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Abstract—An automated, robust, noncontact sleep posture recognition technique is proposed in this letter, which uses
optimizable (Bayesian hyperparameter tuning) machine learning (ML) classifiers applied to dual-frequency (2.4 GHz,
5.8 GHz) monostatic continuous-wave radar-measured effective radar cross section and chest displacement. The tech-
nique is demonstrated to accurately recognize three different key sleep postures categories for 20 participants, with
greater accuracy and computational efficiency than prior published research involving either a custom ML model or
threshold-based assessment. Three ML classifiers (K-nearest neighbor, support vector machine (SVM), and decision
tree) were assessed, with an SVM using a quadratic kernel achieving an accuracy of 85 and 80%, at 2.4 and 5.8
GHz, respectively, and the decision tree classifier recognizing sleep postures in less than 2 min with 98.4% accuracy

for dual-frequency combined measurements.

Index Terms—Microwave/millimeter sensors, doppler radar, machine learning (ML), radar cross section (RCS), sleep postures.

[. INTRODUCTION

Body posture and movement during sleep correlate strongly with
sleep quality and health outcomes [1], [2]. For example, sleeping in
a supine posture (i.e., sleeping on one’s back) can increase the risk
of obstructive sleep apnea [3] and sudden infant death syndrome [4].
Prior research has focused on recognizing sleep postures mainly from
wearable sensors such as those used for an electrocardiogram [5],
pressure-sensitive bedsheet textile sensors [6], and video cameras [7].
The use of such sensors can interfere with the sleep behavior being
measured, as contact devices worn during sleep can be uncomfortable
and restrictive, whereas camera-based sensors used in a private space
during sleep can cause privacy concerns [8], [9].

This letter examines an optimizable machine learning (ML) ap-
proach for sleep posture recognition, which can be assessed simultane-
ously during the measurement of a subject’s cardiopulmonary motion
pattern using a noncontact, unobtrusive microwave Doppler radar.
The efficacy of Doppler radar remote sensing of cardiopulmonary
activity has been demonstrated both for isolated subjects [10], [11] and
small groups [12]. Prior research has also demonstrated the efficacy
of unobtrusive noncontact radar-based technology for normal sleep
monitoring [13], [14] and sleep apnea detection [15]. Additionally,
radar has been applied for the recognition of sleep stages (i.e., rapid
eye movement (REM), non-REM) [16] and sleep apnea events [17].
Recently, sleep posture recognition has also been investigated using
frequency-modulated continuous wave (FMCW) radar with a mul-
tipath analysis of reflections used to distinguish sleep postures for
healthy people using a custom ML (neural network) model [18].
However, the proposed method requires adding a new transfer learning
model for different subjects and environments for which multipath
is highly dependent. Additionally, system accuracy degrades from
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94.1 to 86.7 and 83.7% due to changes in the environment even
after integrating new transfer learning models. Therefore, a robust ML,
model is required, which can adapt its parameters automatically with
changes in the dataset.

In Doppler radar measurements, the reflected phase-modulated sig-
nal varies in direct proportion to the minute movement of the chest sur-
face due to cardiorespiratory activity. The power of the reflected signal
at the receiver is a measure of the effective radar cross section (ERCS)
of the target [19], [20]. When people switch sleep postures the ERCS is
affected due to the asymmetric shape of the body as different portions
are exposed to the radar signal. The fundamental theory introducing
ERCS with dual-frequency (2.4 and 5.8 GHz) measurements related to
different sleep postures has been reported in a Ph.D. dissertation along
with a proposed threshold-based decision algorithm, which assesses
posture based on a cumbersome statistical analysis across three key
categories of posture assumed (supine, prone, and side), with supine
taken as a reference [19], [20]. The proposed threshold-based decision
algorithm worked without error for 78 % of the subjects using 2.4 GHz,
65% using 5.8 GHz, and 100% for dual-frequency measurements.
‘While difficult to implement, this established the potential for using
ERCS and torso displacement for posture tracking.

In this letter, the subject data reported in the cited threshold-based
sleep posture recognition study are analyzed in a new manner by inte-
grating an optimizable ML approach to make the system autonomous,
robust, and intelligent, as depicted in Fig. 1. Custom ML model uses
a fixed hyperparameter, which is selected based on the grid search
method [21]. Here, we present the Bayesian optimizable ML approach,
which can update its parameter based on the dataset with environmental
variations to produce the best results. The integration of optimizable
ML classifiers provides a more effective single frequency categorized
posture assessment, working without error for 86% of the subjects
at 2.4 GHz, 78.3% at 5.8 GHz, and 98% using dual frequencies.
Furthermore, the initial establishment of a supine position reference is
not required, and this automated approach requires less computational
time than the threshold approach [20].
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Il. THEORETICAL BACKGROUND

Radar cross section (RCS) is a measure of the magnitude of the wave
reflected from a target and hence it is an indication of how detectable
an object/target is with radar [19], [20]. The incident wave from the
radar transmitter illuminates the torso surface of a human subject
including the thorax and abdomen. During respiration, the contraction
and relaxation of intercostal muscles act to change the volume of the
thoracic cavity, which also causes the movement of the thorax and
abdomen [20]. Additionally, when supine, the relaxed abdomen tends
to be at a lower level than that of the thorax, which introduces a phase
offset between the wave scattered from each part of the body [19]. The
radar complex baseband signal is represented as

4
Igp = Ay cos I:Tx [xg (1) +xp ()] + ¢m]

+ Ay cos [4% [xr (t — )] + i +a] (1
and

4
Qss = Ar sin [T” Ly () + 3, ()] + qsm]

+ Ay sin [%[xg (t — 1)1+ dx —Hx] (2)

where Ar and A4 are the amplitudes of the components from the thorax
and abdomen, respectively, I, is the time delay of the abdomen motion,
and « is the phase offset due to the difference in the nominal target
range. While RCS measurements for fixed objects are proportional to
the physical surface area, the area of interest when measuring respi-
ratory displacements depends only on the portion of the body surface
that moves with respiration. Reflections from clutter and stationary
parts of the body do not contribute to this measurement; therefore, the
measured RCS is described as the ERCS of the moving surface of the
body [20]. With continuous respiration cycles, the overall body surface
of human sleep postures directly affects the ERCS [20]. The captured
baseband signal traces an arc on the complex /-Q plot where the radius
corresponds to the square root of the ERCS [20] and the length to
displacement, which serve as “features” for posture determination.

[Il. EXPERIMENTAL SETUP AND HUMAN
SUBJECT STUDY

The Doppler radar system employed for the study was designed
to extract two key respiratory measures, namely chest displacement
and ERCS [10]. Signal generators were used to produce two different

Fig. 2. Measured 2.4 GHz radar amplitude and displacement data for
subject at 2 m. In-phase and quadrature data are shown for (a) supine,
(b) prone, and (c) side postures, along with arc-tangent demodulated
signals for (d) supine, (e) prone, and (f) side postures.

carrier frequencies, 2.4 and 5.8 GHz, to add diversity to the ERCS
measurement. Low-frequency waves are most likely to satisfy the
wave planarity condition of far-field measurement [20], whereas high
frequencies result in more optical electromagnetic scattering where
differences in size are more accurately detected [20]. The system
had separate but identical transmitting and receiving antennas, two
ASPPT2988 panel antennas for 2.4 GHz, and two-directional Wi-Fi
antennas for 5.8 GHz. The experimental procedure involving human
subjects was approved by an Institutional Review Board protocol
number 14884. A total of 20 subjects, six females and 14 males, were
included in the study. The mean and standard deviation of participant
weight are 76.2 and 12.98 kg and heights are 174.05 and 9.09 cm,
respectively. The body mass index varied from 19 to 31.8 kg/m?, where
eight subjects had normal weight, 11 were overweight, and one was
obese. For each subject, measurements were taken using three different
recumbent postures.

IV. RESULTS

A. Feature Extraction

For each human subject, the radar baseband signal was recorded
for 90 s in each posture and analyzed to find the relative ERCS and
the absolute torso displacement. To extract features, the first 12 s
were used for dc estimation and the next 39 s of the recorded time
signal were segmented to produce a double testing dataset in the
full respiration cycle. Fig. 2 illustrates the recorded 90-s datasets
for three different postures along with the corresponding arc-tangent
demodulated signals. Each segment traces an arc on the complex IQ
plot where the radius is estimated using the center estimation algorithm
[19], [20]. The square of the radius is proportional to the ERCS of
the torso at the corresponding orientation. The angle scanned by the
arc leads to the torso displacement magnitude during respiration. The
ERCS variation occurs due to the different sizes of the subject, the
curvature of the body surface, body fat, and respiration characteristics
[11], [12]. Fig. 3 illustrates the ERCS variations in the /Q plot for three
different postures using two different carrier frequencies. The radii for
2.4 GHz were 5.22, 15.72, and 3.4 V, and for 5.8 GHz were 2.63,5.19,
and 1.33 V, for supine, prone, and side postures, respectively.
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Fig. 3. Center-tracked IQ arcs shown for subjects breathing in three
sleep postures. Note that when prone, the subject presents the largest
area of moving surface toward the radar antenna resulting in the largest
radius.
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Fig. 4. Optimizable ML-based sleep posture recognition process.
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Fig. 5. SVM optimization for minimum classification error shown for
(a) 2.4 GHz and (b) 5.8 GHz. Dark blue lines represent the minimum
classification error and red squares represent the best hyperparameter
(for minimum classification error).

B. Optimizable ML Classifier and Hyperparameter
Tuning

To evaluate the performance of different optimizable ML classifier
algorithms, three different algorithms were integrated and tested using
the Classification Learner App in MATLAB [21]. The approach is
depicted in Fig. 4. The K-nearest neighbor (KNN) algorithm uses
distance-based metrics, whereas the support vector machine (SVM)
algorithm uses hyperplane-based approaches to classify [22]. The de-
cision tree algorithm creates a decision tree of candidates on randomly
selected data samples and selects the best decision tree using voting
[22]. Initially, classification accuracy was assessed for data measured
at a single frequency. The dataset was split into five parts whereby
three-fifth of the data were used for training and two-fifth were used
for testing. For hyperparameter tuning, Bayesian optimization with a
box constraint level of 0.001-1000 was employed with 30 iterations
for each classifier. A parameter box-constraint level of 76.7414 and
26.6629 produced the best performance for 2.4 and 5.8 GHz, respec-
tively [21]. Fig. 5 illustrates the hyperparameter optimization curves
that minimize the classification error with each iteration by utilizing
different distance metrics for KNN (Euclidean, Hamming, etc.), kernel
functions for SVM (linear, quadratic, Gaussian, etc.), and different split
criteria for decision trees (towing rule, maximum deviance reduction,
etc.) [21]. For 2.4 GHz, the SVM model with quadratic function

Dual Frequency

Estimated Postures
Estimated Postures
Estimated Postures

(a) (b) (c)

Fig. 6. Confusion matrix for (a) 2.4 GHz, (b) 5.8 GHz, and (c) dual
frequency test data. Accuracies of 85, 80.3, and 98.4% were attained
for 2.4 GHz, 5.8 GHz, and dual-frequency assessments.

Table 1. Comparison of this work with the state of the art
Approach Radar Freq/ | Computational | Accuracy (%)
Participants | Time
[18] Custom | FMCW Not mentioned 94.1 %
ML 5.7-7.2 GHz (Fixed environment
26 people onl
[20] W 13 minutes 2.4 GHz: 78%
Threshold 2.4/5.8 GHz 5.8 GHz: 65%
20 people Dual: 100%
(threshold adapted)
This work W 1.37 minutes 2.4 GHz: 83%
Optimizable 2.4/58 GHz 5.8 GHz: 80%
ML 20 people Dual: 98.4%

outperformed the other two classifiers with an accuracy of 85% and a
minimum error of 0.15 [see Fig. 5(a)]. Similarly, for features extracted
at 5.8 GHz, quadratic SVM superseded the other methods with an
accuracy of 80.0% and a minimum classification error of 0.20 [see
Fig. 5(b)]. The performance of different classifiers was also tested by
analyzing combined dual-frequency extracted features. The decision
tree algorithm with coarse function outperformed other classifiers with
an accuracy of 98%. Fig. 6 shows the confusion matrix for the test
datasets for 2.4 GHz, 5.8 GHz, and dual-frequency measurements. The
matrix diagonal shows the correctly predicted postures, and classifica-
tion accuracy calculated from the ratio of the correct prediction to the
total number of predictions is also indicated. The combined frequency
measurement produced better classification results likely due to the
broad variations in ERCS and chest displacement [20].

C. Comparison With the State of the Art

Table 1 illustrates the comparative analysis between the state-of-
the-art techniques and the proposed approach. It clearly illustrates
that the optimizable ML-based approach resulted in a more accurate
and robust single-frequency decision algorithm (up to 13%) than the
threshold technique and accuracy increased up to 5% over the custom
ML approach. There is also a slight decrease in the accuracy of
dual-frequency measurements from 100% down to 98%. It is expected
that if these approaches are applied to additional subjects, beyond
those used in the threshold determination study, the more robust
optimizable ML technique would equal or surpass the threshold results.
The computational time for decision-making of the proposed technique
is approximately 1.37 min where feature extraction takes around 1.5 s
and training takes around 81.18 s (Intel Core i7 8th Generation).
In comparison, using the same processor threshold-based approach
takes around 13 min for decision-making [20]. Furthermore, the re-
ported threshold-based approach required supine position measure-
ments to be observed and used as a calibration reference for ratio
measurements taken with other postures [20]. The method proposed
here does not require a calibration posture measurement. The opti-
mizable ML-based classifier can learn after training for any posture
measurements, making the system intelligent and automated. Since the
proposed approach is based on subject-specific learning, the results val-
idate the claim the method can effectively track sleep posture changes
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Fig. 7. (a) Experimental scenarios in an office environment.
(b) Recorded data in time domain in an office environment. From [20].

throughout the night for a wide range of subjects. The data produced
can be valuable for the assessment of sleep quality, tracking of compli-
ance with prescribed sleep hygiene, and calibrating torso displacement
according to posture for tracking of respiratory tidal volume [23], [24].
To test the efficacy of the optimizable ML approach to the custom ML
approach with variation in an environment, we also experimented in
an office environment. A 2.4-GHz Doppler radar was mounted on
the ceiling and the subject reclined on a flat horizontal surface of
2.15 m shown in Fig. 7. A total of ten repetitive measurements were
taken where the subjects started with supine position and then moved
to prone and side postures. During switching position, there were
abrupt spikes that were removed using the segmentation technique
[20]. Similarly, any other abrupt changes during sleeping (movement
of the legs, rolling, and fidgeting slightly) can also be removed using
the segmentation technique. From the segmented portion, arc radius
is calculated using center estimation and circle fitting algorithm [20].
From the arc radius and chest displacement measurement dataset using
optimizable ML (Quadratic SVM), classifiers accuracy was around
84% where the best hyperparameter was obtained at box constraint
levels of 75.84 and 24.52. On the other hand, using customized ML
mode the accuracy was around 78%, which clearly illustrates that
optimizable ML supersedes the performance of custom ML model
with the change of the environment and the hyperparameter tuning
also helps to achieve better accuracy as it can be tuned to produce the
best output.

V. CONCLUSION

A radar-based sleep posture recognition technique is proposed in this
letter, which applies optimizable ML-based classifiers to ERCS and
torso displacement measurements. The integration of optimizable ML
classifiers with radar measurement increases the accuracy by 13% for
single-frequency assessment and 6% for dual-frequency measurement.
The proposed approach also reduced the computational time by almost
12 min. Further improvements such as integration of adaptive deep
learning and implementing this system for multisubject scenarios by
integrating signal processing approaches such as independent compo-
nent analysis remain our future work to explore.
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