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Abstract
Direct numerical simulations are performed to compare the evolution of turbulent strati-
fied shear layers with different density gradient profiles at a high Reynolds number. The 
density profiles include uniform stratification, two-layer hyperbolic tangent profile and a 
composite of these two profiles. All profiles have the same initial bulk Richardson number 
( Ri

b,0 ); however, the minimum gradient Richardson number and the distribution of density 
gradient across the shear layer are varied among the cases. The objective of the study is to 
provide a comparative analysis of the evolution of the shear layers in term of shear layer 
growth, turbulent kinetic energy as well as the mixing efficiency and its parameterization. 
The evolution of the shear layers in all cases shows the development of Kelvin–Helmholtz 
billows, the transition to turbulence by secondary instabilities followed by the decay of 
turbulence. Comparison among the cases reveals that the amount of turbulent mixing var-
ies with the density gradient distribution inside the shear layer. The minimum gradient 
Richardson number and the initial bulk Richardson number do not correlate well with the 
integrated TKE production, dissipation and buoyancy flux. The bulk mixing efficiency for 
fixed Ri

b,0 is found to be highest in the case with two-layer density profile and lowest in 
the case with uniform stratification. However, the parameterizations of the flux coefficient 
based on buoyancy Reynolds number and the ratio of Ozmidov and Ellison scales show 
similar scaling in all cases.

Keywords Stratified turbulence · Stratified shear layer · Kelvin–Helmholtz instabilities

1 Introduction

Shear-driven mixing is ubiquitous in many environmental flows and it plays a major role 
in the transport of mass, momentum, heat and scalar in environmental systems. In the 
ocean, turbulent mixing by shear is responsible for the transport of heat from the surface 
to the ocean interior. Therefore, it is important to understand the mixing processes in order 
to quantify the ocean heat budget. Ocean observations often show mixing events which 
involve complex shear and density stratification profiles [7, 26, 27]; however, due to the 
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need for applicability over a wide range of flow conditions, the parameterizations of mix-
ing are often deduced from simplified flow models. It is often assumed that the mixing 
parameterizations are generic and deviations from the simplified flow conditions do not 
significantly influence the results of mixing models. In the present study, we explore the 
sensitivity of mixing parameterizations to variabilities in the flow conditions.

In the past few decades, the direction numerical simulation (DNS) method has become 
an important tool to explore the parameterization of shear mixing. Nearly all DNS studies 
make use of one of the following three canonical models for shear-driven turbulence: (1) 
homogenous shear with uniform stratification [5, 8, 17, 24] ; (2) hyperbolic tangent veloc-
ity and density profiles [2, 13, 25]; and (3) hyperbolic-tangent velocity profile with uniform 
stratification [4, 28]. For example, Shih et al. [24] use DNS of homogenous shear with uni-
form stratification to propose a mixing model that depends on buoyancy Reynolds number. 
Mashayek et al. [13, 15] use DNS of Kelvin–Helmholtz (K–H) shear instabilities with the 
hyperbolic tangent velocity and density profiles to propose a different mixing model which 
also depends on the buoyancy Reynolds number. Recently, VanDine et  al. [28] perform 
DNS of K–H instabilities with hyperbolic tangent velocity profile and uniform stratifica-
tion to show that the evolution of the shear layer and the amount of turbulent mixing can 
be significantly different from the results of Mashayek et  al. [15]. It is noted that all of 
these studies use one specific type of velocity and density profile to parameterize the mix-
ing in the complex shear flows of the natural environment. Furthermore, since the evolu-
tion of KH shear instabilities at high Reynolds number is sensitive to the numerical setup 
[9], it is necessary to perform a comparative study to explore whether differences in the 
background flow conditions, specifically the stratification profiles, can affect the results of 
mixing parameterizations. In the present study, we aim to explore how the stratification 
distribution inside shear layers affect the evolution of turbulent mixing. The simulations in 
the present study include a uniform stratification, a hyperbolic tangent density profile and a 
composite case of these two profiles.

Previous studies have pointed out the dynamical differences in the evolution of shear 
layers between the hyperbolic tangent density profile and the contiuous stratification. Pham 
et al. [20] and Pham and Sarkar [19] compare the evolution of the KH instability between 
these two cases and show that internal waves can be excited when the ambient has suf-
ficiently strong stratification. However, these simulations are performed at low Reynolds 
numbers so the evolution of the shear layer does not exhibit the growth of secondary 
instabilities as pointed out by Mashayek and Peltier [11, 12]. Another notable difference 
between the two density profiles is the development of a transition layer as the shear layers 
become turbulent. VanDine et al. [28] denote the transition layers with elevated of shear 
and stratification at the edges of the shear layer in their simulations of shear layer with uni-
form stratification. Significant turbulent dissipation and mixing are found in the transition 
layers. It is unclear whether transition layers can develop in the hyperbolic tangent density 
profile. Nearly all studies using the hyperbolic tangent density profile take the momentum 
thickness to delineate the shear layer boundaries [14, 25]. In this study, we investigate the 
development of the transition layer in turbulent shear layers with various density gradient 
distributions.

A popular mixing model for shear-driven mixing is from Osborn [18]. In the model, the 
turbulent thermal diffusivity ( K� ) is parameterized as Γ�∕N2 where Γ is the flux coefficient, 
� is the dissipation rate and N2 is the background stratification. Osborn [18] suggests Γ = 
0.2 to be the upper-bound value to be used in the parameterization. The model is widely 
used to estimate thermal diffusivity from ocean measurements. However, DNS of stratified 
shear layers with various density and velocity profiles all point to considerable variability 
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in the mixing efficiency (E) which is related to the flux coefficient Γ = E/(1-E) [13, 21, 
24, 28]. Furthermore, Γ is suggested to vary as a function of buoyancy Reynolds number, 
Prandtl number, Richardson number and Froude number. Notably, the mixing parameteri-
zations suggested by these previous studies show significant differences from one another. 
For example, Shih et al. [24] suggest three regimes of mixing while Mashayek et al. [15] 
suggest only two regimes of mixing although both parameterizations are based on buoy-
ancy Reynolds number. VanDine et  al. [28] demonstrate that Γ can have a significantly 
larger value than what is suggested in Mashayek et al. [15] at the same buoyancy Reynolds 
number. The difference among these studies can be due to the different stratification pro-
files being used in the simulations. Here, we aim to further explore the effect of stratifica-
tion profiles on the turbulent mixing and its parameterization.

In the present study, we perform DNS of stratified shear layers at a high Reynolds num-
ber with three density gradient distributions: a uniform stratification; a two-layer hyper-
bolic tangent profile and finally a composite profile with both the hyperbolic tangent den-
sity profile at the center of the shear layer and uniform stratification in the  ambient. The 
cases have the same initial non-dimensional parameters like the Reynolds number, Prandtl 
number and bulk Richardson number. Comparative analysis of the simulations will shed 
light on how the variation in density profiles can influence the physics of turbulent mixing 
despite having the same initial bulk control parameters. This work is organized as follows. 
In Sect. 2, we describe the model setup and discuss the relevant non-dimensional param-
eters with particular attention on the differences in the gradient Richardson profile. Results 
from linear stability analysis and evolution of the shear layers in the DNS are compared in 
Sect. 3. Section 4 focus on the quantification of turbulent mixing and its parameterization. 
We provide discussions and conclusions in Sect. 5 to address the questions raised in this 
section.

2  Model formulation

In this section, we introduce the model problem of a shear layer with different types of 
stratification and the numerical implementation of the DNS method employed. The initial 
profiles of velocity, density and its gradient are presented in detail with particular attention 
to the important non-dimensional parameters such as the bulk Richardson number and the 
profiles of gradient Richardson number. It is our objective to explore how turbulent mixing 
differs with different types of density stratification.

2.1  Distribution of stratification in a shear layer

We consider a shear layer between two streams flowing in opposite directions:

where ΔU∗ denotes the velocity difference across the shear layer, �∗ denotes the half-thick-
ness and the superscript ∗ denotes a dimensional quantity. When the shear layer is stratified 
with the two streams having constant density values which differ by Δ�∗ , the density has a 
hyperbolic tangent profile similar to the velocity profile:

(1)⟨u∗⟩(z∗, t = 0) = −
ΔU∗

2
tanh

�
z∗

0.5�∗

�
,
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where �∗
0
 is a reference density value and Δ�∗ is the density difference across the shear layer 

( −1 ≤ z∕�∗ ≤ 1 ). In contrast, when the shear layer has uniform stratification, the density 
profile takes the following form:

Here, the density gradient is chosen such that density difference across the shear layer is 
the same between the two-layer density profile and uniform stratification. In order to con-
trast the effects of the two stratification profiles above, we construct a third profile by com-
bining the two profiles with the following expression:

Here, the density profile consists of two terms: a linear and a hyperbolic tangent term 
that are bridged together through the parameter R. The parameter R with values ranging 
between 0 and 1 is used to vary the density gradient distribution across the shear layers. 
The density has a two-layer hyperbolic tangent profile when R = 0, and it has uniform 
gradient when R = 1. For values of R between the two extremes, the density profile is a 
composite of both profiles.

Using �∗ , ΔU∗ , and Δ�∗ as the characteristic length, velocity and density scales, respec-
tively, we use a direct numerical simulation (DNS) method to solve the three-dimensional 
Navier-Stokes equations with the Boussinesq approximation for the evolution of the non-
dimensional velocity components (u,  v, w), density deviation ( ̃𝜌 ) from the initial back-
ground profile ( �bg = �(z, t = 0) − �0 ) and dynamic pressure (p) in Cartesian coordinates 
(x, y, z) as follows: 

 The nondimensional parameters are initial Reynolds number (Re), initial bulk Richardson 
number ( Rib,0 ), and Prandtl number (Pr) which are defined as follows:

Here, �∗ and �∗ are the kinematic viscosity and thermal diffusivity, respectively. We set 
Re = 24,000 , Rib,0 = 0.16 and Pr = 1 for all simulations in the present study. The Reynolds 
number is sufficiently large for the secondary instabilities to develop in both the linear and 

(2)⟨�∗⟩(z∗, t = 0) = �∗
0
−

Δ�∗

2
tanh

�
z∗

0.5�∗

�
,

(3)⟨�∗⟩(z∗, t = 0) = �∗
0
−

Δ�∗z∗

2�∗
,

(4)⟨�∗⟩(z∗, t = 0) = �∗
0
−

Δ�∗

2

�
Rz∗

�∗
+ (1 − R)tanh

�
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.
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hyperbolic tangent density profiles as shown in Mashayek et al. [13] and VanDine et  al. 
[28], respectively. The initial bulk Richardson number of Rib,0 = 0.16 allows us to compare 
our results with the two previous studies.

Three simulations are performed with the density gradient distribution parameter R 
equal to 0, 0.5 and 1. The two-layer case with R = 0 has been considered by Mashayek 
et al. [13], and we perform the simulation again in order to contrast with other cases. The 
uniform stratification case R = 1 is taken from VanDine et  al. [28]. Figure 1 shows the 
initial profiles of squared shear rate ( S2 where S = �⟨u⟩∕�z ), background density ( �bg ), 
stratification ( N2 = −g∕�0�⟨�⟩∕�z ) and gradient Richardson number ( Rig = N2∕S2 ) where 
the angle brackets denote a horizontal average over x-y planes. While the initial bulk Rich-
ardson number is the same in the three cases, the minimum gradient Richardson number 
value ( Rimin ) and the shear layer averaged Richardson number ( Ri0 = N2∕S2 where overbar 
denotes averaging over −1 ≤ z ≤ 1 ) are different at t = 0 as listed in Table 1. Increasing R 
values results in the decrease of both Rimin and Ri at initial time noting the following rela-
tionship: Rimin = Rib,0(1 − 0.5R) . It is the objective of the present study to explore which 
of the three Richardson numbers is best correlated with the evolution of turbulence in the 
stratified shear layers.

Fig. 1  Initial profiles of stratified shear layers with different density gradient distribution parameter (R): a 
mean squared shear rate ( S2 ), b background density ( �bg ), c stratification ( N2 ), and d gradient Richardson 
number ( Rig ). The density difference across twice of the shear layer thickness measured by ±Iu is similar 
among the cases yielding the same initial bulk Richardson number Rib,0 . Here, R = 0 corresponds to the 
two-layer density profile and R = 1 to uniform stratification

Table 1  Parameters used in the simulations: density gradient distribution parameter (R), initial bulk Rich-
ardson number ( Rib,0 ), initial minimum gradient Richardson number Rimin , initial shear layer averaged Rich-
ardson number ( Ri0 ), growth rate ( � ) and wavenumber ( k0 ) of the fastest growing modes (FGM), number 
of grid points ( Nx , Ny , Nz ), grid spacing in the shear layer ( � ), bulk mixing efficiency (representative of 
the entire evolution) computed over the momentum thickness ( EIu ) and that computed over the shear layer 
thickness ( Esl)

All simulations have the same initial bulk Richardson number Ri
b,0 = 0.16 . The domain has the streamwise 

and spanwise extent of two and one wavelength of the FGM, respectively

R Rib,0 Rimin Ri0 � k0 Nx Ny Nz Δ ( ×10−3) EIu Esl

0 0.16 0.16 0.12 0.081 0.91 2305 1153 1024 6.00 0.36 0.42
0.5 0.16 0.12 0.1 0.105 0.98 2048 1024 1024 6.12 0.37 0.37
1 0.16 0.08 0.08 0.127 1.06 2048 1024 1024 5.79 0.35 0.31
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2.2  Numerical methods

The simulations are performed using the same DNS solver as previously used in Pham et al. 
[20] and Brucker and Sarkar [1]. Second-order central differences are used for spatial deriv-
atives and a third-order low-storage Runge–Kutta method is used for time advancement in 
Eq. (5). The dynamic pressure is solved using a multi-grid Poisson solver. In order to set up 
the computational domain, linear stability analysis (LSA) is performed to identify the fastest 
growing modes (FGM) in each case. Results from the LSA are discussed in detail in the next 
section. In all simulations, the domain consists of two wavelengths of the FGM in the stream-
wise (x) direction and one wavelength in the spanwise (y) direction. The vertical (z) extent 
spans the region −16 ≤ z ≤ 16 . The grid size and grid spacing are listed in Table 1. The grid 
spacing ( �x = �y = �z = � ) is uniform in the middle region of the domain ( −2.2 ≤ z ≤ 2.2 
in the R = 0 and 0.5 cases and −2 ≤ z ≤ 2 in the R = 1 case). The vertical grid spacing is 
mildly stretched outside this region at a maximum rate of 3%. The fine grid resolution in the 
middle region is sufficient to resolve at least 2.2 Kolmogorov length scale associated with the 
turbulence developed inside the shear layer. Periodic boundary conditions in the horizontal 
directions are used for all independent variables. Free slip conditions are used for the velocity 
components while the pressure and the density deviation satisfy the homogeneous Neumann 
condition at the top and bottom boundaries. Sponge layers with a thickness of 5 are imple-
mented at the top and bottom boundaries to prevent the reflection of internal waves.

In order to promote the growth of K–H instabilities, velocity perturbations are added to the 
three velocity components. The perturbations have a broadband energy spectrum given by 
E(k) ∝ k4exp

[
−2

(
k∕k0

)2] where the spectrum is set to peak at the wavenumber k0 of the 
FGM as listed in Table 1. The fluctuations have the peak r.ms. value of 0.1% ΔU at the center 
of the shear layer and decay with distance away from the center as exp

[
−(z∕�)2

]
.

2.3  Statistical analysis

Mean quantities denoted by angle brackets are obtained as x-y horizontal averages and the 
fluctuations denoted by primes are deviation from the mean. We diagnose the evolution of the 
turbulent kinetic energy (TKE) to compare the results from different simulations. The TKE 
budgets are computed using the following evolution equation:

with turbulent kinetic energy ( K ), production ( P ), dissipation ( � ), buoyancy flux ( B ), and 
transport term ( T3 ) specified as

We also compute the scalar dissipation rate � defined as follows:

(7)DK

Dt
= P − � + B −

∂T3

∂z
,

(8)
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1
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to quantify the amount of turbulent mixing.

3  Evolution of the stratified shear layer

Previous studies indicate that the stratified shear layer evolves through three stages: (1) the 
growth of primary K–H instabilities; (2) development of the secondary instabilities that 
trigger the transition to turbulence; and (3) fully-developed turbulence and its decay until 
relaminarization of the shear layer. In this section, we explore the role of the density gradi-
ent distribution parameter R during each stage of the evolution.

3.1  The development of Kelvin–Helmholtz instability

We perform linear stability analysis to compare the growth rate ( � ) of the fastest grow-
ing modes (FGM) of K–H instabilities among the cases. The LSA uses a finite-difference 
method with a grid spacing of Δz = 0.0025 to solve for the FGM as illustrated in Smyth 
et al. [27]. The growth rate in the R-Rib,0 parameter space shown in Fig. 2a indicates that 
the Rimin < 0.25 criterion is required, independent of the R value [3, 6]. The growth rate 
diminishes when Rib,0 and R approach the curve of Rimin = 0.25 (shown in magenta). It is 
important to point out that, for R = 1, the shear layer is still unstable to K–H instabilities as 
long as Rib,0 < 0.5 . The growth rate varies little with R when Rib,0 is fixed at a small value, 
i.e. for weakly stratified shear layers. As Rib,0 increases, the growth rate increases with 
increasing R value. At a fixed value of Rib,0 = 0.16 , the growth rate in the linear case (R = 
1) is 50% larger than the value in the hyperbolic tangent case (R = 0) as listed in Table 1. 
The growth rate in the composite case (R = 0.5) is closer to the value in the R = 1 case 
indicating the growth rate does not vary linearly with R at a fixed value of Rib,0 . Noting that 

(9)� =
1

RePr

⟨
���

�xi

���

�xi

⟩

Fig. 2  Variability of the growth rate ( � ) of the FGM as a function of: a initial bulk Richardson number 
( Rib,0 ) and density gradient distribution parameter (R); and b wavenumber (k) and density gradient distribu-
tion parameter (R) at Rib,0 = 0.16. The blue markers denote the parameters used in the present simulations 
while the black and red markers denote the simulations with R = 0 in Mashayek et al. [13] and with R = 1 
in VanDine et al. [28], respectively. The magenta line in a marks Rimin = 0.25 while the dashed lines denote 
curves of constant growth rate
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Rimin decreases linearly with increasing R when Rib,0 is fixed, it follows that the growth rate 
increases as R increases in the present simulations.

Figure 2b reveals that the wavenumber of the FGM increases with increasing R when 
Rib,0 = 0.16 , and thus, the wavelength becomes shorter. The wavelength is approximately 
17% longer in the R = 0 case when compared to the R = 1 case. Previous studies have 
shown that the wavelength becomes shorter when the Rib,0 (and Rimin ) increases for either 
the R = 0 or R = 1 density profiles [10, 28]. In the present study, we keep Rib,0 to be 
the same among the cases with different R values and the wavelength becomes shorter 
with increasing R. Thus, the wavelength of the FGM is correlated better with Rimin rather 
than Rib,0 . Increasing Rimin causes the growth rate to become smaller and the wavelength 
to become shorter for the K–H modes at different R values. We note that the evolution of 
K–H instabilities at high Reynolds number is sensitive to the streamwise length ( Lx ) of the 
computational domain of the DNS especially when the domain is limited to one or two 
wavelengths of the most unstable modes. When Lx is not set up in multiples of the most 
unstable modes, the mode that actually develops in the simulation has a smaller growth 
rate and thus it can influence the subsequent nonlinear evolution of the shear layer.

3.2  Nonlinear evolution of Kelvin–Helmholtz instabilities and secondary 
instabilities

In general, the development of K–H instabilities and subsequent secondary instabilities are 
similar among the simulated cases. The evolution and type of the secondary instabilities 
(e.g, secondary shear instability, secondary convective instability, secondary core deforma-
tion instability, localized core vortex instability, etc.) have been discussed in detail for the 
R = 0 (e.g., Mashayek et al. [13]; Salehipour et al. [21]) and R = 1 (e.g., VanDine et al. 
[28]) cases in many previous studies. For brevity, we refrain from repeating the discus-
sion on the type of secondary instabilities and instead provide Fig. 3 to show the evolu-
tion of the shear layer in the R = 0.5 case through snapshots of density, spanwise vorticity 
and turbulent dissipation on the y = Ly∕2 plane. Secondary instabilities realized by density 
overturns with enhanced localized vorticity and viscous dissipation develop on the upper 
eyelid of the left billow in Fig.  3a. The secondary instabilities also develop at the right 
end of the two braids connecting the two K–H billows. The upper and lower eyelids of the 
K–H billows are subsequently broken down by the secondary instabilities and the resulting 
turbulent eddies spread into the cores of the billows as well as in the streamwise direction 
from the billows into the braid regions. The dissipation is most intense during this period 
as shown in Fig. 3b and the turbulence field becomes more homogenous throughout the 
shear layer. After the transition to turbulence, Fig. 3c shows that the shear layer continues 
to grow vertically by entraining fluid from the ambient despite having weaker vorticity and 
dissipation relative to just after the transition. The dissipation induced by the eddies at the 
edges of the shear layer in Fig. 3c takes values comparable to and larger than those at the 
center of the shear layer.

The shear layer grows differently in the three cases as shown in Fig. 4. Here, we com-
pare the thickness of the shear layer using two measures: the momentum thickness 
( Iu = ∫

Lz
(1 − 4 ⟨u⟩2)dz ) and the shear layer thickness ( Lsl ) defined as the region between 

the edges of the shear layer where the stratification N2 deviates from its initial background 
value by 5% of Ri

b,0 . The two measures are shown in Fig. 4a, b, respectively. In all cases, 
both Iu and Lsl exhibit two distinct periods of growth: the first due to the enlargement of 
K–H billows and the second due to turbulent entrainment. Since the growth rate of the 
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FGM is largest in the R = 1 case, the K–H billows grow first as indicated by the growth of 
Iu during 40 < t < 65 in Fig. 4a. Furthermore, the billows grow fastest in this case. The R 
= 0 case with the smallest growth rate has the K–H billows form at a later time and the bil-
lows have the smallest size as indicated by the values of Iu at t = 90 before the turbulent 
entrainment period begins. The evolution of Lsl in Fig. 4b also shows a similar trend. It is 
noted that, in the present study where Rib,0 is fixed at 0.16 in all cases, the maximum size 
of the K–H billows is correlated with the growth rate of the FGM and thus the values of 
Rimin , i.e., the smaller Rimin produces the larger K–H billows in this study. However, the 

Fig. 3  Evolution of the turbulent shear layer is shown using the density (left column), spanwise vorticity 
(middle column) and dissipation rate (right column) in the vertical plane at y = Ly∕2 in the R = 0.5 case 
during a the development of primary K–H and secondary instabilities; b the transition to 3D turbulence and 
c the decay of turbulence and the relaminarization of the shear layer

Fig. 4  Evolution of a the momentum thickness ( Iu ) and b the shear layer thickness ( Lsl ). The late-time val-
ues of Iu are similar among the three cases; however, the Lsl is slightly smaller in the Ri = 1 case. In all 
cases, the values of Lsl at late time is at least 40% larger than Iu
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trend of growth rate reverses during the turbulent entrainment period. The Iu thickness 
grows fastest in the R = 0 case because the turbulence entrains fluid from an unstratified 
ambient. In contrast, since the ambient stratification is strongest in the R = 1 case, the tur-
bulent entrainment rate is smallest. It is interesting that, despite the different growth rates 
during the two growth periods, the late time values of Iu are not very different among these 
cases which have the same Rib,0 . The evolution of Lsl also shows the fastest growth rate in 
the R = 0 case during the turbulent entrainment period. At late time, Lsl is approximately 
equal in the R = 0 and 0.5 cases and it is slightly smaller in the R = 1 case. Thus, Rib,0 is a 
more reliable indicator for the final values of both measures of the shear layer thickness 
when compared to Rimin as the R values vary.

3.3  Fully‑developed stratified turbulence and the relaminarization of the shear 
layer

We observe significant differences among the cases as the shear layer becomes turbulent spe-
cifically in terms of the vertical distribution of shear, stratification and gradient Richardson 
number. Figure 5 illustrates how the evolution of N2 profiles differs in cases with different R 

Fig. 5  Comparison of the normalized stratification ( N2∕Rib,0 ) among the simulated cases: a R = 0; b R 
= 0.5; and c R = 1. The presence of stratification in the ambient induces an overshoot in the stratification 
in the transition layer in the two latter cases but not in the R = 0 case. After the transition to turbulence, a 
layer of enhanced stratification reappears in the center of the shear layer in the R = 0 and 0.5 cases but not 
in the R = 1 case. The right panels show N2 profiles during the turbulence decay period at t = 200. In this 
figure and hereafter, black and magenta dashed lines mark the shear layer boundaries as indicated by the 
momentum thickness ( ±Iu∕2 ) and the shear layer thickness ( Lsl ), respectively
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values. The most significant difference is the absence of transition layer in the R = 0 case. For 
R = 1 density profiles, VanDine et al. [28] note the development of a transition layer (TL), 
which is defined as a thin layer in which the local N2 is significantly enhanced when compared 
to the values inside the shear layer. There is a TL at each edge of the shear layer where N2 is 
as large as 2.2 times the background N2 value in the ambient at Rib,0 = 0.08 in VanDine et al. 
[28]. In the present study, the TL only develop in the cases with ambient stratification (R = 0.5 
and 1) as depicted in Fig. 5b, c. The stratification in the R = 0 case is enhanced at the edges of 
the shear layer when compared to the unstratified ambient; however, unlike Lewin and Caul-
field [10], the local N2 is not larger than the values inside the shear layer. Thus, a distinc-
tive transition layer does not form in the two-layer stratification. We note that Watanabe and 
Nagata [29] also observe the peak N2 to occur near the center of the shear layer at late time 
rather than in the TL in their DNS of a shear layer with R = 0 as in the present study. They 
suggest that the absence of the TL in the R = 0 case can be caused by many factors such as the 
amplitude and spectral content of the broadband initial velocity perturbations as well as the 
domain size. Regardless to whether the TL form, it is important to delineate the boundaries of 
the shear layer. The upper and lower black dashed lines in Fig. 5 mark the momentum thick-
ness of the shear shear layer ( ±Iu∕2 ) while the upper and lower magenta dashed lines mark the 
edge of the shear layer ( Lsl ). It is evident that ±Iu∕2 does not capture the TL in the R = 0.5 and 
1 cases. There is also significant enhancement of stratification outside ±Iu∕2 in the R = 0 case. 
Therefore, unlike Iu , Lsl is able to capture reliably the edges of the shear layer outside which 
the stratification is indeed equal to the ambient stratification.

The evolution of the squared shear profiles ( S2 ) also shows different layering structures 
among the cases as shown in Fig. 6. The enhanced shear is well correlated with the enhanced 
N2 (Fig. 5) indicating that the transport of momentum and density by turbulent eddies occur 
together. The enhanced shear is most notable in the TL of the R = 1 case in which the S2 pro-
file shows a double peak structure at t = 200 after the transition to turbulence.

Unlike the profiles of N2 and S2 in which the layered structures are most profound in the 
R = 0 and 1 cases, the evolution of the gradient Richard number ( Rig ) in Fig. 7 shows the 
strongest layering in the R = 0.5 case. During the time period between t = 140 and 200, the 
values of Rig span a wide range from 0.25 to values larger than 1.25 across the shear layer. The 
central region of the shear layer has low values between 0.25 and 0.5 due the compensation of 
enhanced stratification by enhanced shear. Immediately above and below this low-Rig region, 
Rig increases rapidly up to values larger than 1.25. The large values are due to the notably 
small values of S2 in these regions as shown in Fig. 6b. Moving outward toward the edges 
of the shear layer marked by ±Iu∕2 , Rig decreases due to the enhanced shear in the transition 
layer. Among the three cases, the R = 1 case shows the least vertical variability of Rig after 
the transition to turbulence. At late time (t = 200), the Rig profile in the Ri = 1 case is more 
homogenous across the shear layer when compared to the other cases. Furthermore, the R = 0 
case shows smaller values of Rig at late time on average across the shear layer.

4  Turbulence and the parameterization of mixing

In the previous section, we have illustrated similarities as well as structural differences 
among the cases with different R values but same Rib,0 . In particular, we find the late-time 
values of the momentum thickness and shear layer thickness to be similar while the pro-
files of the N2 , S2 and Rig show considerable differences after the transition-to-turbulence 
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period. In this section we diagnose the TKE budgets and the rate of mixing and also 
explore whether there is any difference in regard to mixing parameterization.

4.1  TKE budgets

Figure  8 compares the terms in the integrated TKE budgets. The integration is car-
ried over the region −5 ≤ z ≤ 5 . The integrated production shows double peaks in all 
three cases. The first peak corresponds to the development of the K–H billows while 
the second peak corresponds to turbulent entrainment after the shear layer transitions 
from K–H billows to turbulence. The first production peak (largest in the R = 1 case) 
is correlated with the growth rate of the FGM of the K–H instabilities and the growth 
rate of Iu during this period. In contrast, the second peak shows the highest value in 
the R = 0 case and the peak values decrease with increasing R. The smaller peak value 
during the turbulent entrainment period is due to the presence of the external stratifica-
tion as R increases. Between the two peaks, the production in the R = 1 case shows 
a short period with negative values. The negative production is the result of counter-
gradient momentum flux during the contraction period as has been discussed in detail 
by VanDine et  al. [28]. The integrated buoyancy flux shown in Fig.  8b also indicates 
double negative peaks with a positive peak in-between for all three cases similar to 

Fig. 6  Comparison of the normalized squared shear ( S2∕S2
0
 ) among the simulated cases: a R = 0; b R = 

0.5; and c R = 1. A layer of enhanced shear develops at the center of the shear layer in the R = 0 and 0.5 
cases after the transition to turbulence but it does not appear in the R = 1 case. The shear enhancement 
near the transition layer becomes more prominent as the external stratification increases (i.e., increasing R 
value). The right panels show S2 profile during the turbulence decay period at t = 200
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the integrated production but with opposite sign. The negative values of the first peak 
increase in magnitude as the growth rate of the FGM and the value of R increase. For R 
= 1, the transfer from TKE to turbulent potential energy (TPE), i.e. B < 0 , is strong in 
the pre-turbulent period and weaker in the latter turbulent period. The opposite trend is 
noted for R = 0.

The integrated TKE dissipation ( � ) and scalar dissipation ( � ) in Fig. 8c, d reach their 
peak values when the shear layer exhibits fully-developed turbulence. The peak values 
of � and � are largest in the R = 0.5 case while the R = 1 case shows the smallest values 
unlike the integrated production or buoyancy flux. Thus, while the peak value of the 
production is correlated with the R value, the peak TKE and scalar dissipation are not 
correlated with R.

We quantify the total amount of turbulent mixing by computing the bulk evolution 
of the TKE budget terms over the entire simulation. We integrate the TKE budget terms 
shown in Fig.  8 in time and compare the results of all cases in Fig.  9. In the figure, 
we also include the results from the vertical integration over the momentum thickness 
( ±Iu∕2 ), shear layer thickness ( Lsl ), and integration over −5 ≤ z ≤ 5 region. Overall, 
all terms show a peak value in the R = 0.5 case. The differences when R varies from 
0 to 1 are approximately 10-15%. The bulk energetic terms are considerably different 

Fig. 7  Comparison of the gradient Richardson number ( Rig ) among the simulated cases: a R = 0; b R = 
0.5; and c R = 1. After the transition to turbulence, the three cases show multiple layers with alternating 
small and large values of Rig . The variability across the shear layer is most profound in the Ri = 0.5 case 
while the Rig in the R = 1 case is more homogenous
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when comparing results from the integration over ±Iu∕2 with the integration over Lsl 
due to a significant amount of turbulence generated outside ±Iu∕2 . When comparing the 
results from the integration over Lsl to that from the integration over −5 ≤ z ≤ 5 , all of 
the terms are well captured except for the buoyancy flux in the R = 0.5 and 1 cases. The 
difference in the buoyancy flux is due to the presence of turbulence-generated internal 
waves in the regions outside Lsl.

It is important to highlight the significant amount of TKE present inside the TL. Fig-
ure 10 shows the accumulation of TKE and scalar budget terms inside the TL normalized 
by the corresponding amount inside the regions bounded by ±Iu∕2 . In all cases, the dis-
sipation inside the TL is between 20 to 30% of the amount inside the ±Iu∕2 region. Lewin 
and Caulfield [10] also observed a large amount of dissipation inside the TL for both the R 
= 0 and 1 flow configurations. According to Fig. 10, the accumulation inside the TL var-
ies with R which suggests the turbulence inside the TL is influenced by the local shear and 
stratification. We recall that the turbulent entrainment also varies with R as indicated by the 
the growth of Lsl in Fig. 4b. Therefore, including dynamics at the edges of the shear layer is 
important to the quantification of the turbulent budgets independent of the type of density 
profile (i.e, independent of the precise value of R).

4.2  Mixing efficiency and its parameterization

While the turbulence evolution as indicated by the time evolution of terms in the integrated 
TKE budgets as well as the profiles of N2(z) and S2(z) are different in the simulated cases, 
it remains in question whether the different initial density profiles can affect the mixing 

Fig. 8  Evolution of the integrated TKE budget: a TKE production (P); b buoyancy flux (B); and c TKE 
dissipation ( � ). The scalar dissipation ( � ) is shown in d. The integration is taken in the region −5 ≤ z ≤ 5
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efficiency and its parameterization. The mixing efficiency is a measure of the rate of mix-
ing wherein the change in background potential energy is compared to the total change 
in both the background potential energy and kinetic energy. The processes of computing 
the available and background potential energy require sorting of the 3D density fields. 
Instead, we follow the method of Scotti and White [23] to quantify the mixing efficiency 
E = ��∕(� + ��) where the shear-layer-averaged values of the TKE dissipation and TPE 
dissipation are defined as follows:

Here, the overbar indicates vertical averaging over the region marked by Lsl and N2 is the 
stratification averaged over the shear layer. It is noted that Vandine et  al. (2021) use the 
constant initial stratification across the shear layer to compute �� instead of the time-var-
ying N2 for their R = 1 simulations. Such an approximation cannot be used in the R = 0 
and 0.5 cases in the present study since the density gradient is non-uniform and its value 
changes considerably in time as shown in Fig.  11a. The value of N2 decreases approxi-
mately by a factor of 3 in the R = 0 case while the value varies little in the R = 1 case. The 
reason for the little variation of N2 despite having significant turbulence and reduction of 
N2 from its initial value in the core of the shear layer in the R = 1 case is due to the large 
values of stratification in the TL. Averaging the stratification over ±Iu∕2 , which excludes 

(10)� =
1

Lsl ∫Lsl

� dz and �� =
g2

�2
0
N2

1

Lsl ∫Lsl

� dz.

Fig. 9  Comparison of the integrated bulk values of a TKE production; b buoyancy flux; c TKE dissipa-
tion and d scalar dissipation among the simulated cases. The integration is carried out in space and in 
time. Results from different domains of spatial integration are shown: in the region −5 ≤ z ≤ 5 , across the 
momentum thickness ( ±Iu∕2 ), and across the shear layer thickness ( Lsl)



 Environmental Fluid Mechanics

1 3

Fig. 10  Accumulation of TKE and scalar budget terms inside the transition layers: a production; b buoy-
ancy flux; c TKE dissipation; and d scalar dissipation. The terms are plotted in percentage of the amount 
accumulated inside the region bounded by ± I u/2

Fig. 11  Evolution of depth-averaged a stratification ( N2 ); b squared shear ( S2 ); c Richardson number ( Ri ) 
and d mixing efficiency ( E ). The quantities are averaged across the shear layer thickness ( Lsl)
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the TL, shows significant reduction in N2 (not shown). In the R = 0 and 0.5 cases, the 
stratification at the edges of the shear layer is relatively smaller than at the central region 
of the shear layer so that the contribution from the transition layer is less significant. Due 
to the decrease of N2 over time in the R = 0 and 0.5 cases, we will use the time-varying N2 
to compute �� instead of the constant value at the initial time N2

0
 . Lewin and Caulfield [10] 

show that the use of Eq. (10) with N2 in the denominator leads to a satisfactory agreement 
with mixing rate using density sorting.

The shear-layer average of the squared shear rate ( S2 ) shown in Fig. 11b exhibits less 
difference among the cases than N2 . The three cases show nearly equal values of S2 at late 
time. The different values of N2 among the cases result in a wide difference in the late-time 
value of the shear layer averaged Richardson number ( Ri = N2∕S2 ) as shown in Fig. 11c. 
The late-time value is approximately equal to 0.6 in the R = 0 case while it is nearly equal 
to 1 in the R = 0.5 and 1 cases. The late-time values of Ri in the R = 0 case agree with the 
result in Mashayek et al. [13] while the larger values in the R = 0.5 and 1 cases fall in line 
with the results of VanDine et al. [28]. The addition of uniform stratification into the back-
ground causes the late-time values of Ri to increase. When we average the shear and strati-
fication only over ±Iu∕2 , the late-time values of Ri are approximately equal to 0.85 and 0.8 
in the R = 0.5 and 1 cases, respectively (not shown).

The mixing efficiency E(t) shown in Fig. 11d exhibits some differences among the cases. 
During the development of the K–H billows, E increases similarly to reach a comparable 
peak value of approximately 0.7 in all cases. After that, E decreases rapidly during the 
transition-to-turbulence period. During the turbulence decay period, E gradually decreases 
toward the value of 0.2. We note that the difference in E among the cases is smaller when 
we perform the integration over ±Iu∕2 (not shown).

The values of bulk mixing efficiency ( Esl and EIu ) are listed in Table  1. Here, Esl is 
obtained as follows:

where � and �� are the shear-layer-averaged values as defined in Eq.  (10) and the time 
integration is over the entire evolution of the shear layer. For comparison, we also compute 
the bulk mixing efficiency ( EIu ) using the depth averaging over ±Iu∕2 , i.e. replace Lsl with 
±Iu∕2 and take the overbars in Eqs. (10) and (11) to be the average over ±Iu∕2 instead of 
Lsl . The values of EIu are approximately equal to 0.36 in all the cases. However, the values 
of Esl decrease with increasing R. The R = 0 case has the highest value of 0.42 and the R 
= 1 case has the lowest value of 0.31. Increasing R from 0 to 1 reduces the bulk mixing 
efficiency by nearly 25%.

An important application of mixing efficiency is its wide use to estimate turbulent ther-
mal diffusivity ( K� ) in oceanic flows. From the mixing efficiency, one can use Osborn 
model to estimate K� from the relationship: K� = Γ�∕N2 where Γ = E/(1-E) is the flux 
coefficient. The typically used value for Γ is 0.2 which is the upper bound value suggested 
by Osborn [18]. Results from numerous DNS studies indicate that Γ should not be taken 
as a constant. Shih et al. [24] use DNS of homogenous stratified shear turbulence to sug-
gest that Γ should vary with buoyancy Reynolds number ( Re

b
= �∕�N2 ) in three differ-

ent regimes: Γ = 2Re
−1∕2

b
 in an energetic regime ( Re

b
> 100 ), Γ = 0.2 in an intermedi-

ate regime ( 7 ≤ Re
b
≤ 100 ) and a diffusive regime ( Re

b
< 7 ) in which K� is equal to the 

molecular value. More recently, Mashayek et  al. [15] use DNS of stratified shear layers 
with R = 0 to suggest two regimes: a buoyancy-dominated regime in which Γ ∝ Re

1∕2

b
 and 

(11)Esl =
∫ �� dt

∫ � + �� dt
,
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a shear-dominated regime where Γ ∝ Re
−1∕2

b
 and the two regimes are separated by a tran-

sitional value of Re
b
 ranging between 100 and 300. However, VanDine et al. [28] simulate 

stratified shear layers with R = 1 and show that the Re
b
-dependence is different from what 

has been suggested by Mashayek et al. [15]. They conclude that Re
b
-dependence of Γ is 

more aligned with what has been suggested by Shih et al. [24].
Figure 12a–c show the relationship between Γ and Re

b
 in the three cases with different 

R values in the present study. We note that the figure only shows the time period after the 
turbulence in the shear layer has fully developed (i.e, after the integrated dissipation in 
Fig. 8c has peaked). Results from averaging Γ and Re

b
 over ±Iu∕2 and Lsl are both included 

in the figure for comparison. The Γ-Re
b
 relationship using averaging over Lsl in the R = 1 

case exhibits similar trends as in Shih et al. [24] particularly in the following aspects. First, 
Γ decreases with increasing Re

b
 when Re

b
 exceeds values of approximately 100. Second, 

Γ remains relatively constant for values of Re
b
 between 10 and 100. Finally, Γ gradually 

decreases when Re
b
 decreases below 10. In the R = 0 and 0.5 cases, the Γ-Re

b
 relation-

ship indicates good agreement with Mashayek et al. [15] for the range of Re
b
 between 100 

and 300. However, Γ decreases at a considerably slower rate than what has been suggested 
by Mashayek et al. [15] when Re

b
 decreases to less than 100. The difference between our 

result in the R = 0 case and what has been suggested by Mashayek et al. [15] is possibly 
due to the different methods employed to compute Γ . Mashayek et  al. [15] perform 3D 
sorting of the density field to compute the change in background potential energy while 
we use the approximation of potential energy mixing by �� [23]. Changing the averaging 

Fig. 12  a–c Dependence of flux coefficient ( Γ ) on a–c depth-averaged buoyancy Reynolds number ( Reb ) 
and d–f depth-averaged Richardson number ( Ri ) during the turbulence decay period in the three simulated 
cases. Quantities that are averaged across the momentum thickness ( ±Iu∕2 ) are shown by blue markers 
while those averaged across the shear layer thickness ( Lsl ) are shown by red markers. Dashed black lines in 
panels (a-c) denotes the Γ = 0.2 parameterization in Osborn [18]. Solid black lines denotes the upper bound 
of the parameterization suggested by Mashayek et al. [15]
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method from Lsl to ±Iu∕2 does not affect Γ-Re
b
 relationship in the Re

b
< 100 range as 

shown in Fig. 12a–c. Figure 12d, e show the Γ-Ri relationship during the fully-developed 
turbulence period. In the Ri = 0 case, Γ decreases monotonically at a constant value of 
Ri ≈ 0.6 , slightly larger than the critical value of 0.5 that Salehipour et al. [22] suggest to 
shut off turbulent mixing. In the R = 0.5 and 1 cases, Γ remains significantly large even 
when Ri approaches near unity. The simulations in VanDine et al. [28] show the late-time 
values of Ri to be much larger than unity.

Beside the Re
b
 dependence, Smyth et al. (2001) suggest that Γ can be used to param-

eterize the thermal diffusivity using the ratio ( ROT = LO∕LT ) between the Ozmidov scale 
( LO = (�∕N2

3∕2
)1∕2 ) and the Thorpe scale ( LT ). The motivation behind the parameteriza-

tion is to relate Γ to the relative evolution of two length scales: one representative of the 
energy-containing scales like that of the K–H billows and one in the inertial subrange of 
the TKE spectrum like the turbulent eddies during the transition-to-turbulence period. In 
ocean applications, the Thorpe scale is taken to be the length scale of large-eddy overturns 
while the Ozmidov scale provides a good estimate of the inertial subrange. From the scal-
ing argument, if we take K� ∝ �ULT , then the Osborn model yields:

in which Γ varies as a function of the mixing length scale LO and two energy-contain-
ing scales LT and �U∕N2

1∕2
 . Now, if we further assume � ∝ �U3∕LO which implies 

LO ∝ �U∕N2
1∕2

 , then Eq. (12) suggests:

In contrast, if we assume � ∝ �U3∕LT which leads to LO ∝ (�U∕N2
1∕2

)3∕2L
−1∕2

T
 , then 

Eq. (12) indicates:

Recent analysis using observational data by Ijichi and Hibiya [7] indicates Γ ∝ R
−4∕3

OT
 while 

Mashayek et al. [16] suggest a parameterization scheme that involves both of the R−1
OT

 and 
R
−4∕3

OT
 scalings. Using DNS of stratified shear layers at low Reynolds numbers, Smyth et al. 

[26], however, suggest Γ ∝ R−0.63
OT

 . It is of interest to examine which scaling of Γ (equiva-
lently, � ) prevails in the present study.

We use the Ellison scale (LE = ⟨��2⟩1∕2∕� ⟨�⟩ ∕�z) in place of the Thorpe scale to test 
the scaling arguments. Figure 13a–c illustrate the evolution of LE and LO in the simu-
lated cases. It is noted that the length scales are averaged over the shear layer and we 
include both the averaging over ±Iu∕2 and Lsl in the figure. As the K–H billows develop, 
LE increases drastically and then it decreases when the shear layer transitions into tur-
bulence. While the K–H billows grow to different sizes in the cases with different R 
as indicated by Iu and Lsl , the peak value of LE is similar among the cases for the both 
methods of averaging. It is interesting that despite the differences in stratification pro-
file, in billow size and in integrated buoyancy flux (e.g., Fig. 8b) among the cases with 
R = 0, 0.5 and 1 during this period, the billows generate a similar value of maximum 
Ellison scale in these cases. The peak values of LE are significantly different between 
the two averaging methods. When the averaging is done over Lsl , the peak value of LE is 
smaller due to contribution of the enhanced stratification in the TL. The Ozmidov scale 

(12)Γ =
K�N

2

�
∝

�U

N2
1∕2

LT

L2
O

,

(13)Γ ∝ (LO∕LT )
−1 ∝ R−1

OT
.

(14)Γ ∝ (LO∕LT )
−4∕3 ∝ R

−4∕3

OT
.
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begins to grow at a later time when the Ellison scale has decreased. The peak value of 
LO is comparable among the cases when the averaging is over ±Iu∕2 . When comparing 
LO results between the two methods of averaging, the R = 0 case shows larger values 
when averaging over Lsl while the other two cases show smaller values. The reason is 
that there exists significant dissipation but the stratification is relatively weak in the TL 
in the R = 0 case. The enhanced stratification in the transition layer in R = 0.5 and 1 
cases causes LO to decrease.

The relationship between Γ and the ratio between the Ozmidov and Ellison length 
scale ( ROE ) is shown in Fig. 13d, e. Unlike Fig. 12 in which the Γ-Reb relationship is 
only shown during the period of the fully-developed turbulence, the entire evolution 
of the shear layer is included in Fig. 13. The Γ-ROE relationship in all simulated cases 
exhibits three evolutionary regimes. During the first regime when the K–H billows 
develop, ROE decreases to its minimum value as Γ increases drastically. As ROE increases 
during the second regime (marked by the dashed lines in Fig. 13a–c), Γ decreases mono-
tonically. Finally, ROE and Γ decreases in the third regime at late time. Figure  13d–f 
show the correlation between Γ and ROE . A power law fit using the values of Γ and 
ROE averaged across the L

sl
  during the second regime results in Γ = 0.46R−0.66

OE
 in the 

R = 0 case, Γ = 0.37R−0.68
OE

 in the R = 0.5 case, and Γ = 0.3R−0.63
OE

 in the R = 1 case. 
When the average is across ±Iu∕2 , the results are: Γ = 0.32R−0.85

OE
 , Γ = 0.36R−0.79

OE
 , Γ = 

0.42R−0.66
OE

 for R = 0, 0.5 and 1, respectively. Results in Lewin and Caulfield [10] show 
the scaling of Γ ∝ R−1

OE
 during the early period of the second regime and the scaling of Γ 

∝ R
−4∕3

OE
 during the later period of the second regime. The different scaling observed in 

Fig. 13  a–c Evolution of Ozmidov and Ellison length scales and d–f the parameterization of flux coeffi-
cient ( Γ ) using the ROE ratio between the two length scales. Each panel includes results for both methods 
of averaging, i.e., across Lsl and ±Iu∕2 . Arrows in panel d indicate time progression through three regimes 
in Γ-ROE relationship. The dashed lines in d–f denote a power law fit using the values of Γ and ROE that 
are averaged over Lsl . The vertical dashed lines in panels a–c mark the second regime during which ROE 
increases as Γ decreases
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the present study perhaps is due to how the K–H billows in Lewin and Caulfield [10] are 
allowed to develop first in 2D simulations and then extended into 3D simulations when 
the billows reach its maximum sizes. In the present study, the K–H billows are allowed 
to develop in 3D simulations since the beginning and the secondary instabilities are 
observed to develop before the K–H billows grow to its full size. A different transition 
to turbulence can result in different Γ-ROE relationship.

Furthermore, if we assume the behavior of ROE and ROT is similar during the second 
regime as suggested by Lewin and Caulfield [10], then the Γ-ROE relationship in the pre-
sent study agrees best with the scaling of Γ = 0.33R−0.63

OT
 found in Smyth et al. [26]. We 

do not observe the scaling of either Γ ∝ R−1
OT

 or R−4∕3

OT
 as indicated in Ijichi and Hibiya [7], 

Mashayek et al. [16], and Lewin and Caulfield [10]. It has been hypothesized that the scal-
ing Γ ∝ R−0.63

OT
 in Smyth et al. [26] is possibly due to the effect of a low Reynolds number of 

5000 [7]. Here, we observe the same scaling as in Smyth et al. [26] at Re = 24,000.

5  Discussion and conclusions

In the present study, we have used DNS to investigate the evolution of stratified shear lay-
ers with different profiles of density gradient at a high Reynolds number. The shear layer 
has constant initial bulk Richardson number ( Rib,0 ); however, the density gradient distribu-
tion is varied among the three cases by varying the density gradient distribution parameter 
R. One case has the two-layer density profile (R = 0) while another case has uniform den-
sity gradient throughout the fluid (R = 1). The third case has a composite of the two-layer 
profile and the linear density gradient profile (R = 0.5). The three cases have the same Rib,0 
but the minimum gradient Richardson number ( Rimin ) and the shear-layer-averaged value 
( Ri0 ) vary among the cases. The value of Rimin = Rib,0(1 − 0.5R) decreases with increasing 
R. We are interested in how the evolution of the shear layer correlates with the different 
Richardson number parameters.

The evolution of the shear layer in all cases shows the development of K–H shear insta-
bilities and billows, the transition to turbulence by secondary instabilities and subsequent 
decay of turbulence. Results from linear stability analysis indicate the K–H instabilities 
grow the fastest in the R = 1 case and the growth rate decreases with decreasing R value 
(equivalently increasing Rimin ). The evolution of the momentum thickness ( Iu ) and shear 
layer thickness ( Lsl ) indicate the shear layer evolves through two distinct periods of signifi-
cant growth. The first period corresponds to the enlargement of the KH billows while the 
second period corresponds to the turbulent entrainment of fluid from the external ambient. 
During the first period, the growth rate of Iu and Lsl increases with increasing R values. The 
maximum size of the K–H billows is observed in the R = 1 case. After the first period of 
growth, secondary instabilities occur on the eyelids of the K–H billows and they trigger the 
shear layer to transition to turbulence. Unlike the first period, the growth rate during the 
turbulent entrainment period is slower when R has larger values. The reason for the slower 
growth rate is due to the external stratification in the ambient when R increases. Overall, 
the momentum thickness and the shear layer thickness are comparable among the cases at 
late time suggesting Rib,0 exerts control on these late-time thickness metrics. We note that 
the shear layer in the present study has a fixed value of Rib,0 = 0.16 in all cases. Whether 
the insensitvity of the momentum thickness and shear layer thickness at late time to R per-
sists at different values of Rib,0 requires future study.
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After the K–H billows have developed, transition layers with peak values of shear and 
stratification form at the edges of the shear layer in the R = 0.5 and 1 cases, namely the 
cases where stratification exists in the ambient. The R = 0 case does not exhibit peak value 
of shear and stratification at the edges where there exists enhanced turbulence. Significant 
turbulent mixing is found in the TL defined as the region outside ±Iu∕2 and bounded by Lsl 
in all cases. The TKE dissipation rate integrated over the TL can be as large as 28% of the 
amount found inside ±Iu∕2 . Therefore, it is important to use Lsl as physical boundaries of 
the shear layer instead of ±Iu∕2 as was typically used in previous studies.

The bulk mixing efficiency (integrated over space and time) is found to be approximately 
equal to 0.36 in all cases when only the mixing over ±Iu∕2 is taken into consideration. 
When the mixing in the TL is taken into account, the bulk mixing efficiency has a peak 
value of 0.42 in the R = 0 case which agrees with the result of Mashayek et al. [13]. The 
mixing efficiency decreases to 0.31 in the R = 1 case. While the flux coefficient ( Γ ) during 
the period of fully-developed turbulence in the R = 1 case shows three regimes of mixing 
efficiency based on the Re

b
 parameterization similar to the study of Shih et al. (2002), Γ in 

the R = 0 and R = 0.5 cases decreases monotonically with decreasing Re
b
 when Re

b
< 100 

as suggested by Mashayek et al. [15]. However, we observe a slower decrease with Re
b
 and 

thus Γ remains at larger values relative to Mashayek et al. [15]. When we examine the rela-
tionship between Γ and the ratio between the Ozmidov and Ellison length scales, we find 
that Γ ∝ R−0.66

OE
 similar to the scaling of Γ ∝ R−0.63

OT
 found in Smyth et al. [26].

Overall, the density gradient distribution parameter R influences the layering structures 
in N2 , S2 and Rig inside the shear layer after the transition to turbulence. The TL (a layer 
with enhanced stratification and shear) develops at the edges of the shear layer when R ≠ 
0. As the shear layer evolves, the shear-layer-averaged stratification ( N2 ) exhibits a signifi-
cant reduction when R is small. The change in N2 becomes smaller when R increases. The 
shear-layer-averaged Richardson number Ri at late time is larger when R ≠ 0. Nonethe-
less, the shear layer thickness ( Iu and Lsl ) at late time is not influenced by the value of R 
although the details of the shear and stratification profiles are influenced. VanDine et al. 
[28] investigate the uniform stratification case (R = 1) with Rimin varying between 0.04 
and 0.2, equivalently Rib,0 between 0.08 and 0.4, and they find the TL develop in all cases. 
As Rib,0 increases in that study, both Iu and Lsl have a smaller value at late time and the net 
turbulent dissipation is also smaller. All cases in VanDine et al. [28] exhibit TL. The Γ-Re

b
 

relationship discussed here for Rib,0 = 0.16 and R = 1 are also found for all the different 
values of Rib,0 in that study.

Acknowledgements The authors thank W. D. Smyth for providing the LSA code. This work was supported 
by the National Science Foundation (Grant No. OCE-1851390).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/


Environmental Fluid Mechanics 

1 3

References

 1. Brucker KA, Sarkar S (2010) A comparative study of self-propelled and towed wakes in a stratified 
fluid. J Fluid Mech 652:373–404

 2. Caulfield CP, Peltier WR (2000) The anatomy of the mixing transition in homogeneous and stratified 
free shear layers. J Fluid Mech 413:1–47

 3. Drazin PG (1958) The stability of a shear layer in an ubounded heterogeneous inviscid fluid. J Fluid 
Mech 4(2):214–224

 4. Fritts DC, Baumgarten WK, Werne J, Lund T (2014) Quantifying Kelvin–Helmholtz instability 
dynamics observed in noctilucent clouds: 2. Modeling and interpretation of observations. J Geophys 
Res Atmos 119:9359–9375

 5. Garanaik A, Venayagamoorthy SK (2019) On the inference of the state of turbulence and mixing effi-
ciency in stably stratified flows. J Fluid Mech 867:323–333

 6. Hazel P (1972) Numerical studies of the stability of inviscid stratified shear flows. J Fluid Mech 
51:39–61

 7. Ijichi T, Hibiya T (2018) Observed variations in turbulent mixing efficiency in the deep ocean. J Phys 
Oceanogr 48:1851–1830. https:// doi. org/ 10. 1175/ JPO-D- 17- 0275.1

 8. Jacobitz FG, Sarkar S, VanAtta CW (1997) Direct numerical simulations of the turbulence evolution in 
a uniformly sheared and stably stratified flow. J Fluid Mech 342:231–261

 9. Kaminski AK, Smyth WD (2019) Stratified shear instability in a field of pre-existing turbulence. J 
Fluid Mech 862:639–658

 10. Lewin S, Caulfield CP (2021) The influence of far field stratification on shear-induced turbulent mix-
ing. J Fluid Mech. https:// doi. org/ 10. 1017/ jfm. 2021. 755

 11. Mashayek A, Peltier WR (2012) The ‘zoo’ of secondary instabilities precursory to stratified shear flow 
transition. Part 1. Shear aligned convection, pairing, and braid instabilities. J Fluid Mech 708:5–44

 12. Mashayek A, Peltier WR (2013) Shear-induced mixing in geophysical flows: does the route to turbu-
lence matter to its efficiency? J Fluid Mech 725:216–261

 13. Mashayek A, Caulfield CP, Peltier WR (2013) Time-dependent, non-monotonic mixing in strati-
fied turbulent shear flows: implications for oceanographic estimates of buoyancy flux. J Fluid Mech 
736:570–593

 14. Mashayek A, Caulfield C, Peltier W (2017) Role of overturns in optimal mixing in stratified mixing 
layers. J Fluid Mech 826:522–552

 15. Mashayek A, Salehipour H, Bouffard CE, Caulfield CP, Ferrari R, Nikurashin M, Peltier WR, 
Smyth WD (2017) Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys Res Lett 
44:6296–6303

 16. Mashayek A, Caulfield CP, Alford MH (2021) Goldilocks mixing in oceanic shear-induced turbulent 
overturns. J Fluid Mech. https:// doi. org/ 10. 1017/ jfm. 2021. 740

 17. Mater BD, Venayagamoorthy SK (2014) A unifying framework for parameterizing stably stratified 
shear-flow turbulence. Phys Fluids 26(3):036601

 18. Osborn T (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys 
Oceanogr 10:80–89

 19. Pham HT, Sarkar S (2010) Transport and mixing of density in a continuously stratified shear layer. J 
Turbul 11:1–23

 20. Pham HT, Sarkar S, Brucker KA (2009) Dynamics of a stratified shear layer above a region of uniform 
stratification. J Fluid Mech 630:191–223

 21. Salehipour H, Peltier WR, Mashayek A (2015) Turbulent diapycnal mixing in stratified shear flows: 
the influence of Prandtl number on mixing efficiency and transition at high Reynolds number. J Fluid 
Mech 773:178–223

 22. Salehipour H, Peltier WR, Whalen CB, MacKinnon JA (2016) A new characterization of the turbulent 
diapycnal diffusivities of mass and momentum in the ocean. Geophys Res Lett 43(7):3370–3379

 23. Scotti A, White B (2014) Diagnosing mixing in stratified turbulent flows with a locally defined avail-
able potential energy. J Fluid Mech 740:114–135

 24. Shih LH, Koseff JR, Ivey GN, Ferziger JH (2005) Parameterization of turbulent fluxes and scales using 
homogeneous sheared stably stratified turbulence simulations. J Fluid Mech 525:193–214

 25. Smyth WD, Moum JN (2000) Length scales of turbulence in stably stratified mixing layers. Phys Flu-
ids 12(6):1327–1342

 26. Smyth WD, Moum JN, Caldwell DR (2001) The efficiency of mixing in turbulent patches: inferences 
from direct simulations and microstructure observations. J Phys Oceanogr 31:1969–1992

 27. Smyth WD, Moum JN, Nash JD (2011) Narrowband oscillations at the upper equatorial ocean. Part II. 
Properties of shear instabilities. J Phys Oceanogr 41:412–428

https://doi.org/10.1175/JPO-D-17-0275.1
https://doi.org/10.1017/jfm.2021.755
https://doi.org/10.1017/jfm.2021.740


 Environmental Fluid Mechanics

1 3

 28. VanDine A, Pham HT, Sarkar S (2021) Turbulent shear layers in a uniformly stratified background: 
Dns at high Reynolds number. J Fluid Mech 916(A42):1–35

 29. Watanabe T, Nagata K (2021) Large-scale characteristics of a stably stratified turbulent shear layer. J 
Fluid Mech. https:// doi. org/ 10. 1017/ jfm. 2021. 773

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1017/jfm.2021.773

	A comparative study of turbulent stratified shear layers: effect of density gradient distribution
	Abstract
	1 Introduction
	2 Model formulation
	2.1 Distribution of stratification in a shear layer
	2.2 Numerical methods
	2.3 Statistical analysis

	3 Evolution of the stratified shear layer
	3.1 The development of Kelvin–Helmholtz instability
	3.2 Nonlinear evolution of Kelvin–Helmholtz instabilities and secondary instabilities
	3.3 Fully-developed stratified turbulence and the relaminarization of the shear layer

	4 Turbulence and the parameterization of mixing
	4.1 TKE budgets
	4.2 Mixing efficiency and its parameterization

	5 Discussion and conclusions
	Acknowledgements 
	References




