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Data-driven analysis of process, structure, and properties of
additively manufactured Inconel 718 thin walls
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In additive manufacturing of metal parts, the ability to accurately predict the extremely variable temperature field in detail, and
relate it quantitatively to structure and properties, is a key step in predicting part performance and optimizing process design. In
this work, a finite element simulation of the directed energy deposition (DED) process is used to predict the space- and time-
dependent temperature field during the multi-layer build process for Inconel 718 walls. The thermal model results show good
agreement with dynamic infrared images captured in situ during the DED builds. The relationship between predicted cooling rate,
microstructural features, and mechanical properties is examined, and cooling rate alone is found to be insufficient in giving
quantitative property predictions. Because machine learning offers an efficient way to identify important features from series data,
we apply a 1D convolutional neural network data-driven framework to automatically extract the dominant predictive features from
simulated temperature history. Very good predictions of material properties, especially ultimate tensile strength, are obtained using
simulated thermal history data. To further interpret the convolutional neural network predictions, we visualize the extracted
features produced on each convolutional layer and compare the convolutional neural network detected features of thermal
histories for high and low ultimate tensile strength cases. A key result is the determination that thermal histories in both high and

moderate temperature regimes affect material properties.
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INTRODUCTION

Metal additive manufacturing (AM) is a technology that can be
used to build parts layer-by-layer, allowing the fabrication of parts
with more complex geometry and reduced costs compared with
traditional manufacturing techniques'. Directed energy deposi-
tion (DED) is one popular metal additive manufacturing process>
in which metal powder is delivered by one or more nozzles*. A
focused heat source, such as a laser, is used to melt the injected
metal material locally. Parts are built progressively as each layer is
scanned and melted in a predetermined pattern.

During the DED process, parts undergo repetitive thermal
heating and cooling cycles due to the deposition of multiple
layers. The resulting complex thermal field in parts, both during
and after solidification, has significant effects on the final material
microstructure and mechanical properties, such as yield stress,
yield strain, ultimate tensile strength (UTS), and failure stress>~’.
However, it is time-consuming and expensive to conduct DED
experiments to optimize process parameters and tool paths for a
given geometry to yield parts with good mechanical properties.
Computational models can be an efficient approach to obtaining
temperature histories of parts, which can be related to the
microstructure and mechanical properties.

To predict the thermal field, many researchers have used the
finite element method to solve the heat equation and simulate
the transient temperature field in AM. For most DED thermal
models, the boundary condition on the outer part surface assumes
convection with a constant convection coefficient®~'®, However,
DED processes typically include a forced shield gas flow, with a
flow velocity that varies over the part surface; therefore, a spatially
varying convection coefficient model calibrated against measured

thermocouple data have been proposed and showed a better
match with experimental temperature histories compared with a
uniform convection coefficient model®.

Calibrations of thermal DED models are also challenging. Almost
all previous calibrated thermal models for multi-layer deposition
have been based on thermocouple measurements taken far from
the laser spot's'8, However, it is difficult to directly measure the
temperature in or near the melt pool region with thermocouples
because of the extreme temperature range and the constantly
changing geometry. Alternatively, dynamic infrared (IR) images
measured by IR cameras have been used to calibrate thermal
models'®?°, An IR camera can capture the emitted thermal
radiation at the part surface, including near the melt pool,
providing a complement to thermocouple data for calibrating and
validating thermal models'=2, For instance, IR images have been
captured to verify a moving heat source thermal model for
induction-assisted weld-based additive manufacturing (WAM)'°. IR
cameras have also been used to calibrate the thermal model for a
single pass multi-layer gas metal arc welding (GMAW) process®®;
this work only studied two layers of deposition rather than a full
part-scale model.

Nickel-based alloys, such as Inconel 718, have been widely used
in AM applications (e.g., turbine blades and combustion cham-
bers) because of their excellent tensile strength, high-temperature
yield strength, creep properties, and corrosion resistance®?’-3°,
Mechanical properties are found to depend not only on grain
size and microstructure orientation, but also on the precipitate
distribution of the material”?®, For example, Laves phases are
brittle precipitates in Inconel 718 usually formed during Nb
segregation in the inter-dendrite regions in solidification. Laves
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Overview of the data-driven analysis for process-structure-properties. The 1D convolutional neural network is used to predict

mechanical properties from simulated thermal history. The simulated thermal process data, microstructure, and measured mechanical
properties are analyzed for process-structure-properties (PSP) relationship.

phases can reduce the mechanical properties of the material, such
as lowering the yield strength and Young’s modulus for Inconel
71828, The microstructure can be affected by the chemical
composition and thermal conditions during the AM process?.
Therefore, it is important to investigate the detailed effects of
thermal history on microstructure and mechanical properties.

Much previous work uses cooling rate to describe the relation-
ship between temperature, microstructure, and properties.
Researchers have found that cooling rate influences grain size,
dendrite arm spacing, microsegregation, precipitate forma-
tion?23132, anisotropy, porosity, and strength?'. High cooling rates
can lead to faster solidification that results in finer microstructure
and enhanced mechanical properties3. However, far less previous
work investigates whether cooling rate is the only important
factor for microstructure and mechanical properties. It has been
found that the combination of thermal gradients, cooling rates
(the average rate of temperature change during solidification, in
units of temperature per time), and solidification rates (the speed
of the solidification front, in units of length per time) can influence
the liquid-solid interface stability and then affect the dendrite
arm spacing and final properties®®343>. However, the complex
thermal effects on microstructure and mechanical properties are
not fully understood. This motivates us to develop a method to
automatically extract features from temperature history and
investigate the correlation between thermal history and mechan-
ical properties.

Machine-learning techniques provide an effective way to
extract information from a signal or time series. For example, a
convolutional neural network (CNN) can learn local patterns from
input data through convolutions without a priori feature selec-
tion3¢73°, CNNs have been highly successful in many applications,
such as speech recognition, self-driving vehicle control, and
computer vision3°=*!, Recently, one-dimensional (1D) CNNs have
been used to extract features from 1D input data, such as a heart
signal or other time-series data®®=**. CNNs can learn local features
from raw data, and then extract more global and high-level
features in deeper convolutional layers*®#246  Measured or
simulated thermal history data from DED-built parts can be
regarded as a dynamic time series. Recently, it was shown that a
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2D CNN can be used to correlate the experimentally measured
thermal history in AM with material properties*’. Xie et al.*” used
raw uncalibrated IR measurements as the thermal histories and
applied wavelet transform to convert the IR signals to 2D wavelet
scalograms. Then the authors applied a 2D CNN model to predict
UTS from the 2D wavelet scalograms, and used a random forest
model to analyze the influence of temperature on properties.
However, using experimentally measured IR data in data-driven
models is restrictive; accurate IR measurements require careful
calibration of material emissivity, and can only be gathered at
surfaces, making IR measurement difficult or impossible for
complex geometries. In the current work, instead of using
measurements as the input to our data-driven model, we develop
a validated thermal model to predict thermal histories. We apply a
1D CNN model to automatically extract features from simulated
temperature history and predict mechanical properties. Since
correlations discovered by CNNs can be difficult to interpret*¢-849
in this work we visualize the intermediate convolutional layers and
compare the extracted features of entire thermal histories using
CNNs for high and low UTS cases. The proposed data-driven
framework can help to investigate thermal effects on mechanical
properties and improve understanding of the underlying physics
in the process.

In this work, a combination of the validated computational
thermal model, together with a data-driven method based on a
1D CNN, is developed to accurately simulate the process and use
the entire time-dependent temperature curve to predict mechan-
ical properties throughout the final part. The overview of the data-
driven model framework is shown in Fig. 1. First, we use a thermal
model based on the finite element method with spatially varying
surface convection for the DED multi-layer build process of Inconel
718 material. Three cases with different domain sizes and dwell
times are investigated. The thermal model is validated using IR
images from in situ DED experiments. Microstructure character-
ization and tensile tests are also conducted for selected material
samples. Then, a 1D CNN is used to extract features from
simulated thermal histories to predict mechanical properties. The
correlation between thermal history, microstructure, and mechan-
ical properties is investigated and discussed. To better understand

’
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Fig. 2 Comparison of simulated and experimental temperature histories. a-c Case A, 8 specimen locations. d-g Case B, 12 specimen
locations. h-k Case C, 12 specimen locations. An enlarged view of h is provided in Supplementary Fig. 2 for clarity. Point locations are labeled

in Supplementary Fig. 1d and e.

the physical mechanism, we visualize the extracted features from
intermediate convolutional layers to interpret the correlation
between thermal histories and properties. We analyze the
distinction in the CNN-detected features between multiple high
and low UTS cases to investigate the contribution of thermal
history to different UTS. This work demonstrates an efficient way
to simulate the thermal history of DED deposition, predict
properties from such a thermal history by 1D CNN, and further
understanding of thermal effects on solidification and mechanical
properties.

RESULTS
Thermal simulation and validation

In this work, three cases of thin wall, multi-layer depositions,
during the DED process are simulated using the computational
thermal model (see the “Methods” section). The three cases are
80 mm walls with 0's dwell time (Case A), 120 mm walls with 0s
dwell time (Case B), and 120 mm walls with a 5 s inter-layer dwell
time (Case C). More details of the three cases are listed in
Supplementary Table 1. The schematic of the DED process is
shown in Supplementary Fig. 1a. The bidirectional tool path used
in the simulation and experiment is shown in Supplementary Fig.
1b. For the simulation, the geometry of the computational
domain and meshes are shown in Supplementary Fig. 1c. The top
part of the domain is the thin Inconel 718 wall while the bottom
part is the stainless steel 304 substrate. More process parameters
and thermal-physical properties of material Inconel 718 and
substrate material stainless steel 304 are listed in Supplementary
Tables 2, 3, and 4.

The model computes temperature as a function of time and
space. Detailed temperature history is output at every time step
for each specific probe point. To investigate the correlation
between thermal history and mechanical properties, we choose
the probe points in the simulation at the same locations as the
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experimental tensile test coupons. Further post-processing of the
temperature solutions provides additional data used for analysis
(see “Methods”). The proposed computational model can effi-
ciently provide thermal history, cooling rate, and solidification rate
to further investigate the correlation between thermal data,
microstructure and mechanical properties.

The parameters in the spatially varied heat convection model,
the laser absorption efficiency, and the emissivity values in the
model are calibrated using the thermal history measured by the IR
camera in the experiment. Figure 2 shows the temperature
histories predicted by the calibrated computational models
compared with experiments for Cases A, B, and C, respectively.
The locations of point 3 through 8 for Case A and 1 through 12 for
Cases B and C are labeled in Supplementary Fig. 1d and e.

The results show that the predicted thermal history agrees well
with the experimental results for most specimen locations. For
example, Fig. 2a shows a comparison of the thermal histories from
simulation (solid lines) and experimental IR camera data (dashed
lines) for points 1, 2, and 3 in Case A during the DED process. The
initial temperature is the ambient temperature of 295 K. At around
200 s, the temperature of point 1 increases when the laser starts to
scan at that location.

However, there are some discrepancies between the simulated
and measured data during this initial increase. The measured
temperature increases more slowly than the simulation and
notably does not exceed the solidus temperature of the material
(1533 K), which is incorrect. In addition, in the IR images in
Supplementary Fig. 1d and e, the top surface, especially the melt
pool right under the laser source, appears cooler than some of the
previously built layers. This failure to measure the temperature of
the molten material is attributed to the difference in emissivity
between the liquid and solid phases of the material®®. The
emissivity of liquid metal alloys is much lower than that of solid
metal alloys, leading to erroneously low-temperature measure-
ments in the melt pool. Near and above the solidus temperature,
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therefore, the simulated temperatures are considered more
reliable than experimental data. To improve the accuracy of the
measured temperature, methods for calibrating emissivity for
liquid and solid metal alloys should be developed in the future.
Simulation accuracy may be impacted through a more detailed
characterization of the true part boundary conditions, especially
the heat convection over the entire surface.

After the simulated temperature decreases below the solidus
temperature, the simulated and experimental curves match well.
The rapid oscillation of each temperature curve is caused by the
multiple passes of the laser as additional material is added; both
the mean and the amplitude of the oscillations decrease as the
wall grows in height and the amount of material between the
point and the laser spot increases. The laser source is turned off
around 615s in Fig. 2a, after which both the simulated and
experimental curves decrease more quickly and monotonically.
(There is a slight delay in the onset of faster temperature decrease
of about 5-10's between each row of points due to the thermal
diffusion time; this delay is difficult to detect in the plots because
of the scale of the temperature axes.) The cooling rate during this
final period is mainly determined by free convection and radiation
at the wall and substrate surfaces. Trends of thermal histories are
similar in Fig. 2b-k. An enlarged view of the temperature curve for
Case C with locations of 1, 2, and 3 is provided in Supplementary
Fig. 2 for clarity.

Microstructure analysis

The microstructure of DED thin walls is observed by the scanning
electron microscope (SEM). The SEM-imaged microstructure for
samples from the 80 mm thin wall, 120 mm thin wall, and 120 mm
thin wall with a dwell time of 55 (Cases A, B, and C) are shown in
Fig. 3a—f. The locations for the probed points in the three different
thin-wall parts are (x, z) = (8.3, 34.6) mm, (15.0, 32.8) mm, and
(15.1, 39.3) mm, respectively, where the (x, z) = (0, 0) point is taken
as the lower-left corner of thin walls in Supplementary Fig. 1d and
e. The simulated temperature is recorded at the center through
the thickness of each sample location. Microstructure SEM
samples are imaged from the side view (normal to the scan
direction, i.e,, the y-z plane) and top view (normal to the build
direction, i.e,, the x-y plane). From the SEM images, we can see the
y matrix phase, the Laves phases, and a few § phases (black dots
inside of Laves phases). Laves phases are often observed to
precipitate at grain boundaries. The 6 (NisNb) phases usually
precipitate along grain boundaries and within the intergranular
matrix. Both Laves phases and 6 phases are detrimental to
mechanical properties®®. We can also observe defects forming in
the microstructure, such as pores shown in Fig. 3d. The formations
of pores are highly related with thermal histories and affect the
mechanical properties of the part. Using the image processing
software ImageJ®!, we calculated the volume fraction of Laves
phases and primary dendrite arm spacing for the top and side
view of microstructures in the three thin walls shown in
Supplementary Tables 5 and 6.

Process and location effects on the cooling rate,
microstructure, and mechanical properties

We compare cooling rates, microstructure features (primary
dendrite arm spacing and the volume fraction of Laves phases),
and experimentally measured mechanical properties (UTS, yield
stress, failure stress, and modulus) in Supplementary Table 5 for
three cases. These values are plotted in Fig. 3g, normalized by the
mean value across the three cases. The primary dendrite arm
spacing is measured by calculating the mean value of several
primary dendrite arm spacings in the SEM images in Fig. 3. The
80 mm wall (Case A) has the largest primary dendrite arm spacing,
while the 120 mm wall with 5 s dwell time (Case C) has the
smallest. Error bars based on the standard deviation across
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measurements of repeated experiments are also shown in Fig. 3g.
The cooling rate is calculated based on the thermal history of a
single location on the wall (see Methods). Volume fractions of
Laves phases are calculated based on the single SEM image of the
sample. From the figure, we can see that Case C, with the highest
cooling rate, has the finest grains and relatively high strength
(UTS, yield stress, failure stress, and modulus), while Case A, with
the lowest cooling rate, has coarser grains and lower strength. We
can conclude that increasing the time between successive laser
scans, whether by increasing the wall size or the dwell time,
increases the cooling rate and leads to finer microstructures and
higher strength.

We also investigate variations in microstructure and properties
at different locations in the same wall. Top and side views of the
microstructure are imaged at three different locations for Case B in
Fig. 4a—f. Specimen locations are shown in Supplementary Fig. 3;
point 1 is closer to the top of the wall, point 8 is in the middle, and
point 12 is near the bottom. Primary dendrite arm spacing and
Laves phases volume fraction are calculated from the SEM images
in Fig. 4 via ImageJ and listed in Supplementary Table 6 along with
the cooling rate, yield stress, UTS, failure stress, and modulus.
These values, normalized by their means, are plotted in Fig. 4g. In
the SEM images, some circular (presumably spherical) and
irregular black pores are seen in Fig. 4a—f. The formation of both
spherical and irregular pores are expected to be highly related to
temperature history as demonstrated in our prior work®2
Spherical pores may be caused by the evaporation of metal
elements in the melt pool, usually when laser scan speed is not
fast, while irregular pores are induced by lack of fusion. The
formation of pores leads to the reduction of the load-bearing
cross-sectional area during the tensile test, which usually results in
a lowered measured strength®3>4,

From Fig. 4g, we see no clear correlation between cooling rate,
microstructure, and mechanical properties. The middle location
has larger primary dendrite arm spacing than the top and bottom
specimen. From bottom to top, the primary dendrite arm spacing
gradually increases but then decreases. The trend is the same with
the volume fraction of Laves phases and mechanical properties.
But cooling rate decreases monotonically from top to bottom of
the wall although the differences in cooling rate between the
three locations are small. These results indicate that the cooling
rate alone is insufficient to predict mechanical properties for
different locations in one wall. Other thermal history features may
be needed to develop correlations between process and
mechanical properties.

Prediction of primary dendrite arm spacing

The relationship between measured primary dendrite arm spacing
and simulated cooling rate for samples from different cases and
locations is shown in Fig. 5a. The primary dendrite arm spacing is
measured from the 12 SEM microstructure images with different
locations in different cases. The simulated cooling rates are also
calculated at the corresponding locations. The primary dendrite
arm spacing, simulated cooling rates, and locations for the
12 samples are tabulated in Supplementary Table 7. The dotted
line in Fig. 5a is the linear fit to the data with the R? error of 0.81:

M = —0.26T + 19.60 (1

where A, is the primary dendrite arm spacing (um) and T is the
cooling rate (Ks™"). Results indicate a strong correlation between
primary dendrite arm spacing and cooling rate. It shows that
increasing cooling rate leads to smaller dendrite arm spacing,
which is in agreement with previous findings?®>°.

According to solidification theory®*, primary dendrite arm
spacing is closely related to thermal gradient and solidification
rate. To understand the relationship between the primary
dendrite arm spacing, thermal gradient and solidification rate,
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Fig. 3 SEM characterization of the microstructure for parts with different process parameters. High magnification images a, b, and c are
the side view (normal to the scan direction) of samples from the three cases, while d, e, and f show the top view (normal to the build
direction). The locations of probed points are (x, z) = (8.3, 34.6) mm, (15, 32.8) mm and (15.1, 39.3) mm for Case A, B, and C respectively. Some
original SEM images (a-c) are reprinted from ref. 7* with permission from Elsevier. g Comparison of computed cooling rate, microstructure,
and mechanical properties of different thin walls. Values are tabulated in Supplementary Table 5 normalized by the mean across the three
cases. The error bars for primary dendrite arm spacing, UTS, yield stress, failure stress, and modulus give standard deviations of repeated
experiments. Cooling rate and volume fractions of Laves phases are calculated based on a single simulation and measurement and therefore
have no standard deviation reported. The scale bars in (a-f) are 40 pm.

we compared our data with the analytical model of Kurz and
Fisher34:

M = A(TAToD, /k)**°G 05y 0% )

where A, is the primary dendrite arm spacing (m), A is a fitting
coefficient, I is the Gibbs-Thomson coefficient (T = 3.65x 1077 Km),
AT, is the undercooling (AT, =T,— T, the unit is K), D, is the
diffusion constant in the liquid (m?s~"), k is the partition coefficient
(k=048%, G is the thermal gradient (Km~'"), and V; is the
solidification rate (ms~"). The thermal gradient and solidification
rate are calculated from the simulation data (as described in
“Methods”) while the primary dendrite arm spacing is measured
from experiments. We calculate the value of A from the best fit to
our experimental data using the Kurz and Fisher model. The final
form of the Kurz and Fisher model based on our sample data is

/\1 —B 670.5 V;O.ZS (3)

where the coefficient B = A(TAT,D,/k)** = 4.40x 10~*K%> m®75
57025 The R? error of the Kurz and Fisher model based on the data
is 0.47.

We also fit the data to an expression that is linear in G~

)\1 =G GiOASV;OA25 + G (4)

where the coefficient C; = 1.41 x 1073K** m%75s7925 and G, = —
2.62 x 10~>m. The R? error of the linear fitting equation is 0.90.

0.5 V—0.25.
s :
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Figure 5b shows the comparison between the Kurz and Fisher
model in Eq. (3), the linear fit in Eq. (4), and the experimental data.
The major difference between the Kurz and Fisher model and the
linear fit is that the linear model has an offset at the origin while
the Kurz and Fisher model does not. The deviation of the Kurz and
Fisher model might be a result of the rapid cooling rate and
complex geometry of the dendrite tips instead of the simple
assumptions of the model'2*°78; it may also be caused by

uncertainty in the measurement of the dendrite arm spacing.

Relationship between thermal history and mechanical
properties

Figure 6a shows the correlation between thermal history and UTS
for all locations on three cases (Cases A, B, and C). Three repeated
experiments are conducted for each case. Each point on the plot
represents the cumulative time spent in a given temperature
range for a particular simulated temperature history; the color of
each point represents the experimentally measured UTS for the
corresponding location, while the symbol shape (circle, triangle, or
star) denotes the three different walls (Case A, B, and C). Details of
calculating the cumulative time of thermal histories in each
temperature band are described in Methods and Supplementary
Fig. 4. Case C (the 120 mm wall with 5 s dwell time) shows higher
UTS than the walls without dwell time. It is conjectured that
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Fig.4 SEM microstructure images for different locations in Case B. High magnification images a, b, and c are side views (normal to the scan
direction) of the three locations noted in Supplementary Fig. 3. Images d, e, and f show top views (normal to the build direction) of the same
locations. g Comparison of computed cooling rate, microstructure, and mechanical properties of different locations in the wall for Case B.
Values are tabulated in Supplementary Table 6, normalized by the mean across the three locations. The error bars for primary dendrite arm
spacing, UTS, yield stress, failure stress, and modulus give standard deviations of repeated experiments. Cooling rate and volume fractions of
Laves phases are calculated based on a single simulation and measurement and therefore have no standard deviation reported. The scale bars

in (a-f) are 50 um.

increasing dwell time during deposition leads to an increased
cooling rate (refer to Fig. 3g), resulting in finer microstructure and
higher strength.

For the temperature between 1200 and 1533 K in Fig. 6a, less
time is spent during each temperature band for Case C (with dwell
time) than Case B (the same wall size without dwell time), which
also indicates faster solidification in Case C. For temperatures
below 1200 K, much more time is spent in each temperature
range in Case C. Both shorter time spent during solidification and
longer time spent at more moderate temperatures correlate with
higher UTS. Likewise, Case B samples have higher UTS than Case A
in Fig. 6a, and comparatively more time is spent in each
temperature range for Case B. This is caused by the longer wall
length and scan path in Case B, giving longer times between
successive laser passes.

The zone enclosed in a red dashed line in Fig. 6a represents
the portion of the thermal history after the laser is turned off. For
the laser-off region, time spent is approximately the same for the
three walls, indicating that differences in temperature history after
laser shut-off do not play a role in the differences in mechanical
properties in our tests.

Similar correlation maps with point colors corresponding to
yield stress, failure stress, and elastic modulus are shown in
Fig. 6b—d. Trends in yield and failure stress are similar to those of
UTS. However, there is no apparent difference in modulus among
the walls. This indicates that different microstructures caused by
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thermal history features may lead to variations in material
strength, but minor effects on elastic modulus.

Figure 6e is the relationship between the cooling rate and UTS
for three different thin walls. The green line in Fig. 6e is the linear
fit to all data. The R? error for the fit is 0.32. Results show that UTS
increases as the cooling rate increases. Case C has the largest UTS
with the largest cooling rate among the three cases. But the
correlation between cooling rate and UTS for each case is weak,
indicating that cooling rate by itself is not enough to predict
mechanical properties. We need to consider more factors or
features in the thermal histories besides cooling rate to predict
mechanical properties.

Prediction of mechanical properties using 1D CNN

In the previous section, we discuss the trends in mechanical
properties with respect to observable features of the temperature
history, such as cooling rate and the reduced-order temperature
feature descriptors (time spent during each temperature interval).
However, the cooling rate alone is insufficient in predicting
mechanical properties, and it is difficult to express a quantitative
relationship between properties and the reduced-order tempera-
ture descriptors we highlight. Therefore, we aim to use machine
learning to extract important features of the thermal histories and
construct predictive models of the properties from a given
thermal history.
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A convolutional neural network (CNN) can automatically extract
essential features and can learn high-level features from spatial
and temporal data3%-3°. Recent work shows that one-dimensional
CNN can be used to analyze time series or sequence data
effectively®®=*°. This work uses 1D CNN to extract features from
thermal histories and predict mechanical properties, such as UTS,
yield stress, failure stress, and modulus of the sample points. The
data preparation, hyperparameter search, and neural network
architecture are discussed in “Methods”.

Figure 7 is the convolutional neural network structure with the
intermediate convolutional layer visualization. The input of the
trained CNN is the temperature history for each probed location in
the deposited thin wall. The output of the network is UTS for
corresponding locations. Figure 8 shows the comparison of CNN-
predicted UTS with the actual measured UTS. Figure 8a is the
training data while Fig. 8b is the test data. The R? scores for the
training and testing are 0.96 and 0.67, as shown in the plot. The
results show that the proposed CNN structure can accurately
predict the UTS for samples in these thin-wall builds based on
thermal history.

In a similar way, we also use the 1D CNN to predict other
mechanical properties including vyield stress, failure stress, and
modulus. The prediction results based on training and testing data
for yield stress, failure stress, and elastic modulus are shown in
Supplementary Figs. 5-7. The R? scores for predicting yield stress,
failure stress, and modulus for the training data are 0.82, 0.72, and
0.37, respectively; for test data, they are 0.70, 0.60, and 0.14. These
results show that the proposed CNNs can also predict yield stress
and failure stress with good accuracy. The prediction for modulus
using the CNNs is not good, which is expected, because modulus
is mainly a function of material type, and not highly correlated
with the microstructural differences that depend on thermal
history>®>®, We can also see there is no strong correlation
between thermal histories and modulus in Fig. 6d.

To understand which features of the thermal processes have a
dominant effect on mechanical properties, we output the
intermediate convolutional layers of the trained network. We
visualize the output of the first, second, and third convolutional
layer (ConviD_1, ConvliD_2, Conv1D_3) for all feature filters;
these are displayed above the CNN model in Fig. 7 and enlarged
views are shown in Fig. 9. The channel outputs of each
convolution layer inform how the convolutional layers extract
the key factors from the temperature history and transfer useful
information to formulate the mechanical properties. There are 32,
64 and 64 channels in the Conv1D_1, Conv1D_2, and Conv1D_3
layers, respectively.
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Figure 9 shows the output from the first, second, and third
convolutional layer for all feature filters or channels. Figure 9a is
the output of the first convolutional layer for all channels. There
are 32 feature filters for the Conv1D_1. The non-zero output plots
display two main patterns. One pattern, displayed for example by
the first feature filter, has the most values in the top few time
steps. The other pattern has values from 0s to around 11005, as
seen for example in the third feature filter. Some other outputs in
Fig. 9a are not activated and close to zero, which means that
these feature filters do not capture trends from the input and do
not transfer any information to the next layer in the network. A
comparison of the extracted features output for the first and third
feature filters of the Conv1D_1 with temperature history is shown
in Fig. 9b and ¢, respectively. The blue line represents the
temperature history. The red dot line represents the extracted
output of the first convolutional layer for the first and third
feature filters. The original extracted feature values are multiplied
by 8000 for convenient comparison with temperature history in
the same plot. The results indicate not only the temperature
during the first few cycles (the solidification range) influence
mechanical properties, but also the entire temperature history
from the start of the laser scan to the end of the process (around
1100 s) plays an important role. The cooling rate calculated from
the solidification period cannot represent all thermal features on
the effect of mechanical properties. Both the solidification
temperature and whole repeated thermal cycle during laser scan
affect the formation of microstructure and final mechanical
properties, such as UTS.

We also show the output of the second and third convolutional
layers in Fig. 9d and e. There are 64 feature filters for Conv1D_2
and Conv1D_3. Comparing the outputs from the ConviD_1,
Conv1D_2, and Conv1D_3, the ConviD_1 captures most of the
information from the input, although some feature filters are not
activated. For deeper layers, the output visualization becomes
more abstract and less interpretable. The Conv1D_3 contains less
information in the output visualization, with mostly zero output
for a number of feature filters.

The comparison of the extracted features of the ConviD_3 for
one chosen feature filter with temperature history is presented in
Fig. 9f, and all feature filters are shown in Fig. 9g. In Fig. 9f, the
extracted features capture the temperature information from 0 s
to around 1150s. Looking at extracted features from all feature
filters in Conv1D_3 in Fig. 9g, the output captures temperature
information from the start of the laser scan to the end of laser
fusion, which is similar to the trend of the outputs from Conv1D_1
and Conv1D_2.
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It is often difficult to understand the relationship between
inputs and outputs in a machine learning model like CNN, but in
an attempt to further reveal the contribution of thermal histories
to the UTS prediction, we compare the extracted features from the
first convolutional layer (Conv1D_1) for multiple high and low UTS
cases in Fig. 10. For ease of comparison, we selected 12 samples
across all three wall cases that have similar total laser scanning
time (from material deposition to laser-off time), and separated
into high and low UTS groups (six samples in each group). The
average UTS is 780.90 MPa and 695.93 MPa for the high and low
UTS groups, respectively. Details of the samples in both groups are
tabulated in Supplementary Tables 8 and 9. For both groups, the
first and third features of the first convolutional layer are plotted in
Fig. 10. Patterns are discerned for both features across the two
groups. For the first feature (Fig. 10a and c), which is prominent
over the first 300s of cooling, the extracted signal is in general
stronger for the high UTS group, with fewer non-zero values than
for the low UTS group. For the third feature filter (Fig. 10b and d),
low UTS cases (Fig. 10d) begin with a high signal but decrease
over the first 200, after which they plateau at a value around
0.02-0.03 before decaying after laser-off time around 500 s. High
UTS cases (Fig. 10b) maintain a higher signal between 0.04 and
0.06 until the laser-off time. Although we are not able to draw
conclusions from these plots about what physical phenomena are
involved, these results indicate that there may be two separate
phenomena influencing UTS; one at early times and high
temperatures (the first feature filter), and another at longer times
and more moderate temperatures (the third feature filter).

DISCUSSION

In this work, we developed a validated finite element model with a
data-driven CNN model to investigate the correlation between
thermal history, microstructure, and mechanical properties during
the DED process with Inconel 718. Instead of using experimental
measured IR temperatures with uncertainties, we used simulated
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temperature histories from a thermal model, validated by in situ
experiments, to predict mechanical properties by CNNs. Simulated
thermal histories, microstructures, and measured mechanical
properties were thoroughly analyzed to understand the process-
structure-property relationship. Key features from thermal his-
tories were identified efficiently by the CNNs.

The results demonstrate the powerful ability of the 1D CNN
model to predict mechanical properties, including UTS, yield
stress, and failure stress using simulated, as opposed to measured,
thermal histories. The 1D CNN model is effective and efficient in
identifying important hidden features from complex thermal
histories with good accuracy. The extracted features of thermal
histories show different contributions for high and low UTS
samples. For low UTS samples, early thermal cycles contribute
most strongly to the filtered features, with relatively small
contributions from later histories. High UTS samples show a
stronger feature signal throughout the later times and more
moderate temperatures. These results emphasize the importance
of considering the entire thermal history rather than simple
thermal metrics, such as cooling rate, for accurate predictions of
mechanical properties. By using simulated temperatures instead
of experiments, the data-driven CNN model extends the ability to
predict and monitor mechanical properties for AM builds of
complex part geometries.

The extracted features of the 1D CNN model can give insights
into microstructure evolution. From visualization of intermediate
convolutional layers, it is observed that not only the solidification
range but also the entire thermal history during the laser scan
has effects on final mechanical properties. This might indicate
that some precipitates, such as Laves phases, § phase (NisNb), y’
phase Niz(Al, Ti) and y’ phase (NisNb), form during the
intermediate temperature range. y phase is the major strength-
ening precipitation in Inconel 718 alloy while y' phase is an
assistant strengthening precipitate®®. The & phase and Laves
phases are detrimental to material properties (strength, fatigue
life, and ductility)®.
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mechanical properties (UTS).

Different precipitates can form in two stages: non-equilibrium
solidification and solid-state phase transformation after solidifica-
tion. In non-equilibrium solidification, the y matrix begins to
solidify when the temperature is below the liquidus temperature
during the first several thermal cycles. The segregation of Inconel
718 component elements changes the driving force of phase
formation, which leads to the formation of Laves phases in the
interdendritic region®. It has been reported that Laves formation
is related to slow solidification at a low cooling rate®3, However, it
is not sufficient to use cooling rate alone as the criterion of Laves
formation because Laves phases are also observed at high cooling
rates in AM processes®*%>. Thermal gradients, undercooling and
solid-liquid interface velocity should also be considered. As the
temperature continues to drop after non-equilibrium solidification,
solid-state phase transformation occurs. Precipitates such as &, y/
and y" phases may form in this stage. If time is sufficient between
deposition of layers (e.g., for long dwell time), temperature
decreases quickly, and the time that material spends in the
precipitation formation temperature range (875-1275 K) from the
TIT (Temperature-Time-Transformation) diagram of Inconel
718°%%% is too short to form &, ¥ and Y% If the dwell time is
not long enough to cool the material quickly, time spent in the
precipitation temperature range may be long enough to form &, y’
and y" in the microstructure. Note that the time required to form
precipitates has been observed to be shorter for AM than for
wrought Inconel 625 due to increased interdendritic segregation
in AM material”®°. In Inconel 718, the y’ phases and Yy’
precipitation temperature range is from 875 to 1175 K, while that
for & phases is from 1225 to 1275K°%7971, Both temperature
ranges for precipitation are within the intermediate temperature
range identified from the visualization of our CNN feature filters.
Therefore, CNN predictions may give more insights for future
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models to predict the formation and evolution of precipitates and
correlate with mechanical properties.

To maintain computational efficiency, the thermal model
neglects fluid flow in the melt pool, along with other powder-
scale details during deposition. Because of these assumptions,
complex flow features and heat transfer mechanisms during
powder deposition in the melt pool are not captured. For powder
bed processes, it has been shown that ignoring convection in the
melt pool results in less heat dissipation throughout the melt pool,
overestimation of the melt pool width, and higher peak
temperature’?73, High-fidelity models, such as thermal-fluid
models, can capture more physics details and provide more
accurate predictions than the conduction-only thermal model.
However, because of the computational expense of thermal-fluid
models, including fine grid and time step size requirements, they
are limited to small volumes, and repeated part-scale simulations
are infeasible. On the other hand, we expect the most important
portion of the thermal history to occur during and after final
solidification at each material point; this history is expected to be
less impacted by the neglect of flow in the melt pool just after
powder deposition at each point. The validation of our simulations
in the section “Thermal simulation and validation” demonstrates
the accuracy of the simulations for the desired temperature
regime. Although it lacks the fidelity of more computationally
expensive models, the form of thermal model we choose provides
an efficient approximation of the true thermal history that we find
can be reliably used, through our data-driven model, to predict
resulting material properties. To further improve the accuracy of
temperature predictions, rather than increasing model fidelity, it is
important to better characterize boundary conditions and surface
parameters. For example, the convective heat transfer at all
surfaces and the temperature-dependent radiative emissivity of
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the material have an impact on the computed thermal histories;
the emissivity also affects the interpretation of IR camera data
used for calibration and validation of the simulations.

With enough microstructural data for training, the CNN could in
principle be extended to predict microstructure information such
as primary dendrite arm spacing based on thermal histories.
However, dendrite spacing is measured from the SEM character-
ization images of experimental samples, which is expensive and
time-consuming, and sufficient data is unavailable. We also
observed defects, including pores, in SEM images. Pore formation
is expected to be highly related to thermal history and can affect
mechanical properties, as demonstrated in our prior work>2.
Further study could incorporate the porosity information into the
data-driven model to investigate this process-structure-properties
relationship; currently, the effects of porosity are captured
indirectly through the CNN relating temperature to properties.

The proposed data-driven CNN framework has great potential
for predictions of mechanical properties for complex parts built
with AM and provides physical insights on thermal effects on
microstructure and mechanical properties. Our findings indicate
that the entire temperature-time history, which can be approxi-
mated through validated thermal simulation, influences mechan-
ical properties. This approach and the insights gained through it
can provide valuable information in the design and improvement
of DED and other AM processes.

METHODS

DED experiment setup and material

Single-track thin walls of Inconel 718 were deposited via DED onto
stainless steel 304 substrates using a hybrid additive and subtractive DMG
MORI Lasertec 65 machine equipped with an in situ infrared melt pool
monitor. The walls were produced using three different process conditions
to vary the solidification and cooling rates between different cases: 80 mm
long walls (Case A), 120 mm long walls (Case B), and 120 mm long walls
with a 5s inter-layer dwell time (Case C). Three repeated experiments are
conducted for each case. Each wall is built with 120 layers. The laser power
is 1800 W, and the laser scan speed is 16.7 mm s~ for all builds. The design
of the laser tool path in the experiment is shown in Supplementary Fig. 1b.
The powder mass flow rate is 0.3 g s~ ' with a powder focus radius of 3 mm.
For Case C, after the deposition of each layer, a 5s dwell time (a pause in
the build) is applied before beginning the next layer, allowing for
additional cooling.

IR thermal measurement and calibration

In the deposition process, a FLIR A655sc digital IR camera was used to
capture thermal images of the thin wall during deposition. The resolution
of the camera is 640 x 480 pixels, and the spectral range is from 7.5 to
14.0 um with an accuracy of +2°C. The IR camera recorded the infrared
radiation during the process; temperature measurements were then
obtained from the raw IR radiation data by calibrating the emissivity at the
measured points. The signals from IR cameras are related to material
emissivity, surface condition, and detector efficiency. In order to accurately
convert emission temperature to absolute temperature, the emissivity of
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the material must be determined. The emission temperature is calibrated
using the discontinuities observed at the start and end of the liquidus-
solidus transition region. Additional details of emissivity calibration are
given in ref. %2,

Mechanical properties measurement

Coupon specimens were cut via wire EDM for each wall, and measure-
ments were performed for modulus, UTS, yield stress, yield strain, failure
stress, and failure strain. The miniaturized ASTM E8 tensile specimens were
cut with test direction in the build (z) direction and were manufactured
from 9 different locations on each 80 mm wall (Case A) and 12 different
locations on each 120mm wall (Cases B and C). The temperature
monitored by the IR camera and the locations of coupon specimens for
tensile tests are shown in Supplementary Fig. 1 for reference; Supplemen-
tary Fig. 1d shows locations of coupon specimens in Case A, while
Supplementary Figure 1e shows the locations of specimens in Cases B and
C. The sizes of tensile test specimens are shown in Supplementary Fig. 8.
The nominal dimensions of the gage section are 0.8 mm thick by 1.2 mm
wide by 2.5mm long. The tensile tests were conducted under displace-
ment control until fracture with a pull rate of 0.02 mm s~ on a Sintech 20
G tensile test machine. More details of tensile tests and coupon
dimensions can be found in ref. 7. A typical stress-strain curve for one
sample of Case A is provided in Supplementary Fig. 9 for reference. The
yield stress, failure stress, UTS, and Young’'s modulus are measured from
the stress-strain curve.

Microstructure characterization

Subsets of the tensile specimens from selected wall locations were cut,
mounted, and polished to a 0.02 um finish with non-crystallizing colloidal
silica on a vibratory polisher. Microstructures at two faces of samples were
observed, normal to the build direction and the scan direction, with a FEI
Quanta 650 scanning electron microscope (SEM) with secondary electron
(SE), backscatter electron (BSE), and energy-dispersive x-ray spectroscopy
(EDS) detectors. Binarization and analysis of the SEM images were
performed by ImageJ Software”’.

Thermal model

The thin-wall builds are simulated using a finite element model. The
thermal history during the DED process is calculated by solving the heat
conduction equation in the following form:

0Co O (x,6) = V- q(x. 1 )

where p is the material density, C, is the specific heat capacity, T is
temperature, t is time, q is heat flux, and x is the spatial coordinate.
The heat flux vector in Eq. (5) is assumed to be given by Fourier's law:

q=—kVT (6)

where k is the thermal conductivity of the material, modeled as isotropic
(so that k is a scalar). The thermal properties of Inconel 718, namely the
specific heat capacity and thermal conductivity, are taken as
temperature-dependent with values listed in Supplementary Table 10.
Properties at temperatures between those in the table are calculated by
linear interpolation.

The thermal model does not consider fluid flow in the melt pool, or any
resulting convection or surface motion. Surface tension, Marangoni forces,
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buoyancy, viscosity, and recoil pressure due to evaporation are thus all
neglected. The model also ignores chemical element diffusion, chemical
reaction, material composition change, and microsegregation of solutes
during solidification.

Initial and boundary conditions

The initial condition for the thin wall deposition and substrate is a constant
temperature:

T(x,t0) = Teo 7)

where T, is the ambient air temperature. The boundary condition
describes the heat flux at the surface of the domain, which includes the
heat loss due to radiation, convection, evaporation, and heat source from
laser. The general form of the heat flux boundary condition is

9 N =Gpaq + Geony + qevap + Qlaser on rq @)

where I, is the boundary surface with normal vector n, g4 represents the
radiative heat flux applied on all exposed surfaces of the thin wall and
substrates, geony is the heat flux due to convection on all surfaces (free
convection with constant coefficient on the bottom of the substrate, and
forced convection with spatially varying coefficient on the surface of the walls
and other surfaces of substrate), Geyap is the heat flux due to evaporation, and
Giaser IS the laser heat flux that is applied on the exposed surfaces of the thin
wall and the top surface of the substrate. Note that the exposed surfaces
change throughout the build process as the material is added. During the
simulated build, elements representing newly added material are activated
on a schedule determined by the laser path. Only active elements are
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considered in the computation, and the above boundary condition is applied
at the outer boundary of the active domain at each time step.

The heat flux boundary condition due to radiation exchange with the
ambient surroundings is applied on all exposed surfaces of the thin wall
and substrate:

Grag = €0(T* = T2) 9)

where ¢ is the material emissivity and o is the Stefan-Boltzmann constant.
The heat flux due to convection is

Geonv :h(X,y,Z)(T—Tm) (10)

where h is the heat convection coefficient, x, y, and z are the coordinates
of the point of interest. At the bottom surface of the substrate, constant
free convection is applied with a convection coefficient of T0W m—2K™’
to approximate free convection in air'>7>~78, At the exposed surfaces of
thin wall and the top surfaces of the substrate, we use the same
form of spatially varied heat convection coefficient model as ref. 3. The
spatially varying convection model presented in ref. 3 accounts for
the effects of forced convection caused by the shield and carrier gas
flows in the DED process. The heat convection coefficient on the wall
surfaces is in the form:

(0107 o= 40— 5 z=z)) "
hwa”(xyy’z):{(—2.0Az+15)e ( b Hen’) g0 Az < 7.0mm
10 Az>7.0mm
(11)
where Az is the vertical distance from the top surface of the wall
to the point of interest, x, y, and z are the coordinates of the point of
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interest, and xp, ¥, and z, are the coordinates of the center of the
laser beam.

Since convection on the vertical surfaces of the thin wall is expected to
be different from that on the horizontal substrate surfaces, a slightly
different model is applied to the substrate®. We also use the same form of
the equation as ref. ® for the convection on the top surface of the substrate
stated below:

_ (0031 ) T e ez
Boupstrate (X, ¥, 2) = 1.9(-2.0Az + 15)e g g *)f) +10 Az <7.0mm
10 Az>7.0mm
(12)
The parameters in both of these expressions for convection coefficient are
calibrated using the DED experiment data.

The heat loss due to evaporative cooling when the material reaches the
evaporation temperature is

(13)

where me,,p is the mass evaporation flux and L, is the latent heat of
vaporization. The mass evaporation flux term in Eq. (13) follows the model
proposed by Anisimov’®:

m,
Meyap = Psat(T) (ﬁ)
gas

where P, is the saturation pressure at temperature T, Ry, is the gas
constant, and my,o is the molar mass of the evaporating species.
Specifically, the saturation pressure P, can be computed by solving the
Clausius-Clapeyron equation’®:

—Ly Mol (1 1 ))
Psat(T) = Paexp| ———— | = — —
sat(T) a P( Rgas T T,

where T, is the boiling point or the evaporation temperature at the
ambient pressure P,.

The laser heat flux boundary condition is applied on the exposed
surfaces of the thin wall and the top surface of the substrate. The
distribution of laser heat source is assumed to follow a Gaussian
relationship in the following form:

e (~2(0c= %0+ v ) + (2 2)7)
—zexp 5
77I'b f’b

Gevap = _mevava

(14)

(15)

(16)

laser =

where n is the laser absorption efficiency, P is the laser powder, and r,, is
the beam radius.
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Simulation cases and integration method

The geometry of the computational domain and meshes are shown in
Supplementary Fig. 1c. The dimensions of the thin walls are listed in
Supplementary Table 1. The dimension of the substrate in each case is
200 mm X 75 mm X 75 mm in the x, y, and z direction. For each case, there
are 120 deposition layers with a layer thickness of 0.5 mm. The laser power
is 1800 W with the laser scan speed of 16.7 mms~'. For Case A, the mesh
contains 174,805 elements with 222,304 nodes; for Cases B and C, 238,613
elements with 300,036 nodes. For each layer, the mesh is discretized to
contain one element in the building direction and six elements through
the width of the wall. One element per layer for thin wall build mesh is
found to be enough for computational accuracy since the depth of the
melt pool is deeper than a single layer in the DED process. The time step
size is 0.12 s for all cases. An element activation method is used to
accommodate material addition during the DED process. The entire mesh
is stored from the beginning of the simulation, but elements representing
as-yet unbuilt material are inactive and not included in the finite element
matrix assembly. Elements are activated according to the laser path and
build schedule; as new elements are activated, the exposed surface on
which boundary conditions are applied is also modified. More details of
the computational approach can be found in ref. °2. An eight-point
Gaussian quadrature scheme (two points in each direction) is used to
evaluate spatial integrals in the finite element weak form. A backward Euler
method is used to discretize the temporal term in Eq. (5). The Newton-
Raphson method is used to solve the resulting equation set, which is
nonlinear because of the radiation terms in Eq. (9).

Thermal history post-processing and cooling/solidification
rates

During the AM process, the variation of mechanical properties is significant
due to different thermal histories. To study the correlation between
cooling time and mechanical properties (e.g. Fig. 6a-d), we extract a
reduced set of data features from each thermal history by dividing each
thermal history into different temperature ranges with 25K intervals and
then calculating the cumulative time spent in each temperature range
after solidification (see Supplementary Fig. 4). Since we mainly focus on the
thermal effects on mechanical properties during the material solidification
period, we only consider the temperature history after the temperature
decreases below the solidus temperature for the final time (the thermal
history in the white area in Supplementary Fig. 4).

It is expected that the cooling rate affects the formation of
microstructure and final mechanical properties?'%®', In this work, we
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calculate the cooling rate as the average slope of the temperature history
between the last crossing of the solidus temperature (1533K) and an
arbitrarily chosen temperature of 1450K for all probed points. We
calculated the cooling rate just after the last thermal cycle through the
temperature range of 1533-1450 K, because it is expected that the last
solidification event at a point will be most important in the resulting
microstructure. An example of the cooling rate calculation is shown in
Supplementary Fig. 10.

Since the primary dendrite arm spacing is related to the solidification
rate and thermal gradient, we calculated the solidification rate from the
simulated temperature fields as shown in Supplementary Fig. 11. The
solidification rate is in the direction of the normal vector to the surface of
the liquid-solid interface, which is divided by the red and orange colors.
The solidification rate V; can be calculated by V; = V cos 6, where V is laser
scan speed, and O is the angle between laser scan direction and the
direction of the normal vector to the liquid-solid interface. Since each point
in the thin wall undergoes repeated thermal cycles, we only focus on
process-structure properties during the solidification period and calculate
the solidification rate at the last solidus temperature for the location.

Convolutional neural network

We use the 1D CNN to extract features from thermal histories and predict
mechanical properties, including UTS, vyield stress, failure stress, and
modulus. The input of the CNN model is the thermal history at a given
location in the form of a series of temperature values at regularly spaced
points in time. The output is mechanical properties for corresponding
locations. Since the IR-measured temperature does not capture the
temperature through the important initial solidification range accurately,
as shown in Fig. 2, we use simulated thermal histories instead of
experimental data as input in the model. To prepare the thermal history
curve at each sample point, we define the initial time t=0 as the time
when the laser spot first reaches that location for each temperature history,
i.e, when the material is first added at that location. Note that it is
convenient to load each set of input data with the same size in the CNN.
We pad the data to a uniform maximum time using a linear extrapolation
down to the final constant ambient temperature, as shown in Supple-
mentary Fig. 12. To reduce the computational cost, we sample every 10th
point from the original data so that points are separated by a time interval
of At =1.2's. We find that 1000 points provide enough resolution to define
the temperature history curve accurately.

The CNN architecture used in this paper starts with three convolutional
blocks as shown in Fig. 7. For each convolutional block, 32, 64, and 64
filters with 5x 1 kernel size is chosen for the first, second, and third
convolutional layer. Max-pooling layer with filter size of 2 x 1 is applied in
each convolutional block, and a rectified linear unit (ReLU) activation is
used for all convolutional and fully connected layers. The extracted
information from previous convolutional blocks are flattened and fed to
two fully connected layers with 100 and 80 neurons, respectively. The
input data size is 1000, which is the length of the series of temperature
values in time. The output size is 1. Both the input and output data are
min-max normalized before loading into the CNN training. The Adam
optimizer is used in training to minimize the mean squared error (MSE). An
early stopping method is applied to prevent overfitting. The patience of
the early stopping is 100 epochs, which means that the training will stop if
the validation loss does not improve after 100 epochs. The data set is split
into 70% for training and 30% for testing, and the test data is used to
measure validation loss.

The MSE is defined in the following format:

n

1 02
MSE =% (v~ J) (17)

i=1

To evaluate the performance of the CNN structure, the R? score is
calculated based on the difference between predicted and measured UTS:

RR—1_ i i —yf);
Y vi—y)

where J; is the predicted value of the ith sample, y; is the actual value of
the sample, y is the mean of all actual data and n is the number of samples.
The larger the R? the better the prediction.

In this work, a grid search is applied to tune the hyperparameters in the
CNN. A CNN consists of convolutional layers, pooling layers, and fully
connected layers. In the convolutional layer, the hyperparameters include
the number of filters, kernel size, and stride numbers. For the pooling layer,

(18)
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the hyperparameters include the filter size, padding, and stride numbers.
We also need to decide the number of convolutional blocks, the number of
fully connected layers, and the number of neurons per layer. For
hyperparameter tuning, we search for the number of convolutional blocks
and filter size with a pre-chosen kernel size of five and a stride size of one.
The number of convolutional blocks varies from two to five and the filter
size varies from 32 to 256. We also search for the number of hidden layers
in the fully connected layers and the number of neurons per layer, with
hidden layer numbers varying from one to five, and the number of
neurons varying from 10 to 100 with a step of 10. The performance of each
CNN structure is evaluated based on the R? score.
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