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Abstract

A hierarchical Model Predictive Control (MPC) formulation is presented for coupled discrete-time linear systems with state
and input constraints. Compared to a centralized approach, a two-level hierarchical controller, with one controller in the upper-
level and one controller per subsystem in the lower-level, can significantly reduce the computational cost associated with MPC.
Hierarchical coordination is achieved using adjustable tubes, which are optimized by the upper-level controller and bound
permissible lower-level controller deviations from the system trajectories determined by the upper-level controller. The size of
these adjustable tubes determines the degree of uncertainty between subsystems and directly affects the required constraint
tightening under a tube-based robust MPC framework. Sets are represented as zonotopes to enable the ability to optimize
the size of these adjustable tubes and perform the necessary constraint tightening online as part of the MPC optimization
problems. State and input constraint satisfaction is proven for the two-level hierarchical controller with an arbitrary number
of controllers at the lower-level and a numerical example demonstrates the key features and performance of the approach.
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1 Introduction

Model Predictive Control (MPC) of constrained dy-
namic systems provides the ability to satisfy both input
and state constraints to guarantee safe and reliable
system operation. This is particularly important for
systems where the desired operation requires both tran-
sient and steady-state input and state trajectories to
approach these constraints. Examples include the con-
trol of water distribution networks [1], aircraft power
systems [2], smart power grids [3, 4], and hybrid electric
vehicles [5,6]. However, centralized MPC approaches
are not well-suited for the control of these complex
multi-timescale systems, where the system is comprised
of many dynamically coupled subsystems and achieving
the desired operation requires both fast control update
rates and long prediction horizons.

For these complex systems, hierarchical MPC can be
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used to decompose control decision across multiple levels
of controllers [7]. Typically, upper-level controllers are
designed with large time step sizes to optimize system
operation over long prediction horizons while lower-level
controllers use small time step sizes to resolve the fast
dynamics of the system over short prediction horizons.
With a single controller per level, vertical hierarchical
MPC is a computationally efficient approach for control-
ling multi-timescale systems with a relatively low num-
ber of states and inputs [8]. For more complex systems,
comprised of multiple dynamically-coupled subsystems,
full hierarchical MPC utilizes multiple controllers at
each of the lower-levels to reduce the number of control
decisions per controller [9-11].

Many hierarchical MPC formulations [9-12] have been
developed to provide theoretical guarantees for the
closed-loop system. Specifically, the two-level hierar-
chical controller in [9] with an upper-level MPC and
a lower-level linear controller achieves state and input
constraint satisfaction through communication of opti-
mal references and reference rate changes between con-
troller levels and also guarantees closed-loop stability.
The controller developed in [12] provides guaranteed
persistent controller feasibility and closed-loop stability
for a cascaded system with actuator dynamics subject to
input constraints. In this case, coordination is achieved
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through the appropriate choice of contractive terminal
constraint sets and terminal control laws, which overall
guarantee stability of the error between inner-loop and
outer-loop reference models to the origin. The works in
[10,11] extend the vertical hierarchical architecture to a
full two-level hierarchical controller with one upper-level
controller and multiple controllers at the lower-level,
one for each subsystem operating at the same timescale
in [10] and different timescales in [11], and guarantees
closed-loop stability and input constraint satisfaction
while driving the system to a desired steady state.
While [10] drives the system to a desired set around a
steady-state equilibrium, the works in [9, 11, 12] guaran-
tee convergence to the exact steady-state equilibrium.
However, for systems with finite operation, such steady-
state equilibrium might not exist, as in the case of
systems whose operation is based on the utilization of a
finite resource (e.g. battery state of charge in an electric
vehicle [6, 13] or fuel in an aircraft [14]).

Similar to [8,15], this work focuses on the notion of
completion, with the goal of maximizing transient per-
formance by satisfying state, input, and terminal con-
straints during system operation. While the multi-rate
hierarchical MPC proposed in [11] achieves real-time
computational performance using a full hierarchical
MPC architecture with a reduced-order model at the
upper-level, guarantees on closed-loop state constraint
satisfaction are not shown explicitly. Additionally, the
amount of control flexibility provided to the upper- and
lower-level controllers along with the resulting uncer-
tainty sets, Robust Positive Invariant (RPI) sets, and
tightened constraint sets are determined offline and
might not be the optimal choice for systems that need
a time-varying control flexibility. Moreover, guaranteed
convergence might not be possible for a wide range of
systems due to underlying assumptions on the slow
timescale of the upper-level controller. To address these
challenges, this work focuses on development of a set-
based hierarchical MPC architecture for linear systems
of dynamically-coupled subsystems that guarantees
state and input constraint satisfaction.

One of the fundamental considerations for coordination
in hierarchical MPC is how to provide lower-level con-
trollers the flexibility to use their fast update rates and
the fast dynamics of the system to improve upon the
control decisions made by upper-level controllers with-
out introducing unnecessary conservatism to account for
this flexibility. In the authors’ prior work [8], set-based
vertical hierarchical MPC was proposed, where waysets
were used as the primary coordination mechanism to
provide both control performance and guaranteed con-
straint satisfaction. Strategically designed terminal costs
were added to complement the waysets to guarantee that
the lower-level controllers can only improve control per-
formance compared to the upper-level controller trajec-
tories [16].

For full hierarchical MPC of systems of dynamically-
coupled subsystems, providing lower-level controllers the
flexibility to deviate from the trajectories planned by
upper-level controllers introduces uncertainty between
subsystems. Therefore, the desired degree of flexibility
balances the benefits of allowing lower-level controller
to improve control performance within their own sub-
system with the cost of creating unknown disturbances
for neighboring subsystems. This trade off can be time-
varying, where certain system operations might require
a high level of coordination between subsystems, result-
ing in very little flexibility for lower-level subsystem con-
trollers to deviate from the upper-level system-wide con-
trol plan. Alternatively, other system operations might
not require much coordination between subsystems and
lower-level controllers should be permitted a high degree
of flexibility to further improve control performance.

The proposed two-level hierarchical MPC framework
provides this time-varying subsystem coordination flex-
ibility using an adjustable tube set-based coordination
mechanism. Specifically, while planning system state
and input trajectories, the upper-level controller simul-
taneously optimizes the permissible deviations from
these trajectories provided to the lower-level subsystem
controllers and the corresponding constraint tightening
needed to be robust to these deviations. These time-
varying permissible deviations are communicated to the
lower-level controllers that use this flexibility to further
optimize subsystem operation. The ability to embed
the optimization of these permissible deviation bounds
within the upper-level MPC optimization problem is
enabled by zonotopes and the recent work on computing
RPI sets and Pontryagin difference set operations using
linear constraints [17,18].

The specific contributions of this paper are: (1) the
development a two-level hierarchical framework with
M lower-level controllers, one for each of the M
dynamically-coupled subsystems; (2) the definition and
the use of adjustable tubes to provide time-varying
bounds on permissible deviations between upper-level
and lower-level planned trajectories; (3) the closed-loop
analysis of the hierarchical controller to prove controller
feasibility and guarantee constraint satisfaction; and
(4) a numerical demonstration of the capabilities of the
proposed approach. Note that the proposed work ex-
tends the tube-based robust MPC with uncertainty set
optimization from [18] to a hierarchical MPC framework
with optimal allocation of uncertainty quantified as the
differences in control decisions between controller levels
and between subsystems. Similar to [18], RPI, tightened
output, and tightened terminal sets corresponding to
the optimized uncertainty are computed online while
solving the control optimization problem.

The remainder of the paper is organized as follows. The
notation used throughout the paper is described in Sec-
tion 2. Sections 3 and 4 describe the class of linear dis-



crete time-invariant systems and the proposed two-level
hierarchical MPC formulation. Section 5 presents the
nominal system trajectories and error propagation while
Section 6 formulates controller feasibility and closed-
loop constraint satisfaction. Section 7 demonstrates the
key features and performance of the approach using a
numerical example. Finally, Section 8 summarizes the
conclusions of the paper. Due to space constraints, the-
orem proofs and additional details for implementing the
proposed hierarchical controller are provided in a sup-
plementary technical report [19].

2 Notation

For a system comprised of multiple subsystems, system-
level vectors are denoted in bold, e.g. state x and input
u, while vectors of the i*" subsystem have the subscript
i, e.g. state x; and input u;. The system state vector is
formed by the concatenation of subsystem state vectors
as x = [x;]. Alternatively, the states of subsystem i can
be extracted from the system state vector as x; = II;x.
For a discrete-time system, x(k) denotes the state x at
time step k. With [k, k+N —1] denoting the integers from
k to k+ N —1, the input trajectory over these time steps
is denoted {u(j) ?i,ivfl. For MPC, the double index
notation x(k 4 [|k) denotes the predicted state at future
time k+( determined at time step k. The block-diagonal
matrix K with blocks K is denoted K = diag(K;). The
p-norm of a vector is denoted || - ||, and the weighted
norm is |[x]|3 = xTAx, where A is a positive-definite
diagonal matrix. All sets are shown in caligraphic font.
For sets X, Y € R", X ® ) denotes the Minkowski sum
and X ©) denotes the Minkowski/Pontryagin difference
of Y from X. The Cartesian product of sets is denoted
as X x Y. The projection of X on the n; dimensions of
subsystem i is denoted as X; = II; X.

3 Problem Formulation

Consider a linear discrete time-invariant system com-
posed of M dynamically-coupled subsystems, S;, where
i € N2 [1, M]. The dynamics of subsystem S; are

.%‘z(k + 1) = A“xz(k‘) + B“ul(k) + wi(k’), (1&)
yl(k/’) = CZ.’L‘z(k’) + Diui(k)7 (1b)

where x; € R™ are the states, u; € R™¢ are the inputs,

and y; € R™ 1™ are the outputs. The coupling between
subsystems is captured by the disturbance vector

wi(k) = Y (Agy;(k) + Biju;(k)), (2)
JEN;

where N; is the set of neighboring subsystems such that

Ni = {j e N\ {i} : [Ai; Bi;] # 0} 3)

The outputs are defined to include all states and in-
puts such that y;(k) = [z;(k) T u;(k)T]" and [C; D;] &
I, +m,;. The subsystem states, inputs, and outputs are
constrained such that

xz(k‘) e X, uz(k) € U;, yz(k) SN} = X; x U;. (4)
Based on (1) and (2), the full system dynamics are

x(k+ 1) = Ax(k) + Bu(k), (5a)
yv(k) = Cx(k) + Du(k), (5b)

where x = [2;] € R", u = [u;] € R, and y = [y;] €
R™™™ such that n = vail n; and m = Zgl m;. The
system constraints are

X(kJ)EXéX]_ X oo X X, (63.)
ulk) eU 2 Uy x -+ x Unp, (6b)
y(k)eyéylxxyM (6C)

Let Ap £ diag(A;;) and Bp = diag(B;;) be block diag-
onal matrices while Ac £ A— Ap and Be £ B— Bp are
off-diagonal matrices that capture the coupling between
subsystems.

Assumption 1 There exists a static feedback control
gain K; € R™iX" for each subsystem S;, i € N, such
that A;; + B;; K; is Schur stable and A + BK is Schur
stable, where K = diag(K;) is a block-diagonal matriz.

Remark 1 For systems with weak dynamic subsystem
coupling, the control gain K;, Vi € N, satisfying As-
sumption 1 can often be obtained using decentralized
control design methods such as LQR or pole placement.
For systems comprised of more strongly coupled subsys-
tems, control gains satisfying A ssumption 1 may poten-
tially be found by solving a set of Linear Matriz Inequal-
ities (LMIs) based on [20]. However, for highly-coupled
systems, it may not be possible to satisfy Assumption
1 and a control approach that requires the decomposition
of the system into subsystems may not be practical.

Assumption 2 With a fized time step At, the system
operates for a finite length of time starting from t = 0
and ending att = tp = kp At with time steps indexed by
ke [0, k‘F]

Starting from an initial condition x(0), the goal is to plan
and execute an input trajectory and corresponding state
and output trajectories satisfying the system dynamics
from (5), the constraints from (6) for all k£ € [0, kp — 1],
and the terminal constraint

x(kp) €T 2Ti x - x Ty CAX. (7)

Assumption 3 The sets X;, U;, and T;, i € N, are
zonotopes.



The generic cost function

kr—1

J(x(0)) = Y () +Lr(kr), (8)

Jj=0

defines the cost of system operation using a pre-
determined reference trajectory {r(k:)}ﬁi o With stage
costs £(j) = £(x(j),u(y),r(j)) and terminal cost
KF(]CF) = EF(X(]CF),I‘(]CF

Considering the full system (5), operational constraints
(6), terminal constraint (7), and cost function (8), this
paper develops a two-level hierarchical control approach
with M controllers at the lower-level that guarantees
constraint satisfaction and provides computational effi-
ciency in the case of a large number of subsystems M,
small time step size At, and large operating duration ¢g.

4 Hierarchical Control

The proposed hierarchical control formulation consists
of a single controller Cg in the upper-level and M con-
trollers C;,4 € N, in the lower-level, where C; controls
subsystem S;.

Assumption 4 The controller Cy has a time step size
Aty and mazimum prediction horizon Ny such that
AtgNy = tp. Each controller C;, i € N, has a time step
size At and maximum prediction horizon N such that
AtN = Aty.
Let vy £ % = N € Z, be defined as a time scaling
factor for Cy. The time steps for Cy are indexed by
ko, with kg 2 %, and let ko £ ’f/—‘; = N, denote the
terminal step of Cy such that ko € [0, ko, r|. Thus, the
upper-level controller Cy has a shrinking horizon, with
time-varying horizon length Ny(ko) £ Ny — ko. Each
lower-level controller C; has a shrinking and resetting
horizon, with horizon length N(k) £ N — (k mod N).
This allows C; to predict between updates of Cy, at
which point (¢ mod N = 0) and the prediction horizon
resets back to N(k) = N.

Similar to [8,21], Cp predicts coarse state and input
trajectories at time indices kg with a large time step size
Atg. Lower-level controllers C; are permitted bounded
deviations from the trajectories planned by Cy to further
improve control performance using a smaller time step
size At. Unlike [8,21], this work addresses the coupling
between subsystems. If the lower-level controller C;
chooses to deviate from the state and input trajectories
planned by Cy, these deviations create unknown distur-
bances that could lead to constraint violations in neigh-
boring subsystems. Therefore, instead of using waysets
as in [8,21], a tube-based coordination mechanism is
used to bound the permissible deviations between the

trajectories planned by Cy and those planned by C,;.
Moreover, the size of these permissible deviations is op-
timized online by Cq to balance the flexibility given to
lower-level controllers with the potentially time-varying
need for close coordination among subsystems.

Specifically, for each subsystem, the sets AZ;(67 (ko))
and AV;(0Y (ko)) denote scaled zonotopes that bound
the permissible state and input deviations between the
trajectories planned by Cy and those planned by C;.
The scaling vectors can be collected to form the output
deviation vector d;(ko) = [67(ko)" 6Y(ko)T]" and the
permissible output deviation set

AYi(8i(ko)) = AZ;(07 (ko)) x AV;(67 (ko). (9)

To reduce notational complexity, the shorthand
AYi(ko) = AYi(6;(ko)) is used when explicitly
stating the dependency on &;(kg) is unnecessary.
The system state, input, and output deviation vec-
tors are 0°(ko) = [07(ko)], 6" (ko) = [0¥(ko)], and
d(ko) = [6%(ko)T 6"(ko)"]"T and the scaled subsys-
tem deviation sets combine to form the scaled system
deviation sets

AZ(J(/?U)) AZl(kO) X X AZM(IC())7 (10&)
AV(d(ko)) = AV (ko) x -+ x AV (ko),  (10b)
AY(3(ko)) = AZ(8(ko)) x AV(3(ko)). (100

The controller Cy updates only when k = vgkg (i.e. when
k mod vy = 0), by solving the constrained optimization
problem Py (x(k)) defined as

ko p—1
Jo (x(k)) = min € (jlko) + Lr(ko,r), (11a)
ﬁ(ko\lgtzl)cv(:(ko)y G=ko
s.t.Vj € [ko, kor — 1],
X(j + ko) = Aox(jlko) + Bou(jlko), (11b)
Y (jilko) = Cx(jlko) + Da(jlko) € Yo(8(ko)),  (11c)
x(ko,rlko) € '76(5(/%))7 (11d)
x(k) — X(kolko) € AZ(8(ko)) & Eo(d(ko)),  (1le)
AZ(d(ko)) C Pre(AZ(d(ko))).- (11f)

The shrinking horizon of Po(x(k)) is reflected in the
summation limits in (11a). The stage costs are defined
as ((jlko) = €(x(k), X(jlko), 6(jlko), 8(ko), To() to be
a function of the measured state, nominal state, nominal
input, permissible deviations for lower-level controllers,
and the reference trajectory. The reference trajectory
ro(j) can be obtained by downsampling the predeter-
mined reference trajectory r(j) either using averaging
or zero order hold [21]. The terminal cost ¢p(ko ) is
the same as in (8). Note that the system performance
can be balanced with the maximization of § through an
additional cost function term A||0 — d||,, where A is a



scalar weighting term and ¢ is a user-specified upper-
bound on 4. The nominal input trajectory is defined
as U(ko) = {u( j|k0)}§i,‘:071. The permissible deviation
scaling vector d(kg) affects the sizes of the tightened
output constraint set Vo (8(ko)), the tightened terminal
constraint set To(8(ko)), the state deviation constraint
set AZ(d(ko)), and the RPI set £y((ko)), as discussed
in Section 5. In (11b), the model used by Cy assumes
a piecewise constant control input over the time step
size Atg and thus Ag = A and By = 2502_01 AIB (as
n [22]). In (11c) and (11d), the outputs and terminal
state are constrained to the time-varying tightened out-
put and terminal constraint sets. Similar to tube-based
MPC [23], (11e) allows Cy flexibility in the choice of ini-
tial condition %x(kg|ko), which is used to prove recursive
feasibility of Po(x(k)) (see the proof of Lemma 5 in [19]
for details). Finally, (11f) constrains the time-varying
permissible state deviation set to be a subset of its own
precursor set. Based on the definition from [24], the pre-
cursor set is defined specifically as

v € AV(ko) s.t.

Pre(AZ(k)) = {7 . (12)
Apz+ Bpv € AZ(ko)

and is used to establish feasibility of the lower-level con-

trollers (see the proof of Lemma 3 in [19] for details).

Note that the RPIset (8 (ko)) is assumed to be a struc-

tured RPI set such that

&0(6 (ko))

and is formulated in more detail in Section 5. This struc-
ture has been used in distributed robust MPC [25] and
imposes an inherent limit on the coupling between sub-
systems.

= 51(51(]{70)) X - X SM((SM(ko)), (13)

The lower-level controllers C;, ¢ € N, update at each
time index k by each solving, in parallel, the constrained
optimization problems P;(xz;(k)), defined as

E+N(k)—1
Ji (wi(k)) = min Y Li(j|k) + L p(k + N(k)), (14a)

zi(klk), s _p
Vi(k)

s.t.Vj € [k k+ N(k) —1],

zi(J + k) = Asizi(j|k) + Bivi(jlk) + @7 (j),  (14b)
yi(jlk) = Cizi(jlk) + Divi(j]k), (14c)
vi(dlk) — 4; (7) € AYi(07 (ko)) (14d)
zi(k + N( )Ik) Ti(k+ N(k)) € AZi(67 (ko)) (14e)
i(k) — zi(k[k) € & (57 (ko))- (14f)

The shrinking and resetting horizon of P;(z;(k)) is re-
flected in the summation limits in (14a). The stage costs
are defined as ¢;(j|k) = ¢; (x;(k), z:(j|k),vi(4]k), r:(4))
to be a function of the measured subsystem state, nomi-

nal subsystem state, nominal subsystem input, and sub-
system reference trajectory. The terminal cost is defined
The nominal input trajectory is defined as V;(k) =
{wi(ilR) 20O
from (1a) are used with a time-varying Cgp-optimal dis-
turbance W} (j) that is communicated from Cgy (details
in Section 5). Nominal subsystem outputs are defined
in (14c) and the differences between these outputs and
the Cp-optimal outputs §;(j) are constrained in (14d)
to the time-varying permissible output deviation set
AY; (0} (ko)) (details in Section 5). Similarly, the dif-
ference between the nominal terminal state and the
Cyp-optimal terminal state is constrained to the time-
varying permissible state deviation set AZ; (57 (ko)) in
(14e). Finally, (14f) provides flexibility in initial condi-
tion z;(k|k) based on the RPI set from (13).

In (14b), the subsystem dynamics

Asshown in Fig. 1, coordination between the upper-level
controller Cy and lower-level controllers C;, i € N, is
achieved through the communication of the Cy-optimal
trajectories §; (j) and w;(j), 5 € [k, k—i—N(k‘) 1], termi-
nal state &} (k + N(k)), and the time-varying permissi-
ble deviation vectors 6 (ko). In this hierarchical control
architecture, only the lower-level controllers C; directly
affect the system through inputs to the subsystems S;.
Once each C; has solved for the optimal nominal input
trajectories V;*(k) and optimal nominal initial condition
z¥ (k|k), the input to the system is u(k) = [u;(k)] where

ui(k) = vj (k[k) + Ki(xi(k) — 27 (k[k)).  (15)

The two-level hierarchical controller is implemented
based on Algorithm 1. The specific formulation of the
sets in (11) and (14) are presented in Section 5 and the
corresponding constraints are used to guarantee sat-
isfaction of the state, input, and terminal constraints
from (6) and (7) in Section 6 (see [19] for the associated
proofs).

Algorithm 1: Two-level Hierarchical MPC with
subsystem coupling.

Initialize k, ko < 0
if £ mod vy =0 then
solve Py (x(k));
communicate {yl( )};H,iv(k) '
{07 G 50+ N(R)), and 67 (ko)
to P;(z;(k)),Vi € N;
ko < ko + 1;
end
solve P;(z;(k)),Vi € N, and apply the input
u(k) = [u;(k)] to the system based on (15);
8 k+ k+1;

B W N

4]

=N o




5 Nominal Trajectories and Error Propagation

Following the tube-based MPC framework in [23], the
goal of this section is to explicitly bound the differences
between the nominal trajectories planned by the con-
trollers Cy and C;, i € A/, and true system trajectories.

First, since Cy has a larger time step size than C; and
system dynamics (i.e. Aty > At), the input and state
trajectories determined by Cy must be upsampled. Let
u*(k) and x*(k) be the upsampled input and state tra-
jectories corresponding to the optimal trajectories de-
termined by Cg. Since the model (11b) assumed a piece-
wise constant input, the upsampled trajectories are com-
puted as the forward simulation of (5a) such that

a* (k) = a*(kolko), (16a)
k— V()k)() 1
X" (k) = AFTroRog (ko) + > | AV Ba*

7=0

(kolko), (16b)

for k € [voko,vo(ko + 1) — 1]. These trajectories cre-
ate the Cyp-optimal output and disturbance trajecto-
ries g (k) and w;(k) used in (14d) and (14b), where
af (k) =1I1; a*(k), £; (k) = II; x*(k), and

; (17a)
wf (k) = Y (A} (k) + By (k). (17b)

Let Ax(k) = [Az;(k)], Au(k) = [Au;(k)], and Ay (k) =
[Ay; (k)] denote the state, input, and output prediction
errors for Cg, where

Azi(k) £ @i(k) — 27 (k). Aui(k) = ui(k) — a7 (k),

Ay;(k) £ y;(k) — g5 (k) = [Az; (k) " Au (k) T]T
These upper-level prediction errors consist of two parts,
corresponding to the planned deviations by lower-level

controllers C; and the resulting lower-level prediction
errors due to coupling between subsystems. Specifically,

Azi(k) = Azi(k) + ei(k), (19a)
Aui(k) = Avi(k) + Kiei(k), (19Db)
where
Azi(k) 2 zi(k) — 25 (k), Avi(k) = vi(k) —af(k), (20)
are the planned deviations and e; (k) £ z;(k) — z;(k), are
lower-level prediction errors due to the coupling between
subsystems. Note that K;e;(k) = u;(k) — v;(k) based on
the control law from (15).

Lemma 1 Let the disturbance error set be defined as

AW = AcAZ ® BcAV. (21)

k
x(k) > Co
|
{ar (Y
o Gy
v &k + N(R), 57 (ko)
.Tl(k) iUM(k’)
> C, ... Cum e
1 (klk) vy (KlF)
21 (k) 27 (k|k) 2 (k|k) (k)
o ui(k) =vi(k) + K1 [ ., uM(k)zv?M(k)JrKM‘
7| (k) - 25 (kIR)) (war (k) = = (KIR)) |7
ui(k) ... um(k)
x(k) Y ) "
x(k+1) = Ax(k) + Bu(k)

Fig. 1. Two-level hierarchical MPC where Cy is formulated
based on (11) and C;, i € NV, based on (14). The Co-optimal
trajectories ¢; (j) and w;(j) are computed using (16) and
(17). The optimal output deviations d; (ko) are used to coor-
dinate controllers Coy and C;, i € N, and the static feedback
control law (15) computes the inputs to each subsystem S;.

Then the lower-level prediction errors e(k) = [e;(k)] are
bounded to the RPI set &y C R™, where &y satisfies

(A+ BK)E & AW C & (22)

The proof of Lemma 1 is constructed based on the
evolution of subsystem error dynamics under the static
feedback control law from (15) subject to additive un-
known but bounded disturbances arising due to per-
missible subsystem state and input deviations from the
upper-level plan as shown in (20) and dynamic subsys-
tem coupling. By concatenating the error dynamics of all
subsystems, the disturbances are shown to be bounded
to the set AW from (21), and by constructing &y satis-
fying (22), proving the claim.

Lemma 2 The upper-level prediction errors Ax(k) =
[Az; (k)] and Au(k) = [Au, (k)] are bounded such that

Ax(k) € AZ® &, Au(k) e AVaKE.  (23)

PROOF. The proof follows directly from the defini-
tions of Ax;(k) and Aw,(k) from (19) and the result of
Lemma 1. O

Based on the results of Lemmas 1 and 2, the nom-
inal outputs determined by the upper-level controller
in (11c) are constrained to the time-varying tightened



output constraint set Yy (8(ko)). Then the time-varying
tightened output constraint set is defined as

Vo(8(ko)) 2 Vo O [(AZ @ &) x (AV @ K&)], (24)

where ), C Y is a tightened output constraint set used
to prevent inter-sample constraint violations (see Ap-
pendix A.1 in [19] for details on computing )p). Simi-
larly, in (11d), the nominal terminal state is constrained
to the time-varying tightened terminal constraint set

To(8(ko)) defined as

To(b(ko) 2T & (AZ® &) . (25)

Remark 2 While the inter-sample constraint tightening
for Cqy could be significant for underdamped higher-order
systems, the resulting reduction in control performance
can be alleviated through carefully choosing the time step
size Aty of Cq, while balancing the overall computational
cost associated with a smaller time step size and the max-
imum prediction horizon Ny.

6 Hierarchical Control Feasibility

The following establishes recursive feasibility of each
controller in the hierarchy and guarantees constraint sat-
isfaction for the closed-loop system.

Assumption 5 There exists a feasible solution to
Po(x(0)) at time step k = ko = 0 for the initial condition
x(0).

Lemma 3 If Po(x(k)) is feasible time step k = wvoko,
then P;(z;(k)),i € N, is feasible at this time step.

The proof is structured by first proving the existence
of an initial condition z(k|k) = [z;(k|k)] correspond-
ing to the chosen x*(ko|ko) that simultaneously satisfies
(14c) and (14f), and secondly showing the existence of
a feasible solution starting from this chosen z(k|k). Us-
ing the separable structure of RPI set & from (13) and
AZ from (10a), an initial condition z(k|k) satisfying the
constraints can be determined. With z;(k|k) — &7 (k) €
AZ;(6%(ko)), Vi € N, a feasible state z;(k + 1|k) and
v;(k|k) satisfying (14c) is guaranteed using the defini-
tion of precursor set from (12), and by induction, a feasi-
ble solution can be constructed through to the terminal
time step.

Lemma 4 Foralli € N, if P;(z;(k)) is feasible at time
step k, where k mod vg = 0 (i.e at the time of Cy update),
then P;(x;(k)) is feasible at each time step k+ 1 through
k+ N(k)—1.

Based on the feasibility of P;(z;(k)), Vi € N, the dis-
turbances are bounded to AW and thus, z;(k + 1) —
zf(k + 1|k) € &(6r(ko)), Vi € N. Feasible input and

Fig. 2. Thermal system with two subsystems S; and Ss that
are dynamically coupled by active power flows Q2 and Q4.

state trajectories correspond to the tails of the optimal
sequences determined at previous time step k, and thus,
P;(zi(k+ 1)), Vi € N is recursively feasible.

Lemma 5 IfP;(z;(k—1)) Vi € N had feasible solutions
at the previous time step k — 1, then Po(x(k)) has a
feasible solution at current time step k = voky.

Similar to the proof of Lemma 4, the candidate solu-
tion is chosen as the optimal nominal state and input
sequences corresponding to the tails of the optimal solu-
tion determined at previous time step kg — 1 and output
deviation bound 6" (ko —1). Note that this candidate so-
lution satisfies (11b), (11c), (11d), and (11f). Addition-
ally, X*(ko|ko — 1) is a feasible initial condition based on
the feasibility of P;(z;(k — 1)), Vi € N, and the invari-
ance of & (67 (ko — 1)), Vi € N.

Theorem 1 Following Algorithm 1 for a two-level hi-
erarchical controller with M controllers in the lower-
level, all control problems, Po(x(k)) and P;(x;(k)), Vi €
N, are feasible, resulting in system state and input tra-
jectories satisfying state, input, and output constraints
from (6) and terminal constraint from (7).

The proof of Theorem 1 follows from Assumption
5, Lemmas 3-5, and the output and terminal set con-
straint tightening from (24) and (25), which are imposed
in the upper-level controller through constraints (11c)
and (11d).

Remark 3 Note that since the recursive feasibility of the
proposed two-level tube-based hierarchical controller is es-
tablished based only on the constraints (see [19] for the
detailed proofs), the objective function can be designed to
promote application-specific system operation including
reference tracking and economic operation.

7 Numerical Example

Consider the four component thermal system shown in
Fig. 2 where T;, Vi € [1,4], are the temperatures of ther-
mal components, each with thermal capacitance C;. The



power flows (heat) into the system Q; and Q3 are con-
trolled directly. Two active power flows Q2 and Q4 are
controlled by coolant mass flow rates ms and 74 and
satisfy

QQ = mQCp(Tl — T4)7 Q4 - m4cp(T3 - TQ)? (26)

where ¢, is the specific heat of the coolant. Additionally,
four passive power flows Qs5, Qg, @7, and Qg have con-
stant coolant mass flow rates 71,1 and 1,2 and satisfy

Qs = rp1cp(Ty — Ta),
Q7 = mPQCP(TQ - Too)v Q8 = mPQCZD(T4

Qo = myp1cy(T5 — Ty), (27a)
~ ). (27h)

From conservation of energy, the nonlinear, continuous-
time dynamics are

1Ty = Q1 — Q2 — Qs, CoTy=Qs5+ Qs — Qr, (28a)
C3Ts = Q3 — Qa4 — Qs, CuTy = Qs + Q2 — Qs. (28b)

For the following results, C; = Cy = C5 = Cy = 15x10*
J/K, ¢, = 4181 J/(kgK), and T\, = 300 K.

To represent (28a)-(28b) as a linear discrete-time in-
variant system in the form of (5a), these dynamics are
first linearized about nominal mass flow rates m$ =
mg = 0.036 kg/s and 1y, = g, = 0.108 kg/s, nom-
inal power flow rates Q¢ = @4 = 30 kW, and nominal
temperature differences between adjacent components
AT? = 50 K and then discretized with a time step size
of At = 1 s. As shown in Fig. 2, the system is parti-
tioned into M = 2 subsystems S; and S, with state-
input pairs [(z1, 22), (u1, uz)] and [(z3, 24), (us, ug)], re-
spectively. The resulting discrete-time subsystem state
and input matrices from (1a) and coupling matrices from
(2) are

lo.996 0.0031 [76_6 —1.39]
Aj1=Ag= , Bi1=DBa2= s

0.003 0.993 le=8 —0.002
0 0.001 6e~12 0.002

A1z=Az1= , Bi2=Ba21= .
0.001 O 3e™? 1.39

The static feedback control gains K; and Ko are de-
signed as discrete-time linear-quadratic regulators with
weighting matrices Q; = I,, and R; = 10°1,,,. The
poles of each of the resulting closed-loop subsystems S
and Sy are {0.27,0.99}, while the closed-loop poles of
the overall system are {0.12,0.42,0.99,0.99}, and thus,
Assumption 1 is satisfied.

For a two-level hierarchical controller with two subsys-
tems, the system and lower-level controllers C; and Cq
have time step sizes of At = At; = Aty = 1 s while the
upper-level controller Cy has time step size of Atg = 10

200 T 1200
=150t 150 =
=N 24,
S 100 100 S
e} o]
(] (]
2 50F 50 =
5} o}
A a

0 0

0 500 1000 1500 2000

Time [s]

Fig. 3. The desired reference trajectories for Q1 and Qs.

s, which results in vy = 10. Thus, the maximum predic-
tion horizons are Ny = 200 and N = 10. The output
constraint set ) is defined such that ||x(k)||cc < 50 and
u(k) satisfies

[—Q¢ —1g —@5 —mg]" < u(k) < [2000.14 200 0.14]7. (30)

The terminal constraint set 7 enforces ||z(kp)||co < 50.
Using the procedure from Appendix A.1 in [19], inter-
sample constraint satisfaction for trajectories planned
by Cy is achieved using the tightened output constraint
set Vo = Xy x U where only the state constraints need
to be tightened. Minimal tightening is required where
Xo = {x € R" | < x < T} is computed such that

T
T = {—49.93 —49.86 —49.93 —49.86}

;
T=| 1988 4991 4988 4991)] .

Given an initial state of x(0) = 0, the desired operation

defined by {r(k)};", is shown in Fig. 3 for the first input
(power flow u;) and third input (power flow u3). Refer-
ences for the second and fourth inputs (mass flow rates
us and uy4) are the corresponding lower bounds from
(30) for the entire operation. The primary objective is
to track the desired power flows (u1, u3) into the system
while minimizing mass flow rates (us, u4) and satisfying
state and input constraints from (6a) and (6b). For this
example, the references for Cy are obtained by down-
sampling the references using averaging. Note that the
small high-frequency pulse references for power flows
and ug vary in-between the updates of Cy.

The weighted quadratic cost function in (8) is defined
based on these references and rate of input change as

U(x(5),u(j) x(5)) = [[r() — u(i)IF,

laG) -uG -, O

where I'; = diag([10° 1072 10° 1072]) and I'y =
diag([0 1072 0 1072]).

Fig. 4 shows closed-loop simulation results using the lin-
earized system model and the proposed two-level hierar-
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Fig. 4. Simulation results comparing the shrinking horizon
centralized controller, receding horizon centralized controller
with a short prediction horizon, receding horizon centralized
controller with a terminal constraint, two-level hierarchical
controller with no subsystem deviations, and a two-level hi-
erarchical controller with subsystem deviations.

chical controller (Hier (A = 10)), where A is a cost func-
tion weighting term used to incentivize maximizing the
permissible deviation scaling vector d(ko), compared to
a two-level hierarchical controller with no subsystem de-
viations (Hier (A = 0)), a shrinking horizon centralized
controller (Cent) that predicts to the end of system op-
eration, a receding horizon centralized controller with a
control invariant terminal set and a prediction horizon
of N =100 time steps (Cent T), and a receding horizon
centralized controller (Cent Short) with a short predic-
tion horizon of N = 10 time steps. As expected, all the
controllers except the Cent Short controller satisfy the
state constraints. Since there does not exist a steady-
state operating condition that satisfies the state and in-
put constraints while tracking the desired large pulsed
power flows Q1 and Q3 shown in the third row of sub-
plots in Fig. 4, the controllers strategically precool the
system temperatures to utilize the thermal capacitance
of the system. Note that due to a short prediction hori-
zon, the Cent T controller is unable to achieve the nec-

Bl Hier (A=0) EHier (A=10") Bl Hier (A =109
[ Hier (A = 10) Il Hier (A =5 x 10°) [ Cent T

11.439

8.005 |

101 L

Controller [-]

Fig. 5. Relation between the chosen value of A and normal-
ized cost relative to Hier (A = 0) computed using (32).

Table 1
Controller computation times

Controller Computation time (s)
Minimum Mean Maximum
Cent 13.569 23.144 1092.3
Cent Short 0.009 0.01 0.05
Cent T 0.08 0.09 0.137
Hier (Co) 0.757 2.262 4.105
Hier (C4, C2) 0.011 0.014 0.08

essary level of precooling and thus, significantly reduces
the power flow into the system to avoid temperature
constraint violations. While the Cent controller tracks
all pulses of the reference power flows, Hier (A = 0)
tracks only the large pulse references. The smaller, high-
frequency, pulse references are not tracked perfectly by
Hier (A = 0) due to step changes occurring between up-
dates of Cy. Alternatively, Hier (A = 10) achieves per-
fect tracking of the large pulsed power flows and nearly
perfect tracking of the small, high-frequency, pulse ref-
erences by allowing the lower-level controllers to deviate
from the upper-level prediction, as shown in bottom row
of subplots in Fig. 4 during the time intervals [55,254] s
and [1055, 1254] s, respectively.

Fig. 5 shows the total operating costs computed using
(32) when using the proposed hierarchical controller for
A = {10,10%,5 x 10%,10°} normalized by the cost when
using Hier (A = 0). Initially, the normalized costs de-
creases due to the additional flexibility provided to C;
and Cs by the increasing size of output deviation sets.
However, as shown by Hier (A = 5x 10°), there is a point
where further increasing the size of the output devia-
tion sets leads to significant constraint tightening that
degrades overall control performance.

Using Yalmip [26] and Gurobi optimizer 8.5 [27] to for-



mulate and solve the controller optimization problems,
Table 1 shows the mean, minimum, and maximum com-
putation times for each controller. Note that despite the
additional complexity of simultaneous uncertainty set
optimization and constraint tightening at Cg, the com-
putation time is smaller than that of the Cent controller.
Furthermore, the average computation time of C; and
C; is similar to Cent Short and less than Cent T. Over-
all, the proposed hierarchical approach is expected to
remain computationally efficient for systems with signif-
icantly more states, inputs, and subsystems.

8 Conclusions

A two-level hierarchical MPC formulation was presented
for linear systems of dynamically-coupled subsystems.
Adjustable tubes are used to bound permissible devi-
ations between the system trajectories planned by the
upper- and lower-level controllers. A tube-based robust
MPC formulation with simultaneous uncertainty set
optimization and constraint tightening guaranteed con-
straint satisfaction to bounded disturbances between
subsystem controllers. A numerical example demon-
strated the performance of the proposed two-level hier-
archical MPC. Future work will focus on the extension
of the proposed set-based hierarchical MPC formulation
to nonlinear systems and include more than two levels
of controllers with application to systems of greater
complexity.
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