tool, the Merlin Compiler, and AutoDSE Over

the Manually Optimized Kernels from Xilinx Vitis Libraries

Comparison Scenario
Compared to Vitis

(Manually Optimized)
Vitis

(Default) Merlin Compiler AutoDSE

Speedup over the Vitis Library with
(Original) Manually Inserted Pragmas 1× 0.12× 0.38× 1.04×
Performance Improvement over the

Vitis Tool with Default Settings (no pragma) 8.69× 1× 3.29× 9.04×

#pragmas Listed in the Table’s Caption 13.47 0 0 0
Total Pragma Reduction 1× 26.38× 26.38× 26.38×

The manual designs are the original kernels from the library. The performance of those designs are compared to when
the optimization pragmas we search for (UNROLL, PIPELINE, ARRAY_PARTITION, DEPENDENCE, LOOP_FLATTEN, and
INLINE) are removed and the code is passed to three different tools.

Figure 9 in Appendix A.4 depicts the performance comparison of the design pointsAutoDSE gen-
erated with respect to Xilinx results along with the number of pragmas that we removed in detail.
The results show that AutoDSE is able to achieve the same or better performance yet with 26.38×
reduction of their optimization pragmas in 0.3 hours, on the geometric mean; therefore, proving
the effectiveness of our bottleneck-based approach and the fact that it can mimic the method an
expert would take. For the cases that AutoDSE does not exactly match the performance of Vitis,
AutoDSE still finds the best combination of the pragmas. The inequality lies in the different II that
Merlin has achieved. For example, the histEqualize, histogram, and otsuthreshold kernels all
have a loop that requires the II to be set to 2 when PIPELINE pragma is used. Otherwise, Vivado
HLS achieves an II=3. However, it is not possible to change the II using theMerlin Compiler. On the
other hand, AutoDSE is able to outperform the performance of customConv and reduce kernels
significantly by better detecting the choices and locations for pipelining and parallelization.

7 CONCLUSION AND FUTURE WORK

In this paper, we made our first, yet very important, step of lowering the bar of accelerating pro-
grams using FPGA for general software programmers to make FPGA universally accessible. We
analyzed the difficulty of exploring HLS design space. To address challenges 2 to 4 mentioned in
Section 1, we treat the HLS tool as a black-box. We use the synthesis results to estimate the QoR
rather than the placement and routing (P&R) results, because P&R is too time-consuming to ex-
plore sufficient design points in a reasonable time budget. According to our observation and anal-
ysis, we propose a bottleneck-guided coordinate optimizer and develop a push-button framework,
AutoDSE, based on that to systematically approach a better solution. By exploring the solution
space efficiently, we address challenges 1 and 5.We propose a heuristic for ordering the parameters
that can further help challenges 3 and 5. To eliminate meaningless design points, we incorporate
a list comprehension-based design space representation and prune 24.65× ineffective configura-
tions on average, while keeping the design space smooth; hence, further alleviating Challenge 1.
Additionally, we employ a partitioning strategy to address the local optimum problem mentioned
in Challenge 2. We show that AutoDSE can outperform general hyper-heuristics used in the liter-
ature by focusing on high-impact design parameters first. The experimental results suggest that
AutoDSE lets anyone with a decent knowledge of programming try customized computing with
minimum effort.
AutoDSE is built with the assumption that we can get the performance breakdown of the pro-

gram from the HLS tool. We expect all HLS tools will provide performance breakdown at some
point, as it is important for manual performance optimization (such as the need for Intel VTune
Profiler [26] in the case of CPU performance optimization). Xilinx HLS is already providing such

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:22 A. Sohrabizadeh et al.

information that the Merlin Compiler leverages and Intel OpenCL [27] is planning to add this fea-
ture. It is likely that other HLS tools [6, 7, 16] will add such information as well in the near future.
Hence, we believe, it is reasonable for AutoDSE to take advantage of such information to mimic
the human performance optimization process to perform bottleneck-driven DSE.
In the future, we plan to include more transformations (design space parameters) for optimizing

data access and reuse patterns. We will also extend AutoDSE to estimate the QoR based on the
P&R results by developing a machine learning model to predict them from the synthesis results as
in [18].

A APPENDIX

A.1 Optimized HLS Code for CNN

Code 3 shows the optimized HLS code for the CNN algorithm in Code 1 after applying the code
transformations and pragmas listed in Table 1.

Code 3. Optimized CNN HLS C Code Snippet

1 // Skip const variable initizalization for brevity
2
3 void CnnKernel(const ap_uint< 128 > * input, float weight,
4 const ap_uint< 512 > * bias, ap_uint< 512 > * output){
5 #pragma HLS INTERFACE m_axi port=input bundle=gmem1 depth=3326977
6 #pragma HLS INTERFACE s_axilite port=input bundle=control
7 // Skip the rest for brevity
8
9 float bias_buf[ParallelOut][ParallelOut];
10 #pragma HLS array_partition variable=bias_buf complete dim=2
11
12 float C[ParallelOut][ImSize][ImSize];
13 #pragma HLS array_partition variable=C cyclic factor=8 dim=3
14 #pragma HLS array_partition variable=C cyclic factor=2 dim=2
15 #pragma HLS array_partition variable=C complete dim=1
16
17 LoadBurst(bias, bias_buf);
18
19 for (int i = 0; i < NumOut / ParallelOut; i++) {
20 float weight_buf[NumOut / ParallelOut][NumIn][kKernel][kKernel];
21 #pragma HLS array_partition variable=weight_buf complete dim=4
22 #pragma HLS array_partition variable=weight_buf complete dim=3
23 #pragma HLS array_partition variable=weight_buf complete dim=1
24
25 float output_buf[NumOut / ParallelOut][OutImSize][OutImSize];
26 #pragma HLS array_partition variable=output_buf cyclic factor=16 dim=3
27 #pragma HLS array_partition variable=output_buf complete dim=1
28
29 LoadBurst(weight, weight_buf);
30 // Initialization
31 for (int h = 0; h < ImSize; ++h) {
32 for (int w = 0; w < ImSize / 4; ++w) {
33 #pragma HLS dependence variable=C array inter false
34 #pragma HLS pipeline
35 for (int w_sub = 0; w_sub < 4; ++w_sub) {
36 #pragma HLS unroll
37 for (int po = 0; po < ParallelOut; po++) {
38 #pragma HLS unroll
39 C[po][h][w * 4 + w_sub] = 0.f;
40 } } } }
41 // Convolution
42 for (int j = 0; j < NumIn; ++j) {
43 float input_buf[InImSize][InImSize];
44 #pragma HLS array_partition variable=input_buf cyclic factor=8 dim=2
45 #pragma HLS array_partition variable=input_buf cyclic factor=5 dim=1
46 LoadBurst(input, input_buf);
47 for (int h = 0; h < ImSize; ++h) {
48 for (int w = 0; w < ImSize / 4; ++w) {
49 #pragma HLS dependence variable=C array inter false

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:23

50 #pragma HLS pipeline
51 for (int w_sub = 0; w_sub < 4; ++w_sub) {
52 #pragma HLS unroll
53 for (int po = 0; po < ParallelOut; po++) {
54 #pragma HLS unroll
55 float tmp = 0.f;
56 for (int p = 0; p < kKernel; ++p) {
57 #pragma HLS unroll
58 for (int q = 0; q < kKernel; ++q) {
59 #pragma HLS unroll
60 tmp += ...;
61 } }
62 C[po][h][w * 4 + w_sub] += tmp;
63 } } } } }
64 // ReLU + Max pooling
65 for (int h = 0; h < OutImSize; ++h) {
66 for (int w = 0; w < OutImSize; ++w) {
67 #pragma HLS dependence variable=output_buf array inter false
68 #pragma HLS pipeline
69 for (int po = 0; po < ParallelOut; po++) {
70 #pragma HLS unroll
71 output_buf(h, w, po) = ...
72 } } }
73 StoreBurst(output, output_buf);
74 } }

A.2 Challenges of Model-based Approaches

The main problem with the model-based techniques is the fact that they assume the performance
and/or area have a smooth trend with the change of pragmas. However, as Figure 7 illustrates this
is not a valid assumption with the latest HLS tools. This figure depicts the execution cycle of the
NW algorithm [34] from MachSuite benchmark [39] with different parallel factors for its five loops.
Although the performance trend of three loops are ideal, the rest of the two loops (CG-loop-2 and
FG-loop-13) are not. This is because the optimizations and heuristics employed by the tools are
constantly changing so the models should be updated regularly.

A.3 Frequency of Employed Parameters

We explored the number of candidate pragmas and the number of pragmas thatAutoDSE tuned for
optimizing the design to find out the most influential parameters. Figure 8 demonstrates the results
for the best design found by AutoDSE for each of the target kernels. For illustration purposes,
we depict the frequency of employed pragmas for those who either had the highest speedup or
utilized the most number of pragmas, meaning thatAutoDSE spent more iterations for optimizing
them. As the results suggest, the tiling pragma has special use case, only CONV and STENCIL-2D
utilized it. For the rest of the kernels, it is either not applicable or not necessary. The parallel
and pipeline pragmas are equally important. The pipeline pragma is employed more where
there is a nested loop, whereas for single loops, the parallel pragma is more preferred. This is
because the HLS tools can implement both fg and cg pipelining better than cg parallelization. Also,
when a single loop does not have any pragma, it will be pipelined automatically. Looking at the
vision kernels from the Xilinx Vitis Library that we targeted, there are 228, 122, and 18 candidate
parallel, pipeline, and tiling pragmas in total, respectively. Since these kernels rarely utilize
deep nested loops, AutoDSE chose 65 and 48 of the parallel and pipeline pragmas in total,
respectively; while, it never used any tiling pragmas.

3CG and FG mean coarse-grained and fine-grained, respectively.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

32:24 A. Sohrabizadeh et al.

Fig. 7. HLS cycles of NW algorithm [34] with different parallel factors on loops.

Fig. 8. The number of candidate pragmas vs. the number of chosen pragmas for the optimal designs.

A.4 Detailed Comparison to the Vitis Library

Figure 9 depicts the detailed comparison ofAutoDSE to the expert-level manual HLS designs from
Xilinx Vitis libraries [52]. As explained in Section 6.4, when testing withAutoDSE, all the optimiza-
tion pragmas that the Merlin Compiler can derive with the help of its own pragmas are removed.
AutoDSE can achieve the same performance while using 26.38× less pragmas, on the geometric
mean.

Fig. 9. Speedup and number of reduced pragmas using AutoDSE compared to the vision kernels of Xilinx

Vitis Libraries [52].

REFERENCES

[1] [n.d.]. Rose compiler infrastructure. http://rosecompiler.org/.
[2] Amazon EC2 F1 Instance. [n.d.]. https://aws.amazon.com/ec2/instance-types/f1/.
[3] Joao Andrade, Nithin George, Kimon Karras, David Novo, Frederico Pratas, Leonel Sousa, Paolo Ienne, Gabriel Falcao,

and Vitor Silva. 2017. Design space exploration of LDPC decoders using high-level synthesis. IEEE Access 5 (2017),
14600–14615.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

http://rosecompiler.org/
https://aws.amazon.com/ec2/instance-types/f1/

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:25

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and
Saman Amarasinghe. 2014. OpenTuner: An extensible framework for program autotuning. In PACT. 303–316.

[5] Gary Bradski. 2000. The OpenCV library. Dr Dobb’s J. Software Tools 25 (2000), 120–125.
[6] Cadence Stratus High-Level Synthesis. [n.d.]. https://www.cadence.com/en_US/home/tools/digital-design-and-

signoff/synthesis/stratus-high-level-synthesis.html.
[7] Catapult High-Level Synthesis. [n.d.]. https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-

verification-platform/.
[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.

Rodinia: A benchmark suite for heterogeneous computing. In IISWC. 44–54.
[9] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with optimized dataflow architecture. In

ICCAD. 1–8.
[10] Young-kyu Choi and Jason Cong. 2018. HLS-based optimization and design space exploration for applications with

variable loop bounds. In ICCAD. 1–8.
[11] Jason Cong, Muhuan Huang, Peichen Pan, Yuxin Wang, and Peng Zhang. 2016. Source-to-source optimization for

HLS. In FPGAs for Software Programmers. 137–163.
[12] Jason Cong, Muhuan Huang, Peichen Pan, Di Wu, and Peng Zhang. 2016. Software infrastructure for enabling FPGA-

based accelerations in data centers. In ISLPED. 154–155.
[13] Jason Cong, Bin Liu, StephenNeuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang. 2011. High-level synthesis

for FPGAs: From prototyping to deployment. In TCAD, Vol. 30. 473–491.
[14] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-based systolic array auto-compilation. In ICCAD. 1–8.
[15] Jason Cong, PengWei, Cody Hao Yu, and Peng Zhang. 2018. Automated accelerator generation and optimization with

composable, parallel and pipeline architecture. In DAC.
[16] CyberWorkBench. [n.d.]. https://www.nec.com/en/global/prod/cwb/index.html.
[17] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry standard API for shared-memory programming.

IEEE Computational Science and Engineering 5, 1 (1998), 46–55.
[18] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and Zhiru Zhang. 2018. Fast and accurate

estimation of quality of results in high-level synthesis with machine learning. In 2018 IEEE 26th Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 129–132.
[19] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous, and Andre R. LeBlanc. 1974.

Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9, 5,
256–268.

[20] Javier Duarte, SongHan, Philip Harris, Sergo Jindariani, Edward Kreinar, Benjamin Kreis, Jennifer Ngadiuba, Maurizio
Pierini, Ryan Rivera, Nhan Tran, and Zhenbin Wu. 2018. Fast inference of deep neural networks in FPGAs for particle
physics. Journal of Instrumentation 13, 07 (2018), P07027.

[21] Falcon Computing Solutions, Inc. [n.d.]. http://www.falcon-computing.com.
[22] Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Cluster-based heuristic for high level synthesis design

space exploration. IEEE Transactions on Emerging Topics in Computing.
[23] Lorenzo Ferretti, Giovanni Ansaloni, and Laura Pozzi. 2018. Lattice-traversing design space exploration for high level

synthesis. In ICCD. 210–217.
[24] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag. 2010. Analyzing bandit-based adaptive operator

selection mechanisms. Annals of Mathematics and Artificial Intelligence 60, 1–2, 25–64.
[25] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh Rawat, Sriram Krishnamoorthy, Louis-

Noël Pouchet, Fabrice Rastello, and Ponnuswamy Sadayappan. 2018. GPU code optimization using abstract kernel
emulation and sensitivity analysis. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation. 736–751.
[26] Intel. [n.d.]. https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html.
[27] Intel SDK for OpenCL Applications. [n.d.]. https://software.intel.com/en-us/intel-opencl.
[28] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delimitrou, Christos Kozyrakis, and Kunle Olukotun. 2016.

Automatic generation of efficient accelerators for reconfigurable hardware. In ISCA. 115–127.
[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural

networks. In NIPS. 1097–1105.
[30] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, JieWang, CodyHao Yu, Yuan Zhou, Jason Cong, and Zhiru Zhang. 2019. HeteroCL:

A multi-paradigm programming infrastructure for software-defined reconfigurable computing. In Proceedings of the

2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 242–251.
[31] Hung-Yi Liu and Luca P. Carloni. 2013. On learning-based methods for design-space exploration with high-level

synthesis. In DAC. 1–7.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://eda.sw.siemens.com/en-US/ic/ic-design/high-level-synthesis-and-verification-platform/
https://www.nec.com/en/global/prod/cwb/index.html
http://www.falcon-computing.com
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/en-us/intel-opencl

32:26 A. Sohrabizadeh et al.

[32] Shuangnan Liu, Francis CM Lau, and Benjamin Carrion Schafer. 2019. Accelerating FPGA prototyping through pre-
dictive model-based HLS design space exploration. In DAC. 1–6.

[33] Anushree Mahapatra and Benjamin Carrion Schafer. 2014. Machine-learning based simulated annealer method for
high level synthesis design space exploration. In ESLsyn. 1–6.

[34] Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Mol. Biol 48, 443–153.

[35] Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer, Yuwei Ye, Apurva Koti, Adrian Sampson,
and Zhiru Zhang. 2020. Predictable accelerator design with time-sensitive affine types. arXiv preprint arXiv:2004.04852
(2020).

[36] David Parello, Olivier Temam, Albert Cohen, and J-M Verdun. 2004. Towards a systematic, pragmatic and architecture-
aware program optimization process for complex processors. In SC’04: Proceedings of the 2004 ACM/IEEE Conference

on Supercomputing. IEEE, 15–15.
[37] Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christopher De Sa, Christos Kozyrakis, and

Kunle Olukotun. 2016. Generating configurable hardware from parallel patterns. ASPLOS 51, 4, 651–665.
[38] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, John Demme, Hadi Es-

maeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir
Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip
Yi Xiao, and Doug Burger. 2014. A reconfigurable fabric for accelerating large-scale datacenter services. In ISCA. 13–
24.

[39] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. 2014. MachSuite: Benchmarks
for accelerator design and customized architectures. In IISWC. 110–119.

[40] Enrico Reggiani, Marco Rabozzi, Anna Maria Nestorov, Alberto Scolari, Luca Stornaiuolo, and Marco Santambrogio.
2019. Pareto optimal design space exploration for accelerated CNN on FPGA. In IPDPSW. 107–114.

[41] Benjamin Carrion Schafer. 2017. Parallel high-level synthesis design space exploration for behavioral IPs of exact
latencies. TODAES 22, 4, 1–20.

[42] Benjamin Carrion Schafer and Kazutoshi Wakabayashi. 2012. Divide and conquer high-level synthesis design space
exploration. TODAES 17, 3, 1–19.

[43] B. Carrion Schafer and Kazutoshi Wakabayashi. 2012. Machine learning predictive modelling high-level synthesis
design space exploration. In IET Computers & Digital Techniques, Vol. 6. 153–159.

[44] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Mostofa Patwary,
Mr Prabhat, and Ryan Adams. 2015. Scalable Bayesian optimization using deep neural networks. In International

Conference on Machine Learning. PMLR, 2171–2180.
[45] Atefeh Sohrabizadeh, JieWang, and Jason Cong. 2020. End-to-end optimization of deep learning applications. In FPGA.

133–139.
[46] Qi Sun, Tinghuan Chen, Siting Liu, Jin Miao, Jianli Chen, Hao Yu, and Bei Yu. 2021. Correlated multi-objective multi-

fidelity optimization for HLS directives design. In IEEE/ACMProceedings Design, Automation and Test in Europe (DATE).
01–05.

[47] Jessica Vandebon, Jose GF Coutinho, Wayne Luk, Eriko Nurvitadhi, and Tim Todman. 2020. Artisan: A meta-
programming approach for codifying optimisation strategies. In FCCM. 177–185.

[48] Vivado HLS. 2021. www.xilinx.com/products/design-tools/vivado.
[49] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A polyhedral compiler for high-performance systolic arrays

on FPGA. In Proceedings of the 2021 ACM/SIGDA International Symposium on Field-programmable Gate Arrays.
[50] Shuo Wang, Yun Liang, and Wei Zhang. 2017. FlexCL: An analytical performance model for OpenCL workloads on

flexible FPGAs. In DAC. 1–6.
[51] Xilinx. 2021. https://www.xilinx.com/about/xilinx-ventures/falcon-computing.html.
[52] Xilinx Vitis Libraries. 2021. www.github.com/Xilinx/Vitis_Libraries.
[53] Xilinx Vitis Platform. 2021. https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html.
[54] Chang Xu, Gai Liu, Ritchie Zhao, Stephen Yang, Guojie Luo, and Zhiru Zhang. 2017. A parallel bandit-based approach

for autotuning FPGA compilation. In FPGA. 157–166.
[55] Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang, Chaojian Li, Zetong Guan, Deming

Chen, and Yingyan Lin. 2020. AutoDNNchip: An automated DNN chip predictor and builder for both FPGAs and
ASICs. In FPGA. 40–50.

[56] Sotirios Xydis, Gianluca Palermo, Vittorio Zaccaria, andCristina Silvano. 2014. SPIRIT: Spectral-Aware Pareto iterative
refinement optimization for supervised high-level synthesis. In TCAD, Vol. 34. 155–159.

[57] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and Jason Cong. 2018. S2FA: An accelerator
automation framework for heterogeneous computing in datacenters. In DAC. 1–6.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

www.xilinx.com/products/design-tools/vivado
https://www.xilinx.com/about/xilinx-ventures/falcon-computing.html
www.github.com/Xilinx/Vitis_Libraries
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators 32:27

[58] Georgios Zacharopoulos, Lorenzo Ferretti, Giovanni Ansaloni, Giuseppe Di Guglielmo, Luca Carloni, and Laura Pozzi.
2019. Compiler-assisted selection of hardware acceleration candidates from application source code. In ICCD. 129–137.

[59] Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changqi Yang, and Jason Cong. 2008. AutoPilot: A platform-based
ESL synthesis system. In High-Level Synthesis. 99–112.

[60] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. 2017. COMBA: A comprehensive
model-based analysis framework for high level synthesis of real applications. In ICCAD. 430–437.

[61] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. FlexTensor: An automatic schedule explo-
ration and optimization framework for tensor computation on heterogeneous system. In ASPLOS. 859–873.

[62] Guanwen Zhong, Alok Prakash, Yun Liang, TulikaMitra, and Smail Niar. 2016. Lin-analyzer: A high-level performance
analysis tool for FPGA-based accelerators. In DAC. 1–6.

[63] Guanwen Zhong, Alok Prakash, Siqi Wang, Yun Liang, Tulika Mitra, and Smail Niar. 2017. Design space exploration
of FPGA-based accelerators with multi-level parallelism. In DATE. 1141–1146.

[64] Guanwen Zhong, Vanchinathan Venkataramani, Yun Liang, Tulika Mitra, and Smail Niar. 2014. Design space explo-
ration of multiple loops on FPGAs using high level synthesis. In ICCD. 456–463.

[65] Hamid Reza Zohouri, Artur Podobas, and Satoshi Matsuoka. 2018. Combined spatial and temporal blocking for high-
performance stencil computation on FPGAs using OpenCL. In Proceedings of the 2018 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays. 153–162.
[66] Wei Zuo, Peng Li, Deming Chen, Louis-Noël Pouchet, Shunan Zhong, and Jason Cong. 2013. Improving polyhedral

code generation for high-level synthesis. In CODES+ ISSS. 1–10.

Received July 2021; revised September 2021; accepted October 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 4, Article 32. Pub. date: February 2022.

