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Assessment of Biomechanical Predictors of
Occurrence of Low-Amplitude N1 Potentials

Evoked by Naturally Occurring Postural
Instabilities

Rahul Goel , Sho Nakagome, William H. Paloski, Jose L. Contreras-Vidal , and Pranav J. Parikh

Abstract— Naturally occurring postural instabilities that
occur while standing and walking elicit specific cortical
responses in the fronto-central regions (N1 potentials) fol-
lowed by corrective balance responses to prevent falling.
However, no framework could simultaneously track different
biomechanical parameters preceding N1s, predict N1s, and
assess their predictive power. Here, we propose a frame-
work and show its utility by examining cortical activity
(through electroencephalography [EEG]), ground reaction
forces, and head acceleration in the anterior-posterior (AP)
direction. Ten healthy young adults carried out a balance
task of standing on a support surface with or without sway
referencing in the AP direction, amplifying, or dampening
natural body sway. Using independentcomponents from the
fronto-central cortical region obtained from subject-specific
head models, we first robustly validated a prior approach on
identifying low-amplitude N1 potentials before early signs
of balance corrections. Then, a machine learning algorithm
was used to evaluate different biomechanical parameters
obtained before N1 potentials, to predict the occurrence of
N1s. When different biomechanicalparameters were directly
compared, the time to boundary (TTB) was found to be the
best predictor of the occurrence of upcoming low-amplitude
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N1 potentials during a balance task. Based on these find-
ings, we confirm that the spatio-temporal characteristics of
the center of pressure (COP) might serve as an essential
parameter that can facilitate the early detection of postural
instability in a balance task. Extending our framework to
identify such biomarkers in dynamic situations like walking
might improve the implementation of corrective balance
responses through brain-machine-interfaces to reduce falls
in the elderly.

Index Terms— Center of pressure velocity, fronto-central
negativity, N1 potential, naturally occurring postural insta-
bility, time to boundary.

I. INTRODUCTION

POSTURE control during upright stance is one of the
most fundamental motor tasks in everyday life. It requires

minimum energy with almost no mental effort. Deterioration
and impairment of this essential human skill, for instance,
with aging, may cause a physically dangerous and sometimes
fatal fall. There is a moment of postural instability preceding
every fall. The characterization of that moment is critical and
could help us better understand how the central nervous system
(CNS) predicts future postural instability.

Under normal conditions of an upright stance, the CNS
balances the body by maintaining the vertical projection of
the center of mass (COM) at a quasi-steady equilibrium point
near the center of the base-of-support, called the center of
pressure (COP) [1]. To do so, the CNS continuously monitors
the afferent sensory information from various receptors (e.g.,
cutaneous receptors, muscle stretch sensors, joint receptors,
vestibular end-organs, and visual sensors) and determines the
state of standing balance [2]. In case of a deviation from
the equilibrium, it adjusts the motor commands to bring the
COM back to the equilibrium point. An alternative view [3]
holds that the underlying objective for controlling posture
is not to minimize departure from the stability point within
the equilibrium region but to reduce the deviation of sway
toward a stability limit. In other words, the CNS may utilize
the temporal and spatial dynamics of the COP concerning its
stability boundaries to characterize postural instability [4], [5].

The frontal and parietal cortical regions are known to
be involved in the control of posture under challenging
environmental conditions that may lead to a fall [6]–[30].
In our previous work [15], we used MRI-constrained
electroencephalography (EEG), and MRI-guided inhibitory
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theta-burst transcranial magnetic stimulation over the sup-
plementary motor area (SMA), while subjects performed a
balance task with varying stability of the support surface.
We found changes in EEG spectral power within anterior
cingulate gyrus, cingulate gyrus, and posterior parietal cortex
areas along with alterations in the control of posture during the
challenging standing task in the theta-burst group compared to
the control group, which received sham stimulation [15]. These
findings suggested that the cortical network involving fronto-
parietal regions might be involved in monitoring ongoing
postural responses and performing suitable adjustments to the
motor commands if a deviation from stability is detected
such that we are not catching up with instability after it has
occurred [31].

Several studies [11], [13], [32] have attempted to identify
an early cortical sign of postural instability. A negative
potential (N1) generated over the fronto-central region, around
100-200 ms following naturally occurring instability while
standing still [14] or following external perturbation of the
support surface [6], [7], [9], [10], [17], [19], [21], [22] has
been suggested to indicate the involvement of higher-order
processing in the form of detecting an error due to the
difference between anticipated and actual postural states and
signaling functional postural responses, if necessary [9], [10],
[13], [27], [32]. These findings suggest that the occurrence of
N1 would always indicate a presence of postural instability,
regardless of its cause. This advanced knowledge of an
imminent fall can be helpful in populations at high risk of
falls to produce corrective neuromuscular responses early on
through intrinsic mechanisms and/or to produce corrective
response through a body-worn exoskeleton [21]. However, for
such brain-machine applications, one important consideration
is how early we can detect the cortical reaction [19], [21] so
that we can intervene.

Detection of a cortical reaction following a naturally occur-
ring postural instability is difficult. This is because the N1
potential is small in size and, therefore, is technically challeng-
ing to detect beyond the ongoing EEG activity [14]. To our
knowledge, there is only one study that attempted to reliably
detect such an N1 response during a continuous standing task
where there is no fixed perturbation onset. Varghese et al. [14]
located the low amplitude N1 response using the changes
in biomechanical parameters assessed during the corrective
balance response, i.e., using parameters following the N1.
However, for practical applications, it is desirable to predict
N1 responses during a naturally occurring balance perturbation
using biomechanical parameters that precede and not succeed,
such a cortical response.

Various biomechanical parameters may serve as a control
variable predicting the cortical signature of postural insta-
bility. For instance, Slobounov et al. found that the time
to contact the postural stability boundary called time to
boundary (TTB) and not standard COP measures were related
to EEG response during a postural stability task using separate
statistical analyses [13], [33]. Other studies have suggested
parameters such as surface stability [11], COP excursions [14],
ground reaction forces [34], COM acceleration [35], and COM
velocity [36], [37] as possible control variables that the CNS
tracks for the control of posture. However, none of these

studies investigated what biomechanical parameter among
several parameters during a given trial or epoch best predicts
the occurrence of a cortical response. This requires comparing
the ability of different biomechanical parameters to predict
a cortical reaction during a given trial/epoch. Such a direct
comparison will elucidate the most important biomechanical
parameter that triggers a cortical response following postural
instability.

Therefore, the primary aim of this study was to develop a
framework that can be used to assay biomechanical parameters
in single trials and predict the occurrence of low-amplitude
N1 in healthy young adults from the tracked parameters.
We achieved this by developing machine learning algorithms
to predict the occurrence of low-amplitude N1 potential
from single epochs of biomechanical parameters. Next, we
examined the impact of different biomechanical parameters
on the outcome of machine learning models.

II. METHODS

A. Participants

Ten (4 females) healthy right-footed young adults (mean
± SD, age: 25.3 ± 3.3 years; height: 167.7 ± 12.8 cm; and
weight: 67.5 ± 15.5 kg) provided informed written consent
to participate in this study. Subjects were included in the
study only if they were in the age range of 18–35 years and
had a body mass index of less than 30 kg/m2. They had no
history of balance, neurological, musculoskeletal, movement,
cardiovascular, or vestibular disorders and were not using any
medication known to impact neuromuscular functions. The
study was approved by the University of Houston Committee
for the Protection of Human Subjects.

B. Instrumentation

1) Computerized Dynamic Posturography (CDP): We utilized
a standard CDP force platform (Neurocom Balance Manager,
Natus Medical Incorporated, Pleasanton, CA) to assess the
stability of the posture control system. The Neurocom postur-
ography system has been used in research [15], [17], [38], [39]
and clinical [40] settings to assess the motor and sensory
performance of the posture control system. A dynamic dual
force plate system (45.72 cm × 45.72 cm) is inbuilt in the
CDP platform and can be controlled to sway or translate
in the AP direction only. Four individual force transducers
within the force plate collected ground reaction forces from
under the subjects’ feet. A shear force sensor collected SH
in the AP direction. All the ground reaction force data were
collected at 100 Hz. Pre-installed software on a Windows-
based desktop connected to the Neurocom Balance Manager
(Research module, Neurocom software v8.0, Natus Medical
Incorporated, Pleasanton, CA) processed the data. An analog
output signal of 5 V was produced by the Neurocom system at
the start of each trial for synchronization with other systems.

2) Electroencephalography (EEG): Whole-scalp EEG data
were collected by active 64 channel EEG electrodes (Brain
Products GmbH, Germany) at a sampling frequency of
1000 Hz. Modified International 10-20 system was used for
electrode placement [41]. The left earlobe was used as the
ground electrode, whereas the right earlobe was used as
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the reference electrode. A camera-based 3D scanning system
(BrainVision Captrak, Brain Products GmbH, Germany) was
used for digitizing the EEG electrodes’ spatial position.

3) Accelerometer: A wireless inertial motion unit (IMU)
called OPAL sensor (APDM Inc., Portland, OR) was mounted
on the subject’s head, recording three-axis accelerations and
angular velocities at 80 Hz. However, only head acceleration
(HA) in the AP direction was used in our analyses.

C. Experimental Procedure

All subjects participated in two sessions, around a week
apart. The first session was used to assess baseline postural
performance using standard sensory organization tests (SOTs)
of the Neurocom posturography system, record body weight,
height, foot size, head circumference, and obtain structural
brain MRI. High-resolution T1-weighted structural images
were obtained using a 3T Siemens Trio whole-body MR
scanner (Erlangen, Germany) at the Center for Advanced MRI
(Baylor College of Medicine, Houston, TX).

The second session was the primary experimental session,
in which subjects were first instrumented with EEG electrodes
and an IMU in the middle of the frontal bone above the
eyebrows. One continuous balance task lasting 180 s and
consisting of nine consecutive 20 s long balance trials were
performed, without any rest in between, with varying surface
stability conditions with eyes closed. EEG, ground reaction
forces, and HA were measured and analyzed during the
balance task. The support surface was sway-referenced by
tilting in the AP direction in various proportions to the
estimated instantaneous COM sway angle in the sagittal plane
with negligible time delay. It means that the support surface
would sway if the subject swayed, amplifying or dampening
naturally occurring body sway. Three trials had a gain of 0
(i.e., quiet stance), whereas the gain varied for the other six
trials. All subjects underwent the task in the following order
of gains: 0, 0.4, 2.0, 0, 0.6, −0.4, 0, 1.0, −1.0 (see Fig. 1
in our previous publication [15], provided as Supplementary
Fig. S1). The first trial (a quiet stance with eyes closed) started
∼10 s after subjects were told to close their eyes to avoid
any transient effects and collect baseline (pre-task) data for
EEG mean correction. Subjects were unaware when the gain
of the support surface changed. Different balance conditions
within the single continuous standing balance task allowed us
to naturally manipulate the difficulty of the posture control
system while concurrently monitoring changes in ground
reaction forces, HA, and EEG. Subjects were connected to
a loose safety harness to prevent falls or injury during the
posture task. Subjects were not allowed to practice the balance
task with sway referencing.

D. Data Analyses

Ground reaction force data collected from the vertical force
sensors were first combined to create COP time series in the
AP direction [42]. COPv was estimated from the COP using
a three-point central difference algorithm [15], [17], [43] in
MATLAB 2017a (Mathworks, Natick, MA), which does not
introduce any time delay. Anterior and posterior anatomical
foot limits were used to create a rectangular stability zone for

Fig. 1. (A) Top Panel: Detecting zero-crossing (time = 0) in COPv
following a large amplitude peak in COPv (∼ time = − 70 ms), Bottom
Panel: Instability-evoked N1 time-locked (time = 0) to change in sign of
COPv. Black horizontal dash lines are 1SD around the mean, whereas
the red dash line is 2SD from the mean; (B) Top Panel: COP and COPv
time series time-locked (i.e., re-centered, time = 0) at the selected N1,
and an epoch of −300 ms to 100 ms around N1 was saved. However,
only data from −300 to −50 ms was used in further analyses. Bottom
Panel: The EEG IC time series time-locked (i.e., re-centered, time = 0)
at the selected N1. It is to be noted that time = 0 in top two and bottom
two panels are not the same time points in reality.

each subject. The instantaneous differences between the sta-
bility boundaries and the AP COP position in COP movement
(anterior or posterior) direction were estimated as the distance
to boundary (DTB). Time to the boundary (TTB) was calcu-
lated by dividing DTB by the COPv magnitude [15], [16], [18].

As done in a previous study, the COPv in the AP direction
was used to identify early signs of discrete balance corrections
to postural instabilities [14]. Specifically, large amplitude
peaks in COPv greater than 3SD of COPv during the first
20 s quiet stance trial (when gain was 0) were selected (see
the lowest COPv point ∼ time = −70 ms in the top panel of
Fig. 1A) and used to find the subsequent zero-crossing in the
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Fig. 2. Scalp topographies of naturally occurring instability-evoked cortical response at selected time points during the balance task time-locked
(i.e., time = 0) to the change in sign of COPv for a representative subject (averaged across 24 epochs). A significant negative depression is visible
at −160 ms around the fronto-central region, for this subject.

COPv time series (see ∼ time = 0 in the top panel of Fig. 1A).
The zero-crossing in COPv also coincides with the time point
of the peak in COP position and represents a biomechanical
marker of an early sign of corrective balance reaction to
postural instability (see Fig. 1 in [14]). The amplitude of the
peak COPv threshold was adjusted for each subject but was
typically around 6 cm/s. Raw SH and HA in the AP direction
were down-sampled to 10 Hz for further analyses.

Steps used for EEG pre-processing are explained in our
prior publications [15], [17]. In brief, the raw EEG signal
collected at 1000 Hz was first down-sampled to 100 Hz and
then high-pass filtered at 0.1 Hz using a 4th order Butterworth
filter. A standardized EEG processing pipeline (PREP) was
used [44] to apply common referencing methods and remove
artifactual EEG channels. Next, Artifact Subspace Reconstruc-
tion was applied [45] to identify and remove the artifactual
principal components and then reconstruct the signals in the
EEG data. Next, we ran the independent component analysis
(ICA) using adaptive mixture ICA (AMICA) [46]. After that,
a dipole fitting method (DIPFIT in EEGLAB) was used to
calculate the equivalent current dipole sources that explain at
least 85% of the topographic variance obtained from ICA with
subject-specific head models created from MRI scans from
individual subjects and digitized EEG channel locations. The
EEG time series were reconstructed using the independent
components (ICs) remaining after removing dipoles located
outside the individual head models or those that had artifac-
tual components (e.g., muscle related power spectral density
characteristics, motion artifact related high-frequency noise,
etc.).

Then a representative IC over the fronto-central region was
selected by looking at both the two-dimensional topoplots
of all the ICs remaining after EEG data cleaning and the
corresponding dipole projections in three dimensions, for
each subject. This technique of choosing an IC from the
fronto-central area has been validated in our previous pub-
lication [17] (see Fig. 2 in our previous publication [17],

provided as Supplementary Fig. S2). But it should be noted
that in this study, new ICs were identified per subject by
analyzing the EEG data from the balance task with varying
stability of the support surface, and these were not the same
ICs identified from the perturbation tasks’ analyses as in our
previous study [17]. A baseline correction was employed by
subtracting the pre-task mean (of -5 to 0 s) EEG activity
from the entire time series of the selected IC to control inter-
subject differences. Once an IC is selected, naturally occurring
postural instability-evoked N1 was identified in the temporal
data of that IC as the largest negative peak, which was lower
by at least 2SD (see bottom-most red horizontal dash line in
the lower panel of Fig. 1A) of the baseline (pre-task mean),
and was within −250 ms to −100 ms time window before the
change in the sign of COPv (time = 0 in the lower panel
of Fig. 1A). The temporal data was then time-locked (i.e.,
re-centered) at the selected N1 (Fig. 1B), and an epoch of
window size −300 ms to +100 ms around N1 was saved for
further analyses. Four biomechanical parameters of interest:
COPv, SH, HA, and TTB, in that epoch were also saved.
A total of 338 such epochs were obtained from all ten subjects
from the balance task.

We visualized the topographical distribution of naturally
occurring postural instability evoked N1 for each subject.
Figure 2 shows the mean of baseline-corrected EEG activity
(cleaned EEG at sensor level) for 24 epochs when plotted
for every 40 ms from −280 ms to +80 ms, time-locked
to the change in the sign of COPv (same time axis as in
Fig. 1A), for a representative subject. It shows significant
negative depression at −160 ms around the fronto-central
region for this subject. These topoplots are similar to those
published previously (see Fig. 2 in [14]), but obtained using
more robust EEG pre-processing, including subject-specific
head models using MRI and digitized EEG channel locations.

To make sure that we were not randomly selecting N1 as any
prominent negative peak in the IC which was lower than 2SD
of baseline, all the other negative peaks in the temporal data
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of the selected IC, which had a magnitude lower than 2SD of
baseline, were also chosen, and −300 to +100 ms long epochs
around these control peaks were also saved. We called the first
data set the Instability data set (class label: 1), and the latter
the Control data set (class label: 0). The number of epochs
we could find for the Control data set was nearly double that
for the Instability data set (726 vs. 338, respectively), across
all subjects. The proportion of the epochs belonging to class
label 1, with respect to all epochs of both classes together,
had a mean (standard error [SE]) of 32.0 (3.5) %, across all
subjects.

E. Machine Learning and Statistical Analyses

Once we validated the approach to identify the naturally
occurring postural instability evoked N1 potential, we were
interested in identifying a single biomechanical parameter
(COPv, SH, HA, TTB) or the combination of all parameters,
collected before the low-amplitude N1 potentials, that could be
the best predictor of the occurrence of N1s (i.e., the Instability
data set) for our task. Thus, first, we took the median of the
absolute values of the four biomechanical parameters (COPv,
SH, HA, TTB) in the window −300 to −50 ms before the N1
(Fig. 1B) for each epoch in both data sets, across all subjects.
We performed a similar analysis using the mean instead of
the median of the absolute values of the four biomechanical
parameters and obtained similar results. We chose to report the
findings using the median as it is not influenced by outliers.
The “end” of the window before N1 was extended only up to
−50 ms and not to 0 ms as this is the order of latencies from
the vestibular end-organs [47]. In our preliminary analyses,
we tested with a few time points as the “start” of the window
before N1, in steps of 25 ms, primarily between −350 to
−250 ms relative to N1, and window lengths in 200-300 ms
range, but did not find any significant difference and thus
decided to choose −300 ms as the “start” of a 250 ms window
before N1 (Fig. 1B), as is neuro-physiologically reasonable
and technically feasible for BMI applications [19], [21]. As a
preliminary step, we ran some descriptive statistics (paired t-
tests). We estimated the effect size (Cohen’s d) of the grand
mean of differences in the four parameters across the two data
sets in the −300 to −50 ms window before the N1.

We were interested in identifying which parameter will
contribute most to the correct classification of the Insta-
bility data set. Typically, tree-based classifiers are good to
understand feature importance. Therefore, several popular
tree-based algorithms like Random Forest, Decision Tree,
Extreme Gradient Boosting (XGBoost), Adaptive Boosting
(AdaBoost), and Extra Trees were initially considered with
default hyper-parameters on 20% of data, drawn five times
randomly from the entire data. This is a standard technique
in machine learning as every algorithm suits some prob-
lem types better than others. Consistently, XGBoost [48]
provided slightly better accuracy and was fast. Gradient
boosting provided the best performance in another study to
predict vestibular dysfunction from postural instability [49].
Thus, we decided to apply XGBoost on the entire data with

hyperparameter optimization, using the leave-one-subject-out
cross-validation approach.

In this approach, results are obtained from models trained
exclusively on data, not from the subject being tested on. For
a left-out subject, we first created a test subset consisting of
an equal number of samples of both classes by randomly
undersampling the majority class. Creating a balanced test
set was not essential, but it makes results convenient to
compare with 50% performance metric expected by chance.
For training, we combined the other nine subjects’ data and
then randomly undersampled the majority class in that data,
such that both classes had an equal number of training
samples. Then we followed a 5-fold cross-validation (using
GridSearchCV ) approach to find the best set of hyperparame-
ters for XGBoost (depth: 2 to 10; the number of estimators:
60 to 220; learning rate: 0.001, 0.01, 0.1) on the training
data, which were then applied to the test subset created from
the left-out subject’s data. This process (create test set with
balanced classes from a left-out subject, undersample the
majority class in the remaining data of the other nine subjects,
optimize hyperparameters using 5-fold cross-validation on this
balanced training data from nine subjects, apply the best
hyperparameter on the test subset of the left-out subject), was
repeated ten times for each of the ten subjects to obtain the
results presented here so that all the data of each subject
have had a chance to be in the test subset once. Accuracy,
sensitivity, and area under the receiver operator curve (AUC)
were the performance metrics calculated for each of the five
machine learning models, i.e., each of the four parameters
individually and all four parameters combined.

Further, when combining parameters for classification, it is
essential to ensure that the parameters are not strongly corre-
lated. After checking that the data were normally distributed
(using Shapiro-Wilk test: p > 0.05), we calculated the
Pearson product-moment correlation coefficients between all
six possible pairs. The coefficients with COPv were: 0.34 for
SH, 0.44 for HA, and −0.28 for TTB; with SH were: 0.19 for
HA and −0.18 for TTB; and that between HA and TTB was
−0.15. Although all correlations were statistically significant
(p < 0.001), they were not strong (r < 0.7). Therefore,
we were able to use them all together as parameters in the
machine learning model. Further, we used SHapley Additive
exPlanations (SHAP, [50]), a game-theoretic approach, to look
at feature importance for the machine learning models using
all four parameters.

Separate independent t-tests were used to compare the
performance metrics between individual parameters and the
combination of parameters. Statistical significance level was
set at p < 0.005 (as there were ten comparisons) for the
machine learning metrics and p < 0.05 for other descriptive
comparisons. SPSS version 21 (SPSS Inc., Chicago, IL) was
used for all statistical analyses.

III. RESULTS

There was no report of falls. The average latency of the
identified N1 potential was 164.3 ± 10.4 ms (mean ± SE),
before the early sign of balance correction (change in the
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Fig. 3. Grand means across all epochs of all subjects (median of
absolute value within each epoch, where epoch is defined as the data
points between −300 to −50 ms before N1) for the two data sets: (A)
COPv, (B) TTB, (C) HA, (D) SH. d represent Cohen’s effect size. Error
bars represent SE.

TABLE I
MACHINE LEARNING PERFORMANCE METRICS

(MEAN ± SE, CHANCE WAS 50%)

TABLE II
P-VALUES FOR ACCURACY (∗ INDICATES P < 5E-3)

sign of COPv), across all ten subjects. Figure 3 shows the
grand means (mean ± SE) for descriptive statistics on the four
parameters calculated across all epochs, for all the subjects,
along with the effect sizes. All the four parameters were
significantly different (p < 0.01) across the two data sets, with
very large effect sizes (Cohen’s d > 1) for three parameters
(COPv, SH, and TTB).

Table I shows the three machine learning performance
metrics (chance was 50%), for the binary classification, with
each of the four individual and all four parameters combined.
Tables II-IV show the uncorrected p-values for various com-
parisons for the three metrics. Using all four was typically
significantly better than using each of the individual para-
meters, as per all three metrics. When comparing individual
parameters, there was no difference between TTB and COPv.
Still, both were typically significantly better than HA or
SH, for all three metrics. Between SH and HA, SH was
significantly better than HA in all three metrics.

Parameter Importance: Figure 4 shows explanatory SHAP
values based on the parameter’s importance when all four were
used together. TTB, on average, contributed more towards
model output than COPv, whereas each of HA and SH’s
relative contribution was nearly one-third of each of TTB and

TABLE III
P-VALUES FOR SENSITIVITY (∗ INDICATES P < 5E-3)

TABLE IV
P-VALUES FOR AUC (∗ INDICATES P < 5E-3)

Fig. 4. Ranking in order of importance for the four parameters when
used together based on mean of |SHAP| value (average impact on model
output, Red means higher values of the parameter had positive impact,
blue means lower values of the parameter had positive impact).

COPv. Values of each parameter may have a +ve or −ve
impact depending on their SHAP value. As expected, higher
values of COPv, SH, and HA had a positive impact on the
model output (i.e., they predicted a higher probability that the
model will predict the occurrence of upcoming low-amplitude
N1 potentials). In contrast, lower values of TTB predicted a
higher probability of occurrence of upcoming low-amplitude
N1 potentials.

IV. DISCUSSION

In this standing balance study, we implemented tree-based
machine learning models that utilized data from a single
epoch to understand which of the four selected biomechanical
parameters can predict the occurrence of a low-amplitude N1
potential that is typical following a naturally occurring insta-
bility. Importantly, using SHAP, a game-theoretic approach,
we directly compared the importance of TTB, COPv, HA, and
SH parameters. We found that TTB was the best predictor
of the occurrence of low-amplitude N1 potentials when all
four parameters were simultaneously considered. This result
suggests that, for naturally occurring instabilities, the spatial
and temporal proximity of the center of pressure to the stability
boundary is the most crucial variable triggering the cortical
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sign of postural instability. In contrast to previous studies that
obtained similar findings [13], [18], [33], [39], [51], [52], our
findings resulted from a direct comparison of the prediction
ability of four biomechanical parameters during a single epoch.
While we showed the utility of this approach in the context of
a standing balance task, it can be extended to other dynamic
situations like walking.

Our previous study [17], on posture control during unpre-
dictable external perturbation tasks, on the same subjects as
in this study (perturbation tasks were carried out right after
the continuous balance task in the same session), showed that
the evoked N1 potential appears around (range) 150 - 215 ms
before an early sign of corrective balance response (quantified
as a change in the sign of COPv) in the fronto-central region.
Whereas in the balance task used here, we found them with a
mean around 165 ms before the same early sign of correction
of balance responses. Also, to the best of our knowledge, only
one study has shown cortical involvement in the form of an
evoked low-amplitude N1 potential in the Cz electrode before
the early sign of balance correction to naturally occurring
postural instability during a quiet balance task with closed
eyes [14]. Building upon these prior works, and to test our
proposed framework, we first identified early signs of balance
correction to large deviation in COPv in our balance task.
We then identified low-amplitude N1 potential in the −250 to
−100 ms window before the early signs of balance correction.
We found pronounced cortical negativity (N1) in the fronto-
central region before the early signs of balance correction
(change in the sign of COPv) in the balance task with or
without somatosensory distortion. These N1 peaks were tem-
porally time-locked to the early signs of balance corrections.
The latency of early signs of compensatory balance responses
following N1 peaks was in the range of 150 - 200 ms, which
agrees with the temporal course of involuntary or voluntary
responses to the ongoing somatosensory inputs [17], [53], [54].
It should be noted that the magnitude of N1 evoked during our
balance task where the exact time of perturbation is relatively
small in comparison (around −2 µV versus −10 µV) to that
elicited during the external perturbation task (see Fig. 4 in our
previous publication [17], provided as Supplementary Fig. S3).
Therefore, it is technically challenging to detect N1 potential
beyond the ongoing EEG activity [14]. It is important to note
that this distinction would be even more significant in older
adults, who have smaller N1s than young adults for the same
disturbance [55].

The fronto-central ICs that were selected to identify N1
activity were slightly on the left hemisphere (Fig. 2). This
is not surprising as all our subjects were right-footed. Prior
studies have postulated functional asymmetry between motor
areas, with the dominant hemisphere playing a critical role in
selecting appropriate postural strategies [56] and sensing a loss
of balance during walking [32]. In another study, Taubert et al.
found that improved postural performance after six weeks
of balance training in right-footed individuals was associated
with an increase in gray matter volume in the left SMA [57].
Overall, our results confirm the presence of N1 before the
early signs of balance corrections, even during balance tasks
with or without somatosensory distortion, extending the results

of Varghese et al. [14], but using a more robust EEG pre-
processing pipeline involving subject-specific head models
using MRI and digitized EEG channel locations.

Once we identified the NI potential, we looked at an epoch
in the −300 to −50 ms window before the N1 because several
previous studies, including those from our laboratory, have
reported significant fronto-central negativity (N1) that peaks
approximately 100 to 250 ms after the onset of external
perturbation [8], [9], [16]–[19], [58]. We took the median
of absolute values of the different parameters in the chosen
window. First, we looked at basic descriptive statistical com-
parisons between grand means across all subjects and epochs
across the two data sets (Control and Instability). Results
showed significant differences with large effect sizes for three
of the four parameters. This may not appear surprising, but this
study provides some unique threshold values, beyond which,
as per the electrophysiological evidence (N1 potential) that we
present, there is a very high chance of triggering a postural
instability in our task. For example, based on our results,
we can say that if a 250 ms long moving median window
detects TTB < 1.5 s (mean TTB of Instability data set was
0.49 s, and 3∗SD was 3∗0.32 s), then, as per the empirical rule,
that will effectively cover nearly 100% of all epochs preceding
the low-amplitude N1 potentials.

Then we used an advanced machine learning technique to
investigate the contributions of different parameters collected
before N1s, in predicting the occurrence of N1s. We used a
well-established and robust cross-validation technique called
leave-one-subject-out. When using all four parameters com-
bined, our results show that TTB was the most important
parameter that the model used in predicting the occurrence of
low-amplitude N1 potential (Fig. 4). These findings provide
stronger evidence that TTB could be the control variable the
CNS is tracking for posture control and implement corrective
responses if a threshold is breached. Slobounov et al. were
first to propose that TTB could be the neural detector of
postural instability [13], [33], as it combines both spatial
and temporal dynamics of postural sway. Various studies over
the years, including those from our laboratory, have shown
the effectiveness of TTB as a valid measure of postural
stability in various populations or scenarios, including older
adults [51], [52], people with multiple sclerosis [59], [60],
ankle instability [61], Parkinson’s disease [62], virtual tempo-
rary lesion [15], as well as in astronauts [39] and single vs.
dual-task differences [16], [18]. Postural stability measured by
TTB has also been linked to greater fall risk [52], [60], [63].
Similarly, the margin of stability has been shown [64], [65]
to be associated with instability during dynamic balance.
Gill et al. [64] used position-based COM, relative to the base
of support (BOS), and tried to predict failed steps during beam
walking by classifying COM as inside BOS or outside. They
concluded that this classification might be over-simplistic and,
in cases where COM was outside BOS, and the subject did
not fall. Walking faster helped participants, thus confirming
the need to incorporate both position and velocity information,
as done by TTB approach used in this study and many others.

In addition, we used each of four parameters independently
in the model for the prediction of low-amplitude cortical
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response following a naturally occurring instability. Our results
also showed that when parameters were used independently,
COPv was not statistically different than TTB in predicting the
occurrence of low-amplitude N1 potential. It should be noted
that COPv is one of the components of TTB calculation. Thus,
our study provides further evidence that COPv information
might be useful for human posture control, as proposed
earlier [36], [37]. It is known that the frequency of firing of
neurons in the muscle spindles and cutaneous receptors at the
sole of the feet encode velocity information [66], [67]. Our
results show that even though the somatosensory information
was distorted by changing the gain of the sway-referenced
support surface, the COPv information was still more relevant
than the other two biomechanical parameters (SH and HA),
in our task.

When considering model performance using individual
parameters, SH was the third most important parameter, and
HA was the last (Table I). This is not surprising. This could
be because some overlap of the sensory receptors provides
information on COPv and SH. The mechanoreceptors at the
sole of the feet can be classified into four groups based
on the size of the receptive field (type I [small defined
boundaries] vs. type II [large undefined boundaries]) and
afferent/receptor firing properties (fast adapting [FA] vs. slow
adapting [SA]) [68]. FAII receptors, in particular, are known
to encode high-frequency vibration information that can signal
slips and dynamic contact between the skin and environ-
ment, whereas FAI receptors are known to encode tangential
(shear) forces [69]. There is some evidence that neighboring
neurons may have overlapping receptive fields close to one
another [70]. Additionally, Ting et al. [34] showed that the
shear force change could not solely be the trigger signal
for balance correction. They found that the vector direction
of shear force biomechanically was opposite for rotation
and translation perturbations that generated the same balance
response. They suggested that the change in shear to vertical
load ratio could be an unambiguous signal that can potentially
capture the dynamics (both regarding the rate of change and
direction of change) of the disturbance. Similarly, in our study,
it is possible that both vertical and tangential components of
ground reaction force (when all parameters were combined)
provided the most reliable input regarding postural stability.
It is also possible that SH could play a more significant role
during rapid postural perturbations, unlike the paradigm used
in this study.

In the absence of vision and the presence of distorted
somatosensory information from the bottom of feet, prior
studies have shown that the posture control system reweights
sensory information and relies more on the vestibular sys-
tem [71]. Vestibular sensors provide orientation information
about the head concerning the vertical axis and are essential
in posture control [72]. However, the performance of the
machine learning model using HA in the AP direction alone
was typically the worst of all the four parameters. It suggests
that the acceleration in AP direction sensed by the vestibular
sensors alone was not sufficient to predict cortical involvement
in our task. This could be because there is more sensory
noise in vestibular signals to detect small changes (as in

naturally occurring postural instability) in postural sway as
vestibular end-organs have evolved to work with a larger
range of sensory inputs (i.e., head movements) [73], [74]. The
relative contribution of vestibular signals to posture control
during eyes closed is proposed to be not more than 20% [71].
Further, postural responses to sagittal plane translations are not
found to be affected by the vestibular loss [75], [76]. However,
one may need to analyze head rotation information to better
understand the role of vestibular end-organs in tasks like ours.

Our results using leave-one-subject-out cross-validation are
encouraging. They show that we can build reliable machine
learning models using single epochs to predict outcomes
on new subjects. The overall accuracy of around 75% is
similar to that obtained by a prior study from our collabora-
tors [21], albeit using a perturbation task. Sensitivity of about
85% and AUC of around 82% are usually considered very
good [77].

The study has several strengths. We used individual struc-
tural MRI scans and digitized EEG channel locations to create
subject-specific head models to identify a fronto-centrally
localized independent component resembling the N1 response
preceding the functional balance correction. Our MRI-based
EEG approach has provided a higher spatial resolution of
EEG signals [78]. Importantly, prediction of the occurrence of
low-amplitude N1 potential using biomechanical parameters
from single epochs, as done in this study, may significantly
advance the field of using EEG for predicting upcoming
postural instability with just single trials. We acknowledge
that we used an independent component created during the
post-processing of the entire data. However, it implies that
our electrophysiological results are more robust than other
studies [14], [19], showing N1 response in electrodes from
the fronto-central region for challenging balance tasks.

We do acknowledge that our study has a few limitations.
The aim of this paper was not to find an optimal machine
learning model or window size; therefore, it is possible that the
machine learning performance could be further improved with
other more complex machine learning techniques or testing
different window sizes. However, it is also possible that some
of the computationally heavy machine learning techniques are
not suitable for real-time implementation. It is possible that
other metrics, for example, variability in the parameters we
used, can further improve performance. However, we wanted
to keep the parameters simple, as a median filter can be
easily implementable on a chip for real-time processing. It is
also possible that adding sensors providing information of
segmental orientation (e.g., ankle, hip, and knee) could have
provided additional information for prediction. These would
most likely be available in lower-limb exoskeleton systems and
need to be tested in the future. And lastly, we only tried this in
a relatively quiet stance. This approach needs to be expanded
and tested in more dynamic conditions like walking.

V. CONCLUSION

We present a machine learning approach that compared
the ability of biomechanical parameters obtained from sin-
gle epochs to predict the occurrence of low-amplitude N1
potentials during naturally occurring postural instabilities.
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TTB was found to be the most important biomechanical
parameter to predict the occurrence of these low-amplitude N1
potentials when compared with COPv, SH, and HA. These
results provide direct evidence suggesting that the spatial
and temporal information of the body’s center of pressure
is a robust parameter that triggers a cortical sign of postural
stability.
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