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Abstract—Radar sensing of respiratory motion from 
unmanned aerial vehicles (UAVs) offers great promise for remote 
life sensing especially in post-disaster search and rescue 
applications. One major challenge for this technology is the 
management of motion artifacts from the moving UAV platform. 
Prior research has focused on using an adaptive filtering 
approach which requires installing a secondary radar module for 
capturing platform motion as a noise reference. This paper 
investigates the potential of the empirical mode decomposition 
(EMD) technique for the compensation of platform motion 
artifacts using only primary radar measurements. Experimental 
results demonstrated that the proposed EMD approach can 
extract the fundamental frequency of the breathing motion from 
the combined breathing and platform motion using only one 
radar, with an accuracy above 87%.  

Keywords—empirical mode decomposition, UAV, radar, 
motion artifacts.  

I. INTRODUCTION  

Unmanned aerial vehicles (UAV), popularly known as 
drones, are emerging as a valuable tool for reconnaissance, 
search-and-rescue applications, emergency medical services, 
and food delivery [1]. At present, rapid triage assessment has 
been performed by UAVs relying primarily on optical imagery 
[2-3]. A UAV-borne radar motion sensor can potentially 
increase the reconnaissance capabilities as it can detect human 
breathing and heart rate even through debris, poor lighting, 
fog, smoke, and clothing [4].  Non-Contact vital signs 
monitoring using stationary microwave Doppler radar has 
shown efficacy and potential in various healthcare 
applications [5] and is gaining attention for security 
surveillance applications including recognition of individuals 
from their breathing diversity [6]. Additionally, radar has been 
proposed as a powerful tool for finding trapped or injured 
people in post-disaster rescue scenarios by integrating it with 
the UAV platform [7]. One of the key challenges is that the 
mobile UAV platform motion creates extraneous motion that 
adds an interfering phase component to the radar baseband 
signal which makes it difficult to extract vital signs [7-8].  

Prior UAV-borne vital sign sensing research has focused 
on using the direction of arrival (DOA) which requires motion 
stabilization that is challenging in a realistic setting [9]. In a 
prior study, an adaptive filter technique for UAV-borne radar 
motion compensation was demonstrated with preliminary 
results obtained for a testbed using a robotic mover to simulate 
drone and breathing motion [7-8]. One significant limitation 
of the adaptive filter technique is the requirement of an 

additional secondary radar for providing noise reference 
signals. Moreover, for search-and-rescue applications, 
mounting secondary radar would be challenging and there 
may be no ceiling to aim the reference radar (Fig. 1). 
Therefore, a reliable and robust platform motion compensation 
technique is required to extract vital signs without the use of a 
secondary radar module.  

This paper investigates the efficacy of using the empirical 
mode decomposition (EMD) technique to isolate a breathing 
motion pattern from platform motion using only a single radar, 
as an alternative to previously demonstrated dual radar ANC 
techniques [7-8]. The use of robotic phantom mover [10]  and 
EMD technique has been well established [11]. The prior 
reported results of the EMD technique is based on the 
foreknowledge of the signal [11] and the proposed technique 
does not rely on the separate measurement of the signal as it 
can extract the best intrinsic mode function based on a signal-
to-noise ratio (SNR) when the subject’s breathing motion can 
be assumed to be larger than the radar platform motion. 

II. THEORETICAL BACKGROUND  

The UAV platform motion creates artifacts in the radar-
captured respiration pattern. The combined motion due to the 
platform and respiration motion detected by the radar sensor is 
represented as [7-8]: 

 

 
Fig. 1 (a) Concept for an indoor search and rescue UAV where secondary 
radar is mounted on the top facing the ceiling to provide a noise reference for 
adaptive filtering [7-8]. (b) Outdoor search and rescue scenario where there is 
no ceiling thus making a noise measurement with a second radar more 
difficult, and where EMD can potentially be used to separate breathing motion 
from interfering UAV motion. ܵ௖௢௠௣௢௦௜௧௘ሺݐሻ = cos ቀସగ஺ఒ sinሺ߱ଵݐሻ + ସగ஻ఒ sinሺ߱ଶݐሻቁ, (1) 
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where, ߱ଵ is the angular frequency for the chest surface 
movement and ߱ଶ  is the undesired platform motion, which 
needs to be removed to extract vital signs information. The 
indoor drone radar concept is shown in Fig. 1(a) and the 
outdoor drone radar concept is illustrated in Fig. 1 (b), where a 
noise measurement cannot be easily made without a 
ceiling.EMD is used to decompose the demodulated radar 
signal into two different components. One component is the 
physiological motion and the other component is the platform 
motion-related interference [11]. EMD, in general, 
decomposes the signal as intrinsic mode functions (IMFs) and 
residuals represented as: 
ሾ݊ሿݔ  = ∑ ݀௞ሾ݊ሿ + ௡௞ୀଵ	ሾ݊ሿ;ݎ   (2) 

where ݀௞ሾ݊ሿ denotes an IMF First. The best IMF is selected 
based on the comparison of the SNR. SNR is calculated with 
the Matlab platform utilizing the SNR function based on the 
summed squared power of the periodogram of the signal with 
the modified periodogram of the same length signal. When the 
extracted IMF contains more breathing-related information the 
SNR is higher.  

III. MEASUREMENT SETUP  

In prior work, the feasibility of the adaptive filter 
technique was tested for an indoor drone radar scenario by 
building a testbed of robot mover measurements as shown in 
Fig. 2 (a) [7-8]Two 24-GHz KLC-1LP monopulse radar 
modules, each with two channels (I, Q) and connected to Low 
noise amplifier (LNA) SR560, was used. LNA’s are ac-
coupled with a gain of 500 and a cut-off frequency of 3 Hz. 
Finally, the LNA’s output was connected to a NI DAQ which 
is connected to the computer through an interface. A 
customized MATLAB recording interface was used to record 
the signals. Here in Fig. 2(b) it is shown that the two radar 
modules are mounted on a linear actuator with one pointing 
towards a simulated breather [10], and the other to a reference 
surface, simulating indoor overhead cover. 

 

 

Fig. 2 (a) Concept of simulated drone motion and breather motion, with two 
radars in a testbed [7-8]. (b) Experimental measurement setup where primary 
radar is pointed towards a breathing mover and the secondary radar is pointed 
towards a reference surface for collecting reference noise. From [7-8].  

 
Fig. 3 Radar captured motion of four different channels (a) primary radar I1, 
(b) primary radar I2, (c) secondary radar Q1, and (d) secondary radar Q2. 
Demodulated combined mixture of drone and radar movement (e) primary 
radar (f) secondary radar.  

 
Fig. 4  Intrinsic mode function (IMF) as a result of computing the EMD of the 
combined signal from primary radar. IMF1 and IMF2 have high frequency 
content represents the interferences. IMF 3-6 illustrates compatible with the 
breathing motion.  

TABLE I 
SUMMARY OF ACCURACY FOR BREATHING PATTERNS 

IMFs SNR (dB) 
IMF1 -17.64 dB 
IMF2 -13.48 dB 
IMF3 -2.89 dB 
IMF4 0.38 dB 
IMF5 19.45 dB 
IMF6 64.52 dB 
IMF7 14.15 dB 
IMF8 4.81 dB 
IMF9 23.45 dB 

IV. RESULTS  

For implementing the proposed EMD approach, radar 
waveforms which are represented in the time domain shown in 
Fig. 3 were captured. There were three distinct segments in the 
captured data. The first 3 minutes represent the breathing-like 
motion of the phantom mover. During this time, the phantom 
mover was moving without any interference at a frequency of 
0.2 Hz and a displacement of 0.5 cm. The sampling rate was 
500 Hz with a range of -10 to +10 V. This clean reference 
breathing motion was utilized for measuring the accuracy of 
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the EMD approach. Then drone movement was initialized 
from 3 to 5 minutes shown in Fig. 3. The segmented portion of 
the combined mixture of drone movement and breather 
movement of the I and Q channel signals was demodulated 
using arc-tangent demodulation to extract the maximum 
displacement information. Fig. 4 illustrates the 9 IMFs and 
residual signals from the combined signal. As can be seen 
from Fig. 4, IMF1 and IMF2 show the interference signal or 
mostly platform motion.   To select the best IMF initially the 
IMFs were visually inspected and SNR assessed. Table-I 
represents the SNR of all IMFs used for the selection of the 
best candidate which carries the breather frequency-related 
information. From Table-I, it is clear that IMF6 has the best 
SNR. A fast Fourier transform (FFT) was then performed for 
all extracted IMFs to find their highest frequency component. 
Fig. 5 shows the FFT of four different IMFs. From Fig. 5 the 
FFT of IMF1, IMF3, IMF6, and IMF 7 shows the highest 
frequency content as 0.67 Hz, 2.83 Hz, 0.17 Hz, and 1.7 Hz 
respectively.  It is also clear that the FFT of IMF1 shows 
multiple peaks in the frequency domain plot which also 
validates that the particular IMF contains platform motion-
related information. On the other hand, the FFT plot of  IMF6 
shows only a single peak in the frequency domain and it 
closely matches the breather phantom mover fundamental 
frequency components. For testing the reproducibility and 
repeatability of the proposed approach, the experiments were 
repeated where breathing frequency was simulated as a 
sinusoidal pattern with a frequency of 0.2 Hz to a maximum of 
0.5 Hz. Three different breathing depths were selected such as 
3.75, 5, and 10 mm. Similarly, the motion of the drone was 
simulated as a sinusoid with a frequency of 1.8 Hz and an 
amplitude of 10 mm peak-to-peak. After finding the best IMF 
based on the SNR, we performed the FFT of the best IMF to 
extract the highest frequency content. The highest frequency 
content was compared with the reference breather movement 
FFT and the accuracy was calculated based on below equation:  

 					Accuracy	ሺ%ሻ = 	 |ୟୡ୲୳ୟ୪	୤୰ୣ୯୳ୣ୬ୡ୷ି୰ୣୡ୭୬ୱ୲୰୳ୡ୲ୣୢ	୤୰ୣ୯୳ୣ୬ୡ୷|ୟୡ୲୳ୟ୪	୤୰ୣ୯୳ୣ୬ୡ୷  (3) 

 
Fig. 5 FFT of the intrinsic mode function (IMF) after computing EMD. Here 
it represents the FFT of four IMFs (IMF1, IMF3, IMF6, and IMF5).  

Fig. 6 illustrates the frequency domain plot of the best IMF 
and the breather motion. It is shown that the best IMF 
reconstructed frequency is 0.1742 Hz whereas the phantom 
breather frequency is around 0.2 Hz. The accuracy of the 

proposed system for varying frequencies remained above 87%.  
Testing on more realistic UAVs and breathing motion is 
expected to produce similar results, yet remains beyond the 
scope of the current experiment. 

 

 
Fig. 6 Compariosn of reference breather motion FFT and FFT of the best IMF 
shown in frequency domain. The peak of theFFT of the best IMF is 
around .1742 Hz whereas the breather reference frequency is around .2 Hz.  

V. CONCLUSION  

In this paper, the feasibility of using the EMD method for 
isolating the breather frequency from the combined drone and 
breathing movement using a single radar was evaluated.  From 
the experimental results, it was demonstrated that by 
incorporating the EMD method in a moving platform radar, 
breathing frequency can be extracted from the combined 
motion.  
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