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Abstract— A tube-based robust Model Predictive Control
(MPC) formulation with adjustable uncertainty sets is pre-
sented where the size of the uncertainty set is optimized as
part of the underlying optimization problem. To guarantee
constraint satisfaction subject to uncertainties bounded to
this set, Robust Positively Invariant (RPI) set computation
and constraint tightening are integrated into the optimization
problem. Zonotopes are used to represent the set containment
conditions that define RPI sets and constraint tightening as
linear constraints. The Hausdorff distance metric is shown to
reduce conservatism when optimizing the size of these tightened
constraint sets. Finally, a numerical example demonstrates the
ability to optimize the size of the uncertainty set within a robust
MPC formulation and highlights the benefits and limitations of
this approach.

I. INTRODUCTION

Model Predictive Control (MPC) is widely used for the
control of constrained systems where state and input con-
straints are explicitly embedded in the optimization problem.
For the control of systems with unknown but bounded
additive disturbances, there exists many different robust MPC
formulations designed to guarantee robust state and input
constraint satisfaction in the presence of these uncertainties
[1], [2]. In these formulations, the bounded disturbances
are typically restricted to a uncertainty set of predetermined
shape and size.

A specific form of robust MPC known as tube-based
robust MPC is widely used to provide robustness with only
a slight increase in computational complexity [3], [4]. Tubes
bound the true system trajectories within a neighborhood
centered around nominal state and input trajectories opti-
mized by the robust MPC controller. The sizes of these tubes
depend on the size of the bounded uncertainty set and are
typically computed using a Robust Positively Invariant (RPI)
set. This RPI set is then used to tighten the state and input
constraint sets such that if nominal trajectories satisfy the
tightened constraints, then the true system trajectories are
guaranteed to satisfy the original constraints. Typically, the
size of the uncertainty set is known a priori and both the
RPI set and the constraint tightening are computed offline.

Recently, there has been a growing interest to compute
the uncertainty set as a part of the robust MPC optimiza-
tion problem and these problems are referred to as robust
MPC with adjustable uncertainty sets (RMPC-AU) [5], [6].
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Applications that can benefit from RMPC-AU formulation
include economic reserve capacity optimization [7], robust
input tracking [8], [9], distributed MPC [10], and hierarchical
MPC [11]. In the reserve capacity problem, the adjustable
uncertainty set is characterized as a reserve capacity which
can be provided by an operator to third-parties for some
monetary benefits without violating it’s own operational
constraints [7]. While in robust input tracking from [8]
and [9], the adjustable uncertainty set is quantified as the
largest input set that can be tracked without violating the
system constraints. In these applications, maximization of
uncertainty sets is desired.

However, in distributed MPC, where the coupling between
neighboring subsystems is treated as a bounded disturbance,
minimizing the size of disturbance sets provides reduced
conservatism and improved performance [10]. Finally, in
hierarchical MPC, differences between control decisions by
controllers at different levels of the hierarchy can be viewed
as bounded disturbances [11]. In this case, the optimal size
of bounding sets is to be determined while solving the
upper-level optimization problem to provide a time-varying
optimal balance between performance at the upper-level and
flexibility at the lower-level.

In the RMPC-AU design from [5] and [6], the adjustable
uncertainty sets are defined as the affine transformation of an
a priori chosen convex primitive set in the form of ellipsoids,
hyper-rectangles, or polytopes. Thus, the shape and size of
these uncertainty sets are optimized by determining these
affine transformation variables from the feasible domain set.

Specifically in [5], control policies are optimized from a
chosen class of piece-wise affine policy functions to achieve
computational tractability and feasibility for a finite horizon
operation. This work is extended to an infinite horizon
operation in [6] by enforcing a terminal constraint set, which
is an inner-approximation of the positive invariant terminal
set computed based on the chosen primitive set. Moreover,
when norm-balls are used to represent these uncertainty sets,
as in [5], the underlying optimization requires solving a semi-
definite program which could pose computational challenges
with increase in system dimension and complexity of the
primitive set. Similarly in [6], the construction of robust
precursor set through repetitive intersections particularly
for a long prediction horizon is likely to result in large
number of inequalities using H-Rep which adds complexity
to the underlying optimization problem. Additionally, both
[5] and [6] use a min-max optimization approach for dealing
with uncertainty which is generally more computationally
complex than tube-based robust MPC [12].



Specifically with regards to tube-based robust MPC, RPI
sets are traditionally computed offline using the iterative pro-
cedure from [13] in H-Rep which is an outer-approximation
of the minimal RPI (mRPI) set [14]. To improve compu-
tational performance and scalability, one-step optimization-
based techniques have been developed in [15]. To further
improve computational performance, similar one-step ap-
proaches using zonotopes with a corresponding Generator-
Representation (G-Rep) have been developed in [16] for
computing both outer-approximations of the mRPI set and
inner-approximations of the Pontryagin (Minkowski) dif-
ference used for constraint tightening. In both cases, set
computations are based on set containment conditions which
can be reformulated as linear constraints using the techniques
in [17].

This paper leverages the recent developments in one-step
RPI and Pontryagin difference set computations to embed the
computation of these sets within a robust tube-based MPC
formulation that simultaneously optimizes nominal state and
input trajectories along with the size of the uncertainty
set. In addition to presenting this novel tube-based MPC
formulation, this paper shows how all of the set containment
constraints of robust MPC can be imposed as linear con-
straints and how the formulation of the cost function plays a
critical role in minimizing conservatism introduced through
inner- and outer-approximations of these sets.

The remainder of the paper is organized as follows.
Section II introduces the notation used throughout the paper.
Section III provides a review of robust tube-based MPC,
while Section IV presents the proposed MPC formulation
with uncertainty set size optimization and integrated RPI
and tightened constraint set computations. Section V intro-
duces zonotopes and the zonotope-based set containment
conditions required to recast the robust MPC containment
constraints as linear constraints, as discussed in Section
VI. Finally, Section VII presents a numerical example to
demonstrate the key features and limitations of including
uncertainty set sizing within a robust MPC optimization
while Section VIII summarizes the conclusions of the paper.

II. NOTATION AND PRELIMINARIES

For a discrete time system, the notation x(k) denotes the
state x at time step k. The brace notation j € {k,--- ,k +
N — 1} denotes all integers from k to until £ + N — 1.
For MPC, the double-index notation X(k + j|k) denotes the
predicted state X at future time step k + j determined at k.
For notational convenience, vectors and matrices are bolded
and sets are shown in caligraphic font. The weighted norm
is defined as ||x||g = x " Qx where Q is a positive definite
diagonal weighting matrix. A vector of ones of appropriate
dimension is given by 1. For a matrix A, |A| denotes the
element-wise absolute value. The notation || - ||, denotes the
p—norm of a vector. The sets Ny and R denote the set of
natural numbers and positive real numbers, respectively. For
sets X,V C R™, X & ) denotes the Minkowski sum and
X & Y denotes the Pontryagin/Minkowski difference of )
from X. The volume ratio of X with respect to ) is given

1
by V, = (%) " where V(-) denotes the volume of a

set. The convex polytope S C R”™ in H-Rep is defined as
S ={s € R"| Fs < h} such that F € R"™*" and h €
R™ where n;, denotes the number of halfspaces. A zonotope
Z = {G,c} C R” defined by Z = {G€ + c | |[{]|c <
1}, where ng denotes the number of generators such that
G € R"*™ and ¢ € R". For zonotopes X = {G,,c,} C
R™ Y = {Gy,c,} C R", the linear transformation by a
matrix R € R™*™ is defined as RX¥ = {RG,,Rc,} and
the Minkowski sum X & )Y = {[Gw Gy] ,Cy —i—cy}. A
hypercube with edge length d is denoted dB3, where B is the
unit hypercube defined by B = {b | ||b||oc < 1}.

III. ROBUST MPC BACKGROUND

Consider the discrete linear time-invariant system
x(k+1) = Ax(k) + Bu(k) + w(k), (1)

where x € R" are the states, u € R™ are the inputs, and w €
R™ are the additive disturbances. It is assumed that the pair
(A,B) is stabilizable. The states, inputs, and disturbances
are subject to the constraints

x(k)e X, ulk)eld, w(k)ew, ()

assuming X, U/, and W are compact and convex polytopes
containing the origin in their interiors.

The widely-used tube-based robust MPC from [4] solves
the following constrained optimization problem at every time
step k > 0,

k+N—-1

TH(x(k)) = min Y l(jlk) + Ls(k+ N[k), (3a)

s(k|k), O(k) =5
st. Vjelkk+N-1],
X(j + 1|k) = Ax(j|k) + Ba(j|k), (3b)
X(jlk)e X 2 X OE, (3¢)
a(jlk) e 2U o KE, (3d)
x(k) — x(k|k) € €, (3e)
%(k+ Nlk) e T. (3f)

This MPC formulation has a prediction horizon of IV steps
and optimizes U(k) £ {a(jlk)}2 " to minimize the
cost function (3a) which is typically formulated with stage
costs L(jlk) = [|x(j|k)|I§ + [[a(j]k)||k and terminal cost
l¢(k + N|k) = ||x(k+ N|k)|%, where Q and R are design
parameters and P satisfies the discrete-time algebraic Riccati
equation. First introduced in [4], this tube-based robust MPC
formulation also allows the initial nominal state x(k|k) to be
a decision variable.

Based on the solution to (3), the control input applied to
(1) is

u(k) = (k|k) + K (x(k) — X" (k[k)), )

where X*(k|k) and u*(k|k) denote the optimal state and
input at time step k and K is a stabilizing feedback control
law, often chosen as the infinite-horizon, discrete-time LQR



controller. This stabilizing control law ensures that the dif-
ference, x(k) — %(k|k), between the true and nominal state
trajectories satisfying (1) and (3b) respectively, always stays
within a bounded set, £, given the bounded disturbances,
w(k) e W.

This bounding set, &, is typically computed as an outer-
approximation of the mRPI set satisfying

AxEDWCE, (5)

where Ak = A + BK. Thus, if the nominal state starts off
close to the true state, as enforced by (3e), then the difference
between the two state trajectories will always remain within
E. This enables the constraint tightening approach used in
(3¢) and (3d), where if the nominal trajectories satisfy the
tightened constraints, the true trajectories will satisfy the
original state and input constraints from (2).

The terminal set 7 in (3f) is typically included to guar-
antee robust stability by choosing 7T such that

AT CT, TCx, Kicu. (6)

Traditionally, tube-based robust MPC development starts
with the offline processes of: 1) determining the uncertainty
bounding set, WV; 2) computing an outer-approximation of
the mRPI set, £; and 3) computing the tightened constraint
sets X' , U , and 7. The online process then consists of solving
(3) and applying the input defined in (4).

However, there is growing interest in developing MPC-
based control strategies [5], [6] where the size of the uncer-
tainty set, WV, is included in the optimization. This prohibits
the offline computation of the mRPI sets and constraint
tightening which are usually time-consuming calculations
that scale poorly with the number of states and inputs.

Therefore, this paper presents a scalable robust MPC
approach where the size of VW, and the corresponding sizes
of &, X , L?, and 7A’, are all computed online as part of the
overall optimization problem.

IV. RoBUST MPC WITH INTEGRATED RPI SET
COMPUTATION AND CONSTRAINT TIGHTENING

This paper assumes that the shape of the uncertainty set
is predetermined but the size is variable such that

w(k) € W(®,), @)

where ®,, is a scaling variable with positive entries. Similar
scaling variables have been used in [10] and [18]. In [10], a
scaling variable @ is used to scale the offset vector of the
uncertainty set represented in H-Rep as

W(‘I)f):{W|HW§‘I)f}, @j’GRnh. (8)

Alternatively, in [18], the scaling variable ®,, scales the
magnitude of a nominal uncertainty set YW* where

W(,,) = &, W*, ©,, € R, 9)

Since the sgalipg variAable ®,, in (7) is a decision variable,
the sets £, X', U, and T cannot be precomputed. Instead, each

of these sets will have a nominal shape and a corresponding
scaling variable such that

ECED,), X(®,) C X, U, CU, T(®,)CT. (10)

With the inclusion of these scalable sets, (3) is reformu-
lated as

k+N-—1

J* (x(k)) ir’%l’f:") ]Z::k (k) + £ (k + N|k) 4 L, (11a)
st. Vjelkk+N-—1],

X(j + 1|k) = Ax(j|k) + Ba(j|k), (11b)
x(j|k) € X (@), X(®,)®E(®)C X, (llo)
a(jlk) € U(®,), U®,) o KE®.) U, (11d)
x(k) — %(k|k) € E(®.), (11e)
AkE(®) ©W(R,) C E(e), (11)
X(k+ NJk) € T(®),  AxT(®,) CT(®), (g
T(®;) C X(®,), KT (®:) CU®.). (11h)

By allowing the RPI and tightened constraint sets to vary in
size, the scaling matrices ® = {®,,, ®., P, ®,, P;} are
included as decision variables in (11). The sizes of these
corresponding sets are prioritized in (11a) using a generic
cost function £y = g (P, P., P, P, P;) as discussed in
more detail in Section VIB. The set containment condition
in (11c) has been added to ensure that

X(®,)CXOE(B)CXEXOE, (12)

is satisfied based on the extensive property of the closing of
X(®,) by E(®.). A similar set containment condition has
been added for the input set in (11d) to ensure satisfaction
of

Ud,) CUSKE(®

JCUL2USKE — (13)

The set containment condition in (11f) has been added to
ensure that £(®.) satisfies the definition of an RPI set from
(5). Finally, the set containment conditions in (11g) and
(11h) have been added to ensure that 7 (®,) satisfies the
properties of a terminal set from (6). Note that the size of
the uncertainty set, determined by the scaling matrix ®,,,
only appears in (11f) but directly affects the size of the
RPI set and the state, input, and terminal set constraint
tightening. The following theorem mathematically proves the
recursive feasibility of the proposed tube-based robust MPC
framework.

Theorem 1: If the MPC optimization problem in (11) is
feasible at time step k, then it is feasible at time step k + 1.

Proof: The proof is the same as that of tube-based robust
MPC from Proposition 3 in [4] with the addition that the
candidate solution for the scaling variables at time step k+ 1
is equal to the optimal solution from time step k such that
®(k+1)=®*(k). ]

Usually, in constrained robust MPC, desired performance
is achieved by letting the state and input trajectories operate



close to the bounds of the tightened state and input con-
straints. A typical example is the thermal management of air-
craft electro-thermal systems where the temperatures of the
system components are allowed to approach the respective
upper-bounds to minimize coolant flow and achieve energy-
efficient operation [19]. Usually, the larger the uncertainty
set, the smaller the tightened state, input, and terminal sets,
which results in loss of desired system performance. Thus,
there exists a trade-off between the size of the uncertainty
set and system performance, which must be optimized.

The main contribution of this paper lies in showing that
despite the introduction of scaling variables, ®, as decision
variables, all of the point and set containment conditions in
(11c)-(11h) can be represented as linear constraints. There-
fore, if (3) is formulated as a Quadratic Program (QP), then
(11) is also a QP. This key feature of the proposed approach
is enabled through the use of zonotopes.

V. BACKGROUND ON ZONOTOPES AND ZONOTOPIC SET
OPERATIONS

A zonotope is the Minkowski sum of a finite set of
line segments or, equivalently, the image of a hypercube
under an affine transformation [20], [21]. Using G-Rep, a
zonotope Z C R"™ is defined by its center ¢ € R™ and n,
generators g; that form the columns of G € R™*"s, such that
Z ={G€&+c| €|l <1}. The complexity of a zonotope

is captured by its order, 0 = 22,

Zonotopes have been widely used due to their computa-
tional efficiency in reach set calculations for hybrid system
verification, estimation, and MPC [22]-[25]. As with the
iterative algorithm in [26], computing these reach sets utilizes
linear transformation and Minkowski sum operations. Zono-
topes are closed under these operations (i.e. the Minkowski
sum of two zonotopes is a zonotope) and the number of
generators grows linearly with the number of Minkowski sum
operations, compared to the potential exponential growth
with H-Rep. The results in this paper heavily rely on the
following zonotope containment condition from [17].

Lemma 1: (Corollary 4 of [17]) Given two zonotopes F =
{Gy,cs} CR™ and H = {Gp,cp} C R™, F C H if there
exists I' € R"»*" and B € R™ such that

G;=GpI, cp—cy=GpB, [I'1+|8]<1. (14

Using this zonotope containment condition, the main idea
is to scale a zonotope such that set containment conditions
from (11c¢) and (11d) and RPI set condition from (11f) holds.
Definition 1: The zonotope Z(®) = {G®,c} CR" is a
scaled version of the nominal zonotope Z = {G,c} with
the generator matrix G scaled by a diagonal matrix ® €
R %™ & = diag(¢;), ¢; > 0,Vi € {1,--- ,ng}.
Assumption 1: For the chosen G and the system
(Ak, W), there exists a ® € R™s*™s that scales the RPI
set £ such that (5) holds.
While Assumption 1 is needed to exclude certain systems
that do not admit RPI sets [15], this assumption is typically

mild in practice through the proper choice of G, as discussed
below.

Theorem 2: (Theorem 6 of [16]) The zonotope Z(P) =
{G®,c} C R"is an RPI set of x(k+1) = Axx(k)+w(k)
if w(k) € W ={Gy,,cy}, and there exists I'; € R™9*"s,
I's € R%*™ and B € R™ such that

AxG® = GT,, (15a)
G, — GT, (15b)

(I— Ax)c — cu — GB, (15¢)
IT1[1+ [T2f1 + 8] < 1. (15d)

Theorem 2 can be applied to determine the RPI set Z(®)
for a predetermined generator matrix G. For a desired order
of Z, G can be determined using G,, and Ak as G =
[Gyw AKGy ... A G, for some s € N that provides the
desired order. Thus G is a truncated version of the infinite
sum used to compute the mRPI set in [13]. However, for
an improper choice of G or with an inadequate number
of generators in G, there might not exist a ® that scales
Z(®) to satisfy (15), resulting in an infeasible optimization
problem. Assuming a properly chosen G, the size of Z can
be scaled by the diagonal matrix @ such that Z(®) is an
approximation of the mRPI set, where ® is determined by
solving an optimization problem with the constraints from
(15) and an objective function that minimizes the scaling
variables in ®. This approach is an indirect attempt to
minimize the volume of Z(®), since directly optimizing the
volume of a zonotope is a nonconvex problem [27]. With
c, &, I'y, I's, and 3 as decision variables, (15) consists of
only linear constraints and thus a LP or QP can be formulated
based on the p-norm used to minimize the vector ¢, where

® = diag(¢).
Theorem 3: (Theorem 7 of [16]) Given Z; = {Gy,c1}
and Zo = {Gg,c2}, then 25 = {Gy®P,c4}, with

® = diag(¢),¢; > 0,Vi € {1,---,ng,}, is an inner-
approximation of the Pontryagin difference Z; = 21 & 25
such that 27[1 C Z, if there exists I' € R"91 X (g4 +n95) and
B € R™s1 such that

[Gq® G3] =GiT, (16a)
c1 — (cg+c2) =G0, (16b)
IT|1+ (8| < 1. (16¢)

Theorem 3 can be applied to compute Z; C Z4 and it
is practical to assume the generator matrix G4 is comprised
of the generators from both Z; and Z5 such that G; =
[G1  Go]. The set 2, with maximal volume is typically
desired and can be computed by solving an optimization
problem formulated with the constraints from (16) and an
objective function that maximizes the scaling variables in
®. With ¢4, ®, T, and 3 as decision variables in this
optimization problem, (16) consists of only linear constraints
and thus a LP or QP can be formulated based on the p-norm
used to maximize the vector ¢, where ® = diag(¢).



VI. ONE-STEP RPI SET COMPUTATION AND
CONSTRAINT TIGHTENING

When analyzing (11), the addition of scalable sets intro-
duces the need to 1) enforce point containment within a
scaled tightened constraint set (e.g. x(j|k) € X(®,)) and
2) set containment for inner-approximations of the tightened
constraint set (e.g. 2\?((1%) &) g’(i’g) C X) and the outer-
approximation of the mRPI set (e.g. AxE(®.) BW(®,,) C
£ (®.)). To reduce unnecessary complexity and highlight
the ability to simultaneously formulate these containment
conditions as linear constraints, the following optimization
problem is introduced for some predefined point x(j|k) and

sets X, X, £, and W.
min  {g, (17a)
P, P, Py
S.t.
x(jlk) € X(®2), (17b)
X(®,)®E(®) C X, (17¢)
AKE(D) dW(®,) CE(P.). (17d)

The following subsections use Theorems 2 and 3 to convert
the point and set containment conditions from (17b)-(17d)
to linear constraints and discuss how to formulate the cost
function in (17a) to optimize the size of these sets. Note
that similar linear constraints and cost functions designs
can be formulated for the input and terminal constraint sets
conditions from (11d), (11g), and (11h) to recast all of the
constraints in (11) as linear constraints.

A. Containment Constraints

Theorem 4: Given X = {G,,c,}, let X = {G,®,,&,}
and € = {G:®.,c.}. Then (17b)-(17d) are satisfied if there
exists £, € R I} € Rwx(stnd) g ¢ R Ty €
R7e*"e T's € R"<*™ and B, € R™ such that

x(jlk) = G, + &y —B, <E, <P, (183)
(G, ®, G.®.]=G,I, (18b)
c; — (€ +¢cc) = G B4, (18¢)
IT11+184] <1, (18d)
AxG.®. = G.Ts, (18¢)
Gy, = G.I'3, (18f)
(I— Ak)c: — cp = G.fB,, (18g)
IT2|1 + [T3]1 + |Bs] < ®.1. (18h)

Proof: The proof requires showing that (18a) enforces the
point containment condition from (17b), (18b)-(18d) enforce
the Pontryagin difference definition (17c), and (18e)-(18h)
enforce the definition of an RPI set from (5). Consider the
change of variables &, = @sz, I',=o 1"2, I's=& Fg,
By = <I>'562 and define I'y3 = [I‘g ] Then, (18a)
readily satisfies the definition of a zonotope with ém €
[-1,1]. The Pontryagin difference containment conditions
from Theorem 3 are satisfied by (18b)-(18d). Then the
zonotope containment conditions from Lemma I are satisfied
by 1) rearranging and combining (18e) and (18f) to get

[AKG.®. G, = G.®.T'53, 2) rearranging (18g) to get
— (Akce +¢y) = G P35, and 3) multiplying (18h) by
&L, since ¢; > 0, to get |Taz|1 + |3,] < 1. [

B. Cost Function

In determining the cost function /g, it is typically desired
to let /3 be a linear or a quadratic function of ®,, ®., ®,, so
that (17), and therefore (11), remains a linear or quadratic
program. Conceptually, ¢ should be defined to maximize
the size of the uncertainty set W(®,,) while minimizing
the outer-approximation of the mRPI set £(®.) and max-
imizing the inner-approximation of the tightened constraint
set X(®,). Interestingly, maximizing X (®,) automatically
incentivizes minimizing £(®. ). Thus, /& should be designed
to maximize ®, while also maximizing ®,. However,
maximizing ®, alone would minimize ®,,, and vice-versa,
and thus there is a trade-off.

With ®,, = diag(¢,,) and ®, = diag(¢,), one approach
to formulating /s is based on the norms of the scaling
variables such that

- _H(b:vHP -

where the p-norms, ||-||,, can be used to express the 1-norm,
2-norm, or co-norm. The weighting term A can be used to
tune the priority between maximizing the uncertainty and
tightened constraint sets. Similar scaling variables have been
used in [27] to outer-approximate asymmetric polytopes by
scaled zonotopes obtained by maximizing the 1- and co-norm
of the generators. However, maximizing the p-norm of the
scaling variables may not effectively maximize the volume
of these approximating sets, as will be shown in Example 1.

Alternatively, the Hausdorff distance can be used to effec-
tively maximize the size of the tightened constraint set such
that X (®,) inner-approximates X. As defined in [17], the
Hausdorff distance d for two sets P and Q is

d= min {QCP@®dB, PCQa®dB}.
0<deR

Mlpwllp, A =0, 19)

(20)

Using this Hausdorff distance metric, the optimization
problem from (17) is modified as

min £y, (21a)
s.t

X CX(®,)®d,B, (21b)
X(jk) € X(®.), (2le)
X(®,) D E(P) C X, (21d)
AkE(®) ©W(®,) C E(S.) (21e)

Theorem 5: Given X = {G,,c,} and X = {G,®,,¢,},
the containment property in (21b) is satisfied if there exists
'y e R*#Xn= T'y € R"*"= 3, € R"* 3, € R™ such that

G, =G,T4+T5, (22a)
& — ¢y = GuB33 + By, (22b)
T4l + (B3] < @1, (22¢)
IT5[1 + [B4] < d.1. (22d)
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Fig. 1. Left: Given zonotopes Z1, Z2. Right: The Pontryagin difference
Z4 is shown in green and the inner-approximating Pontryagin differences
computed using Theorem 3 for p = 1,2, and co are shown in yellow, cyan,
and brown.

Proof: The proof requires using Lemma 1 to show that
(22a)-(22d) enforce the zonotope containment condition from
(21b). Consider the change of variables I'y = ‘I>xf‘4, By =
&,B;, Ts = d,Ts, B, = d,By, and let Ty = [T] T7]'
and 35, = [BsT ,BHT. Then the zonotope containment
conditions from Lemma I are readily satisfied by expressing
(22a) in terms of T'y5 to get G, = [G, I] I's5 and express-
ing (22b) in terms of B4, to get €, — ¢, = [éz I} By
Then, (22c) is written in terms of f‘4 and BB to get
|, 1"4|1 + \<I>m,63| < ®,1, while (22d) is written in terms
of T's and B, to get |d,T5|1 + |d.B,| < d.1. Cancelling
®, and d, in these equations results in [T'4|1 + |35] < 1
and |T'5|1 + |B,| < 1. Finally, letting T45 = [T'] I‘T]

T
and 534 = {,33 3 4} , these equations are concatenated

vertically to obtain the final result |Ty5|1 + B3,/ <1. m

The cost function in (21a) minimizes the Hausdorff dis-
tance between the state constraint set X and the inner-
approximating tightened state constraint set X'(®,). Simi-
lar to (17a), minimizing the Hausdorff distance maximizes
X(®,) which incentivizes minimizing £(®.). The cost {4
is formulated based on the Hausdorff distance d, such that

la = dz — M| Duw]lp-

Similar to (19), the weighting term A provides the desired

tradeoff between maximizing the uncertainty and tightened

constraint sets where increasing A should increase the size

of the uncertainty set. The following example demonstrates

the performance of minimizing the Hausdorff distance metric

over maximizing the norm of the scaling variables.
Example 1: Consider the zonotopes

2 =A{[3 12,81} 2o = {[ -0 07 03] (81}

shown in the left subplot of Fig. 1. First, the Pontryagin
difference Z; = Z1 © 25 is computed in H-Rep using the
Multi-Parametric Toolbox [28] as a benchmark for volume

(23)

ratio comparison, as shown in green in the right subplot. The
inner-approximations of the Pontryagin difference Z,C 24
computed using Theorem 3 are shown in the right subplot for
p = 1,2, and oo. The best approximation is obtained with
p = 2 by solving a QP instead of a LP with V,. = 0.80. For
p =1 and oo, the volume ratios are 0.29 and 0.38.

However, choosing to compute Z; by minimizing the
Hausdorff distance based cost function in (23) results in the
exact set Z; with V,, = 1 while still solving a LP. |
Using Theorems 4 and 5 along with the Hausdorff distance
based cost function from (23), the tightened input and
terminal state constraint set conditions in (11d), (11g) and
(11h) can also be formulated as linear constraints. Thus, the
sizes of the uncertainty set, state, input, and terminal con-
straint sets can all be simultaneously optimized online along
with the nominal state and input trajectories enabling the
proposed tube-based robust MPC framework. By optimizing
@, at every update of the controller, the proposed approach
provides the desired time-varying balance between flexibility
and performance.

The following numerical example demonstrates the key
features of the proposed approach.

VII.
A simplified vehicle system model is considered with

x(k+1)[(1) ﬂ x(k)+m u(k)+m wik), (24)

NUMERICAL EXAMPLE

where the states x(k) € R? represent position and velocity,
input u(k) € R! represents acceleration/deceleration, and the
uncertainty w(k) € W(®,) = {||[Ww(k)||oc < ®u},Pw €
R affects only the velocity state. Note that the scaling matrix
®,, of the uncertainty set W(®,,) {Gu®y,Cp} is
computed as part of the robust MPC optimization problem in
(11) with ¢, = 0, and G,, = 1. The system and controller
have time step size At = 1 second. The prediction horizon
is N = 100 steps.

Starting from an initial condition x(0) = [0 0], the de-
sired operation is defined by tracking references {r(k)}i_,
for the position state and the acceleration/deceleration input
(as shown in Fig. 2) using the weighted quadratic cost
function

((x(5),u(5),x(7)) = [Ir(4)

—2z(j)IIf,
11 0lx(3)

where z(j) = [ u(j) } The state constraint set X' and
input constraint set {{ are defined as

(25)

) )

The position reference was intentionally designed to be
on the boundary of X to clearly demonstrate the tradeoff
between cost performance and uncertainty set optimization.
The terminal set for the robust MPC is 7" = 7(®,) = [0 0]

Different values of uncertainty weighting A from (23)
ranging from 10! to 5 x 107 are considered to analyze the
relationship between the uncertainty scaling variable ®,,,
the corresponding RPI and tightened constraint sets, and

[1} < x(k) < [60] + 05 <u(k) <05,
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Fig. 2.  Simulation results for uncertainty weightings A € {10!,2 x
10°,10%} with the dashed lines denoting the reference trajectories for the
position state and the acceleration/deceleration input.

the vehicle performance. Fig. 3 shows the trend between
A and ®,, which determines the size of VV. Note that the
uncertainty set size increases with A. Similarly, Fig. 4 shows
that the total operational cost based on (25) also increases
with A. For clarity of exposition, three key data points,
corresponding to A € {10%,2 x 10%,10%} were identified
to more closely study the relationship between uncertainty
set size and system operation.

Fig. 2 shows the simulation results using the proposed
robust MPC for the chosen values of A. The first subplot
shows the reduction in position reference tracking perfor-
mance corresponding to increasing values of A. This reduced
performance is a result of the reduced vehicle velocities
shown in the second subplot and the reduced acceleration
and deceleration shown in the third subplot. Specifically,
the magnitude of the inputs decreases to compensate for
the growing uncertainty set size. Intuitively, with increasing
uncertainty set size, more of the control input is allocated
to disturbance rejection, leaving less of the control input
to be used for nominal acceleration and deceleration of the
vehicle. Note that position reference tracking performance is
also reduced under increasing uncertainty set size since the
reference position of 60 m is no longer in the tightened state
constraint set X.

Fig. 5 shows the tightened state constraint set X' (®,) and
tightened input constraint set 2/(®,,) from (10) for different
uncertainty set sizes realized for the chosen values of A.
Clearly, the volume of the tightened state and input constraint
sets decrease as the uncertainty set size increases.

An important limitation of the proposed approach is the
conservatism introduced by the one-step approximation of
the RPI set and corresponding constraint tightening. As
shown in Fig. 6, £(®.) computed by solving (11) is an
outer-approximation of the mRPI set £ computed using the
iterative approach from [13]. For both A € {2 x 10°,10°},
the volume ratio of £(®.) compared to £ is V, = 1.26.

0.3 T T T
\ & {10, 2510, 10°} \ - -
025 b
A= 106}
02 . b
o A=2x10° =
s 0151 & b
” ¢
0.1 b
A =10
]
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10° 10 10* 10° 108
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Fig. 3. Relationship between the chosen value of A and the resulting
uncertainty set size captured by ®.,.
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Fig. 4. Relationship between the chosen value of A\ and the resulting

operational cost computed using (25).

Additionally, the tightened state and input constraint sets
are inner-approximations of X and U from (3¢) and (3d)
computed directly using the Pontryagin difference. For A\ €
{2 x 107,105}, the volume ratios of X'(®,) compared to X
are V. = 0.99 and V,, = 0.987 while the volume ratios of
U(®,) compared to I are V, = 0.94 and V, = 0.78.

Using Yalmip [29] and Gurobi [30] to formulate and solve
(11), the mean and maximum computation times are 0.26
and 0.42 seconds over 100 runs on a laptop with a 2.2 GHz
i5 processor with 8 GB of RAM. By comparison, solving
(3) has a mean and maximum computation times of 0.09
and 0.34 seconds with an additional 1.19 seconds required
for the offline computation of RPI sets and corresponding
constraint tightening. While including the uncertainty set size
as a decision variable clearly increases the computation time,
the proposed approach is expected to remain computationally
viable for systems with significantly more states and inputs.

VIII. CONCLUSIONS

A tube-based robust MPC formulation with integrated
set computation is presented for constrained linear systems.
The size of the uncertainty set is computed online in the
underlying control optimization problem. One-step RPI set
and Pontryagin difference methods formulated based on
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Fig. 6. Comparison of £(®.) and mRPI set £ for X € {2 x 10%,106}.

zonotopes and Hausdorff distance enabled online compu-
tation of RPI sets and tightened state and input constraint
sets. A numerical example demonstrated the performance
of the proposed tube-based robust MPC formulation and
highlighted the benefits and limitations of embedding set
calculations in the optimization problem. Future work will
focus on the extension of the proposed tube-based robust
MPC formulation to hierarchical MPC for online computa-
tion of disturbances between subsystems and between control
decision at each level of the hierarchy.
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