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Abstract—Radar sensing of respiratory motion from
unmanned aerial vehicles (UAVs) offers great promise for remote
life sensing especially in post-disaster search and rescue
applications. One major challenge for this technology is the
management of motion artifacts from the moving UAV platform.
Prior research has focused on using an adaptive filtering
approach which requires installing a secondary radar module for
capturing platform motion as a noise reference. This paper
investigates the potential of the empirical mode decomposition
(EMD) technique for the compensation of platform motion
artifacts using only primary radar measurements. Experimental
results demonstrated that the proposed EMD approach can
extract the fundamental frequency of the breathing motion from
the combined breathing and platform motion using only one
radar, with an accuracy above 87%.
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I. INTRODUCTION

Unmanned aerial vehicles (UAV), popularly known as
drones, are emerging as a valuable tool for reconnaissance,
search-and-rescue applications, emergency medical services,
and food delivery [1]. At present, rapid triage assessment has
been performed by UAVs relying primarily on optical imagery
[2-3]. A UAV-borne radar motion sensor can potentially
increase the reconnaissance capabilities as it can detect human
breathing and heart rate even through debris, poor lighting,
fog, smoke, and clothing [4]. Non-Contact vital signs
monitoring using stationary microwave Doppler radar has
shown efficacy and potential in various healthcare
applications [5] and is gaining attention for security
surveillance applications including recognition of individuals
from their breathing diversity [6]. Additionally, radar has been
proposed as a powerful tool for finding trapped or injured
people in post-disaster rescue scenarios by integrating it with
the UAV platform [7]. One of the key challenges is that the
mobile UAV platform motion creates extraneous motion that
adds an interfering phase component to the radar baseband
signal which makes it difficult to extract vital signs [7-8].

Prior UAV-borne vital sign sensing research has focused
on using the direction of arrival (DOA) which requires motion
stabilization that is challenging in a realistic setting [9]. In a
prior study, an adaptive filter technique for UAV-borne radar
motion compensation was demonstrated with preliminary
results obtained for a testbed using a robotic mover to simulate
drone and breathing motion [7-8]. One significant limitation
of the adaptive filter technique is the requirement of an
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additional secondary radar for providing noise reference
signals. Moreover, for search-and-rescue applications,
mounting secondary radar would be challenging and there
may be no ceiling to aim the reference radar (Fig. 1).
Therefore, a reliable and robust platform motion compensation
technique is required to extract vital signs without the use of a
secondary radar module.

This paper investigates the efficacy of using the empirical
mode decomposition (EMD) technique to isolate a breathing
motion pattern from platform motion using only a single radar,
as an alternative to previously demonstrated dual radar ANC
techniques [7-8]. The use of robotic phantom mover [10] and
EMD technique has been well established [11]. The prior
reported results of the EMD technique is based on the
foreknowledge of the signal [11] and the proposed technique
does not rely on the separate measurement of the signal as it
can extract the best intrinsic mode function based on a signal-
to-noise ratio (SNR) when the subject’s breathing motion can
be assumed to be larger than the radar platform motion.

II. THEORETICAL BACKGROUND
The UAV platform motion creates artifacts in the radar-
captured respiration pattern. The combined motion due to the
platform and respiration motion detected by the radar sensor is
represented as [7-8]:
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Fig. 1 (a) Concept for an indoor search and rescue UAV where secondary
radar is mounted on the top facing the ceiling to provide a noise reference for
adaptive filtering [7-8]. (b) Outdoor search and rescue scenario where there is
no ceiling thus making a noise measurement with a second radar more
difficult, and where EMD can potentially be used to separate breathing motion
from interfering UAV motion.
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where, w; is the angular frequency for the chest surface
movement and w, is the undesired platform motion, which
needs to be removed to extract vital signs information. The
indoor drone radar concept is shown in Fig. 1(a) and the
outdoor drone radar concept is illustrated in Fig. 1 (b), where a
noise measurement cannot be easily made without a
ceiling. EMD is used to decompose the demodulated radar
signal into two different components. One component is the
physiological motion and the other component is the platform
motion-related interference [11]. EMD, in general,
decomposes the signal as intrinsic mode functions (IMFs) and
residuals represented as:

x[n] = Y= di[n] + r[n]; @)

where dj[n] denotes an IMF First. The best IMF is selected
based on the comparison of the SNR. SNR is calculated with
the Matlab platform utilizing the SNR function based on the
summed squared power of the periodogram of the signal with
the modified periodogram of the same length signal. When the
extracted IMF contains more breathing-related information the
SNR is higher.

IIT. MEASUREMENT SETUP

In prior work, the feasibility of the adaptive filter
technique was tested for an indoor drone radar scenario by
building a testbed of robot mover measurements as shown in
Fig. 2 (a) [7-8]Two 24-GHz KLC-1LP monopulse radar
modules, each with two channels (I, Q) and connected to Low
noise amplifier (LNA) SR560, was used. LNA’s are ac-
coupled with a gain of 500 and a cut-off frequency of 3 Hz.
Finally, the LNA’s output was connected to a NI DAQ which
is connected to the computer through an interface. A
customized MATLAB recording interface was used to record
the signals. Here in Fig. 2(b) it is shown that the two radar
modules are mounted on a linear actuator with one pointing
towards a simulated breather [10], and the other to a reference
surface, simulating indoor overhead cover.
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Fig. 2 (a) Concept of simulated drone motion and breather motion, with two
radars in a testbed [7-8]. (b) Experimental measurement setup where primary
radar is pointed towards a breathing mover and the secondary radar is pointed
towards a reference surface for collecting reference noise. From [7-8].
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Fig. 3 Radar captured motion of four different channels (a) primary radar 11,
(b) primary radar 12, (c) secondary radar Q1, and (d) secondary radar Q2.
Demodulated combined mixture of drone and radar movement (e) primary
radar (f) secondary radar.
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Fig. 4 Intrinsic mode function (IMF) as a result of computing the EMD of the
combined signal from primary radar. IMF1 and IMF2 have high frequency
content represents the interferences. IMF 3-6 illustrates compatible with the
breathing motion.

TABLE I
SUMMARY OF ACCURACY FOR BREATHING PATTERNS
IMFs SNR (dB)
IMF1 -17.64 dB
IMF2 -13.48 dB
IMF3 -2.89 dB
IMF4 0.38 dB
IMF5 19.45 dB
IMF6 64.52 dB
IMF7 14.15 dB
IMF8 4.81 dB
IMF9 23.45 dB
IV.RESULTS

For implementing the proposed EMD approach, radar
waveforms which are represented in the time domain shown in
Fig. 3 were captured. There were three distinct segments in the
captured data. The first 3 minutes represent the breathing-like
motion of the phantom mover. During this time, the phantom
mover was moving without any interference at a frequency of
0.2 Hz and a displacement of 0.5 cm. The sampling rate was
500 Hz with a range of -10 to +10 V. This clean reference
breathing motion was utilized for measuring the accuracy of
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the EMD approach. Then drone movement was initialized
from 3 to 5 minutes shown in Fig. 3. The segmented portion of
the combined mixture of drone movement and breather
movement of the I and Q channel signals was demodulated
using arc-tangent demodulation to extract the maximum
displacement information. Fig. 4 illustrates the 9 IMFs and
residual signals from the combined signal. As can be seen
from Fig. 4, IMF1 and IMF2 show the interference signal or
mostly platform motion. To select the best IMF initially the
IMFs were visually inspected and SNR assessed. Table-I
represents the SNR of all IMFs used for the selection of the
best candidate which carries the breather frequency-related
information. From Table-I, it is clear that IMF6 has the best
SNR. A fast Fourier transform (FFT) was then performed for
all extracted IMFs to find their highest frequency component.
Fig. 5 shows the FFT of four different IMFs. From Fig. 5 the
FFT of IMF1, IMF3, IMF6, and IMF 7 shows the highest
frequency content as 0.67 Hz, 2.83 Hz, 0.17 Hz, and 1.7 Hz
respectively. It is also clear that the FFT of IMF1 shows
multiple peaks in the frequency domain plot which also
validates that the particular IMF contains platform motion-
related information. On the other hand, the FFT plot of IMF6
shows only a single peak in the frequency domain and it
closely matches the breather phantom mover fundamental
frequency components. For testing the reproducibility and
repeatability of the proposed approach, the experiments were
repeated where breathing frequency was simulated as a
sinusoidal pattern with a frequency of 0.2 Hz to a maximum of
0.5 Hz. Three different breathing depths were selected such as
3.75, 5, and 10 mm. Similarly, the motion of the drone was
simulated as a sinusoid with a frequency of 1.8 Hz and an
amplitude of 10 mm peak-to-peak. After finding the best IMF
based on the SNR, we performed the FFT of the best IMF to
extract the highest frequency content. The highest frequency
content was compared with the reference breather movement

FFT and the accuracy was calculated based on below equation:

|actual frequency—reconstructed frequency|

Accuracy (%) = (3)
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Fig. 5 FFT of the intrinsic mode function (IMF) after computing EMD. Here
it represents the FFT of four IMFs (IMF1, IMF3, IMF6, and IMFS5).

Fig. 6 illustrates the frequency domain plot of the best IMF
and the breather motion. It is shown that the best IMF
reconstructed frequency is 0.1742 Hz whereas the phantom
breather frequency is around 0.2 Hz. The accuracy of the
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proposed system for varying frequencies remained above 87%.
Testing on more realistic UAVs and breathing motion is
expected to produce similar results, yet remains beyond the
scope of the current experiment.
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Fig. 6 Compariosn of reference breather motion FFT and FFT of the best IMF
shown in frequency domain. The peak of theFFT of the best IMF is
around .1742 Hz whereas the breather reference frequency is around .2 Hz.

V. CONCLUSION

In this paper, the feasibility of using the EMD method for
isolating the breather frequency from the combined drone and
breathing movement using a single radar was evaluated. From
the experimental results, it was demonstrated that by
incorporating the EMD method in a moving platform radar,
breathing frequency can be extracted from the combined
motion.
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