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Abstract— ldentity authentication based on Doppler radar res-
piration sensing is gaining attention as it requires neither contact
nor line of sight and does not give rise to privacy concerns
associated with video imaging. Prior research demonstrating the
recognition of individuals has been limited to isolated single-
subject scenarios. When two equidistant subjects are present,
identification is more challenging due to the interference of
respiration motion patterns in the reflected radar signal. In this
research, respiratory signature separation techniques are func-
tionally combined with machine learning (ML) classifiers for
reliable subject identity authentication. An improved version of
the dynamic segmentation algorithm (peak search and triangu-
lation) was proposed, which can extract distinguishable airflow
profile-related features (exhale area, inhale area, inhale/exhale
speed, and breathing depth) for medium-scale experiments of
20 different participants to examine the feasibility of extraction
of an individual’s respiratory features from a combined mix-
ture of motions for subjects. Independent component analysis
with the joint approximation of diagonalization of eigenmatrices
(ICA-JADE) algorithm was employed to isolate individual respi-
ratory signatures from combined mixtures of breathing patterns.
The extracted hyperfeature sets were then evaluated by inte-
grating two different popular ML classifiers, k-nearest neigh-
bor (KNN) and support vector machine (SVM), for subject
authentication. Accuracies of 97.5% for two-subject experiments
and 98.33% for single-subject experiments were achieved, which
supersedes the performance of prior reported methods. The
proposed identity authentication approach has several poten-
tial applications, including security/surveillance, the Internet-of-
Things (IoT) applications, virtual reality, and health monitoring.
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I. INTRODUCTION

ONTINUOUS identity authentication has the potential

to provide a high level of security throughout a login
session by verifying the user identity continuously even long
after initiation [1]. Traditional authentication systems require
initial verification, typically either through a password or
facial recognition, only at the start of the login session thus
potentially allowing subsequent undesired access to personal
information (e.g., social security, credit card, and bank account
numbers) [2], [3], [4]. In 2018, more than two billion per-
sonal e-mails, social media accounts, home addresses, and
social security numbers were illegally accessed due to the
one-pass validation nature of traditional identity authentication
systems [2], [3], [4]. A growing need has developed for more
secure continuous user identity authentication systems for both
government and private applications [1], [2], [3]. The airline
and automotive industries are investing in new, secure, and
unobtrusive continuous authentication methods to provide bet-
ter security while simultaneously improving passenger expe-
rience by reducing the cumbersomeness of identity authen-
tication procedures [5]. To be useful for continuous oper-
ation, authentication approaches must be both accurate and
unobtrusive.

Existing biometric authentication methods based on finger-
print [6], [7], iris [8], vein [9], [10], [11], [12], and eye move-
ment [13] require the intentional engagement of users with the
authentication system. Behavioral biometrics have also been
investigated for authentication, including the use of keystroke
dynamics [14], [15] and gaze pattern [16]; however, users need
to continuously type or stare at the screen to maintain authenti-
cation, which hampers practical usability. Other methods such
as facial recognition, as used with Windows 10 Hello [17],
offer limited promise as traditional cameras are hampered by
opague obstructions and inconsistent lighting, and such video
imaging also incurs substantial signal processing overhead and
introduces privacy-related concerns. Physiological biometric-
based approaches, such as pulse response [18], electroen-
cephalogram (EEG) [19], or breathing sounds [20], have also
been investigated, but these methods are cumbersome to use,
introducing intrusive limitations such as the need for direct
contact between the sensor and body surfaces. Radar-based
identity verification is gaining attention as it is a noncontact
and unobtrusive way of recognizing people [21]. In addition,
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individuals have different physical characteristics associated
with lungs, rib cage, and abdominal muscle strength, which
leads to distinct variations in breathing motion patterns [21].
A particular challenge for this approach is the isolation of radar
reflections from two individuals that may be present within the
radar field of view.

Diederichs et al. [22] utilized the 57-64-GHz millimeter-
wave (mm-wave) frequency-modulated continuous-wave
(FMCW) radar to recognize people from the RF signal
backscattered by the subcutaneous tissue of the palm.
Although the proposed method achieved noncontact identi-
fication with 98% accuracy, users had to bring their hands
very close to the antenna. Rissacher and Galy [23] extracted
heartbeat-related features (peak power spectral density)
using 2.4-GHz continuous-wave (CW) radar to authenticate
individuals. Similarly, Shi ef al [24] utilized 24-GHz CW
radar to extract the heartbeat segment of four different
participants with an accuracy of 94.6%. Rahman et al. [25]
proposed a dynamic segmentation technique to identify six
different participants with a 90% success rate from their
respiratory patterns; however, when the inhale/exhale area
ratio was close for different subjects false classifications
could be introduced [26]. In addition, Lin ef al. [1] tested the
feasibility of radar-based identity authentication by extracting
a fiducial descriptor that provides unique cardiac displacement
information used to recognize subjects. Recently, another
study demonstrated the efficacy of radar-based continuous
identity authentication by utilizing a short-time Fourier
transform (STFT) and deep convolutional neural network [27].
However, all reported results are based on recognizing people
when only a single subject is within view of the radar. In home
and office environments, there is often a high probability of
the presence of two subjects in front of the radar sensor, which
results in a combined mixture of breathing patterns captured
simultaneously by the radar measurement, thus introducing a
complex problem for individual monitoring [28]. In the most
recent attempt, Huang ef al. [29] demonstrated the feasibility
of multiperson recognition by using 77-GHz FMCW radar
integrating a deep neural network with an accuracy of 95.40%.
However, in their experimental scenarios, they considered
only three subjects at significantly different distances from
the radar. When subjects are equidistant and at the same
range bin of the radar, FMCW radar cannot isolate them, and
thus, the proposed system is ineffective [28].

Isolating independent respiratory signatures for two equidis-
tant subjects, as shown in Fig. 1, remains a critical challenge,
which is an important part of the work reported here. Note
that while it is possible to use the direction of arrival (DOA)
to isolate RF reflections from well-spaced subjects [shown in
Fig. 1(a)] at the edges of the beamwidth, entangled reflections
from closely spaced subjects [shown in Fig. 1(b)] within the
beamwidth cannot be isolated in this manner. In preliminary
work, an algorithm using CW radar integrated with the inde-
pendent component analysis with the joint approximation of
diagonalization of eigenmatrices (ICA-JADE) algorithm [29]
was proposed. The robustness of the ICA-JADE algorithm to
isolate the respiratory signatures of two equidistant subjects
was subsequently tested with varied breathing patterns [30].
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Fig. 1. CW radar system in a two-subject scenario with two equidistant
subjects present within the beamwidth. (a) When well-separated subjects are
located near the edges of the beamwidth, isolation of respiratory patterns is
possible through DOA estimation. (b) When subjects are within the beamwidth
(closely spaced), DOA estimation is not possible, and thus, the ICA-JADE

algorithm is used to isolate the individual respiratory patterns from the
combined mixture. From [28].

The ICA-JADE technique is adapted here to be effective
in separating multiple respiratory signatures for continu-
ous authentication of individuals, by integrating an iterative
process that adjusts the crossover probability function to
0.5 from 0.001. A new approach to the dynamic segmentation
algorithm is proposed here for extracting distinguishable fea-
tures, and machine learning (ML) classifiers are also integrated
to automatically recognize people from their breathing diver-
sity. The feasibility and applicability for thus isolating and
authenticating two equidistant subjects are tested and verified
as well. Such noncontact radar systems have the potential to
offer unobtrusive identity authentication in a manner that is
suitable for real-world continuous authentication applications
in home and office environments where two-subject scenarios
are prevalent.

In this article, feasibility is tested for recognizing individuals
when two equidistant subjects are present in front of the radar
system. The core contribution is given as follows.

1) The ICA-JADE method of separating respiratory signa-
tures was adapted by tuning the data-driven crossover
probability parameter for use in authentication, by devel-
oping a more iterative process to incorporate more
detailed information in the isolated respiratory patterns.

2) A new approach to the dynamic segmentation algorithm
is proposed, which can extract highly distinguishable
breathing-dynamic-related hyperfeatures (inhale area,
exhale area, inhale/exhale speed, and breathing depth)
and improve the accuracy of the system beyond prior
reported results.

3) A hyperfeature set with two different popular classifiers,
k-nearest neighbor (KNN) and support vector machine
(SVM), is evaluated and shown to achieve promising
performance both for single-subject and multisubject
experimental scenarios.

A particular novelty of this work is the complete implemen-
tation of noncontact identity authentication for two equidis-
tant subjects within a single radar antenna pattern. Currently
published work on identity authentication is all based on the
assumption that the received echoes are backscattered from
a single person in the radar field of view. To the best of
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our knowledge, this is the first attempt at recognizing two
subjects concurrently within the beamwidth of the radar sys-
tem. Our prior study on separation techniques (ICA-JADE
and DOA) demonstrated better efficacy for isolating individual
respiratory patterns in reflections from closely spaced sub-
jects (within beamwidth) using the ICA-JADE method and
DOA performs well for isolating respiratory patterns for well-
spaced subjects (at the edge of the beamwidth) [28], [30],
[31]. In this work, efficacy is examined by adapting the pre-
viously reported ICA-JADE approach to isolate the respira-
tory patterns from combined mixtures in order to accurately
recognize two equidistant subjects within the beamwidth of
the radar system, identifying individuals from a sample group
of 20 subjects. In addition, a new approach to the dynamic
segmentation algorithm was proposed here to extract reliable
and unique breathing-dynamic-related features, which were
then integrated with two popular ML classifiers to successfully
enable continuous authentication for two individuals. More-
over, integrating ML classifiers with extracted radar-measured
respiratory feature sets also demonstrates the power of ML
in combination with distinct microwave signals, which can
be of great interest to microwave researchers interested in
applications that can benefit from the introduction of ML,
such as automotive radar detection, object localization, and
classification approaches.

The rest of this article is organized as follows. Section II
discusses the theoretical background of respiration sens-
ing in a multisubject environment, and Section III high-
lights the proposed noncontact identity authentication sys-
tem. Section IV presents experimentation and validation, and
Section V illustrates the results. Section VI concludes with a
summary.

II. THEORETICAL BACKGROUND

In this section, the theoretical background of the proposed
identity authentication system is described. This includes the
theoretical background of two equidistant subject measure-
ments and the basics of the ICA-JADE algorithm.

A. Multisubject Respiration Measurement and Separation

When there are two equidistant subjects present in front
of the radar system, a combined mixture of respiration pat-
terns is received, which is made up of signatures that are
very difficult to separate [28], [30], [31]. RF reflections from
two bodies become superimposed, which is a critical prob-
lem in practical real-world scenarios [31]. A CW radar has
been used in respiration detection because of its high sen-
sitivity for motion detection and simpler architecture than
the FMCW radar [32]. It transmits a single-tone CW signal
to the human body. When the radio wave is reflected by
the chest wall, the respiratory and heartbeat information will
be modulated into the CW signal in the form of a phase
shift [32].

Suppose that there are two subjects present in front of a
radar transceiver, as shown in Fig. 1. In a single-subject envi-
ronment, the phase-modulated signal at a quadrature receiver

is given by [33]

4xd, 4mx(t)
i T2

Bo(t) = A BQsin(4”d° 4”?” + A¢(r)) @)

where 0, 4,V¢,d,, and x(t) represent the constant phase
shift, wavelength, residual phase noise of the oscillator, dis-
tance from the receiving end, and distance of the movement
of the abdomen, respectively [33]. In a multiple-subject envi-
ronment, the received signal at the in-phase receiver is given

by
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In this particular scenario, suppose that the radar trans-
ceiver has one transmitter and two receivers, and two subjects
present; thus, N = M = 2, where N is the number of subjects
and M is the number of receivers. The received signal can be
represented by

RCCEiVﬁi’[ L apy dy;n B;l(l‘) o2 ap ap BQ](I)
Receiver; | | a2 an B;g(!‘) J s axn BQz(I)
(5)

where a;; are the mixing matrix parameters; in general,
N =M =X, where X =1,2,3,..., N can be represented

as follows:
Receiver; (f) B (1)
Receiver, (1) Irall IIfllf‘\’—l B (1)
B |_ﬂNl"'aNNJ ’
Receivery (f) Byn (1)
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This formulation closely corresponds to a blind source
separation (BSS) algorithm such as ICA-JADE. Our goal is
to separate independent subject respiratory signatures from
combined mixtures.
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B. BSS and Independent Component Analysis

The term “blind” illustrates the fact that: 1) the sensors are
unaware of the source signals and 2) no other information
is available about the source signals immediately beforehand.
“Blindness™ basically makes the process a versatile tool and
promising for practical applications. Several BSS approaches
have been proposed to correctly separate and isolate indi-
vidual subject respiratory signatures from combined mixtures
[34]1, [35]. The goal of BSS is to reconstruct a set of source
signals from a set of mixtures, without knowing the prop-
erties of the sources and the mixing proportion [35]. If the
sources are independent and have non-Gaussian distributions
and the mixing is linear, one can recover the source signals
from mixtures by using independent component analysis (ICA)
[34], [35]. ICA is essentially a method for recovering individ-
ual signals from a mixture of signals. The underlying assump-
tion is that each row of the data matrix is a weighted sum
of different source signals. Suppose that two mixture signals
z1 and z2 are linear combinations of two source signals. The
linear mixtures can be written as

ap diz 5
= apns a;ns2A = S=
21 1151 + Q282 I:a?' ﬂzz] [32]

22 = 481 + ass;
Boi(t Baa(t
= arctan( o )), §2= arctan( 0 )) (7)
B (r) B;g(r)
where A is the mixing matrix, § is the matrix of source signals,
and s1 and s2 are the arc-tangent demodulated signals of
different subjects. The objective of ICA is to find a separating
matrix or demixing matrix W, where W = A~'. Finally, the
output signal can be represented as

s(t)=WZ. (8)

In summary, ICA attempts to recover pure source signals
by estimating a linear transformation using a criterion that
measures statistical independence among the sources. This
may be achieved using high-order statistics. There are different
ICA algorithms available, among them fast ICA, Infomax, and
the joint approximate diagonalization of eigenmatrices (JADE)
which is the most popular [36]. JADE is a fourth-order sta-
tistics kurtosis-based ICA method [34]. The main advantage
of this technique is that it is a matrix diagonalization-based
approach, whereas other algorithms depend on optimization
procedures, and hence, variable results may occur [34], [35],
[36]. In prior reported results, the efficacy of the ICA-JADE
algorithm was tested for separating respiratory signatures from
a combined mixture of signals when subjects are closely
spaced within the beamwidth [28], [30], [31]. In addition, the
proposed system could also track and isolate the respiratory
pattern of subjects when they were outside the beamwidth of
the radar or at different distances, by utilizing DOA techniques
[28], [37]. The system has a hybrid capability of isolating
the respiratory patterns using ICA-JADE for closely spaced
subjects and beam scanning (DOA) for well-spaced subjects
[28]. For current interests, the more challenging scenario with
two equidistant subjects within the radar beamwidth is of
interest, so ICA-JADE is used. Performance measurements
for well-spaced subjects are not described here because it is
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expected that when subjects are well-spaced, the separation
of independent respiratory signatures is less challenging due
to multiple available options [28], [37] and thus beyond the
scope of this article.

ITI. NONCONTACT IDENTITY AUTHENTICATION SYSTEM

This section provides an overview of the proposed noncon-
tact authentication system, and the remainder describes the
associated hardware architecture.

A. System Overview

The proposed noncontact authentication system is based
on the Doppler radar, which analyzes backscattered RF sig-
nals that carry body motion information indicating a human
subject’s vital signs (breathing rate and heart rate) and asso-
ciated unique patterns [24], [26]. An additional advantage
of this radar technique is that continuous authentication can
be achieved without intrusive video imaging [25]. Reported
prior results have focused solely on the use of respiratory
motion to identify a single isolated subject [30]. Simulta-
neous measurement of two equidistant subjects within the
beamwidth is a critical challenge [28]. While other proposed
conventional biomedical radar-based identity authentication
methods can only authenticate a single subject [1], [21], [24],
[25], [26], the proposed technique adapts and incorporates the
ICA-JADE algorithm to isolate individual respiratory patterns
from a combined mixture even for concurrent measurement
of two equidistant subjects with the field of view of radar.
The proposed system can also track and recognize well-spaced
subjects as described in prior reporting [29]. Fig. 2 shows
the proposed unobtrusive identity authentication system. After
isolating the respiratory patterns, distinguishable breathing-
dynamic-related features are extracted, and then, ML classi-
fiers are applied to authenticate recognized individuals. The
main challenge, and thus the focus of this research, is the
recognition of closely spaced subjects within the beamwidth
of the radar transceiver.

B. Hardware Architecture

In the proposed authentication system, a 24-GHz KMC4
Monopulse radar transceiver with four different output chan-
nels (I, I, 0y, and Q,) is employed [38]. Table I shows the
hardware specification of the 24-GHz KMC4 Monopulse radar
transceiver. The output channels were connected to four base-
band amplifiers (Stanford Research System Model SR560).
All the baseband amplifiers were ac-coupled with a gain of
200 and low-pass filtered with a cutoff frequency of 30 Hz.
The four channels were connected to a data acquisition (DAQ)
(NI DAQ 6009 series) with a sampling frequency of 100 Hz.
A customized LABVIEW interface was used to capture all
the signals. The complete setup is shown in Fig. 3. The
24-GHz KMC4 radar module can also estimate the DOA for
well-spaced subjects [28], [31], [36]. One pair of channel sig-
nals (I1/Q1) is sufficient for extracting the combined mixture
of chest wall displacements through ICA-JADE-based arc-
tangent demodulation, and this was carried out. For estimating
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Fig. 2. Proposed noncontact identity authentication system for two-subject
environments. The system can isolate the unique respiratory pattern for an
individual from a combined mixture of signals. ML classifiers are also inte-
grated with the system to recognize different participants from their extracted
features.

Fig. 3. Hardware architecture of the proposed noncontact continuous identity
authentication system. The 24-GHz K-MC4 off-the-shelf radar has been inte-
grated with a low-noise amplifier (LNA) and a DAQ system. A customized
LABVIEW interface captures respiration patterns.

DOA, both pairs of channel signals would be required, but
such DOA separation was not carried out in this experiment.

IV. EXPERIMENTATION AND EVALUATION

Experiments were conducted on 20 different participants
to assess the efficacy of recognizing individual subjects by
their radar-captured respiratory signatures. For each trial, two
subjects each sat in front of a radar, 0.5-1 m away, with an
angular discrimination limit between the two subjects of 0.4 m.
Fig. 4 shows the experimental setup for data collection. The
experimental procedure involving human subjects described in
this article was approved by the University of Hawaii Insti-
tutional Review Board (IRB). Twenty subjects aged between

TABLE I
DOPPLER RADAR SYSTEM SPECIFICATION

Parameter Value
Antenna Array size Transmitter: 1 X 8 patch
array
Receiver: 2 X 8 patch array
Center Frequency 24.25 GHz
Antenna gain 13.0 dBi
Beamwidth E-plane: beamwidth 30°
Antenna power 18 dBm

Fig. 4. Human experiment setup in an anechoic chamber. Two subjects were
seated 1 m away from the radar system and the angular discrimination limit
between two subjects was around 0.4 m, so they were within the beamwidth
of the radar. Chest belt was attached to the body, which acts as a reference
respiration measurement.

16 and 35 participated in the study, over the course of two
months. Their body weights were between 42 and 85 kg.
None had any heart disease. During each trial, two subjects
were randomly paired, asked to wear chest bands (UFI1132
piezoelectric respiration transducer), and seated in front of the
radar system. Datasets were collected for about 2 min (120 s)
for each trial and the collected dataset was a combined mixture
of the respiration patterns of the two subjects. Therefore,
in total, measurements were recorded 15 times for each dif-
ferent pair of participants on different days. Individual chest
belts were used for capturing individual respiration patterns
as a reference, with two chest belts directly connected to the
DAQ. These isolated reference patterns allowed for testing the
efficacy of the ICA-JADE algorithm. Before extracting hyper-
features, the ICA-JADE algorithm was employed to isolate the
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individual respiration pattern with the results compared with
the individual reference chest belt measurements.

A. Preprocessing of Radar-Captured Signals

After capturing the concurrent measurement signal for each
pair of subjects using a 100-Hz sampling rate, the signals were
digitally preprocessed. Each signal was filtered using an FIR
low-pass filter of an order of 1000 with a cutoff frequency of
10 Hz, as the physiological information of interest (breathing
rate and heart rate) was expected within that frequency band-
width [25], [26], [27]. After filtering, the arc-tangent demod-
ulation technique was used to find the combined mixture
of chest wall displacements [25], [26]. Then the ICA-JADE
method was employed to isolate respiratory signatures from
the combined mixture of breathing patterns. Fig. 5 shows the
isolated respiratory signatures and a comparison with chest
belt reference measurements. After isolating the respiratory
pattern, a low-pass filter with a cutoff frequency of 2 Hz was
applied, and a fast Fourier transform (FFT) was used to extract
breathing rate and heart rate information. Fig. 6 shows the
breathing rate and heart rate of two subjects, extracted from
separated respiratory signatures. Breathing rate and heart rate
include overlapping harmonics. From Fig. 7, it can be seen
that the breathing and heart rates of subjects 1 and 8 are
0.25, 0.98, 0.4, and 0.99 Hz. In this study, we found that
with few exceptions, the breathing range was consistent across
subjects. The normal breathing rate for an adult at rest is
around 12-20 breath cycles per minute [25]. The respiratory
rate may change from 12 to 25 breathing cycles per minute
due to physical activities, stress, and other activities occurring
just before radar measurements (such as walking upstairs).
However, for most of the participants, breathing rates fell
into overlapping ranges. For example, in Fig. 6(c) and (d),
subjects 4 and 5 have quite similar breathing rates of 0.33
and 0.32 Hz, respectively. Therefore, extracting only breathing
rate and heart rate cannot be a unique way to recognize an
individual subject as subjects may have overlapping rates [25].

B. Respiratory Feature Extraction

For extracting respiratory features, visible patterns in the
time-domain representation of the separated respiratory sig-
nals were examined. Ten different respiratory features were
extracted from the time-domain representation of the sepa-
rated respiratory signals. Fig. 7 shows the extracted features
used from the different experiment trials. The investigated
features have been classified into two different spaces shown
in Table II. One of them is typical features and another one
is hyperfeatures. The typical respiratory feature extraction
process is described in prior work [25], [39]. Among all the
typical features, dynamic segmentation was the most dominant
feature used to recognize people accurately with an accuracy
of above 90% [39]. Simplistically, the breathing cycle can
be segmented into four various episodes: inhale ramp up,
the transition from inhale to exhale, exhale ramp down, and
transition from exhaling to inhale [25]. The basic idea of
dynamic segmentation is that it considers 30%—70% of the
transition period ramp up and ramp down of both inhale and
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Fig. 5. Recorded combined mixture and separated signals for two subjects.

While individual signals are not apparent in (a) combined mixture, individual
respiratory patterns are apparent in the separated signals for subjects (b) 1 and
(c) 8. Note that the blue lines represent the chest belt signals and the red lines
represent the separated source signals.

exhale episodes and then calculates the displacement versus
time area ratio of the episodes [25], [26], [39]. The area ratio
is calculated based on the following equation:

Area inhale to exhale tarpezium

R = : : ®)
Area exhale to inhale trapezium

()2

i=l

Il

(10)

where Ay is the area of the transition from exhale to inhale,
Aini 1s the area of the transition from inhale to exhale, and N
is the number of breathing cycles. This also indicates how one
initiates the next cycle of breathing patterns [25]. Fig. 8 shows
the dynamically segmented inhale and exhale area ratio for
two participants. The drawback of dynamic segmentation is
that when the inhale and exhale area ratio becomes simi-
lar among subjects, it cannot be used by itself to identify
human subjects accurately and creates ambiguity in the sys-
tem [26]. In addition, the method considered a 30%—70%
segment, so it discarded the heart-based dynamic-related phe-
nomena evident in the excluded peaks of the inhale and
exhale transitions [39]. In a recent study, the robustness of the
dynamic segmentation technique was tested on subjects after
performing physiological activities (walking upstairs) where
it was found that the breath ratio also changes notably with
physiological activities [39]. Thus, a new, robust unique fea-
ture extraction algorithm is required for reliable and accurate
noncontact identity authentication.

C. Hyperfeature Space (Peak Search and Triangulation)

After separating independent respiratory signatures, a peak
search method was used to find local maxima and minima
points in that segmented portion of the signal. The 12.8-s
window size was selected for the portion as it represented the
minimum number of samples required for the FFT operation
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Fig. 6. Extracted breathing and heart rates from patterns isolated from
combined mixtures. The breathing and heart rates of (a) subject 1 are
0.25 and 0.98 Hz and (b) subject 8 are 0.4 and 0.99 Hz. On the other
hand, (c) subject 4 and (d) subject 5 have quite similar breathing rates of
0.33 and 0.32 Hz, respectively.

to extract the breathing and heart rates and it also contains
at least two complete breathing cycles [26]. After finding
the peaks of maxima and minima of the segmented portion
of the signal, an array of two consecutive maxima and one
minimum in-between point was created, and then, a triangle
was constructed within those three points (two maxima and
one minimum). After triangulation, the area of that triangle
was calculated for the inhale and exhale episodes, and the
average of the inhale and exhale areas within the window was
calculated. Using triangulation, the inhale and exhale speed
was calculated as one arm of the triangle, which represents the
slope of the transition period (inhale and exhale). One of the
advantages of including the peaks of the respiratory patterns
in the proposed technique is that it integrates cardiac-based
dynamics [1], [24]. The inhale and exhale areas represent
two different cardiac phenomena. The inhale area represents

Displacement estimation

Area Exhale to Inhal

displacement [cm]

Breathing Depth

Area Inhale to Exhale
L |

0 2 4 6 B 10 12
Time [s]

Fig. 7. Three complete cycles of respiration signal measured using a 24-GHz
radar system. Each breathing cycle consists of inhale, exhale, and transition
episodes. Ten different respiratory dynamic-related features were extracted
and investigated for their identifiability and uniqueness.
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Fig. 8. Dynamically segmented inhale and exhale area ratio for (a) subject 3
and (b) subject 4. Note that they have equal area ratios of 1.10.

TABLE II
EXTRACTED BREATHING DYNAMIC-RELATED FEATURES

Feature Features
Space
Typical Breathing rate/heart rate
features Average exhale cycle period
Standard deviation of exhale cycle
period
e  Average inhale cycle period
Standard deviation of inhale/exhale
cycle period
e Dynamic segmentation
Hyper- o Exhale area
features o [Inhale area
e Inhale/exhale speed
e Breathing depth

the ventricular filling state of the heart and the exhale area
represents ventricular contraction [40]. During these stages,
different people might have different breathing depth and
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Fig. 9. Tllustration of inhale and exhale areas of (a) subject #3 and (b) subject
#4. There are clear visible differences in their inhale and exhale areas and
speed patterns, even though their dynamically segmented area ratios were
similar (shown in Fig. 8).

airflow profiles due to variations in cardiac movement, which
will affect the area of that segment [1], [24], [40]. Fig. 9 shows
that the inhale and exhale areas of the two participants are sig-
nificantly different from their similar dynamically segmented
inhale/exhale area ratios (shown in Fig. 8). From Fig. 9, the
chest displacement of subject 4 can be seen to be slightly
higher than that of subject 3. Calculating the triangle region
helps to add variation in the inhale area and the exhale area
as it takes into consideration two consecutive peak points
(two minimum and one maximum point). Integrating the peak
search process and triangulation method also helps to consider
the breathing depth variations for calculating inhale and exhale
areas. Dynamically segmented inhale and exhale area ratio
changes were also studied for subjects after physiological
activities [39]. The dynamic segmentation method ignores the
heart-related dynamics because it considers only 30%—70% of
the chest displacement [39]. Fig. 10 shows a summary of the
proposed new version of the dynamic segmentation algorithm.
The area ratio is calculated after using an improved version of
the dynamic segmentation based on the following equation:
Area inhale to exhale triangle

R = - - (11)
Area exhale to inhale triangle

-(7)-2(2)

i=1

(12)

V. RESULTS

In this section, the accuracy of ML classifiers with hyper-
feature sets is described. A comparative analysis of the pro-
posed technique with literature results is also described along
with associated challenges of this technology for real-world
implementation.

A. Respiratory Dynamic-Related Feature

The feature extraction process was described in Section IV.
Two subjects with a similar physique were (otherwise)
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Fig. 10. Summary of the new algorithm (flowchart) used for determining
the inhale and exhale areas, and speed.

randomly paired and arranged in a seated position in front
of the radar system. Experiments were performed both in an
anechoic chamber and in an ordinary office environment. For
each paired subject’s experiment, 15 measurements were taken
within a 120-s window, where measurements were divided
into 12.8-s segments. Before segmentation, the ICA-JADE
algorithm was employed to isolate the respiratory patterns
[28], [30], [31]. Respiratory features for the 12.8-s windows
were then extracted. The window is long enough to extract
breathing and heart-rate-related information as the FFT win-
dow size is around 128, and thus, almost 12 800 samples
are required, which establishes the minimum window reso-
lution limit [26]. These hyperfeature datasets were used to
perform classification and person identification. Ten features
were extracted and four of them were found to be much more
dominant in terms of their uniqueness, so they were considered
hyperfeatures. Fig. 11 shows the extracted hyperfeatures for
six different participants. Inhale area, exhale area, breathing
depth, and inhale/exhale speed are the four dominant unique
features that were significantly different for participants.

B. ML Classifiers

After extracting unique features, 2/3 of the dataset was used
for training and 1/3 of the dataset was used for testing the
performance of ML classifiers. Therefore, in total, there were
30 sets of data for each participant containing almost 1 min of
recordings. The KNN and SVM classifiers were integrated for
recognizing people from their extracted respiratory dynamic-
related hyperfeatures. KNN and SVM have supervised classi-
fication tools [41]. KNN is based on clustering elements that
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Fig. 11. Extracted respiratory features for six different participants: (a) sub-
ject 1, (b) subject 2, (c) subject 5, (d) subject 6, (e) subject 7. and (f) subject
8. While the respiratory traces all show a periodic pattern, the extracted
hyperfeatures (inhale area, exhale area, inhale/exhale speed, and breathing
depth) differ significantly between subjects. Subject#5 clearly has higher
inhale and exhale areas than other participants.

TABLE 1T
EXTRACTED BREATHING DYNAMIC-RELATED FEATURES

CLASSIFIER ACCURACY
KNN (CUBIC) 84.4%

KNN (COSINE) 86.4%

KNN (MEDIUM) 86.9%

SVM (LINEAR) 95%

SVM (QUADRATIC) 97.5%

SVM (FINE GAUSSIAN) 93.5%

SVM (MEDIUM GAUSSIAN) | 96.5%

try to find the nearest neighboring elements [41]. SVM is a
hyperplane-based classification approach [42]. Different kernel
functions were integrated for both KNN and SVM to test the
accuracy of the system [43]. Table III shows the different ML
classifier accuracies achieved for recognizing human subjects.
A fivefold cross-validation model was also used for training
the classifiers. Among all classifiers, SVM with a quadratic
function outperformed the others with an accuracy of 97.5%.
Fig. 12 shows the confusion matrix of SVM with quadratic
function classifiers to recognize different subjects based on
their extracted respiratory hyperfeatures. From the confusion
matrix, it is shown that subject 2 was misclassified as subject 1
for 5% of attempts, subject 3 was misclassified as subject 4 for
9%, subject 4 was also misclassified as subject 5 for 5%,
and subject 7 was similarly misclassified as subject 6 for
14%. Misclassification occurred due to overlapping inhale and
exhale areas of the subjects. Misclassification occurs between
adjacent subjects due to the placement of the feature vector of
misclassified subjects one after another before feeding them
into the ML classifier. The rest of the subject characteristics
were classified accurately, and the overall classification accu-

racy was 97.5%, which provides a clear indication of the
efficacy of the proposed method and experimental system.
The learning curve of the outperforming SVM classifier with
a quadratic function was also examined. Fig. 13 shows the
learning curve of SVM with a quadratic function. With an
increase in training sequences, the gap between the training
score and the cross-validation score decreases, indicating that
the training model has less variance and bias. After 60 training
sequences, the two curves closely overlap, which reduces the
gap between the two graphs. While adding more training
instances can increase the training score of the learning algo-
rithm, the comparison shown indicates a reasonable accuracy
of 97.5% within 60 training sequences. The proposed system
and algorithm can identify two subjects simultaneously after
isolating the respiratory patterns from the combined mixture
of breathing.

C. Comparative Analysis Between the Proposed Method and
Reports in the Existing Literature

An accuracy comparison was performed between the pro-
posed method and those in the existing literature. In a prior
study, the dynamic segmentation technique and its efficacy
were reported to accurately recognize people for single-subject
experimental scenarios [25]. This experiment was performed
on six different participants. The same experimental dataset
in [25] was used with the proposed improved version of the
dynamic segmentation approach (peak search and triangula-
tion) to compare accuracies. The training dataset for single
subject and multisubject to test the accuracy of ML classifiers
is completely different as the single-subject dataset was taken
from our prior published work in [25]. Fig. 14 shows the con-
fusion matrix of six different participants using the improved
version of the dynamic segmentation technique and the pre-
vious dynamic segmentation technique for feature extraction.
In the prior study, a 2.4-GHz radar system was used and
six different participants were measured on different days of
the week [25]. Fifteen sets of 60-s respiration traces were
collected with a 100-Hz sampling rate [25]. All experiments
were performed with a single subject present in front of the
radar system [25]. Breathing ratio features were extracted
using previously reported dynamic segmentation techniques.
In addition, the inhale area, exhale area, inhale/exhale speed,
and breathing depth were extracted using the improved version
of the dynamic segmentation technique. SVM with quadratic
function outperformed for both scenarios. Fig. 14 shows that
subject 1 was misclassified in 40% of the cases using the orig-
inal dynamic segmentation technique, whereas the improved
version of the feature extraction technique reduced the misclas-
sification rate by 10%. The classification accuracy using the
dynamic segmentation technique was almost 93.33%, whereas
using the new method classification accuracy improved to
98.33% for the previously reported dataset [25].

An accuracy comparison was also performed between
the proposed improved version of the dynamic segmenta-
tion method and existing methods reported in the literature.
Table IV shows the comparative analysis of this work with the
existing literature. Previously reported results used 2.4-GHz
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Fig. 12. Confusion matrix showing the true- and false-positive rates of 20 different participants. Thirty sets of 12.8-s windows for combined mixture data

were taken as a feature set for each participant. The overall classification accuracy was calculated based on the average of true-positive rates of different

participants, which was almost 97.5%.
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Fig. 13. Learning curve of SVM with a quadratic function. With an increase
in training sequences, the training score closely matches the cross-validation
score. The training score does not overlap or cross the validation score,
so there is no overfitting incidence in the training sequences.

CW radar, and for extracting unique features, they used
heart-related fiducial-based descriptors. The accuracy of the
described system was 98.61% [1]. In addition, other attempts
also showed an accuracy of 98% by utilizing an STFT of
the radar-captured heartbeat waveform pattern variation [27].
For the experimental scenario with at least two subjects
in view, the performance may degrade from the reported
results [28]. The system proposed here showed efficacy for
recognizing people in a single-subject experimental scenario

with an accuracy of 98.33%. Moreover, the integration of the
ICA-JADE algorithm in the proposed system facilitated the use
of this system in the presence of two subjects with an accuracy
of 97.5%. The deep learning approach was not integrated with
the proposed system because the ML approach helps to extract
unique respiratory features, while the deep learning approach
is mostly used for automatic feature extraction. However, the
performance of the proposed ML-based approach was com-
pared with published deep learning-based approaches such
as deep convolutional neural network, which was integrated
with micro-Doppler signatures in prior reported attempts
[27]1, [29]. The proposed improved dynamics segmentation
algorithm with an ML-based approach shows reasonable accu-
racy compared to the deep learning-based approach, as shown
in Table IV.

The proposed system was mostly tested for sedentary
respiration patterns because meaningful identifying breath-
ing parameters occur mainly during the sedentary condition,
as opposed to activity-dependent patterns that occur during
arbitrary activity. Sedentary conditions occur quite commonly
and thus provide a consistent basis for comparative respiratory
monitoring [44]. Daily variations of sedentary breathing pat-
terns were also considered over the approximately two-month-
long studies. In addition, the efficacy of the proposed system
was also tested with six different participants after short peri-
ods of exertion (walking upstairs) with an accuracy of above
90%, and aerobic dynamics related to unique features (exhale
area and inhale area) tended to change for patterns in a consis-
tent manner [39]. Identification error increases with an increase
in overlap of sedentary classifiers, and thus, “learning”
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TABLE IV

COMPARISON OF THIS ARTICLE WITH OTHER RECENT RELEVANT WORKS

REFERENCE RADAR TYPE SUBJECT IN NUMBER OF FEATURE ACCURACY
& & FREQ RADAR VIEW SuUBJECT EXTRACTION (%)
YEAR (GHz) ALGORITHM
[1] CwW 1 78 HEART-BASED 98.61%
2017 2.4GHz DYNAMICS (FIDUCIAL
BASED DESCRIPTOR
FIVE POINTS)
[24] CwW 1 4 HEAR TBEAT SIGNAL 94.6%
2018 24 GHz COMPLEXITY
[25] CW 1 6 DYNAMIC 03.33%
2018 2.4 GHz SEGMENTATION
(AREA RATIO)
[27] Cw 1 10 SHORT-TIME FOURIER 98.5%
2020 24 GHz TRANSFORM
(HEARTBEAT, ENERGY
AND BANDWIDTH)
THIS WORK Ccw 1 6 IMPROVED VERSION OF 98.33%
FOR SINGLE 24 GHz DYNAMIC
SUBJECT (DATASET OF SEGMENTATION
REFERENCE (INHALE AREA,
[25]) EXHALE AREA,
BREATHING DEPTH)
[29] FMCW 2 3 MICRO-DOPPLER 95.40%
2020 77 GHZ SPECTROGRAM WITH
DEEP NEURAL
NETWORK
THIS WORK CwW 2 20 IMPROVED VERSION OF 97.5%
FOR MULTI- 24 GHz DYNAMIC
SUBJECT SEGMENTATION
(INHALE AREA,
EXHALE AREA,
BREATHING DEPTH)

how activity affects an individual can offset this error to
maintain a high efficacy rate of identification [39]. Moreover,
in prior work, the proposed system also showed efficacy to
recognize people with breathing disorders such as obstructive
sleep apnea (OSA) with an accuracy of above 90% [45].
Therefore, the initial feasibility of the reliable accuracy of the
proposed system was tested in realistic scenarios such as after
short exertions and with OSA symptoms. Further feasibility
tests of the proposed identity authentication system in realistic
settings remain an active investigation.

D. Challenges for Noncontact Identity Authentication

A major challenge for radar-based noncontact continuous
identity authentication is the management of the motion arti-
facts produced by random body movement and the presence
of extraneous subjects [21]. All reported results rely on the
recognition and exploitation of a controlled environment for
analyzing periods of sedentary physiological motion [21].
None of the attempts in the literature have focused on recog-
nizing people when they are equidistant from the radar and
within the field of view [1], [21], [24], [25], [27]. In this

particular work, the feasibility of recognizing individuals when
two subjects are in the radar field of view was demonstrated.
Prior research also demonstrated the efficacy of Doppler
radar respiration sensing during random body movement [46],
[47], [48]. A Doppler radar sensor with camera-aided random
body movement cancellation has also been demonstrated in
prior research [46]. In the associated methodology, random
body movement can be mitigated in three different ways, such
as using phase compensation at the Doppler RF front end [48],
phase compensation for the baseband complex signal [47],
and cancellation within the demodulation technique [46].
In prior work, the efficacy of an adaptive filter technique
was demonstrated for compensating platform motion for an
unmanned aerial vehicle (UAV) radar system used to extract
vital signs [49]. Potentially, in future work, methods like these
can be integrated with the authentication system proposed here
to mitigate the motion of random body movement.

Another challenge for noncontact identity authentication is
the change in respiratory patterns caused by emotional stress
and physical activity [40]. Breathing is controlled by a cen-
tral neural mechanism, so the cardiopulmonary pattern may
change with emotional and physical stress [40]. This work
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Fig. 14. Confusion matrix of SVM with a quadratic function using (a) newly
proposed version of dynamic segmentation technique and (b) original dynamic
segmentation technique for classifying six different participants. The accuracy
improved with the new technique.

focused on sedentary breathing patterns to test the feasibility
of respiration-based sensing technologies to recognize people.
Methods have been demonstrated for recognizing sedentary
situations and restricting measurements to those intervals,
which turns out to happen frequently [50]. Recognition of peo-
ple with full accommodation of the variability of respiratory
patterns due to emotion and physical stresses would be a large
step beyond the scope of this article. However, the feasibility
of isolating respiratory signatures using the ICA-JADE algo-
rithm for varied breathing patterns in post-activity scenarios
has been established in preliminary work [30].
Authentication time or latency is another important chal-
lenge for recognizing people using microwave Doppler radar.
Generally, an authentication system should not only accurately
identify people but also identify them with low latency [1].
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For the system proposed here, a 12.8-s window is required
to accurately recognize people. When the window size is
less than 12.8 s, the accuracy of the system degrades due to
the smaller number of breathing cycles present in the radar-
captured pattern. Reducing accurate authentication to the time
for one or fewer breaths is beyond the scope of this feasibility
demonstration.

This present study demonstrates the feasibility of authen-
ticating two subjects simultaneously in front of a radar sys-
tem and authentication of more than two subjects at a time
remains future work. In addition, in recent literature, a digital
beamforming technique based on single-input—multiple-output
(SIMO) radar has also been demonstrated to isolate individual
respiratory patterns from the combined respiratory patterns
for three closely spaced subjects [51]. Moreover, the unde-
termined blind source separation technique (UBSS) has also
demonstrated the feasibility of isolating respiratory patterns for
three subjects from the combined radar-captured respiration
patterns [52]. Thus, integrating those approaches into this
authentication system proposed here remains a logical next
step for further exploration of noncontact identity authentica-
tion for situations where more than two subjects are present.

VI. CONCLUSION

This article proposes an improved version of the dynamic
segmentation algorithm for recognizing people when two sub-
jects are in the radar field of view and is the first reported
investigation demonstrating noncontact identity authentication
in equidistant two-subject scenarios using CW radar. Experi-
mental results also demonstrate the efficacy of the improved
version of the algorithm for extracting highly distinguishable
cardiopulmonary dynamic-related features (exhale area, inhale
area. inhale/exhale speed, and breathing depth). Extracted
hyperfeature sets are also integrated with the ML classifiers
(KNN and SVM). SVM with quadratic kernel outperformed
other classifiers with an accuracy of 98.33% and 97.5% for
single- and two-subject experiments, respectively. The results
also demonstrate the initial efficacy of the proposed identity
authentication approach and the potential improvement over
traditional system vulnerabilities. While this work demon-
strates the efficacy of this technology for functioning in the
presence of two equidistant subjects in the field of view of the
radar, a major hurdle for practical authentication applications,
other challenges for human identification remain for the radar
research community in addressing complications from further
subject physical variations, physiological activities, and ran-
dom body movement.
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