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1 INTRODUCTION

1.1 Motivation

Topological modular forms (��	) are ubiquitous in algebraic topology and homotopy theory. The

goal of this paper is to compute the ��	-homology of two spaces, namely, ℝ�2 and ℝ�2 ∧ ℂ�2,

and to determine the differentials and extensions in their elliptic spectral sequences.

We approach this problem from the point of view of stable homotopy theory. As is common,

we let �(0) denote the cofiber of multiplication by 2 on the sphere spectrum. Then

�(0) ≃ Σ−1Σ∞ℝ�2

and, via the suspension isomorphism, computing ��	∗�(0) ≅ �∗��	 ∧ �(0) is equivalent to

computing the ��	-homology of ℝ�2. Similarly, let � be the smash product of �(0) with ��,

the cofiber of the stable Hopf map �. Then

� ≃ Σ−3ℝ�2 ∧ ℂ�2

and computing ��	∗� is equivalent to computing the ��	-homology ofℝ�
2 ∧ ℂ�2. In this paper,

we compute the elliptic spectral sequence for both ��	 ∧ �(0) and ��	 ∧ �. From this computa-

tion, we deduce ��	∗�(0) and ��	∗� and provide information about theirmodule structure over

��	∗. In particular, we resolve all exotic 2, �, 
 extensions as as compute the effect of �1-self maps

of � on ��	∗�. Note that determining the ��	∗-module structure is much less straightforward

than a simple degree-wise computation of ��	∗�(0) or ��	∗�.

Knowing the homology of basic spaces is part of a full understanding of any generalized homol-

ogy theory. So, we see these computations as having independent and fundamental interest. They

are, at the very least, an addition to the slim bank of examples of computations in ��	-homology

theory of spaces and finite spectra.

However, ourmotivation for doing this runs deeper and this computation is part of amore ambi-

tious program, coming from chromatic homotopy theory. Specifically, our main goal in doing this

computation is not just to understand the structure of ��	∗�(0) and ��	∗� as ��	∗-modules,

but more-so to fully compute their elliptic spectral sequences. To explain this, we let�(2) denote the

Morava �-theory spectrum and �2 the Lubin–Tate spectrum (also often called Morava �-theory).

In the sequence of papers [22–26, 28, 29], Goerss, Henn, Karamanov,Mahowald, and Rezk carry

out a program for studying �(2)–local homotopy theory at � = 3 using the theory of finite reso-

lutions. These are sequences of spectra built from the �(2)-localization of ��	 (and ��	 with

level structures) that resolve the �(2)-local sphere. Finite resolutions give rise to Bousfield–Kan

spectral sequences. Let us call these finite resolution spectral sequences. The input is �(2)-local

��	-homology, possibly with level structures, and the output is�(2)-local homotopy groups. The

ultimate goal is to use finite resolutions to compute �∗��(2)�
0, but an intermediate step is the

computations of the homotopy groups of ��(2)� for some key finite spectra �, such as the prime 3

Moore spectrum �(0) [29] and the cofiber of its �1-self map, commonly denoted �(1) [23]. So, to

use the finite resolution approach to �(2)-local homotopy, a key input is �∗��(2)(��	 ∧ �). This

can be computed via the �(2)-local �2-based Adams–Novikov spectral sequence (which can also

be cast as a homotopy fixed point spectral sequence). This spectral sequence receives a map from

the elliptic spectral sequence of ��	 ∧ �. Understanding the elliptic spectral sequence of ��	 ∧ �

thus provides key input for �(2)-local computations.
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Recently, there have been significant advancements towards carrying out an analogous pro-

gram at the prime � = 2 (see [3, 4, 8, 14]). But the program is still in progress. For example, the

only complete computation of the�(2)-local homotopy groups of a finite spectrum at � = 2 is the

computation of�∗��(2)� for � ∈ , where is the class of Bhattacharya–Egger spectra admitting

a �2-self map (see [10, 11] and also [5]). Themotivation for this project is to add to this bank of com-

putations, namely, to study ��(2)�(0), ��(2)�, but also ��(2) 1 where  1 is the cofiber of a �1-self

map of �. For this, we found the need to understand the elliptic spectral sequence of ��	 ∧ �(0),

��	 ∧ � and ��	 ∧  1. In [33], the third author computes a�(2)-local �2-based Adams–Novikov

spectral sequence converging to �∗��(2)(��	 ∧  1). From this computation, one can deduce that

of the elliptic spectral sequence of ��	 ∧  1.

Here, we study the elliptic spectral sequences of ��	 ∧ �(0) and ��	 ∧ �. For � either �(0)

or �, ��	∗� = 0 for ∗< 0 and ��	∗� is determined by its values in the range 0 ⩽∗< 192. In this

paper, we obtain the following result, where the definition of what we mean by exotic extensions

is given in Definition 2.20.

Theorem 1.1. The elliptic spectral sequence for ��	 ∧ �(0) is depicted in Figures 4–7 and [6].

��	∗�(0) ≅ �̃�	∗+1ℝ�
2,

together with all exotic 2, � and 
 extensions in the corresponding elliptic spectral sequence is as

displayed in Figures 8 and 9 in degrees 0 ⩽∗< 192.

Similarly, the elliptic spectral sequence for ��	 ∧ � is depicted in Figures 14–20 and [7].

��	∗� ≅ �̃�	∗+3ℝ�
2 ∧ ℂ�2,

together with all exotic 2, � and 
 extensions and almost all exotic �1-extensions in the cor-

responding elliptic spectral sequence is as displayed in Figures 22 and 23 in degrees 0 ⩽∗< 192. In

particular,

2(�̃�	∗(ℝ�
2 ∧ ℂ�2)) = 0.

Remark 1.2.

(1) In addition to charts in this paper, large, full range charts of the elliptic spectral sequences

can be found in [6, 7].

(2) Computing exotic extensions in this sense of Definition 2.20 can (and does in some places

here) leave ambiguity about the module structure. However, this definition of exotic exten-

sions, which we borrowed from [30], is very standard in these kinds of large spectral sequence

computations.

1.2 Methods and comparison with existing work

To say a fewwords about our techniques, themajor input in our computation is the elliptic spectral

sequence of ��	, which was first computed by Hopkins and Mahowald [21, chapter 15], and later

by Bauer [2]. The computation of the spectral sequence for ��	∗�(0) is straightforward given

that data, while that of ��	∗� is more intricate. The technique we use for the latter relies on
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an observation of the third author from [33]. For both �(0) and �, computation of the exotic

extensions requires work and new input. Several techniques are used to achieve this, and themost

interesting among these is probably the Brown-Comenetz ‘self-duality’ of ��	∗�(0) and ��	∗�

(see Theorem 2.7).

In [19], Bruner and Rognes do a thorough investigation of the classical Adams sequence of

��	 and some of its modules. (Note that the study of the classical Adams spectral sequence of

��	 probably goes back to Hopkins and Mahowald, and later to Henriques in [21, chapter 13].)

Among many other topics, including duality for topological modular forms which is relevant for

our approaches, they study the classical Adams spectral sequence of ��	 smashed with many

finite spectra, including a study of ��	 smashed with �(0). In particular, they also compute

��	∗�(0), determining all but a few 2, �, 
-multiplications as well as �4
1
-multiplications. Here,

we deliberately use the word multiplication in contrast to the word extension discussed above to

emphasize that Bruner–Rognes name all classes, which leads them to a more precise determina-

tion of multiplicative relations. During the writing of this paper, Bruner and Rognes shared their

charts and an advanced copy of some of the chapters of their book with us. However, our results

were obtained independently from theirs and via different methods. So, the two approaches com-

plement one another. We also use a few results on the classical Adams spectral sequence of ��	∗
which we verified against both [21, chapter 13] and [19, Chapters 5 and 9]. Furthermore, [19, The-

orem 10.6] gives the key result on Brown–Commenetz duality for ��	 (see Theorem 2.7), which

we use to resolve extensions.

Finally, we reiterate that for our applications, namely, as an input in the finite resolution

approach to �(2)-local homotopy theory, it is important to understand specifically the elliptic

spectral sequence instead of the classical Adams spectral sequence because of its close relation-

ship to the homotopy fixed point spectral sequence, a key tool in chromatic homotopy theory (see

the discussion above).

1.3 Organization of the paper

In Section 2, we discuss the elliptic spectral sequences and other key tools used later in the paper.

In Section 3, we review the computation of the �2-term of the elliptic spectral sequence for ��	 ∧

�(0). In Section 4, we compute the differentials and some exotic extensions. In Section 5, we turn

to the computation of the �2-term of the elliptic spectral sequence for ��	 ∧ � and in Section 6,

we compute the differentials and exotic extensions.

2 BACKGROUND

Conventions 2.1. In this paper, all spectra are 2-local, in particular we will write ��	 to mean

��	(2). All spectral sequence charts are drawn in Adams notation: for a spectral sequence �
#,�
2
=

Ext#,�(…) the $-axis represents � − # and the %-axis represents #.

2.1 (co)Truncated spectral sequences

In Section 6, we will use the (co-)truncation of the spectral sequence associated to a tower of

cofibrations. We will now recall the constructions and their basic properties. Let
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be a tower of cofibrations of spectra. Let (�∗,∗& , '&)&⩾1 be the associated spectral sequence.

Let -/∕-6 be the cofiber of the evident map -6 → -/ . For any 6 ∈ ℕ, there is a tower of

fibrations, which we call the 6-truncated tower:

We denote the terms of the resulting spectral sequence by �#,�&,<6. This spectral sequence computes

the homotopy groups of

sk6−1-0 ∶= -0∕-6.

There is a natural map from the original tower to the 6-truncated tower. Let

;#,�& ∶ �
#,�
& → �#,�&,<6

be the induced map between the respective �&-terms. Then �
#,�
2,<6

= 0 for # ⩾ 6, while ;#,�
2
is an

isomorphism if # < 6 − 1 and an injection if # = 6 − 1. More generally, we have:

Lemma 2.2. For every & ⩾ 2, the map ;#,�& has the following properties:

(i) ;#,�& is injective for # ⩽ 6 − 1, and

(ii) ;#,�& is bijective for # ⩽ 6 − 1 − (& − 1).

Proof. We prove this by induction on the &. From the above discussion, (i) and (ii) hold for & = 2.

Suppose both hold for some & ⩾ 2.

We prove that (i) holds at �&+1. Let [$] ∈ �
#,�
&+1

be represented by an element $ ∈ �#,�& such

that # ⩽ 6 − 1 and ;#,�
&+1
([$]) = 0. So, ;#,�& ($) is the target of a '&-differential. That is, there exists

% ∈ �#−&,�−&−1&,<6 such that '&(%) = ;
#,�
& ($). Since # − & ⩽ 6 − &, ;

#−&,∗
& is bijective by the induction

hypothesis. It follows that there exists % ∈ �#−&,�−&−1& such that ;#−&,�−&−1& (%) = %. So, by naturality

and the hypothesis that ;#,�& is injective, '&(%) = $. This means that [$] = 0, and hence ;
#,�
&+1

is

injective when # ⩾ 6 − 1.

Now, we prove that (ii) holds at �&+1. Let [$] ∈ �
#,�
&+1,<6

with # ⩽ 6 − & − 1. We need to show

that [$] is in the image of ;#,�
&+1

. By the induction hypothesis, there is a class $ ∈ �#,�& such that

;#,�& ($) = $. It suffices to prove that $ is a '&-cycle. By naturality,

;#+&,�+&−1& ('&($)) = '&(;
#,�
& ($)) = '&($) = 0.

Since '&($) ∈ �
#+&,�+&−1
&,<6 and # + & ⩽ 6 − 1, the induction hypothesis implies that '&($) = 0. □
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Next, we look at the co-truncated spectral sequence. Consider the following tower of fibrations,

which we call the 6-co-truncated tower,

where �0 = ⋯ = �6 = -6 and >0 =⋯ = >6−1 = ��. We denote by �
#,�
&,⩾6 the &-term of the spectral

sequence associated to this tower. There is an obvious map from the 6-co-truncated tower to the

original one. This map induces a map of spectral sequences:

?;#,�& ∶ �
#,�
&,⩾6 → �#,�& .

We observe that �#,�&,⩾6 = 0 for # < 6, and that ?;
#,∗
2

is a bijection for # ⩾ 6 + 1 and a surjection for

# = 6. The following lemma is proved as in Lemma 2.2.

Lemma 2.3. For every & ⩾ 2, the map ?;#,�& has the following properties:

(i) ?;#,�& is surjective for # ⩾ 6, and

(ii) ?;#,�& is bijective for # ⩾ 6 + & − 1.

2.2 The elliptic spectral sequence

In this section, we will introduce our main spectral sequence. Let

( , Λ) = (ℤ[B1, B2, B3, B4, B6],ℤ[B1, B2, B3, B4, B6, #, &, �])

with

|B/| = 2/, |&| = 4, |#| = 2, |�| = 6

be the Hopf algebroid of Weierstrass elliptic curves. Then the elliptic spectral sequence has the

form [2]

�#,�−#
2

= Ext#,�
Λ
( , )⟹ ��−#��	.

Consider the map

Ω�G(4) → Ω�G ≃ HG

induced by the usual inclusion �G(4) → �G. Let -(4) be the Thom spectrum of the associated

virtual vector bundle overΩ�G(4). These spectra play a crucial role in the study of nilpotence and

periodicity in chromatic homotopy theory, in particular, in the work of Ravenel [36]. As outlined

in [21, chapter 9], the elliptic spectral sequence is the -(4)-based Adams spectral sequence for

��	 (see also [37]).
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Let us spell this out. We let I = ��	 and � = ��	 ∧ -(4). Then

� ∧I � ≃ ��	 ∧ -(4) ∧ -(4).

Let � be the fiber of the unit map I → �. For any ��	-moduleJ, one can construct the Adams

tower

by splicing together the cofiber sequences

�
∧I(6+1)

∧I J → �
∧I6

∧I J → � ∧I �
∧I6

∧I J.

We abbreviate

-K ∶= �
∧IK

∧I J ≃ -(4)
∧K
∧J,

LK ∶= � ∧I �
∧IK

∧I J ≃ -(4) ∧ -(4)
∧K
∧J,

where -(4) is the fiber of the unit map �0 → -(4). As a consequence, the associated spectral

sequence is identified with the -(4)-based Adams spectral sequence forJ.

However, we have that the Hopf algebroid

(�∗(�), �∗(� ∧I �)) = (�∗(��	 ∧ -(4)), �∗(��	 ∧ -(4) ∧ -(4)))

is isomorphic to ( , Λ). In particular, it is flat. Therefore, the �2-term of the associated spectral

sequence is identified with

�#,�(J) ≅ Ext#,�
Λ
( , �∗(� ∧I J)). (2.4)

See [1]. WhenJ = ��	, this is precisely the elliptic spectral sequence, and more generally, this

is the elliptic spectral sequence for the ��	-moduleJ.

By [15, Theorem 6.5], since -(4) is connected and �0(-(4)) ≅ ℤ, if J is connective, then

�-(4)J ≃ J and the spectral sequence (2.4) converges strongly in the sense of [13] to �∗(J). In

this paper, we will be working with modulesJ of the form ��	 ∧ � (where � = �(0) or �) and

with the elliptic spectral sequence which reads as

�#,�−#
2

= Ext#,�
Λ
( , �∗(��	 ∧ -(4) ∧ �))⟹ ��−#(��	 ∧ �).

To simplify the notation, we put

∗(�) ∶= �∗(��	 ∧ -(4) ∧ �)

noting that this is a Λ-comodule.
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The spectra we will be working with in this paper are 2-local. As described in [2, section 7], one

can simplify the computation of the cohomology of the Weierstrass Hopf algebroid

( (2), Λ(2)) ≅ ( ⊗ ℤ(2), Λ ⊗ ℤ(2))

as follows. Let ′ denote ℤ(2)[B1, B3] and 	∶  →  ′ the evident projection. LetΛ′ denote ′ ⊗ 

Λ⊗  
′, which is isomorphic to  ′[#, �]∕∼, where the relations ∼ are generated by

#4 − 6#� + B1#
3 − 3B1� − 3B3# = 0

#6 − 27�2 + 3B1#
5 − 9B1#

2� + 3B21#
4 − 9B21#� + B

3
1#
3 − 27B3� = 0.

The map between Hopf algebroids

	∶ ( (2), Λ(2)) → ( ′, Λ′)

induces an equivalence of the associated categories of comodules [2, sections 2 and 7], where

R ↦  ′ ⊗ (2)
R

for an ( (2), Λ(2))-comodule R. When � is the 2-localization of a finite spectrum, the �2-term of

the elliptic spectral sequence for

��	 ∧ � ≃ ��	(2) ∧ �

is isomorphic to

�#,�
2
(��	 ∧ �) ≅ Ext#,�

Λ′
( ′,  ′ ⊗ ∗(�)).

Remark 2.5. The spectrum ��	 ∧ -(4) is a complex oriented ring spectrum (for example,  =

�∗(��	 ∧ -(4)) is concentrated in even degrees). Let us denote by

T∶ JG → ��	 ∧ -(4)

the map of ring spectra inducing the complex orientation of ��	 ∧ -(4) given by the comple-

tion of the universal Weierstrass curve at the origin. Then T induces a homomorphism of Hopf

algebroids

T∗ ∶ (JG∗,JG∗JG) → ((��	 ∧ -(4))∗, (��	 ∧ -(4) ∧ -(4))∗) = ( ,Λ).

Recall that JG∗ ≅ ℤ[$1, $2, …] with |$/| = 2/ and JG∗JG ≅ JG∗[�1, �2, …] with |�/| = 2/.
We note thatT∗($1) = ±B1. This is discussed in [2, (3.2)].

The map T also induces a map from the Adams–Novikov spectral sequence for �∗(�) to the

elliptic spectral sequence for �∗(��	 ∧ �), which converges to the Hurewitz map ℎ∶ �∗(�) →

�∗(��	 ∧ �). Moreover, the induced map at the �2-term is induced byT∗.
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2.3 Duality

In this section, we discuss Brown–Comenetz duality for ��	. This will be used for determining

some of the exotic extensions in our spectral sequences. First, we introduce the following notation.

Notation 2.6. Let be a gradedmodule over a graded commutative ring � and $ ∈ �. We let Σ& 

be themodule determined by (Σ& )� =  �−&. We denote by Γ$ the $-power torsion of , that is,

Γ$ = {� ∈  ∣ $/� = 0, / ≫ 0},

and by  ∕($∞) the module that fits into the exact sequence of �-modules

 →  
[
1

$

]
→  ∕($∞) → 0.

We will also denote by  ∨ the Pontryagin dual of  , that is,

( ∨)∗ = Hom(( )−∗,ℚ∕ℤ)

with the �-module structure given by (&.	)(�) = (−1)|&||	|	(&�) for every & ∈ �|&|, 	 ∈ ( 
∨)|	|

and� ∈  |�|.
Now suppose that I is a commutative ring spectrum (for example, I = ��	) and J is a I-

module. For any $ ∈ �∗(I), we defineJ[
1

$
] to be

J
[
1

$

]
= hocolim(J

$
→̂ Σ−|$|J

$
→̂ Σ−2|$|J

$
→̂ …).

We defineJ∕($∞) to be the cofiber of the natural mapJ → J[ 1
$
]. Inductively, if ($1, $2, … , $6)

is a sequence of elements of �∗I, then we define

J∕($∞1 , $
∞
2 , … , $

∞
6 ) = (J∕($

∞
1 , $

∞
2 , … , $

∞
6−1))∕($

∞
6 ).

With this notation, using the long exact sequence on homotopy groups, we see that the cofiber

sequence

J → J
[
1

$

]
→ J∕($∞)

gives rise to the short exact sequence of �∗(I)-modules

0 → �∗(J)∕($
∞) → �∗(J∕($

∞)) → Γ$(�∗−1(J)) → 0.

Let Lℚ∕ℤ be the spectrum representing the Pontryagin dual of stable homotopy groups, so that

for a spectrum -,

L
_

ℚ∕ℤ
(-) ∶= Hom(�_-,ℚ∕ℤ).

Then the Brown–Comenetz dual of a spectrum - is defined to be

Lℚ∕ℤ(-) = �(-, Lℚ∕ℤ).
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The literature contains a variety of references and methods for studying dualities of ��	 and

related spectra. To name a few, we note work of Mahowald and Rezk [31], Stojanoska [39, 40],

Greenlees [27], and Bruner and Rognes [19, chapter 10].

Recall that throughout this paper ��	 denotes the 2-localization ��	(2), according to

Conventions 2.1.

Theorem 2.7 [19, Theorem 10.6]. There is an equivalence of ��	-modules

Lℚ∕ℤ(��	∕(2
∞, ?∞4 , ∆

∞)) ≃ Σ20��	.

Remark 2.8. Here and below, by ‘−∕∆∞’, we really mean ‘−∕(∆8)∞’ as ∆ is an element of the �2-

term of the elliptic spectral sequence but it does not survive to the �∞-term. However, ∆
8 survives

and detects a class in �192��	. Note also that the class ?4 ∈ �8��	 reduces to �
4
1
∈ ��	 ∧ �(0)

and so ?4-power torsion is the same as �1-power torsion when the latter makes sense.

Corollary 2.9. There are equivalences of ��	-modules

(1) Lℚ∕ℤ(��	 ∧ �(0)∕(2
∞, ?∞

4
, ∆∞)) ≃ Σ19��	 ∧ �(0), and

(2) Lℚ∕ℤ(��	 ∧ �∕(2
∞, ?∞

4
, ∆∞)) ≃ Σ17��	 ∧ �.

Lemma 2.10. For  = ��	 ∧ �(0) or ��	 ∧ �, ∆8 acts injectively on (�∗)∕(?
∞
4
).

Remark 2.11. The proof makes use of the structure of the �∞-terms of the elliptic spectral

sequences (see Figures 8, 9, 22, and 23 and, for a single large chart, [6, 7]). So, this is a bit premature

but we want to have this result here to gather all our techniques in one place. We note that the

logic of the argument is not circular as the determination of the �∞-terms does not require this

lemma; it is needed in the proof of Corollary 2.12, which will be used to establish exotic extensions

in the elliptic spectral sequences.

Proof of Lemma 2.10. In this proof, write J = �∗ and J = �∗∕Γ?4(�∗). For any �∗��	-

module R, write ;∆8(R) to denote the submodule consisting of elements that are ∆
8-torsion.

Our goal is to show that ;∆8(J∕?
∞
4
) = 0. But the quotient map J → J induces an

isomorphismJ[?−1
4
]
≅
→̂ J[?−1

4
], and hence an isomorphism

J∕?∞4
≅
→̂ J∕?∞4 .

So, it is equivalent to prove that ;∆8(J∕?
∞
4
) is zero, and we show that below.

The snake lemma applied to the diagram

gives an exact sequence

;∆8(J[?
−1
4 ]) → ;∆8(J∕?

∞
4 ) → J∕∆8 → J[?−14 ]∕∆

8
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Therefore, if

(1) ;∆8(J[?
−1
4
]) = 0, and

(2) J∕∆8 → J[?−1
4
]∕∆8 is injective,

then we can conclude that ;∆8(J∕?
∞
4
) = 0.

We will explain why the conditions (1) and (2) hold for  = ��	 ∧ �. The argument for ��	 ∧

�(0) is more cumbersome, but can be adapted from this one.

All classes of �∗(��	 ∧ �) detected in positive filtration in the elliptic spectral sequence are

?4-power torsion. Indeed, they are ?4-power torsion at �∞ and the spectral sequence has a hori-

zontal vanishing line. All elements in filtration zero are ?4-free. From this, it follows that the edge

homomorphism J → �0,∗∞ (to the zero line of the spectral sequence) induces an isomorphism

J ≅ �0,∗∞ . But �0,∗∞ is a free module over b2[?4, ∆
8] and so the conditions (1) and (2) follow. □

Corollary 2.12. We have the following isomorphisms of �∗��	-modules

(1) Γ?4(�∗(��	 ∧ �(0))∕(∆
∞))∨ ≅ Γ?4(�∗−21(��	 ∧ �(0))), and

(2) Γ?4(�∗(��	 ∧ �)∕(∆
∞))∨ ≅ Γ?4(�∗−19(��	 ∧ �)).

Proof. In this proof, we let  = ��	 ∧ �(0). Since �∗ is 2-power torsion, we have [1∕2] ≃∗.

Thus,

∕(2∞) ≃ Σ . (2.13)

The long exact sequence in homotopy associated to the cofiber sequence

∕(2∞) → ∕(2∞)

[
1

?4

]
→ ∕(2∞, ?∞4 ),

gives an exact sequence

0 → (�∗∕(2
∞))∕(?∞4 ) → �∗(∕(2

∞, ?∞4 )) → Γ?4�∗−1(∕(2
∞)) → 0. (2.14)

By (2.13), we have

(�∗(∕(2
∞)))∕(?∞4 ) ≅ (�∗−1)∕(?

∞
4 )

and

Γ?4(�∗−1(∕(2
∞))) ≅ Γ?4(�∗−2).

Since ∆8 acts injectively on �∗ , it also acts injectively on Γ?4(�∗−2). Moreover, ∆
8 acts injec-

tively on (�∗)∕(?
∞
4
) by Lemma 2.10. The short exact sequence (2.14) then shows that ∆8 acts

injectively on �∗(∕(2
∞, ?∞

4
)). Therefore, we have that

�∗(∕(2
∞, ?∞4 , ∆

∞)) ≅ (�∗∕(2
∞, ?∞4 ))∕(∆

∞).

The 9-lemma then implies that the following is a short exact sequence of �∗��	-modules:

0 → (�∗−1)∕(?
∞
4 , ∆

∞) → �∗(∕(2
∞, ?∞4 , ∆

∞)) → Γ?4(�∗−2)∕(∆
∞) → 0. (2.15)
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By applying Hom(−,ℚ∕ℤ) to this exact sequence, we obtain

0 → (Γ?4(�∗−2)∕(∆
∞))∨ → �∗(∕(2

∞, ?∞4 , ∆
∞))∨ → ((�∗−1)∕(?

∞
4 , ∆

∞))∨ → 0,

is an exact sequence of �∗��	-modules.

We see that the right most term is ?4-free and the left most term is ?4-torsion. In particular, it

follows that

(Γ?4(�∗−2)∕(∆
∞))∨ ≅ Γ?4(�∗(∕(2

∞, ?∞4 , ∆
∞))∨)

≅ Γ?4(�∗Lℚ∕ℤ(∕(2
∞, ?∞4 , ∆

∞))),

where the second isomorphism comes from the definition of the Brown-Comenetz dual

Lℚ∕ℤ(∕(2
∞, ?∞

4
, ∆∞)). Together with Corollary 2.9, we obtain an isomorphism of �∗��	-

modules

(Γ?4(�∗)∕(∆
∞))∨ ≅ Σ2(Γ?4(�∗−2)∕(∆

∞))∨

≅ Σ2Γ?4�∗(Lℚ∕ℤ(∕(2
∞, ?∞4 , ∆

∞)))

≅ Σ2Σ19Γ?4(�∗)

≅ Σ21Γ?4(�∗).

Substituting  for ��	 ∧ � and this last 19 with 17 gives the result for �. □

Remark 2.16. We will explain how to use Corollary 2.12 to compute extensions. Continue to let

 = ��	 ∧ �(0). Let � denote the kernel of the homomorphism induced by multiplication by ∆8

on Γ?4(�∗)∕(∆
∞). Since multiplication by ∆8 induces an isomorphism

Γ?4(�∗)
≅
→̂ Γ?4(�∗+192) (2.17)

for ∗⩾ 0, we see that, for −192 ⩽ � < 0,

�� ≅ Γ?4(�∗)∕(∆
∞)�.

The snake lemma applied to the following diagram

gives rise to the exact sequence

0 → Γ?4(�∗)
∆8

^̂→ Γ?4(�∗+192) → � → 0.

Note that the injective map is an isomorphism for ∗⩾ 0 and the surjective map is an isomor-

phism for ∗< 0. Using (2.17) again, the homomorphismΓ?4(�∗+192) → � in the above short exact
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sequence induces an isomorphism

Γ?4(�∗)� → ��−192 ≅ Γ?4�∗(∕(∆
∞))�−192

for 0 ⩽ � < 192.

Now let & be an element of �d(��	). If 0 ⩽ K < 192 − d, multiplication by & induces a

commutative diagram

By applying the Pontryagin dual to this commutative diagram, together with Corollary 2.12, we

obtain the commutative diagram

As a consequence, the cardinality of the image of

&∶ Γ?4(�∗)K → Γ?4(�∗)K+d

is the same as that of

&∶ Γ?4(�∗)171−K−d → Γ?4(�∗)171−K.

In particular, this means that a non-trivial multiplication by & on stem K forces a non-trivial

multiplication by & on stem 171 − K − d.

Similarly, for ��	 ∧ � we obtain that a non-trivial multiplication by & on stem K forces a non-

trivial multiplication by & on stem 173 − K − d.

2.4 The geometric boundary theorem

We also make use of the following result, due to Bruner [17]. A standard reference is [35, Theorem

2.3.4].We apply this theorem to the-(4)-basedAdams–Novikov spectral sequence and the cofiber

sequence

��	 ∧ �0
2
→̂ ��	 ∧ �0

/
→̂ ��	 ∧ �(0)

�
→̂ ��	 ∧ �1.

Using-(4)∗��	 ≅  and-(4)∗(��	 ∧ �(0)) ≅  ∕2, we have-(4)∗� = 0 and hence a short exact

sequence

0 →  
2
→̂  →  ∕2 → 0. (2.18)
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Theorem 2.19 (Geometric Boundary Theorem). There are maps

e& ∶ �
#,�
& (�(0)) → �#+1,�& (�0)

such that

e2 = e∶ �
#,�
2
(�(0)) → �#+1,�

2
(�0)

is the connecting homomorphism arising from (2.18). For all &,

e&'& = '&e&

and e&+1 is induced by e&. Furthermore, e∞ is a filtered form of

�∗ ∶ �∗��	 ∧ �(0) → �∗+1��	.

2.5 Further observations on extensions

Here, we collect a few classical but useful extension results. Note that, in this paper, we use [30,

Definition 2.10] as our definition of an exotic extension. See Subsection 2.1 of that reference for a

detailed discussion. However, briefly, we have

Definition 2.20. [30, Definition 2.10] Let f ∈ �∗��	 be an element detected by B on the �∞-

term of the elliptic spectral sequence for ��	. An exotic extension by f is a pair of elements g and

? on the �∞-term of the elliptic spectral sequence forJ (whereJ is a ��	-module) such that

(1) Bg = 0 on the �∞-term,

(2) there is an element j detected by g such that fj is detected by ?,

(3) if an element j′ detected by g′ is such that fj′ is detected by ?, then the filtration of g′ is less

than or equal to that of g.

Note that this implies that if both fj and fj′ are detected by ? as in Figure 1, there is no exotic

extension from g′ to ?.

Lemma 2.21. Let - be a spectrum. Consider the long exact sequence in homotopy

… → �6-
/
→̂ �6(- ∧ �(0))

�
→̂ �6−1-

2
→̂ …

associated to the cofiber sequence -
2
→̂ - → - ∧ �(0). Let B ∈ �6−1- be an element of order 2. If

B′ ∈ �6(- ∧ �(0)) is such that �∗(B
′) = B, then

2B′ = /∗(�B) ∈ �6- ∧ �(0).

Proof. This is a classical result (see, for example, [8, Lemma 3.1.5]). □

Remark 2.22. Lemma 2.21 will be used with - = ��	 and ��	 ∧ �� where �� is the cofiber of

the Hopf map �∶ �1 → �0. This gives all exotic 2-extensions in the elliptic spectral sequences for

��	 ∧ �(0) and ��	 ∧ �, since � ≃ �� ∧ �(0).
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F IGURE 1 Here, there is no exotic extensions from g′ to ?, and so the dashed line would not be drawn.

Finally, we have the following classical result which is an analogue of Lemma 2.21.

Lemma 2.23. Let g ∈ �6- be such that �g = 0. If g′ ∈ �6+2(�� ∧ -) is such that �∗g
′ = g in the

long exact sequence on homotopy groups associated to

Σ-
�
→̂ -

/
→̂ - ∧ ��

�
→̂ Σ2-,

then �g′ = /∗(
g).

Proof. First, consider g = n ∈ �0�� given by the inclusion �
0 → �� of the bottom cell. We have a

cofiber sequence

��
/
→̂ �� ∧ ��

�
→̂ Σ2��

which is not split because of the non-triviality of �_4 inT∗(�� ∧ ��,ℤ∕2). We get a diagram

For any g′ ∈ �2(�� ∧ ��) such that �∗g
′ = n, we must have �g′ ≠ 0, else we could split the above

cofiber sequence. Since �n = 0, �g′ ∈ /∗(�3��), where �3�� ≅ ℤ∕4{
n}. But in �2��

2
n ∈ ⟨�, 2, �⟩ = ⟨n, �, 2⟩�,

hence 2
 ∈ �∗(�3Σ��) and /∗(2
) = 0 and �g
′ = /∗(
n)



THE TOPOLOGICAL MODULAR FORMS OF ℝ�2 AND ℝ�2 ∧ ℂ�2 1879

For the general case, note that any class g∶ �6 → - such that �g = 0 can be extended to a map

ḡ ∶ Σ6�� → -. The claim then follows from the commutativity of the following diagram

Then g′ = (ḡ ∧ ��)∗n satisfies �g
′ = /∗(
g). Now, suppose that �∗g̃

′ = g. Then g̃′ − g′ ∈ ker �∗ =

im /∗. Therefore, �(g̃
′ − g′) = 0 so, �g̃′ = /∗(
g) as well. □

2.6 Self-maps and their cofibers

It is well-known that �(0) admits �4
1
self-maps, that is, maps Σ8�(0) → �(0)which induce multi-

plication by �4
1
in�(1)-homology for�(1) the firstMorava�-theory. Themap onJG-homology is

given bymultiplication by $4
1
∈ JG8. Under themap from theAdams–Novikov spectral sequence

of �(0) to that of the elliptic spectral sequence of ��	 ∧ �(0), $1 maps to �1 on the �2-term. See

the discussion surrounding (3.3). Any �4
1
self-map is detected by the same-named element. The

spectral sequence inherits an action of �4
1
and the differentials are �4

1
-linear.

Recall that we let � be the spectrum �(0) ∧ ��. In [20], Davis and Mahowald show that there

exist �1 self-maps of �, that is, maps Σ
2� → � which induce multiplication by �1 in �(1)∗�. Any

of these is detected by the element �1 on the �2-term of elliptic spectral sequence for ��	 ∧ � and

the differentials are �1-linear.

In Lemma 6.41, we will be studying the �1-multiplication in ��	∗�. Some of the answers will

depend on the choice of �1-self map, so we give a bit of background here on this subject. This

material can be found in [20].

In [20], the authors show that there are in fact eight �1-self maps of�. They also show that a �1-

self map of � is detected in the Adams spectral sequence by an element of Ext1,3

(T∗(�),T∗(�)),

where denotes the Steenrod algebra at � = 2.

A class of Ext1,3

(T∗(�),T∗(�)) is represented by a short sequence of-modules:

0 → Σ2T∗(�) → J → T∗(�) → 0.

Let (1) be the sub-algebra of the Steenrod algebra generated by �_1 and �_2. We know that

Ext1,3
(1)

(T∗(�),T∗(�)) ≅ b2 and its unique non-trivial class is represented by the short exact

sequence of(1)-module

0 → Σ2T∗(�) →  (1) → T∗(�) → 0,

where  (1) is isomorphic to (1) as an (1)-module, thus the notation. Davis and Mahowald

showed that a class of Ext1,3

(T∗(�),T∗(�))which detects a �1-self map of � is sent to the unique

non-trivial class of Ext1,3
(1)

(T∗(�),T∗(�)) (via the map induced by the inclusion(1) ⊂ ).

To put an-module structure on  (1), it suffices to specify the �_4 action. Indeed, the action

of �_K, for K ⩾ 8 on (1) is trivial for degree reasons. By the Adem relations, there must be a non-

trivial �_4 on the class of degree one of  (1). There are possibilities for a non-trivial action of �_4

on the classes of degrees zero and two, giving rise to four different-module structures on  (1).
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This implies, in particular, that

Ext1,3

(T∗(�),T∗(�)) ≅ b⊕3

2
.

Computing the first three stems of Ext#,�

(T∗(�),T∗(�)), we see that

Ext#,#+2


(T∗(�),T∗(�)) ≅

{
b2 if # = 2

0 otherwise.

We deduce that there are eight homotopy classes of maps Σ2� → � detected in

Ext1,3

(T∗(�),T∗(�)) and mapping non-trivially to Ext1,3

(1)
(T∗(�),T∗(�)). These are the

�1 self-maps of �.

It is somewhat surprising that out of eight �1-self-maps, there are only four homotopy types

which are distinguished by their cohomology, as is shown [20].

The singular cohomology of the cofiber of each of the �1-self maps on � is isomorphic to one

of the four (1)s as an -module. We denote the cofibers realizing the four choices of Steenrod

algebra structure by 1[/y], with /, y ∈ {0, 1}. Here, 1[/y]means that the cohomology of the spec-

trum  1[/y] has a non-trivial �_
4 on the class of degree 0 (if / = 1) or 2 (if y = 1). For more details

and diagrams indicating the Steenrod algebra action, see [12, figure 1]. We use the notation 1, for

short, when we mean any or all of the four models.

3 z|~∗�(�): THE ��-PAGE

From now on, we will be working exclusively with 2-local spectra. We will write ��	 for ��	(2)
to simplify the notation. Furthermore, we will be considering only elliptic spectral sequences for

J = ��	 ∧ � for � a finite spectrum and so shorten our notation even more to

�#,�
2
(�) ∶= Ext#,�

Λ′
( ′,  ′ ⊗ ∗(�)).

Themap �0
×2
^̂→ �0 inducesmultiplication by 2 on∗(�

0) ≅  , which is injective. Thus, the cofiber

sequence

�0
2
→̂ �0 → �(0)

gives rise to a short exact sequence of Λ′-comodules

0 →  ′
×2
^̂→  ′ →  ′ ⊗ ∗(�(0)) → 0. (3.1)

It follows that  ′ ⊗ ∗(�(0)) is isomorphic to  
′∕(2) as a Λ′-comodule. Since (2) ⊆  ′ is a Λ′-

invariant ideal, we have that

Ext#,�
Λ′
( ′,  ′∕(2)) ≅ Ext#,�

Λ′∕(2)
( ′∕(2),  ′∕(2)).

See, for example, [35, Proposition A1.2.16]. So, we have a spectral sequence

�#,�
2
(�(0)) = Ext#,�

Λ′∕(2)
( ′∕(2),  ′∕(2))⟹ �∗��	 ∧ �(0). (3.2)
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A computation of the cohomology of ( ′∕(2), Λ′∕(2)) is originally due to Hopkins and

Mahowald and can be found in [2, section 7; 21, chapter 15, section 7] Let us describe the answer

here and introduce some notation.

Classical computations of modular forms yield

Ext0,∗
Λ′
( ′,  ′) ≅ ℤ(2)[?4, ?6, ∆]∕(?

3
4 − ?

2
6 − (12)

3∆),

where

?4 = B
4
1 − 24B1B3

?6 = −B
6
1 + 36B

3
1B3 − 216B

2
3

∆ = B31B
3
3 − 27B

4
3

as well as

Ext0,∗
Λ′∕(2)

( ′∕(2),  ′∕(2)) ≅ ℤ∕2[B1, ∆].

See, for example, [2; 38, III.1]. The map on Ext0,∗ induced by the mod 2 reduction ( ′, Λ′) →

( ′∕(2), Λ′∕(2)) sends ?4 ↦ B4
1
and ?6 ↦ B6

1
.

There are also maps of Adams–Novikov spectral sequences, where T and ℎ are as in

Remark 2.5:

Further,

Ext0,∗
H�∗H�

(H�∗, H�∗�(0)) ≅ b2[�1];

see [35, Theorem 4.3.2].

So, we have B1 ∈ Ext
0,2
Λ′∕(2)

( ′∕(2),  ′∕(2)), �1 ∈ Ext
0,2
H�∗H�

(H�∗, H�∗�(0)) and $1 ∈

Ext0,2
JG∗JG

(JG∗,JG∗�(0)), and

�1 ↤ $1 ↦ B1. (3.3)

Note that �1 detects either of the two classes in �2�(0) ≅ ℤ∕4 which map to � ∈ �1�(0) under

the homomorphism �2�(0) → �1�
0 in the long exact sequence in homotopy. We fix a choice and

call it �1 ∈ �2�(0). It follows that B1 survives to detect the image of �1 ∈ �2�(0) in�2��	 ∧ �(0).

From now on, in mod 2 computations, we abuse notation and denote all classes we have named

B1 by �1.
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F IGURE 2 The �2-term of the elliptic spectral sequence for ��	 ∧ �(0) in the range 0 ⩽ � − # ⩽ 50. A bullet

∙ denotes b2 and a diamond ⋄ denotes a copy of b2[�1]. The lines of slope 1 denote multiplication by �, and the

lines of slope 1/3 denote multiplication by 
. Horizontal lines are �1-multiplications.

Now we will present the �2 page of (3.2) as computed in [2, p.26; 21, p. 270; 40, figure. 5] (see

Figure 2). Even if the elliptic spectral sequence for�(0) is notmultiplicative,�2(�(0)) is a ring and

we can completely describe the algebraic relations (which also follow from [2]). The ring structure

will be used in our computation of �2(�) below.

Recall that e = e2 was defined in Theorem 2.19. In the theorem below, � ∈ �2,16
2
(�0) is the

unique non-zero element.

Theorem 3.4 (Figure 2). The ring �2(�(0)) is isomorphic to

b2[�1, ∆, �̄, �, 
, $, %]∕(∼)

for elements

� ∈ Ext1,2, 
 ∈ Ext1,4, �̄ ∈ Ext4,24, ∆ ∈ Ext0,24

in the image of �2(�
0) → �2(�(0)), as well as elements

�1 ∈ Ext
0,2, $ ∈ Ext1,8, % ∈ Ext1,16

in the image of e2 ∶ �2(�(0)) → �2(�
0) where

e2(�1) = �, e2($) = 

2, e2(%) = �.

The relations (∼) is the ideal generated by

(# = 1) �1
 �21$ �1%

(# = 2) 
� 
$ − �1�$ �% − �1$
2 $% %2 − 
2∆

(# = 3) �2$ − 
3 $3 − 
2%

(# = 4) �4∆ − �41 �̄.

Furthermore, we have � = $2 and e2(

2%) = 4�̄.
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Remark 3.5. The algebraic structure in Theorem 3.4 can also be deduced from the appendix of [4].

Remark 3.6. The element ∆ is detected by �4
2
in the Bockstein spectral sequence computation of

[21, II.2.7].

Remark 3.7. Let � denote the following pattern:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

ν

ǫ

x

ǫv1

κ = x
2

y

x
3

Then �∗,∗
2
(�(0)) can be summarized additively as

�∗,∗
2
(�(0)) = �[�̄, ∆]∕(∆�4 − �̄�41).

4 z|~∗�(�): THE DIFFERENTIALS AND EXTENSIONS

We begin with an observation that �(0) has a �4
1
self-map, hence all differentials '& for & ⩾

3 are �4
1
linear. Since �, 
, �̄ and ∆8 are permanent cycles, all differentials are linear with

respect to multiplication by these elements. Note that there are no even length differentials due

to sparseness.

We will use the following methods when computing differentials in this section.

(1) The map of spectra

/ ∶ ��	 → ��	 ∧ �(0)

induces amap of spectral sequences. Let '
��	
& denote the differentials in the spectral sequence

for ��	. We can import the differentials '
��	
& (B) = g from the spectral sequence for ��	 if the

images of B and g are both non-trivial on the �& page of the spectral sequence for ��	 ∧ �(0).

Note also that the elliptic spectral sequence for ��	 ∧ �(0) is a module over the elliptic spec-

tral sequence for the ring spectrum ��	. For B ∈ �&(�
0), let B ∈ �&(�(0)) denote /

∗(B)where

/∗ ∶ �&(�
0) → �&(�(0)) is induced from the unit map / ∶ �0 → �(0). Then, for B ∈ �&(�

0) and

$ ∈ �&(�(0)) we have

'&(B$) = '
��	
& (B)$ + B'&($). (4.1)

(2) The long exact sequence in homotopy groups associated to the fiber sequence

��	
2
→̂ ��	 → ��	 ∧ �(0)
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F IGURE 3 The �-towers and the '3 differentials between them

gives short exact sequences

0 → (�/��	)∕2 → �/(��	 ∧ �(0)) → ker2(�/−1��	) → 0,

where ker2(�/−1��	) is the subgroup of elements of order 2. This allows us to compute

the rank of �/(��	 ∧ �(0)) and forces certain differentials by various dimension count

arguments.

(3) The Geometric Boundary Theorem, stated in Theorem 2.19.

For convenience of the reader, the large charts of the elliptic spectral sequence for ��	∗�(0) can

be found in [6].

4.1 The ��-differentials

Lemma 4.2 (Figure 3). The '3-differentials are ∆ and �4
1
-linear. They are determined by this

linearity, the differentials

'3(�
2
1) = �

3; '3(�
3
1) = �1�

3,

and the module structure over the elliptic spectral sequence for ��	.

Proof. These differentials follow from the differential '3(B
2
1
�) = �4 in the elliptic spectral

sequence for ��	. Both the source and the target are not �-torsion on the �3 page, so we can

divide by � to get the first differential. Alternatively, the two listed '3-differentials occur in the

Adams–Novikov spectral sequence computing �∗�(0) so happen here also by naturality (see, for

example, [34, Theorem 5.13 (a)]).

Since∆ is a '3-cycle in the elliptic spectral sequence computing �∗��	 and the elliptic spectral

sequence for �(0) is a module over this spectral sequence, the '3-differentials are ∆-linear. For

degree reasons (making use of ∆ and �̄-linearity), these determine all '3-differentials. □

The effect of the '3 differentials is truncating the �-towers on the �3 page. Figure 3 illustrates

this process. This figure contains only the �-towers and omits the other classes. It does contain all

the '3 differentials.
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F IGURE 4 '5 and '7-differentials in stems 0-48. A ◦ denotes b2[�
4
1
].

Remark 4.3. On the �5-page, all classes in filtrations # ⩾ 3 are �
4
1
-torsion. The �4

1
-free classes are

concentrated in stems � − # ≢ 5, 6, 7 mod 8.

4.2 The ��-differentials

Lemma 4.4 (Figure 4). The '5-differentials are∆
2-linear. They are determined by this linearity, the

differential

'5(∆) = �̄
 (24, 0) ↦ (23, 5)

and the module structure over the elliptic spectral sequence for ��	.

Proof. The differential

'5(∆) = �̄


occurs in the spectral sequence for �∗��	.

Linearity (4.1) over the spectral sequence for �∗��	 gives us, for $ ∈ �
∗,∗
5 (�(0))

'5(∆
2$) = '

��	
5 (∆2)$ + ∆2'5($) = 2∆�̄
$ + ∆

2'5($) = ∆
2'5($). □

4.3 Higher differentials

Since all the classes in filtrations 4 and above are in the ideal generated by �̄, the differentials that

have sources in filtrations 0–3 generate the other differentials with respect to themodule structure

over the elliptic spectral sequence for ��	 (denoted �∗,∗& (�0)). We focus on these differentials in

the narrative (see Figures 4, 5, 6, and 7).
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F IGURE 5 Differentials in stems 48 to 96

Lemma 4.5. The '7-differentials are ∆
4-linear and determined by

'7(∆

2%) = �̄2�2�1

'7(∆
3
2%) = ∆2�̄2�2�1

(45, 3) ↦ (44, 10)

(93, 3) ↦ (92, 10)

and the module structure over the elliptic spectral sequence for ��	.
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F IGURE 6 Differentials in stems 96 to 140
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F IGURE 7 Differentials in stems 140 to 192
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Proof. First, note that '
��	
7 (∆4) = ∆3�3�̄ in the spectral sequence for ��	. Therefore, using (4.1),

for any B ∈ �7(�(0)) we have

'7(∆
4B) = ∆3�3�̄B + ∆4'7(B).

Since ∆3�3�̄ = 0, we get ∆4-linearity.

We give a proof for the differential '7(∆

2%) = �̄2�2�1. The proof for the other differential is

similar. In the spectral sequence for ��	, we have

'7(∆4�̄) = �
3�̄2.

But, for e2 ∶ �
#,�
2
(�(0)) → �#+1,�

2
(�0) the connecting homomorphism, we have

e2(∆

2%) = ∆4�̄

and

e2(�̄
2�2�1) = �̄

2�3.

The differential when / = 0 then follows from Theorem 2.19.

Making use of the module structure over the spectral sequence for ��	, the only other possible

'7-differential for degree reasons is on ∆
2
2%. But this class is in fact a '7-cycle since ∆

2% is a

'7-cycle by sparseness. □

Lemma 4.6. Using the module structure over the elliptic spectral sequence for ��	, the

'9-differentials are determined by the following differentials with / = 0, 1:

(1) '9(∆
2+4/) = ∆4/�̄2$ (48 + 96/, 0) ↦ (47 + 96/, 9)

(2) '9(∆
2+4/$) = ∆4/�̄2� (55 + 96/, 1) ↦ (54 + 96/, 10)

(3) '9(∆
3+4/�) = ∆1+4/�̄2� (73 + 96/, 1) ↦ (72 + 96/, 10)

(4) '9(∆
3+4/�) = ∆1+4/��̄2� (80 + 96/, 2) ↦ (79 + 96/, 11)

(5) '9(∆
2+4/�1) = ∆

4/ �̄2�1$ (50 + 96/, 0) ↦ (49 + 96/, 9)

(6) '9(∆
2+4/�1$) = ∆

4/ �̄2�% (57 + 96/, 1) ↦ (56 + 96/, 10)

(7) '9(∆
3+4/�1) = ∆

1+4/�̄2�1$ (74 + 96/, 0) ↦ (73 + 96/, 9)

(8) '9(∆
3+4/�1$) = ∆

1+4/�̄2�% (81 + 96/, 1) ↦ (80 + 96/, 10)

Proof. We prove the claim for / = 0. To prove / = 1, one uses exactly the same arguments in

later stems.
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To show (1), note that ∆2 cannot support any '& for & < 9 by sparseness. Then we have the

differential from the elliptic spectral sequence for ��	

'9(∆
2�) = �̄2�

and this differential becomes � divisible in the spectral sequence for ��	 ∧ �(0). For (2), we use

the same argument with the differential '9(∆
2�) = ∆�̄2�� from the elliptic spectral sequence for

��	.

The differentials (3) and (4) are the images of the same differentials in the elliptic spectral

sequence for ��	. The differentials (5)–(8) are proved using Theorem 2.19. For example, the dif-

ferential '9(∆
2�) = �̄2� and the facts that e(�1) = � and e(�1$) = � together imply (5). The others

are similar.

It remains to argue that there are no other generating'9-differentials. As noted above, it suffices

to determine this on classes in filtration less than four.

Combining a comparison with the spectral sequence for ��	 and sparseness, we see that the

only question is whether or not the classes ∆4$ and ∆4�1$ support non-trivial '9s. However,

a differential '9(∆
4$) = ∆2��̄2 together with �-linearity would imply the differential '9(∆

4�) =

∆2��̄2�. In the latter differential both source and target are in the image of the unit map from the

elliptic spectral sequence for ��	, hence this would also imply a differential '
��	
9

(∆4�) = ∆2��̄2�

in the elliptic spectral sequence for ��	, which does not happen. The same argument works for

∆4�1$.

We will also see in the next lemma that the possible targets of these '9s are the sources of

�̄-multiples of the '11-differentials (1) and (3) of Lemma 4.7. □

Lemma 4.7. Using the module structure over the elliptic spectral sequence for ��	, the

'11-differentials are determined by the following differentials with / = 0, 1:

(1) '11(∆
2+4/�) = ∆4/�̄3� (62 + 96/, 2) ↦ (61 + 96/, 13)

(2) '11(∆
3+4/��) = ∆1+4/�̄3�2 (87 + 96/, 3) ↦ (86 + 96/, 14)

(3) '11(∆
2+4/%) = ∆4/�̄3�1 (63 + 96/, 1) ↦ (62 + 96/, 12)

(4) '11(∆
3+4/��1) = ∆

1+4/�1�̄
3� (88 + 96/, 2) ↦ (87 + 96/, 13)

(5) '11(∆
5�1) = ∆

3�̄2
3 (122, 0) ↦ (121, 11).

Proof. The differentials (1) and (2) are images of the same differentials in the spectral sequence for

��	. The differentials (3) and (4) follow from (1) and (2), respectively, using Theorem 2.19. The

differential (5) follows from the fact that �121(��	 ∧ �(0)) does not contain �
4
1
-torsion, which can

be verified by comparing with �∗��	 using the long exact sequence on �∗.

Sparseness and multiplicative structure guarantees that these are all the generating '11-

differentials, except for a possible '11 on ∆
7�2�1. However, e2(∆

7�2�1) = 0 but e2 of the possible

target of this '11 is non-zero. □

Lemma 4.8. The '13-differentials are determined by

'13(∆
4%) = ∆2�̄3�2 (111, 1) ↦ (110, 14).
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There are no '15-differentials and the '17-differentials are determined by

'17(∆
4) = �̄4% (96, 0) ↦ (95, 17).

The '19-differentials are determined by

'19(∆
7
3) = �̄5∆3�1�

2 (177, 3) ↦ (176, 22).

Proof. The first and second differentials follow from the facts that

�110(��	 ∧ �(0)) = ℤ∕2 and �95(��	 ∧ �(0)) = 0,

respectively. The'19-differential follows from the fact that the there is no �4
1
-torsion in�177(��	 ∧

�(0)).

There are no '15 differentials and no other '17 and '19 for degree reasons. The only argu-

ment needed beyond sparseness and multiplicative structure to show that there are no other

'13-differentials is as follows. There are possible '13s on ∆
3
3 and ∆7
3. These classes are in the

image of the ��	 spectral sequence. For ��	, '13(∆
3
3) = 2�̄4 and the target maps to zero in the

spectral sequence for ��	 ∧ �(0) and similarly for ∆7
3. □

Warning 4.9. The '13 differential above is in fact equivalent to the 2-extension in �110��	. For

the reader familiar with names of classes, this corresponds to 2�4 = �1�̄
3. For a recent detailed

treatment of this extension, see [19, chapter 9].

Lemma 4.10. There are no '21-differentials. The '23-differentials are determined by:

(1) '23(∆
5�) = �̄6 (121, 1) ↦ (120, 24)

(2) '23(∆
6�2) = �̄6∆� (146, 2) ↦ (145, 25)

(3) '23(∆
6��1) = �̄

6∆�1 (147, 1) ↦ (146, 24)

(4) '23(∆
7�2�1) = �̄

6∆2��1 (172, 2) ↦ (171, 25).

Proof. The differentials (1) and (2) occur in the elliptic spectral sequence for ��	. The differential

(3) is the geometric boundary of (2) as in Theorem 2.19. The last differential is forced by the fact

that the �4
1
-torsion in �171(��	 ∧ �(0)) is trivial. Another way to see differentials (3) and (4) is to

note that they follow from (1) and (2) using the module structure over the spectral sequence for

��	 and the fact that ∆5� ∈ �23(�
0). We thank the referee for pointing this out. There are no '21

or other '23-differentials for degree reasons. □

The following is now immediate.

Lemma 4.11. The spectral sequence (3.2) computing ��	∗�(0) collapses at �24 with a horizontal

vanishing line at # = 22, that is, �#,�∞ (�(0)) = 0 for # ⩾ 22.

4.4 Exotic extensions

We list the exotic extensions that do occur. All other possibilities can be ruled out using algebraic

structure and duality. We bring to the attention of the reader the precise meaning of exotic exten-
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F IGURE 8 Exotic extensions in the elliptic spectral sequence for ��	 ∧ �(0) in stems 0 to 96. This records

��	∗�(0) ≅ �̃�	∗+1ℝ�
2.

sions given in Definition 2.20. Note also that all exotic 2-extensions are deduced fromLemma 2.21.

We do not discuss 2-extensions further but include them in our figures.

Lemma 4.12 (Figure 8). In stems 0 to 45, there are exotic extensions:

[∆�]
 = �̄� from (25, 1) to (28, 6)

[∆�]
 = ��̄� from (32, 2) to (35, 7)

[∆��]
 = �̄2�2 from (39, 3) to (42, 10)

[∆�1]
 = �̄�1$ from (26, 0) to (29, 5)

[∆�1$]
 = ��̄�1 from (33, 1) to (36, 6)

[∆��1]
 = �̄
2��1 from (40, 2) to (43, 9)

[%
2]
 = �̄�1�
2 from (21, 3) to (24, 6).

Proof. The first three extensions are between elements from �∗��	, see [2]. The next three are

forced by the fact that the connecting homomorphism in the long exact sequence on homotopy
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groups is a map of �∗�
0-modules, the geometric boundary theorem, and the fact that under the

map

e∶ �#,�
2
(�(0)) → �#+1,�

2
(�0)

we have e(�1) = � (and so e($�1) = �, e(��1) = ��, etc.).

The last extension follows from duality and the fact that there is a 
 multiplication between

stems 147 and 150 (already present on the �2-page). □

Lemma 4.13 (Figure 8). In stems 46 to 96, there are exotic extensions:

(1) [∆2�2]
 = ∆�̄
3 from (50, 2) to (53, 7)

(2) [∆2
]� = ∆�̄� from (51, 1) to (52, 6)

(3) [∆2�1�]
 = ∆�̄$
 from (51, 1) to (54, 6)

(4) [∆2$
]� = ∆�̄�� from (58, 2) to (59, 7)

(5) [∆2$
]
 = ∆�̄���1 from (58, 2) to (61, 7)

(6) [∆2�
]
 = ∆�̄2�2�1 from (65, 3) to (68, 10)

(7) [∆2%
2]
 = ∆2�̄�1�
2 from (69, 3) to (72, 6).

Proof. The first two extensions (1) and (2) are multiplicative relations that hold in �∗��	. Exten-

sion (3) follows from (1) and Theorem 2.19. Extension (4) is dual to the algebraic � multiplication

from stem 112 to 113, and similarly for (5). Extension (6) involves classes in the image of /∗ and

this extension happens in ��	∗. Finally, (7) is dual to the algebraic 
 multiplication from stem

99 to 102. □

Remark 4.14. Looking at the charts in [2], one might have expected extensions [∆2�
]� = ∆�̄2�2

and, by the Geometric Boundary Theorem, [∆2%
]� = ∆�̄2��1. However, these are not exotic

extensions according to Definition 2.20.

We also note that [∆2?4]
 ≠ [∆�̄��] and [∆
3?4�1]
 ≠ [∆�̄

3�]. The first comes from the fact that

in �∗��	, there is no such extension. (This can be seen, for example, from the Adams spectral

sequence of ��	.) The second follows from the fact that the target has a non-trivial �̄-multiple

and �̄
 = 0.

Lemma 4.15 (Figure 9). In stems 97 to 144, there are exotic extensions:

(1) [∆4�]
 = �̄5 from (97, 1) to (100, 20)

(2) [∆4
]� = �̄5 from (99, 1) to (100, 20)

(3) [∆4�̄�]� = ∆�̄5� from (124, 6) to (125, 21)

(4) [∆5�2]
 = ∆�̄5� from (122, 2) to (125, 21)

(5) [∆5�]
 = ∆4��̄� from (128, 2) to (131, 7)

(6) [∆5��]
 = ∆4�̄2�2 from (135, 3) to (138, 10)

(7) [∆4�̄$�1]� = ∆�̄
5�1 from (125, 5) to (126, 20)

(8) [∆5$�1]
 = ∆
4��̄�1 from (129, 1) to (132, 6)

(9) [∆5��1]
 = ∆
4�̄2��1 from (136, 2) to 139, 9)

(10) [∆5��1]� = ∆
2�̄4�1� from (130, 2) to (131, 17)

(11) [∆4�1]
 = ∆
3�̄
3 from (98, 0) to (101, 7)

(12) [∆5��]� = ∆3�̄3�2�1 from (135, 3) to (136, 14)

(13) [∆4%
2]
 = [∆4�̄�1�
2] from (117, 3) to (120, 6).
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F IGURE 9 Exotic extensions in the elliptic spectral sequence of ��	 ∧ �(0) in stems 96 to 192, recording

��	∗�(0) ≅ �̃�	∗+1ℝ�
2

Proof. Extensions (1)–(6) follow from studying /∗ ∶ ��	∗ → ��	∗�(0). Note that (4) is missing

from the [2] charts, but it is the [∆�]- multiple of the extension [∆4�]
 = �̄5 as computed there.

We thank the referee for pointing this out. Extensions (7), (8), and (9) follow from (3), (5), and (6),

respectively, using Theorem 2.19.

For (11), note that by Theorem 2.19, [∆4�1] has geometric boundary [∆
4�]. Since [∆4�]
 ≠ 0,

[∆4�1]
 ≠ 0 and this extension is the only choice. For (12), use Remark 2.16 and the algebraic

� multiplication between �35��	 ∧ �(0) and �36��	 ∧ �(0). A similar argument applies for

(13). □

Remark 4.16. There is no exotic 
-extension on [∆5?4] since the potential target is not annihilated

by �̄.
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Lemma 4.17 (Figure 9). In stems 145 to 191, there are exotic extensions:

(1) [∆6
]� = [∆5�̄�] (from (147, 1) to (148, 6))

(2) [∆6�
]� = [∆5�̄2�2] (from (161, 3) to (162, 10))

(3) [∆5�̄��]� = [∆3�̄4�2�1] (from (155, 7) to (156, 18))

(4) [∆6%
]� = [∆5�̄2�1�] (from (162, 2) to (163, 9))

(5) [∆5�̄��1]� = [∆
2�̄5��1] (from (150, 6) to (151, 21))

(6) [∆6
3]
 = ∆3�̄4�1�
2 (from (153, 3) to (156, 18))

(7) [∆6��1]� = ∆
5�̄�� (from (154, 2) to (155, 7))

(8) [∆6��1]
 = ∆
5�̄�
 (from (154, 2) to (157, 7))

(9) [∆6�
]
 = ∆5�̄2�1�
2 (from (161, 3) to (164, 10))

(10) [∆6%
2]
 = [∆6�̄�1�
2] (from (165, 3) to (168, 6))

Proof. The first two extensions occur in ��	∗. The third is also an extension in ��	∗, namely,

[∆5�̄��]� = [∆42�̄3], but the image of the class [∆42�̄3] is detected by [∆3�̄4�2�1] in ��	∗�(0).

Extension (4) follows from (2) and Theorem 2.19. This result also implies (5) from the exten-

sions [∆5�̄
3]� = [∆2�̄5�2] in ��	∗. All the extensions (6)–(10) follow from Corollary 2.12 and

Remark 2.16 and the data for algebraic multiplications in the range 3 ⩽ � − # ⩽ 20. □

5 z|~∗�: THE ��-PAGE

Let �� be the cofiber of the Hopf map �, so that there is an exact triangle

�1
�
→̂ �0 → �� → �2. (5.1)

We define the spectrum � to be �(0) ∧ ��. which can be built from two different cofiber

sequences

��
2
→̂ �� → �,

which uses the multiplication by 2 on ��, and

Σ�(0)
�
→̂ �(0) → �,

which uses the multiplication by � on �(0). Depending on the situation it will be more

advantageous to use either the former or the latter fiber sequence. We abbreviate

∗(�) ∶= �∗(��	 ∧ -(4) ∧ �),

where � will be one of the finite spectra of interest.

We now proceed to compute the �2-term of the elliptic spectral sequence computing the ��	-

homology of �, namely, Ext∗,∗
Λ′
( ′,  ′ ⊗ ∗(�)).

Let us first describe ∗(��). Since �∗(��	 ∧ -(4)) ≅  is concentrated in even degrees, the

cofiber sequence (5.1) induces a short exact sequence on ��	 ∧ -(4)-homology

0 →  → ∗(��) → Σ2 → 0.
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This splits as a sequence of  -modules so that

∗(��) ≅  ⊕ Σ
2 .

Multiplication by 2 on�� inducesmultiplication by 2 on ��	 ∧ -(4)-homology, which is injective

because ∗(��) is torsion-free. Thus, the cofiber sequence

��
2
→̂ �� → �

induces a short exact sequence in ��	 ∧ -(4)-homology

0 → ∗(��) → ∗(��) → ∗(�) → 0,

and it follows that

∗(�) ≅  ∕(2) ⊕ Σ
2 ∕(2) (5.2)

as an  ∕(2)-module.

Likewise, since ∗(�(0)) is concentrated in even degrees, the induced map on ��	 ∧ -(4)-

homology of the cofiber sequence

Σ�(0)
�
→̂ �(0) → �

is trivial. It follows that there is a short exact sequence of Λ-comodules

0 →  ∕(2) → ∗(�) → Σ2 ∕(2) → 0.

This short exact sequence of  -modules splits because of (5.2). Tensoring it with  ′ over  , we

obtain a short exact sequence of Λ′-comodules, which splits as a sequence of  ′-modules

0 →  ′∕(2) →  ′ ⊗ ∗(�) → Σ2 ′∕(2) → 0. (5.3)

As ∗(�) is 2-torsion, (5.3) is a short exact sequence of  
′∕(2)-module, and hence splits as such.

Therefore, applying Ext∗,∗
Λ′
( ′, −) to (5.3), we get a long exact sequence of Ext∗,∗

Λ′
( ′,  ′∕(2))-

modules (see, for example, [16, p. 110, (3.3)]). Its connecting homomorphism

e ∶ Ext#,�
Λ′
( ′,  ′∕(2)) → Ext#+1,�+2

Λ′
( ′,  ′∕(2)) (5.4)

is given by multiplication with � ∈ Ext1,2
Λ′
( ′,  ′∕(2)). Here, as is often the case, we denote by �

the class in Ext which detects the same-named homotopy class.

We present the effect of the connecting homomorphism separately for the �1-power torsion and

for the �1-free classes of �2(�(0)) in Figures 10 and 11, respectively.

In Figure 11, a ◦ denotes a copy of b2[�1], a bullet denotes a copy of b2 and a line of slope

1 denotes, as usual, multiplication by �. Note that we have �̄�4
1
= ∆�4, hence �̄�4

1
= 0 in �2(�),

while �1 itself is not nilpotent and ∆
/ is not �1 torsion.

Proposition 5.5 (Figure 12). As a module over �2(�(0)), �2(�) is generated by classes

B[0, 0], B[5, 1], B[17, 3].
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F IGURE 10 The connecting homomorphism (5.4) for the �1-power torsion classes

F IGURE 11 The connecting homomorphism (5.4) for the �1-free classes

F IGURE 1 2 �2(�) as a module over �2(�(0)). The dashed lines are $-multiplications and dotted lines

%-multiplications. Other structure lines are as in Figure 2.

The submodule generated by B[0, 0] is isomorphic to �2(�(0))∕�. There are Massey products

B[5, 1] = ⟨
, �, B[0, 0]⟩, B[17, 3] = ⟨�$2, �, B[0, 0]⟩

and these classes are subject to the following relations. On the new classes, we have �1multiplications

�1B[5, 1] = $B[0, 0] �1B[17, 3] = $
2B[5, 1] �21B[17, 3] = 


2%B[0, 0],

� and 
 multiplications

�B[5, 1] = 
2B[0, 0], �B[17, 3] = 
B[17, 3] = %B[17, 3] = 0
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as well as


2%B[5, 1] = �31 �̄B[0, 0].

Proof. Using the description of �2(�(0)), the effect of the connecting homomorphism e of (5.4) is

straightforward to compute. The cokernel is simply �2�(0)∕� as an �2(�(0))-module. Using the

multiplication on �2(�(0)), the kernel is generated by classes B[5, 1] and B[17, 3] defined, without

ambiguity, by

�∗(B[5, 1]) = 
 �∗(B[17, 3]) = �$
2,

where �∗ is induced by the map  
′ ⊗ ∗(�) → Σ2 ′∕(2) of (5.3).

We now show the relations on the generators. Since �B[0, 0] = 0 and 
2B[0, 0] ≠ 0, the Juggling

formula


2B[0, 0] = ⟨�, 
, �⟩B[0, 0] = �⟨
, �, B[0, 0]⟩

implies that ⟨
, �, B[0, 0]⟩ ≠ 0. The Massey product ⟨
, �, B[0, 0]⟩ has zero indeterminacy, hence
by sparseness,

B[5, 1] = ⟨
, �, B[0, 0]⟩

and

�B[5, 1] = 
2B[0, 0].

We have that �1
 = 0 ∈ Ext
∗,∗
Λ
( ∕(2),  ∕(2)). As a consequence,

�1B[5, 1] = �1⟨
, �, B[0, 0]⟩

= ⟨�1, 
, �⟩B[0, 0] (by juggling formula)

= $B[0, 0] (by [2, Formula 7.5])

The equation

�1B[17, 3] = $
2B[5, 1]

follows from the fact that

�1�$
2 = $2


in �2(�(0)) and the definition of B[5, 1] and B[17, 3] as the pre-image of 
 and �$2 by �∗,

respectively. It follows then that

�21B[17, 3] = �1$
2B[5, 1] (because �1B[17, 3] = $

2B[5, 1])

= $3B[0, 0] (because �1B[5, 1] = $B[0, 0])

= 
2%B[0, 0] (because $3 = 
2%, cf.;ℎ��&��3.4)

The relations �B[17, 3] = 
B[17, 3] = %B[17, 3] = 0 follows for degree reasons.
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It remains to verify that 
2%B[5, 1] = �3
1
�̄B[0, 0]. A juggling of Massey products gives

%
2⟨
, �, B[0, 0]⟩ = ⟨%
2, 
, �⟩B[0, 0].

The relation 
2%B[5, 1] = �3
1
�̄B[0, 0] then follows by Lemma 5.6 and the fact that �B[0, 0] = 0. □

Lemma 5.6. In Ext∗,∗
Λ′
( ′,  ′∕(2)), the Massey product ⟨%
2, 
, �⟩ contains �̄�3

1
. Furthermore, its

indeterminacy is equal to � Ext3,28
Λ′
( ′,  ′∕(2)), which does not contain �̄�3

1
.

Proof. By [2, formula 7.9], �̄�2
1
= ⟨�, ��, $⟩, and so

�̄�31 = �1⟨�, ��, $⟩ ⊂ ⟨�1�, ��, $⟩ ⊂ ⟨�, �1��, $⟩ = ⟨�, �2%, $⟩.

Here, we used the relation �1�� = �
2%. It follows that

�̄�41 ∈ �1⟨�, �
2%, $⟩ ⊂ ⟨�1�, �2%, $⟩

The indeterminacy of the latter is equal to

�1� Ext
3,28
Λ′
( ′,  ′∕(2)) + $ Ext3,24

Λ′
( ′,  ′∕(2)) = b2{�

12
1 �

4},

which does not contain �̄�4
1
, so ⟨�1�, �2%, $⟩ does not contain zero.

Now consider

⟨�1�, %, 
3⟩ = ⟨�1�, %, �2$⟩ ⊂ ⟨�1�, �2%, $⟩.

The indeterminacy of ⟨�1�, %, 
3⟩ is �1��$�
3,28
Λ′
( ′,  ′∕(2)) + 
3�$�3,21

Λ′
( ′,  ′∕(2)) = b2{�

12
1
�4},

which is the same as the indeterminacy of ⟨�1�, �2%, $⟩, hence ⟨�1�, %, 
3⟩ does not contain zero
and contains �̄�4

1
.

Moreover, since

⟨�1�, %, 
3⟩ ⊂ ⟨�1�, %
, 
2⟩

and the indeterminacy of the latter is equal to ��1 Ext
3,28
Λ′
( ′,  ′∕(2)) + 
2 Ext2,24

Λ′
( ′,  ′∕(2)) =

b2{�
12
1
�4}, which does not contain �̄�4

1
,

⟨�1�, %
, 
2⟩ = �̄�41 + b2{�
12
1 �

4}.

Finally, since

⟨�1�, %
, 
2⟩ ⊇ ⟨�1�, 
, 
2%⟩ ⊇ �1⟨�, 
, %
2⟩

and multiplication by �1 induces an injective homomorphism on Ext4,30
Λ′
( ′,  ′∕(2)), we obtain

that

�̄�31 + b2{�
11
1 �

4} ⊃ ⟨�, 
, %
2⟩ = ⟨%
2, 
, �⟩.

The conclusion of the lemma follows by observing that

�̄�31 ∉ Ind(⟨%
2, 
, �⟩) = � Ext3,28
Λ′
( ′,  ′∕(2)) ⊃ b2{�

11
1 �

4}. □
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Remark 5.7. In �#,�
2
(�), there is at most one non-zero element in any bi-degree (#, �)with filtration

# > 0. There is also a unique non-zero element in bi-degree (0,0). So, for # > 0 or (#, �) = (0, 0), we

often denote by B[� − #, #] ∈ �#,�& (�) the non-zero element, if it exists. Furthermore, when # = 0

and � > 0, we let B[�, 0] denote the element of �0,�
2
(�)which is divisible by the largest power of ∆.

For example, �0,52
2
(�) ≅ b2{�

26
1
B[0, 0], �14

1
∆B[0, 0], �2

1
∆2B[0, 0]} and B[52, 0] = �2

1
∆2B[0, 0].

For our purposes, we also need a partial knowledge of Ext∗,∗
Λ′
( ′∕(2),), where

 ∶=  ′∕(2, B1) ⊗ ∕(2) ∗(�).

Since B1 ∈  
′∕(2) is aΛ′-primitive, ′∕(2, B1) is aΛ

′-comodule. By tensoring (5.3) with ′∕(2, B1)

over  ′∕(2), we obtain a diagram of short exact sequences of Λ′-comodules

(5.8)

We consider the long exact sequence derived from the bottom short exact sequence of the diagram

(5.8). The cohomology ring Ext∗,∗
Λ′∕(2,B1)

( ′∕(2, B1),  
′∕(2, B1)) is computed in [2, section 7]. With

our notation,

Ext∗,∗
Λ′∕(2,B1)

( ′∕(2, B1),  
′∕(2, B1)) ≅ b2[�, 
, �̄, �2]∕(�2�

3 − 
3, �
),

where �2 is represented by the Λ
′-primitive B3. The bottom short exact sequence of the diagram

(5.8) splits as a sequence of  ′∕(2, B1)-modules. However, it does not split as a one of Λ
′∕(2, B1)-

comodules, as it represents the element 0 ≠ � ∈ Ext1,2
Λ′∕(2,B1)

( ′∕(2, B1),  
′∕(2, B1)). Therefore, the

connecting homomorphism

Ext#,�
Λ′∕(2,B1)

( ′∕(2, B1),  
′∕(2, B1)) → Ext#+1,�+2

Λ′∕(2,B1)
( ′∕(2, B1),  

′∕(2, B1)) (5.9)

of the induced long exact sequence in Ext∗,∗
Λ′∕(2,B1)

( ′∕(2, B1), −) is given by multiplication by �.

We obtain:

Lemma 5.10. As a module over the ring b2[�, 
, �̄, �2]∕(�2�
3 − 
3, �
), the cohomology group

Ext∗,∗
Λ′∕(2,B1)

( ′∕(2, B1),  
′∕(2, B1) ⊗ ∕(2) ∗(�))

is generated by B[0, 0] ∈ Ext0,0 and B[5, 1] ∈ Ext1,6 with the relations

�B[0, 0] = 0, �B[5, 1] = 
2B[0, 0].

Proof. By the description of the connecting homomorphism (5.9), we see that

Ext∗,∗
Λ′∕(2,B1)

( ′∕(2, B1),  
′∕(2, B1) ⊗ ∕(2) ∗(�)) ≅ b2[
, �̄, �2]∕(


3){B[0, 0], B[5, 0]}
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F IGURE 13 Ext#,�
Λ′∕(2,B1)

( ′∕(2, B1),  
′∕(2, B1) ⊗ ∕(2) ∗(�)) depicted in the coordinates (� − #, #)

as an b2[
, �̄, �2]∕(

3)-module. Next, we determine the action of �. We see easily that �B[0, 0] = 0.

To calculate �B[5, 1], we remark that


2B[0, 0] = ⟨�, 
, �⟩B[0, 0] = �⟨
, �, B[0, 0]⟩,

where the first equality comes from the Massey product 
2 = ⟨�, 
, �⟩ and the second is a shuffle.
As 
2B[0, 0] ≠ 0, ⟨
, �, B[0, 0]⟩ is not trivial and must be equal to B[5, 1] by sparseness. Hence,

2B[0, 0] = �B[5, 1]. □

Remark 5.11. This calculation will be used in Lemma 6.25 in order to prove Proposition 6.24. It

has also an independent interest being the �2-term of the elliptic spectral sequence for ��	 ∧  1,

see Subsection 6.4 for a discussion on  1.

Although Proposition 5.5 gives us a very compact description of �2(�), the elliptic spectral

sequence of ��	 ∧ � is not amodule over the elliptic spectral sequence of ��	 ∧ �(0) as the latter

is not even a multiplicative spectral sequence. However, the elliptic spectral sequence of ��	 ∧ �

is a module over the elliptic spectral sequence of ��	. In fact, we get even more structure than

that from the fact that � has �1-self maps. As explained in Subsection 2.6, we have:

Lemma 5.12 (�1-linearity). The differentials in the elliptic spectral sequence for ��	 ∧ � are �1-

linear.

We state the following ‘intermediate’ result for convenience of reference in the computations

below. The module structure of the elliptic spectral sequence spectral sequence of ��	 ∧ � over

that of ��	 is richer thanwhat is stated here but that information can be read off of Proposition 5.5.

Corollary 5.13. As a module over

b2[�1, 
, �̄, ∆]∕(�1
, 

3, �41 �̄),

�2(�) is generated by

B[0, 0], B[5, 1], B[12, 2], B[15, 1], B[17, 3], B[20, 2]

subject to the relations generated by

�31B[5, 1] = �
2
1B[12, 2] = �1B[15, 1] = 
B[12, 2] = 
B[17, 3] = 0
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and


2B[15, 1] = �21B[17, 3], 
2B[20, 2] = �31 �̄B[0, 0].

Furthermore, the differentials are b2[�1, 
, �̄, ∆
8]∕(�1
, 


3, �4
1
�̄)-linear.

Proof. This follows from the results of this section and the fact that ∆8 is a permanent cycle in the

elliptic spectral sequence spectral sequence of ��	. □

6 z|~∗�: THE DIFFERENTIALS AND EXTENSIONS

Our approach to computing the differentials of the elliptic spectral sequence for �∗(��	 ∧ �) is

based largely on the analysis of the action of �̄. More precisely, since �̄ is a permanent cycle in the

elliptic spectral sequence for ��	, the elliptic spectral sequence for ��	 ∧ � is a spectral sequence

of modules over b2[�̄], meaning that every term is a b2[�̄]-module and the differentials are maps

of b2[�̄]-modules. Note that the �∞-term is �̄-torsion, since �̄ is nilpotent in �∗��	. But all the

intermediate terms �& for & ⩽ 23 do contain non-trivial �̄-free elements, that is, those elements

whose multiplication with �̄/ is non-trivial for all / ∈ ℕ.

Lemma6.1. The�&-term of the elliptic spectral sequence for ��	 ∧ � has the following properties.

(1) All classes in filtration greater than (& − 1) are �̄-free.

(2) All classes in filtration greater than or equal to 4 are divisible by �̄.

Proof. We prove these two properties by induction on & ⩾ 2. For & = 2, this follows from Propo-

sition 5.5. Suppose now that & > 2. Let B be a '&−1-cycle and [B] ∈ �
#,�
& the corresponding class.

Suppose that B lives in filtration #with # > (& − 1). We have that �̄[B] = 0 if and only if there exists

g ∈ �&−1 such that '&−1(g) = �̄B. Then, g must live in filtration (4 + #) − (& − 1) > 4. By the sec-

ond property, g is divisible by �̄, that is, there exists ? ∈ �&−1 such that �̄? = g. As a consequence

of the �̄-linearity, �̄'&−1(?) = '&−1(g) = �̄B, and so �̄('&−1(?) − B) = 0. Since ('&−1(?) − B) ∈ �&−1
lives in filtration # greater than & − 2, it is �̄-free by the second property. It follows that '&−1(?) = B,

and so [B] = 0. Therefore, the �&-term has the first property.

For the second property, suppose that B lives in filtration greater than or equal to 4. By the

second property for �&−1, there exists g ∈ �&−1 such that �̄g = B. It suffices to prove that g is a

'&−1-cycle. Suppose that '&−1(g) = ?. The latter implies that ? lives in filtration greater that (& − 2),

hence is �̄-free by the first property. Since B is a '&−1-cycle by assumption, we have, by �̄-linearity,

that

0 = '&−1(B) = '&−1(�̄g) = �̄?.

This means that ? = 0 and so g is a '&−1-cycle, as required. □

Terminology.

(1) For a class $ ∈ �& having filtration less than four, we call the subset {�̄
/$|/ ∈ ℕ} ⊂ �& the �̄-

family of $. A �̄-family is called free if it contains infinitelymany elements and is called torsion

otherwise.
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(2) Let $, % ∈ �2 have filtration less than four. We say that a �̄-family of $ is truncated by the

�̄-family of % if there exists & such that '&(�̄
6%) = �̄6+d$ for all 6 ∈ ℕ.

By part (2) of the above lemma, at any term of the spectral sequence, every class belongs to

some �̄-family. The following corollary tells us how these �̄-families are organized.

Corollary 6.2.

(1) At any term of the spectral sequence, all non-zero �̄-power torsion classes survive to the �∞-term.

(2) Every �̄-free family consisting of permanent cycles is truncated uniquely by another �̄-free family.

More precisely, if 0 ≠ B ∈ �& is a permanent cycle which generates a �̄-free family, then there

exists a unique integer &′ ⩾ & for which there exists g ∈ �&′ having filtration less than four, such

that

'&′(�̄
6g) = �̄6+dB

for all 6 ∈ ℕ, where d is determined by &′, the filtration of B and that of g, andmoreover, {�̄/B|0 ⩽
/ ⩽ d − 1} consists of non-trivial permanent cycles surviving to the �∞-term.

Proof. For part (1), let B ∈ �& be a non-zero �̄-power torsion class. By part (1) of Lemma 6.1, B is in

filtration less than or equal to & − 1. It follows that B cannot be hit by any differential from the �&-

term onwards. Moreover, by part (1) of Lemma 6.1 again, the possible targets of '&′(B), &
′ ⩾ & are

�̄-free classes. Since B ∈ �& is �̄-power torsion, it is a permanent cycle, by �̄-linearity. Therefore,

B persists to the �∞-term.

For part (2), let B be a permanent cycle of filtration strictly less than four which is �̄-free at the

�&-term. Then the �̄-family of B consists of permanent cycles. Since �̄ is nilpotent at the�∞-termof

the elliptic spectral sequence for ��	, some power of �̄-multiple of Bmust be hit by a differential.

Thus, there exists a smallest integer &′ ⩾ & and a smallest d ∈ ℕ for which there exists g ∈ �&′
such that '&′(g) = �̄

dB. By the minimality of &′, B is �̄-free at the �&′ -term, so is g, because by �̄-

linearity, '&′(�̄
6g) = �̄d+6B for all 6 ∈ ℕ. It also follows from the latter that all the classes �̄KB for

K ⩽ d − 1 are non-zero �̄-power torsion classes on the�&′+1-term, hence survives to the�∞-termby

part (1).

Finally, we claim that g has filtration less than four. If g had filtration greater than or equal

to 4, then g would be divisible by �̄, that is, there would exist ? ∈ �&′ such that �̄? = g, by

Lemma 6.1 part (2). By �̄-linearity, we have that �̄dB = '&′(g) = �̄'&′(?), and so �̄(�̄
d−1B − '&′(?)) =

0. This implies that '&′(?) = �
d−1B because '&′(?) − �̄

d−1B, having filtration at least &′, is �̄-

free, by Lemma 6.1 part (1). This contradicts the minimality of �, so g has filtration less than

four. □

Slogan 6.3. The �̄-free families at the �&-page come in pairs. The first member of the pair is a

family consisting of permanent cycles. The secondmember is a family which eventually supports

differentials (that is, possibly at a later page) to truncate the first family.

Corollary 6.4. At the �&-term, we have the following.

(1) The homomorphism �#,�& → �#,�+192& induced by multiplication by ∆8 is an injection for all #

and �.

(2) If B is a class of the �2-term such that ∆8B is a '&-cycle, then B is also a '&-cycle.
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Proof. We prove part (1) by induction on & ⩾ 2. For & = 2, this can be seen from the explicit struc-

ture of the�2-term. Suppose the�&′ -termhas these properties for &′ < &. Let us prove part (1) for�&.

Let B ∈ �&−1 represent a class of �&. If ∆
8[B] = 0 ∈ �&. This means that there exists g ∈ �&−1 such

that '&−1(g) = ∆
8B. It is obvious that g lives in stem at least 192, hence there exists ? ∈ �&−1 such

that g = ∆8?, by the induction hypothesis. It follows that ∆8('&−1(?) − B) = 0, and so '&−1(?) = B

because of part (1) of the induction hypothesis. Thus, [B] = 0 ∈ �&, as needed.

For part (2), by induction, suppose that B is a '&−1-cycle. We need to prove that B is a '&-cycle.

In effect, if '&(B) = g, then

0 = '&(∆
8B) = ∆8'&(B) = ∆

8g.

By part (1), g = 0, and so '&(B) = 0, as needed. □

Finally, we will also use the following result to establish the differentials.

Lemma 6.5 (Vanishing line). The spectral sequence for �∗��	 ∧ � degenerates at the �24-term

and has a horizontal vanishing line at # = 24, that is, �#,�
24
= �#,�∞ = 0 for # ⩾ 24.

Proof. We know that �̄6 is hit by a differential '23 in the elliptic spectral sequence for ��	, see

[2]. This means that at the �24-term of the elliptic spectral sequence for ��	 ∧ �, all the classes

are annihilated by �̄6, hence are �̄-power torsion. Therefore, by Lemma 6.1, all the classes in the

�24-term are in filtrations less than 24, meaning that the spectral sequence has the horizontal

vanishing line at # = 24, that is, �#,�& = 0 for # ⩾ 24 and & ⩾ 24. □

Remark 6.6. The cofiber sequence

�(0)
/
→̂ �

�
→̂ Σ2�(0)

�
→̂ Σ�(0)

gives rise to maps of spectral sequences

/∗ ∶ �
#,�
2
(�(0)) → �#,�

2
(�), �∗ ∶ �

#,�
2
(�) → �#,�−2

2
(�(0))

as well as a long exact sequence

… → ��	∗+1�(0)
�
→̂ ��	∗�(0)

/∗
^̂→ ��	∗�

�∗
^̂→ ��	∗−1�(0) → … (6.7)

6.1 The ��, �� and ��-differentials

Note that for & even, �&(�) ≅ �&+1(�) since the spectral sequence is concentrated in bi-degrees

(#, �) with � even. The differentials in this section are depicted in Figures 14, 15, 16, and 17. In

addition, large charts of the elliptic spectral sequence for ��	∗� can be found in [7].

Proposition 6.8. There is no non-trivial '3-differential, and so �3(�) ≅ �5(�).

Proof. Since ∆ is a '3-cycle in the elliptic spectral sequence of ��	, the '3-differentials are

b2[�1, 
, �̄, ∆]∕(�1
, 

3, �4

1
�̄)-linear. All the generators listed in Corollary 5.13 are '3-cycles for

degree reasons. □
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F IGURE 14 '5-differentials in stems 0 to 48 and �̄-free generators at �9

We then get the following result for degree reasons.

Corollary 6.9. The classes in stems � − # < 24 are permanent cycles.

Lemma 6.10. The '5-differentials are linear with respect to �̄, 
, �1, ∆
2 and are determined by

'5(∆) = 
�̄, '5(∆B[5, 1]) = 
�̄B[5, 1]

'5(∆B[15, 1]) = 
�̄B[15, 1], '5(∆B[20, 2]) = 
�̄B[20, 2]

under multiplication by elements of b2[∆
2, �̄, 
, �1]∕(�1
, 


3, �̄�4
1
).

Proof. For linearity, we only need to prove the ∆2-linearity. Note that '5(∆) = 
�̄ in the elliptic

spectral sequence of ��	. By Leibniz rule and the fact that �2(�) is 2-torsion,

'5(∆
2$) = 2∆'5(∆)$ + ∆

2'5($) = ∆
2'5($).

Using the module structure over the elliptic spectral sequence of ��	, we get

'5(∆B[5, 1]) = '5(∆)B[5, 1] + ∆'5(B[5, 1]) = 
�̄B[5, 1].

The other arguments are similar. □

Lemma 6.11. There are no non-trivial '7-differentials.

Proof. This is an immediate consequence of sparseness. □

The following observation will be crucial for our computation and is motivated by Slogan 6.3.

Corollary 6.12 (Figure 14). The �̄-free families on the �9-term of the elliptic spectral sequence of

��	 ∧ � in stems 0 ⩽ � − # < 48 are given by the following 24 classes

B[0, 0] B[2, 0] = �1B[0, 0] B[4, 0] = �21B[0, 0]

B[5, 1] B[7, 1] = �1B[5, 1] B[9, 1] = �21B[5, 1]
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B[12, 2] B[14, 2] = �1B[12, 2] B[15, 1]

B[17, 3] B[19, 3] = �1B[17, 3] B[20, 2]

B[26, 0] = ∆�1B[0, 0] B[28, 0] = ∆�21B[0, 0] B[30, 0] = ∆�31B[0, 0]

B[30, 2] = ∆
2B[0, 0] B[31, 1] = ∆�1B[5, 1] B[33, 1] = ∆�21B[5, 1]

B[35, 3] = ∆
2B[5, 1] B[36, 2] = ∆B[12, 2] B[38, 2] = ∆�1B[12, 2]

B[41, 3] = ∆B[17, 3] B[43, 3] = ∆�1B[17, 3] B[45, 3] = ∆�21B[17, 3]

All �̄-free families at�9 are given by these classes and their∆
2-multiples. All the elements in filtrations

four and above are �̄-multiples of these generators.

The generators of the �̄-free families in stems 0 ⩽ � − # < 48 are presented in Figure 14. The �̄-

free generators in the range 0 ⩽ � − # < 192 are given by products of thesewith 1,∆2, ∆4 and∆6 and

all other �̄-free generators are products of the latter ones with the powers of ∆8. By Corollary 6.2,

each �̄-free family consisting of permanent cycles is truncated by one other �̄-free family, and so

by exactly one because of sparseness — any two distinct �̄-free families have different bi-degrees.

Thus, using the∆8-linearity andCorollary 6.4, we see that the 24 × 4 �̄-free generators in the range

0 ⩽ � − # < 192 organize themselves as follows. Exactly half of them are permanent cycles and the

other half are not. The �̄-family of each non-permanent �̄-free generator supports a differential

that hits the �̄-family of exactly one of the other permanent generators. Note that the truncation

must begin in stems less than four byCorollary 6.2. This allows us to determine longer differentials

before settling shorter ones.

All 24 �̄-free generators in the range 0 ⩽ � − # < 48 are permanent cycles due to sparseness and

in the next section we will find their ‘partners’.

6.2 The ��-differentials

To analyze the '9-differentials, wemake the following observation, which, in some sense, is a very

small part of the geometric boundary theorem as in [9, appendix 4].

Lemma 6.13. Let B ∈ �#,�& (�) so that �∗(B) ∈ �
#,�−2
& (�(0)). Suppose �∗(B) persists to the �&′ -term

for some &′ ⩾ & and that there is a non-trivial differential, '&′(�∗B) ≠ 0. Then '&′′(B) ≠ 0 for some

&′′ ⩽ &′.

Proof. This is a straightforward application of naturality. Indeed, the assumptions imply that B

cannot be hit by a differential '&′′ for &
′′ ⩽ &′. Furthermore, if B persists to the �&′ term, then

'&′(B) = g for g such that �∗(g) = '&′(�∗(B)). □

Lemma 6.14 (Figures 15, 16, and 17). There are '9-differentials, for / = 0, 1,

(1) '9(∆
4/+2B[0, 0]) = �̄2∆4/�1B[5, 1] (7) '9(∆

4/+2B[12, 2]) = �̄2∆4/�1B[17, 3]

(2) '9(∆
4/+2B[5, 1]) = �̄2∆4/B[12, 2] (8) '9(∆

4/+3�1B[5, 1]) = �̄
2∆4/+1 �1B[12, 2]

(3) '9(∆
4/+3�1B[0, 0]) = �̄

2∆4/+1�2
1
B[5, 1] (9) '9(∆

4/+2�1B[0, 0]) = �̄
2∆4/�2

1
B[5, 1]
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F IGURE 15 '5 and '9 differentials in stems 46 to 86

(4) '9(∆
4/+2B[17, 3]) = �̄3∆4/�2

1
B[0, 0] (10) '9(∆

4/+2�1B[5, 1]) = �̄
2∆4/�1B[12, 2]

(5) '9(∆
4/+3B[17, 3]) = �̄3∆4/+1�2

1
B[0, 0] (11) '9(∆

4/+3�1B[17, 3]) = �̄
3∆4/+1�3

1
B[0, 0]

(6) '9(∆
4/+3B[12, 2]) = �̄2∆4/+1�1B[17, 3] (12) '9(∆

4/+3�1B[12, 2]) = �̄
2∆4/+1�2

1
B[17, 3]

Proof. Let / = 0. The differentials (1) and (3) are the image of a differential in �2(�(0)) under

/∗. The second differential (2) follows �1-linearity and from the fact that '9(∆
4/+2$) = �̄2∆4/� in

�2(�(0)), /∗($) = �1B[5, 1] and /∗(�) = �1B[12, 2].

For (4), we use Lemma 6.13. In �∗(�(0)), we have '11(∆
2��) = �2�̄3. Since �∗(∆

2B[17, 3]) =

∆2��, ∆2B[17, 3] supports a differential of length at most 11. This '9 is the only choice. The

argument for (5) is the same, with one more power of ∆.

For (6), note that �∗(∆
3B[12, 2]) = ∆3�1�$. Since '9(��1$) = 
��̄

2∆, the class ∆3B[12, 2]

supports a differential of length at most 9. This is the only choice.

The arguments (1)–(6) when / = 1 are the same as those for / = 0.

For (7)–(8), note that from our computation above, ��	59� ≅ ℤ∕2. This forces (7) when / = 0.

Arguing in a similar way, ��	79� = 0, ��	155� ≅ ℤ∕2 and ��	175� = 0 imply the other '9s.

The '9-differentials (9)–(12) follow from those of (1), (2), (5), (6), respectively, by �1-

linearity. □

Remark 6.15. It turns out these are all the '9-differentials. For degree reasons, there can be very

few other '9s. The class ∆
5�1B[0, 0] is the image of a '9-cycle in �9(�(0)) so does not support a

'9. The only other possible '9 differentials for degree reasons are as follows.

∙ A nontrivial '9 on ∆5B[17, 3]. This does not happen since it implies a nontrivial '9 on

�1∆
5B[17, 3] = ∆4B[43, 3], but this family has already been paired: it is truncated by ∆6B[36, 2].

∙ A nontrivial '9 on ∆
4B[17, 3], truncating the �̄-family of ∆2B[4, 0]. We will see below that this

does not happen, but at this point, we leave this undecided.
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F IGURE 16 '5 and '9 differentials in stems 86 to 160
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F IGURE 17 '5 and '9 differentials in stems 160 to 194

6.3 Higher differentials

We begin our analysis using Slogan 6.3. The reader should remember that we only need to ana-

lyze the generators of the �̄-free families, which are in filtration less than four. All differentials

discussed in this section are depicted in Figures 18 and 20.

Lemma 6.16. There are differentials

(1) '19(∆
4B[5, 1]) = �̄5B[0, 0]

(2) '19(∆
5�1B[5, 1]) = �̄

5∆�1B[0, 0]
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F IGURE 18 '11 to '23 differentials in stems 46 to 120
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F IGURE 19 '11 to '23 differentials in stems 120 to 160

(3) '19(∆
4B[36, 2] = �̄5B[31, 1]

(4) '19(∆
4B[41, 3]) = �̄5B[36, 2]

(5) '19(∆
4B[26, 0]) = �̄4B[41, 3]

Proof. For (1), since the element �̄4 ∈ �80(��	 ∧ �(0)) is not divisible by � and �̄
5 ∈ �100(��	 ∧

�(0)) is divisible by �, the �̄-family of B[0, 0] in the elliptic spectral sequence for ��	 ∧ �must be

truncated at �̄5B[0, 0]. Remembering that the source has to have filtration less than four, the only

possibility is this differential.

Inspection then shows that the differentials (2)–(4) are the only possibilities to satisfy

Slogan 6.3. □

Lemma 6.17. There are differentials

(1) '17(∆
4B[0, 0]) = �̄4B[15, 1] and

(2) '17(∆
4B[15, 1]) = �̄4B[30, 2]

Proof. For (1), note that in �∗(��	 ∧ �(0)), �̄
3% is not divisible by � and �̄4% = 0. The class %maps

to B[15, 1] under /∗ so it follows that the �̄-family of B[15, 1] is truncated at �̄
4B[15, 1]. The only

possibility is this differential.

For (2), using the long exact sequence, we obtain that �111(��	 ∧ �) = ℤ∕2. By part

Lemma 6.16 (3), the class �̄4B[31, 1] ∈ �17,1285 survives the spectral sequence and so detects the
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F IGURE 20 '11 to '23 differentials in stems 160 to 194

unique non-trivial class of �111(��	 ∧ �). This implies that the class ∆
4B[15, 1] ∈ �1,1125 must

support a differential. Taking into account the '9 differentials proves (2). □

Lemma 6.18. There is a differential '23(∆
4B[30, 2]) = �̄6B[5, 1].

Proof. By inspection, taking into account the '9s, the only generators that can be paired with

B[5, 1] are ∆4B[30, 2] and ∆4B[30, 0]. However, it cannot be ∆4B[30, 0] because such a differential

would have length 25, contradicting Lemma 6.5. □

Lemma 6.19. For / = 0, 1, there are differentials:

(1) '11(∆
4/+2B[15, 1]) = �̄3∆4/B[2, 0] and

(2) '11(∆
4/+2B[28, 0]) = �̄2∆4/B[35, 3]

Proof. In (1), for both / = 0, 1, these are the image of differentials in the spectral sequence�∗(�(0)).

Both source and targets survive to �11(�) and so these two differentials occur.
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For (2), the long exact sequence shows that �75(��	 ∧ �) = ℤ∕2. Lemma 6.17 (1) implies that

the class �̄3B[15, 1] ∈ �13,887 survives the spectral sequence and detects the unique non-trivial ele-

ment of the�75(��	 ∧ �). On the other hand, the class �̄
2∆
2B[5, 1] ∈ �11,867 is a permanent cycle.

Thus, it must be hit by a differential and this is the possibility.

For / = 1, by taking into account the '9-differentials and the '17-differential Lemma 6.17 (2),

we see that ∆4B[35, 3] is a permanent cycle, which is �̄-free at the �11-term. By inspection, the

only class which can truncate its �-family is ∆6B[28, 0] by the indicated '11-differential. □

Lemma 6.20. There are differentials:

(1) '13(∆
2B[30, 2]) = �̄3B[17, 3] and

(2) '13(∆
2B[33, 1]) = �̄3B[20, 2]

Proof. For (1), it follows from (6.7) that �78(��	 ∧ �) ≅ ℤ∕2. By sparseness, either ∆
2B[30, 2] or

∆2B[30, 0] is a permanent cycle detecting the non-zero element of �78(��	 ∧ �). Suppose that

∆2B[30, 2] = ∆3
2B[0, 0]

is a permanent cycle detecting a class f ∈ �78(��	 ∧ �). At �2, ∆
3
2B[0, 0] is in the image of

/∗ ∶ �2(�(0)) → �2(�) and so �∗(∆
3
2B[0, 0]) = 0. However, since �78(��	 ∧ �(0)) = 0, �∗f ≠

0 in �76(��	 ∧ �(0)) and so is detected by a non-zero class in filtration # > 2, but such a class

does not exist. We conclude that ∆2B[30, 0] is a permanent cycle and that ∆2B[30, 2] supports the

stated differential.

For (2), by inspection, only ∆2B[33, 1] and ∆4B[5, 1] can support differentials truncating the

�̄-family of B[20, 2]. But ∆4B[5, 1] is already paired with B[0, 0]. □

Proposition 6.21. The following classes are �̄-free permanent cycles:

( ) ∶
∆2B[4, 0] ∆2B[9, 1] ∆2B[14, 2] ∆2B[19, 3] ∆2B[20, 2]

∆2B[30, 0] ∆2B[35, 3] ∆2B[45, 3] ∆4B[17, 3] ∆4B[20, 2]

and the following classes are not permanent cycles:

(H) ∶
∆6B[4, 0] ∆6B[9, 1] ∆6B[14, 2] ∆6B[19, 3] ∆6B[20, 2]

∆6B[30, 0] ∆6B[30, 2] ∆6B[33, 1] ∆6B[35, 3] ∆6B[45, 3]

Consequently, in the elliptic spectral sequence for ��	 ∧ �, each generator in (B) truncates some

�̄-multiple of one and only one generator in (A).

Proof. These are the remaining generators of �̄-free families. No class in (B) can be a permanent

cycle because the �̄-family of a class of (B) cannot be truncated. This means that all the 10 classes

of (B) are non-permanent cycles, and so all the 10 classes of (A) are permanent cycles. □

Lemma 6.22. We have the following differentials:

(1) '19(∆
6B[4, 0]) = �̄4∆2B[19, 3] (5) '17(∆

6B[20, 2]) = �̄4∆2B[35, 3]

(2) '19(∆
6B[9, 1]) = �̄5∆2B[4, 0] (6) '13(∆

6B[33, 1]) = �̄3∆4B[20, 2]
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(3) '19(∆
6B[14, 2]) = �̄5∆2B[9, 1] (7) '17(∆

6B[35, 3]) = �̄5∆2B[30, 0]

(4) '19(∆
6B[19, 3]) = �̄5∆2B[14, 2] (8) '23(∆

6B[45, 3]) = �̄6∆2B[20, 2]

Proof. Taking into account the differentials shown above, these are the only possible pairings

remaining between the classes in (B) which are the sources in (1)–(8) and classes of (A). □

Remark 6.23. There are only two generators in (B) left living in the same topological degree,

namely, ∆6B[30, 0] and ∆6B[30, 2]. Each of these supports a differential truncating the �̄-families

of either ∆4B[17, 3] or ∆2B[45, 3] and one differential determines the other.

Determining the last differential pattern turns out to be unfortunately tricky (as far asweknow).

A crucial step towards settling the last differentials is to establish the following extension in the

�∞-term of the elliptic spectral sequence for ��	 ∧ �.

Proposition 6.24. There is an exotic extension


2(
∆6B[0, 0]) = �̄2∆4B[17, 3].

To prove this extension, we need some intermediate results.

Lemma 6.25. In Ext∗,∗
Λ′
( ′,  ′∕(2, B1) ⊗ ∗(�)), there is a Massey product

⟨�, 
, ∆4B[12, 2]⟩ = ∆4B[17, 3].

Proof. Since ∆4B[12, 2] = �∆4B[11, 1] (see Lemma 5.10, also Figure 13), we have that

⟨�, 
, ∆4B[12, 2]⟩ = ⟨�, 
, �∆4B[11, 1]⟩ ⊇ ⟨�, 
, �⟩∆4B[11, 1] = 
2B[11, 1] = B[17, 1].

The indeterminacy is zero since

� Ext2,114
Λ′

( ′,  ′∕(2, B1) ⊗ ∗(�)) + Ext
1,6
Λ′
( ′,  ′∕(2))∆4B[12, 2] = 0.

□

Proposition 6.26. In Ext∗,∗
Λ′
( ′,∗(�)), there is a Massey product

⟨�, 
, ∆4B[12, 2]⟩ = ∆4B[17, 3].

Proof. Let 	∗ ∶ Ext
∗,∗
Λ′
( ′,∗(�)) → Ext∗,∗

Λ′
( ′,  ′∕(2, B1) ⊗ ∗(�)) be the map induced by the

Λ-comodule homomorphism ∗(�) →  ′∕(2, B1) ⊗ ∗(�). By naturality of Massey products, we

have that

	∗(⟨�, 
, ∆4B[12, 2]⟩) ⊆ ⟨�, 
, 	∗(∆4B[12, 2])⟩.
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Further, 	∗(∆
4B[12, 2]) = ∆4B[12, 2]. By Lemma 6.25, the above equation gives

	∗(⟨�, 
, ∆4B[12, 2]⟩) = ∆4B[17, 3].

The pre-image of ∆4B[17, 3] is the same-named class. The indeterminacy is zero. □

Lemma 6.27. There is an element of �108(��	 ∧ �) detected by ∆
4B[12, 2] and annihilated by �̄2.

Proof. We have already determined �∞(�) in stems � − # = 108, 148. We see that there is a short

exact sequence

0 → ℤ∕2{�̄2∆2B[20, 2]} → � → ℤ∕2{∆4B[12, 2]} → 0,

where � ⊆ �108(��	 ∧ �) is the subgroup of elements detected in positive filtration. At the �∞-

term in stem � − # = 148, the only non-zero class in positive filtration is �̄4∆2B[20, 2]. In particular,

�̄2∆4B[12, 2] = 0. So, one of the classes detected by ∆4B[12, 2] satisfies the claim. □

Wewill denote also by∆4B[12, 2] the element in�108(��	 ∧ �), which is detected by∆
4B[12, 2]

and is annihilated by �̄2.

Proposition 6.28. There are the following relations in �∗(��	 ∧ �):

(1) 
2[
∆6B[0, 0]] ≠ 0 and

(2) �[
∆6B[0, 0]] = 0

Proof. The class detected by 
∆6B[0, 0] lifts to �∗(��	 ∧ �(0)) and there is a lift detected by 
∆
6.

But in �∗(��	 ∧ �(0)), 

2[
∆6] is not divisible by �. □

Now, we use the truncated spectral sequences of Subsection 2.1, applied to the elliptic spectral

sequence of ��	 ∧ �. As in Subsection 2.1, let

sk16(��	 ∧ �) = -0∕-17

for -6 the 6th term of the -(4)-Adams tower of ��	 ∧ �. Then �∗,∗
&,<17

(�) as in Subsection

2.1 is a spectral sequence computing �∗sk16(��	 ∧ �), and it satisfies �
#,∗
&,<17

(�) = 0 for # ⩾ 17.

Furthermore, we have a map of spectral sequences

;#,�& ∶ �
#,�
& (�) → �#,�

&,<17
(�).

Proposition 6.29. In �∗(sk16(��	 ∧ �)), we have

⟨�, 
, ∆4B[12, 2]⟩ = ∆4B[17, 3].

Proof. In �∗(��	 ∧ �), the product 
∆
4B[12, 2], if not trivial, is detected in filtration 17. It follows

that 
∆4B[12, 2] is equal to zero in �∗(sk16(��	 ∧ �)). Thus, the Toda bracket ⟨�, 
, ∆4B[12, 2]⟩
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can be formed. Proposition 6.26 means that in �#,�
2,<17

(�), there is Massey product

⟨�, 
, ∆4B[12, 2]⟩ = ∆4B[17, 3].

The conditions of the Moss Convergence Theorem [32] are satisfied, so the Toda bracket

⟨�, 
, ∆4B[12, 2]⟩ contains ∆4B[17, 3] and the indeterminacy is zero. □

Proposition 6.30. In the elliptic spectral sequence for ��	 ∧ �, there is an exotic extension

�B[152, 2] = �̄2∆4B[17, 3].

Proof. Since �̄2∆4B[17, 3] lives in filtration # = 11, it suffices to prove that extension in the�∞-term

of the spectral sequence for sk16(��	 ∧ �). The above proposition and the choice of ∆
4B[12, 2]

imply that

�̄2∆4B[17, 3] = ⟨�, 
, ∆4B[12, 2]⟩�̄2 = �⟨
, ∆4B[12, 2], �̄2⟩.

Since �̄2∆4B[17, 3] ≠ 0 at �∞, ⟨
, ∆4B[12, 2], �̄2⟩must be non-trivial, and it must be detected by a
class which is not in the kernel of �. This forces ⟨
, ∆4B[12, 2], �̄2⟩ to be detected by B[152, 2], and
so �B[152, 2] is detected by �̄2∆4B[17, 3]. □

Proof of Proposition 6.24. Let j = [
∆6B[0, 0]]. By Proposition 6.28, �j = 0 and we can form the

Toda bracket ⟨
, �, j⟩. Then

�⟨
, �, j⟩ = ⟨�, 
, �⟩j = 
2j.

On the other hand, 
2j ≠ 0 by Proposition 6.28. It follows that ⟨
, �, j⟩ ≠ 0. We see that it must
be detected by B[152, 2]. So, �B[152, 2] = 
2j and Proposition 6.30 implies that 
2j is detected by

�̄2∆4B[17, 3]. □

Lemma 6.31. There are differentials:

(1) '13(∆
6B[30, 2]) = �̄3∆4B[17, 3] and

(2) '19(∆
6B[30, 0]) = �̄4∆2B[45, 3]

Proof. Let

��	 ∧ � ← (��	 ∧ �)1 ← (��	 ∧ �)2 ← …

be the Adams tower associated to the -(4)-based resolution of ��	 ∧ �. We consider its 1-co-

truncated tower and the induced map of spectral sequences

?;#,�& ∶ �
#,�
&,⩾1

→ �#,�& .

By Lemma 2.3, ?;#,�& is surjective for # ⩾ 1.

Let B = 
2∆6B[0, 0] ∈ �2,150+2
2

. This is a permanent cycle representing a unique non-zero ele-

ment of �150(��	 ∧ �), which in this proof we denote by f. Since B has positive filtration, there

is a class B̄ ∈ �2,150+2
2,⩾1

such that ?;2(B̄) = B and the surjectivity of ?;∞ guarantees that we can

choose B̄ to be a permanent cycle. It then detects classes f̄ ∈ �150((��	 ∧ �)1) that map to f.
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Since 
f is detected by g = �̄2∆4B[17, 3] ∈ �11,153+11∞ (Proposition 6.24), 
f̄must be detected in

�#,153+#∞ (?;1) for 3 ⩽ # ⩽ 11. Since �
#,153+#
2

(?;1) = 0 for 3 ⩽ # ⩽ 10 (this is true for �
∗,∗
2
), 
f̄ must

be detected by a lift ḡ of g.

The relation �̄
 = 0 ∈ �∗��	 implies that �̄
f̄ = 0 ∈ �∗((��	 ∧ �)1). This implies that'&(?̄) =

�̄ḡ for some non-trivial element ?̄ ∈ �15−&,174+(15−&)
&,⩾1

. As �0,∗
2,⩾1

= 0, ?̄must live in filtration 1 ⩽ # ⩽

13, and hence so does ?;&(?̄). In particular, ?;&(?̄) ≠ ∆
6B[30, 0]. However, we find that

'&(?;&(?̄)) = ?;&(�̄ḡ) = �̄ ⋅ ?;&(ḡ) = �̄
3∆4B[17, 3].

The only way for this to make sense is if ?;&(?̄) is equal to ∆
6B[30, 2] and this is the desired

differential (1).

This differential then determines (2) as noted in Remark 6.23. □

Remark 6.32. From this discussion, we also learn that there is a non-trivial class in /∗�150�(0)

which is detected by B[153, 11].

6.4 Exotic extensions

In this section, we resolve the exotic 2, �, 
 and �1 extensions in the elliptic spectral sequence of

��	 ∧ �. The extensions are depicted in Figures 22 and 23.

We begin with the exotic �-extensions, which are few. To determine them, we use the following

strategies. First, the long exact sequence

… → ��	∗+1�(0)
�
→̂ ��	∗�(0)

/∗
^̂→ ��	∗�

�∗
^̂→ ��	∗−1�(0) → … (6.33)

We use the following basic, but useful facts.

Lemma 6.34. For B ∈ ��	∗� and g ∈ ��	∗�(0),

(1) if B = /∗g, then �B = /∗�g = 0,

(2) �∗�B = ��∗B = 0, and

(3) �1�B = ��1B.

Proof. These are easy consequences of the long exact sequence on homotopy groups (6.33) com-

bined with the fact that composition as well as the smash product induces the �∗�
0-module

structure in the stable homotopy category. □

Note further that Corollary 2.12 as described in Remark 2.16 gives a way to relate extensions in

different stems between the �1-power torsion classes. We also use Lemmas 2.21 and 2.23.

A stem-by-stem analysis using the above techniques then allows us to determine that the only

non-trivial exotic �-extensions are as follows:

Lemma 6.35. In the elliptic spectral sequence of �, there are exotic extensions

(1) �[∆2
B[5, 1]] = �̄2B[17, 3]

(2) �[∆4
B[5, 1]] = �̄5B[5, 1]

(3) �[∆6
B[5, 1]] = �̄2[∆4B[17, 3]]

(4) �[∆6
B[20, 2]] = �̄5[∆2B[20, 2]]
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F IGURE 2 1 Classical Adams spectral sequence �2-pages for ��	 ∧ �(0) (top) and ��	 ∧ � (bottom)

computed with Bruner’s Ext-program [18]

There are no other exotic �-extensions.

Proof. Extension (1) follows fromLemma 2.23. Extensions (2) and (4) follow from duality: (2) from

�[∆2B[20, 2]] = [∆2�2
1
B[17, 3]] and (4) from �B[5, 1] = 
2B[0, 0]. Finally, (3) is Proposition 6.30.

All possible exotic �-extensions are shown not to occur using Lemma 6.34, duality and

Lemma 2.23. In particular, the possible �-extensions with source in stems 52 ⩽ � − # ⩽ 57 are

shown not to occur using Lemma 2.23 and �1-linearity. □
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F IGURE 22 Exotic extensions in the elliptic spectral sequence of ��	 ∧ �. This records

��	∗� ≅ �̃�	∗+3(ℝ�
2 ∧ ℂ�2). The zigzags denote exotic �1-extensions that occur only for certain choices of �1

self-maps.

Now, we turn to the exotic 2-extensions.

Theorem 6.36. There are no exotic 2-extensions in the elliptic spectral sequence for � and,

consequently,

2(�∗��	 ∧ �) = 0.

Proof. Since we have a cofiber sequence

��	 ∧ ��
2
→̂ ��	 ∧ ��

y
→̂ ��	 ∧ �

_
→̂ Σ��	 ∧ ��,

we can apply Lemma 2.21 with - = ��	 ∧ ��, / = y and � = _. From this, we deduce that if B′ ∈

�∗��	 ∧ � is in the image of y∗, then it has order 2 and that if _∗(B
′) = B, then 2B′ = y∗(�B). It

follows that if 2B′ ≠ 0, then 2B′ is divisible by �.

This leaves one possible extension in stem 57. But such a 2-extension would lead, by duality, to

a 2-extension in stem 116. However, there are no �-divisible classes in that stem. Since the �2-term

was 2-torsion and there are no exotic 2-extensions, �∗��	 ∧ � is annihilated by 2. □

Next, we turn to the 
 extensions.

Remark 6.37. We will use without mention that �̄
 = 0 in ��	∗-modules. This allows us to

eliminate many possible exotic 
-extensions.
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F IGURE 2 3 Exotic extensions in the elliptic spectral sequence of ��	 ∧ �. This records

��	∗� ≅ �̃�	∗+3(ℝ�
2 ∧ ℂ�2). The zigzags denote exotic �1-extensions that occur only for certain choices of �1

self-maps.

Lemma 6.38. In the elliptic spectral sequence of �, there are exotic extensions

(1) 
B[26, 0] = B[29, 5] (8) 
B[103, 1] = B[106, 16]

(2) 
B[41, 3] = B[44, 8] (9) 
B[124, 0] = B[127, 15]

(3) 
B[52, 0] = B[55, 7] (10) 
B[129, 1] = B[132, 16]

(4) 
B[54, 2] = �̄2B[17, 3] (11) 
B[150, 2] = B[153, 11]

(5) 
B[67, 3] = �̄2B[30, 0] (12) 
B[155, 3] = B[158, 16]

(6) 
B[98, 0] = B[101, 15] (13) 
B[165, 3] = B[168, 22]

(7) 
B[102, 2] = �̄5B[5, 1]

Proof. Extensions (1) and (6) follow from the extensions 
B[26, 0] = B[29, 5] and 
B[98, 0] =

B[101, 7], respectively, in �∗��	 ∧ �(0) by applying /∗. Extensions (2), (3), (5), and (9) follow

from examining the effect of �∗ and the extensions 
B[39, 3] = B[42, 10], 
B[50, 2] = B[53, 7],


B[65, 3] = B[68, 10] and 
B[122, 2] = B[125, 21] in �∗��	 ∧ �(0), respectively.
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Extensions (4), (7), (12), and (13) are obtained by duality from algebraic extensions. Extensions

(10) and (8) follow by duality from (2) and (5).

Extension (11) is proved in Proposition 6.24. □

Lemma 6.39. In the elliptic spectral sequence of �, there are exotic extensions

(1) 
B[57, 1] = �̄2B[20, 2] and

(2) 
B[62, 2] = �̄B[45, 3]

Dually, we have

(3) 
B[108, 2] = B[111, 17]

(4) 
B[113, 3] = B[116, 18]

Together with Lemma 6.38, there are no other non-trivial exotic 
-extensions.

Toprove Lemma6.39,we use the ��	-basedAtiyah–Hirzebruch spectral sequence for�, whose

filtration comes from the cellular filtration of �. To set up notation, we have the �1-page of this

spectral sequence

�1 = ⊕
3
6=0�∗��	⟹ �∗+6��	 ∧ �.

For a homotopy class j in �∗��	 ∧ �, we denote by f[6] the element that detects it in the �1-

page of the ��	-based Atiyah–Hirzebruch spectral sequence, where 6 is the Atiyah–Hirzebruch

filtration of j, and f is a class in �∗��	. The stem of j is then the stem of f plus 6.

Proof of Lemma 6.39. In our Atiyah–Hirzebruch notation, we can rewrite the two 
-extensions of

Lemma 6.39 as

(1) 
 ⋅ �̄2�[3] = ∆���̄[1],

(2) 
 ⋅ �̄3[2] = ∆2
�[0].

We first prove (2), namely, that 
 ⋅ �̄3[2] = ∆2
�[0]. In �∗��	 ∧ ��, we have


 ⋅ �̄3[2] = ⟨
, �̄3, �⟩[0]

by [41, Lemma 5.3]. By Moss’s theorem and the differential '11(∆
2�) = ��̄3 in the elliptic spectral

sequence of ��	, we have

⟨
, �̄3, �⟩ = ∆2
�.

Mapping this relation along the inclusion �� → � gives us (2).

For (1), note that in �∗��	 ∧ Σ��, we have


 ⋅ �̄2�[3] = ⟨
, �̄2�, �⟩[1]

by [41, Lemma 5.3]. Since �̄2� is 
-divisible in �∗��	, we may shuffle

⟨
, �̄2�, �⟩ = ⟨�̄2�, 
, �⟩.
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By Moss’s theorem and the differential '5(∆��̄) = 
�̄
2� in ��	, we have

⟨�̄2�, 
, �⟩ = ∆���̄.

Pulling back this relation along the quotient map � → Σ�� gives (1).

Extensions (3) and (4) follow by duality. The fact that there are no other exotic 
-extensions is

discussed below. □

Most possibilities for other exotic 
-extensions are ruled out in a straightforward way by ana-

lyzing /∗ and �∗, duality, the fact that �̄
 = 0. However, the following two extensions require us to

analyze the classicalAdams spectral sequence. The following proof depends on checking algebraic

extensions in

Ext((Tb2)
∗(��	 ∧ �), (Tb2)

∗)

using Bruner’s Ext-program [18]. See Figure 21 for classical Adams �2-charts for ��	 ∧ �(0) and

��	 ∧ �, and see [21, chapter 13] for ��	.

Lemma 6.40. In �∗��	 ∧ �,

(1) 
B[31, 1] = 0,

(2) 
B[36, 2] = 0.

Dually, we have,

(3) 
B[134, 2] = 0

(4) 
B[139, 3] = 0

Proof. To show this, we need to prove that

(1) 
B[31, 1] ≠ B[34, 6],

(2) 
B[36, 2] ≠ B[39, 7].

In our Atiyah–Hirzebruch notation, we can rewrite these extensions as

(1) 
 ⋅ �2[3] ≠ ��̄[0],

(2) 
 ⋅ ∆
3[3] ≠ ∆��[0].

We give a proof for (1) that 
 ⋅ �2[3] ≠ ��̄[0] using the classical Adams spectral sequence. We con-

sider theAdams spectral sequence for ��	 ∧ � and its subquotients.Wewill show that theAdams

filtration of �2[3] is 7 and the Adams filtration of ��̄[0] is 8. The fact that there is no such 
-

extension follows from the algebraic fact that on the Adams �2-page, the ℎ2-multiple of the first

element is not the second element, which is checked by a computer program.

For the class ��̄[0], it is clear that the Adams filtration of ��̄ in �34��	 is 8, (it is detected by the

element '0g ,) and it maps nontrivially on the Adams �2-pages along the map ��	 → ��	 ∧ �.

The image under this map, which we denoted by '0g[0], is a permanent cycle. It cannot be killed

due to filtration reasons. Therefore, the class ��̄[0] is detected by '0g[0] and, in particular, it has

Adams filtration 8.

For the class �2[3], we first consider the class �2[1] in �29��	 ∧ �(0). Since �29��	 =

0, �30��	 = 0, we have �30��	 ∧ �(0) = 0. This forces three non-zero Adams differentials elimi-

nating the three elements in the Adams �2-page for ��	 ∧ �(0). In particular, we learn that �
2[1]
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in �29��	 ∧ �(0) is detected by the only remaining element y[0] in Adams filtration 7, and that

there is a non-zero '3-differential from (� − #, #)-bi-degrees (31,6) to (30,9).

Considering the quotient map ��	 ∧ � → ��	 ∧ Σ2�(0), we learn that �2[3] is detected in

Adams filtration at most 7. Considering the induced map on the Adams �2-pages, we also learn

that it is an isomorphism on the (� − #, #)-bi-degrees (31,6) and (30,9). So, in particular, the ele-

ment in (� − #, #)-bi-degree (31,6) does not survive. Therefore, �2[3] is detected in Adams filtration

exactly 7.

For (2), that 
 ⋅ ∆
3[3] ≠ ∆��[0], we use the Adams spectral sequence again in a very similar

way. We will show that the Adams filtration of ∆
3[3] is 8 and the Adams filtration of ∆��[0] is 9.

The fact that there is no such extensions then follows as in (1).

For the class ∆��[0], it is clear that the Adams filtration of ∆�� in �39��	 is 9, (it is detected by

the element �,) and it maps nontrivially on the Adams �2-pages along the map ��	 → ��	 ∧ �.

The image under this map, which we denoted by '0g[0], is a permanent cycle. It cannot be killed

due to filtration reasons. Therefore, the class ∆��[0] is detected by �[0], and in particular it has

Adams filtration 9.

For the class ∆
3[3], we first consider the class ∆
3 in �33��	. The class ∆

3 in �33��	 is

detected in theAdams filtration 8. Considering the quotientmap ��	 ∧ � → Σ3��	, we learn that

∆
3[3] is detected in Adams filtration at most 8. To show that it is detected in Adams filtration 8,

we will show that the only other element in lower filtration, the class in (� − #, #)-bi-degree (36,7),

supports a non-zero '2-differential.

The maps in the zigzag

are isomorphisms in (� − #, #)-bi-degrees (36,7) and (35,9) on Adams �2-pages. So, the claimed

non-zero '2-differential follows from the one in the Adams spectral sequence of ��	, from (� −

#, #)-bi-degrees (35,7) and (34,9). □

We now turn to the study of the �1-extensions. First, recall the discussion on �1-self maps and

 1 from Subsection 2.6. The homotopy groups of ��	 ∧  1 are studied by the third author in

[33]. Furthermore, the knowledge of the homotopy groups of ��	 ∧  1 is sufficient to allow us to

deduce much of the action of �1 on the homotopy groups of ��	 ∧ �, via the long exact sequence

on homotopy of the cofiber sequence

��	 ∧ Σ2�
�1
^̂→ ��	 ∧ � → ��	 ∧  1.

Since the outcome depends on the choice of the �1-self-map, we call a �1-self-map of type L if its

cofiber is  1[01] or  1[10] and of type LL, otherwise. Again, see Subsection 2.6 for the definition

of  1[/y].

Lemma 6.41.

(a) For all �1-self maps of �, there are the following exotic �1-extensions, and those induced from

these by �̄-linearity:

(1) �1B[9, 1] = B[11, 3]

(2) �1B[15, 1] = B[17, 3]

(3) �1B[30, 2] = �̄B[12, 2]

(4) �1B[33, 1] = B[35, 3]
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(5) �1B[38, 2] = �̄B[20, 2]

(6) �1∆
2B[9, 1] = ∆2B[11, 3]

(7) �1B[99, 1] = �̄
3B[21, 3]

(8) �1B[104, 2] = �̄
4B[26, 0]

(9) �1B[105, 1] = B[107, 3]

(10) �1(�1B[108, 2]) = �̄
3B[52, 0]

(11) �1B[114, 2] = �̄
4B[36, 2]

(12) either �1B[116, 2] = �̄
2B[78, 0] or �1B[116, 2] = �̄B[98, 0]

(13) �1�̄B[105, 1] = �̄
3B[67, 3]

(14) �1B[129, 1] = B[131, 3]

(15) either �1B[131, 3] = �̄
2B[93, 3] or �1B[131, 3] = �̄B[113, 3]

(16) �1B[134, 2] = �̄B[116, 2]

(17) �1�̄B[115, 3] = �̄B[117, 13]

(18) �1(�1B[139, 3]) = �̄
3B[83, 3]

(19) �1�̄B[120, 3] = �̄B[122, 14]

(20) �1(�1�̄B[124, 0]) = �̄
4B[68, 2]

(21) �1B[147, 1] = �̄B[129, 1];

(22) �1B[152, 2] = �̄B[134, 2]

(23) �1B[156, 10] = B[158, 16]

(24) �1B[162, 2] = �̄
2B[124, 0]

(b) For �1-self-maps of type L, there are also the following �1-extensions, and those induced from

these by �̄-linearity:

(1) �1B[68, 2] = �̄
2B[30, 2] and

(2) �1B[83, 3] = �̄
4B[15, 1]

Proof. For all parts, except for (9), (12), (15), we see, by inspecting the relevant parts of the homo-

topy groups of appropriate ��	 ∧  1[/y], that the targets of the stated �1 extensions are sent to

zero via the natural map

�∗(��	 ∧ �) → �∗(��	 ∧  1[/y]).

Therefore, they are in the image of a �1-multiplication and the stated �1-extensions are the

only possibilities.

For part (9), consider

sk4(��	 ∧ �) = (��	 ∧ �)∕(��	 ∧ �)5,

where (��	 ∧ �)5 is the fifth term in the -(4)-Adams tower of ��	 ∧ �. It is a module over

sk4(��	). Since ∆
4 ∈ �96(sk4(��	)), this element acts on �∗sk4(��	 ∧ �). We see that the

induced map �∗(��	 ∧ �) → �∗sk4(��	 ∧ �) sends B[9, 1] and B[11, 3] to non-trivial elements,

which we denote by the same names. Furthermore, it sends B[105, 1] and B[107, 3] to elements

detected by the products ∆4B[9, 1] and ∆4B[11, 3]. Since �1B[9, 1] = B[11, 3] by part (1),

�1∆
4B[9, 1] = ∆4�1B[9, 1] = ∆

4B[11, 1]

in �∗sk4(��	 ∧ �). It follows that �1B[105, 1]must be detected by B[107, 3] in the �∞-term of the

elliptic spectral sequence of ��	 ∧ �. □
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Remark 6.42. We are left with two undecided �1-extensions, namely, (12) and (13) in Lemma 6.41,

which we were unable to resolve.

ACKNOWLEDGEMENTS

We thank Robert Bruner and John Rognes for useful discussions and their generosity in shar-

ing preprints of some charts and chapters as well as the front matter of their book [19]. We are

extremely grateful to Hans-Werner Henn and Vesna Stojanoska for useful conversations along

the way. In particular, Henn could very well have been a co-author given the extent of interac-

tions we had with him on this project. Computations like these are much harder without effective

drawing tools and spectral sequence programs. We are thankful to Tilman Bauer (luasseq) and

Hood Chatham (spectralsequences) for their LATEX spectral sequence packages. While the charts

in this paper have mostly been re-drawn with spectralsequences, early versions of our compu-

tations (before spectralsequences existed) were facilitated by Bauer’s package and his kindness

in helping us make it work in such large scales. Classic but not least, we thank Bruner for his

Ext-program which is an ever-useful tool. We also thank the anonymous referee for their careful

reading of themanuscript andmany helpful comments and suggestions for improvement. Finally,

the second and third authors also thank l’Université de Strasbourg for its support and hospitality

during part of the project.

JOURNAL INFORMATION

The Journal of Topology is wholly owned and managed by the London Mathematical Society,

a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its

publishing programme is used to support mathematicians and mathematics research in the form

of research grants, conference grants, prizes, initiatives for early career researchers and the

promotion of mathematics.

REFERENCES

1. A. Baker andA. Lazarev,On theAdams spectral sequence forI-modules, Algebr. Geom. Topol. 1 (2001), 173–199.

2. T. Bauer, Computation of the homotopy of the spectrum tmf. In Groups, homotopy and configuration spaces,

Geom. Topol. Monogr., No. 13, Geom. Topol. Publ., Coventry, 2008, pp. 11–40.

3. A. Beaudry, The algebraic duality resolution at p = 2, Algebr. Geom. Topol. 15 (2015), no. 6, 3653–3705.

4. A. Beaudry, Towards the homotopy of the �(2)-local Moore spectrum at � = 2, Adv. Math. 306 (2017), 722–788.

5. A. Beaudry, M. Behrens, P. Bhattacharya, D. Culver, and Z. Xu, The telescope conjecture at height 2 and the tmf

resolution, J. Topol. 14 (2021), no. 4, 1243–1320.

6. A. Beaudry, I. Bobkova, V.-C. Pham, and Z. Xu, Full chart for ��	∗�(0), (2021). https://arxiv.org/src/2103.

10953v2/anc/V0-FULL-CHART.pdf.

7. A. Beaudry, I. Bobkova, V.-C. Pham, and Z. Xu, Full chart for ��	∗�, (2021). Available at https://arxiv.org/src/

2103.10953v2/anc/Y-FULL-CHART.pdf.

8. A. Beaudry, P. G. Goerss, and H.-W. Henn, Chromatic splitting for the�(2)-local sphere at � = 2, Geom. Topol.

26 (2022), no. 1, 377–476.

9. M. Behrens, The Goodwillie tower and the EHP sequence, Mem. Amer. Math. Soc. 218 (2012), no. 1026, xii+90.

10. P. Bhattacharya and P. Egger, A class of 2-local finite spectra which admit a �1
2
-self-map, Adv. Math. 360 (2020),

106895, 40.

11. P. Bhattacharya and P. Egger, Towards the �(2)-local homotopy groups of �, Algebr. Geom. Topol. 20 (2020),

no. 3, 1235–1277.

12. P. Bhattacharya, P. Egger, andM.Mahowald,On the periodic �2-self-map of 1, Algebr. Geom. Topol. 17 (2017),

no. 2, 657–692.

13. J. M. Boardman, Conditionally convergent spectral sequences. Homotopy invariant algebraic structures

(Baltimore, MD, 1998), Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 49–84.



1926 BEAUDRY et al.

14. I. Bobkova and P. G. Goerss, Topological resolutions in �(2)-local homotopy theory at the prime 2, J. Topol. 11

(2018), no. 4, 917–956.

15. A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281.

16. K. S. Brown, Lectures on the cohomology of groups. Cohomology of groups and algebraic �-theory, Advanced

Lectures in Mathematics (ALM), vol. 12, International Press, Somerville, MA, 2010, pp. 131–166.

17. R. Bruner, Algebraic and geometric connecting homomorphisms in the Adams spectral sequence. Geometric

applications of homotopy theory (Proc. Conf., Evanston, IL, 1977), II, Lecture Notes in Mathematics, vol. 658,

Springer, Berlin, 1978, pp. 131–133.

18. R. R. Bruner, Cohomology charts software ext.1.9.3, available at http://www.rrb.wayne.edu/papers/, 2018.

19. R. R. Bruner and J. Rognes, The Adams spectral sequence for topological modular forms, Mathematical Surveys

and Monographs, vol. 253, Amer. Math. Soc., Providence, RI, 2021.

20. D. M. Davis and M. Mahowald, �1- and �2-periodicity in stable homotopy theory, Amer. J. Math. 103 (1981), no.

4, 615–659.

21. C. L. Douglas, J. Francis, A. G. Henriques, and M. A. Hill, editors, Topological modular forms, Mathematical

Surveys and Monographs, vol. 201, Amer. Math. Soc., Providence, RI, 2014.

22. P. G. Goerss and H.-W. Henn, The Brown-Comenetz dual of the�(2)-local sphere at the prime 3, Adv. Math. 288

(2016), 648–678.

23. P. G. Goerss, H.-W.Henn, andM.Mahowald,The homotopy of�2�(1) for the prime 3.Categorical decomposition

techniques in algebraic topology (Isle of Skye, 2001), Progress in Mathematics, vol. 215, Birkhäuser, Basel, 2004,

pp. 125–151.

24. P. G. Goerss, H.-W. Henn, andM. Mahowald, The rational homotopy of the�(2)-local sphere and the chromatic

splitting conjecture for the prime 3 and level 2, Doc. Math. 19 (2014), 1271–1290.

25. P. G. Goerss, H.-W. Henn, M. Mahowald, and C. Rezk, A resolution of the�(2)-local sphere at the prime 3, Ann.

of Math. (2) 162 (2005), no. 2, 777–822.

26. P. G. Goerss, H.-W. Henn,M.Mahowald, and C. Rezk,OnHopkins’ Picard groups for the prime 3 and chromatic

level 2, J. Topol. 8 (2015), no. 1, 267–294.

27. J. P. C. Greenlees, Ausoni-Bökstedt duality for topological Hochschild homology, J. Pure Appl. Algebra 220

(2016), no. 4, 1382–1402.

28. H.-W. Henn, On finite resolutions of �(6)-local spheres. Elliptic cohomology, London Mathematical Society

Lecture Note Series, vol. 342, Cambridge University Press, Cambridge, 2007, pp. 122–169.

29. H.-W. Henn, N. Karamanov, and M. Mahowald, The homotopy of the �(2)-local Moore spectrum at the prime 3

revisited, Math. Z. 275 (2013), no. 3-4, 953–1004.

30. D. C. Isaksen, G. Wang, and Z. Xu,More stable stems, arXiv:2001.04511, 2020.

31. M. Mahowald and C. Rezk, Brown-Comenetz duality and the Adams spectral sequence, Amer. J. Math. 121

(1999), no. 6, 1153–1177.

32. R. M. F. Moss, Secondary compositions and the Adams spectral sequence, Math. Z. 115 (1970), 283–310.

33. V.-C. Pham, Homotopy groups of �
ℎ�24
�

∧  1, to appear in Algebr. Geom. Topol. (2022).

34. D. C. Ravenel, A novice’s guide to the Adams-Novikov spectral sequence. Geometric applications of homotopy

theory (Proc. Conf., Evanston, IL, 1977), II, Lecture Notes in Mathematics, vol. 658, Springer, Berlin, 1978, pp.

404–475.

35. D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol.

121, Academic Press Inc., Orlando, FL, 1986.

36. D. C. Ravenel, Localization and periodicity in homotopy theory. Homotopy theory (Durham, 1985), London

Mathematical Society Lecture Note Series, No. 117, Cambridge University Press, Cambridge, 1987, pp. 175–194.

37. C. Rezk, Supplementary notes forMATH512 (2007). https://faculty.math.illinois.edu/∼rezk/512-spr2001-notes.

38. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer, New York,

1986.

39. V. Stojanoska, Duality for topological modular forms, Doc. Math. 17 (2012), 271–311.

40. V. Stojanoska, Calculating descent for 2-primary topological modular forms. An alpine expedition through

algebraic topology, Contemporary Mathematics, vol. 617, Amer. Math. Soc., Providence, RI, 2014, pp. 241–258.

41. G. Wang and Z. Xu, Some extensions in the Adams spectral sequence and the 51-stem, Algebr. Geom. Topol. 18

(2018), no. 7, 3887–3906.


