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1 | INTRODUCTION
1.1 | Motivation

Topological modular forms (¢tm f) are ubiquitous in algebraic topology and homotopy theory. The
goal of this paper is to compute the ¢m f-homology of two spaces, namely, RP? and RP? A CP?2,
and to determine the differentials and extensions in their elliptic spectral sequences.

We approach this problem from the point of view of stable homotopy theory. As is common,
we let V(0) denote the cofiber of multiplication by 2 on the sphere spectrum. Then

V(0) ~ Z71Z®RP?

and, via the suspension isomorphism, computing tmf,V(0) = w . tmf A V(0) is equivalent to
computing the tmf-homology of RP2. Similarly, let Y be the smash product of V(0) with Cps
the cofiber of the stable Hopf map 7. Then

Y ~ 373RP? A CP?

and computing tmf,Y is equivalent to computing the tm f-homology of RP?> A CP2. In this paper,
we compute the elliptic spectral sequence for both tmf A V(0) and tmf A Y. From this computa-
tion, we deduce tmf,V(0) and tmf,Y and provide information about their module structure over
tmf . In particular, we resolve all exotic 2,7, v extensions as as compute the effect of v;-self maps
of Y on tmf,Y. Note that determining the tm f,-module structure is much less straightforward
than a simple degree-wise computation of tmf,V(0) or tmf,Y.

Knowing the homology of basic spaces is part of a full understanding of any generalized homol-
ogy theory. So, we see these computations as having independent and fundamental interest. They
are, at the very least, an addition to the slim bank of examples of computations in ¢m f-homology
theory of spaces and finite spectra.

However, our motivation for doing this runs deeper and this computation is part of a more ambi-
tious program, coming from chromatic homotopy theory. Specifically, our main goal in doing this
computation is not just to understand the structure of tmf,V(0) and tmf.Y as tmf,-modules,
but more-so to fully compute their elliptic spectral sequences. To explain this, we let K(2) denote the
Morava K-theory spectrum and E, the Lubin-Tate spectrum (also often called Morava E-theory).

In the sequence of papers [22-26, 28, 29], Goerss, Henn, Karamanov, Mahowald, and Rezk carry
out a program for studying K(2)-local homotopy theory at p = 3 using the theory of finite reso-
lutions. These are sequences of spectra built from the K(2)-localization of tmf (and tmf with
level structures) that resolve the K(2)-local sphere. Finite resolutions give rise to Bousfield-Kan
spectral sequences. Let us call these finite resolution spectral sequences. The input is K(2)-local
tmf-homology, possibly with level structures, and the output is K(2)-local homotopy groups. The
ultimate goal is to use finite resolutions to compute n*LK(z)SO, but an intermediate step is the
computations of the homotopy groups of Lg,)F for some key finite spectra F, such as the prime 3
Moore spectrum V(0) [29] and the cofiber of its v,-self map, commonly denoted V(1) [23]. So, to
use the finite resolution approach to K(2)-local homotopy, a key input is 7z, Lg ;) (¢mf A F). This
can be computed via the K(2)-local E,-based Adams-Novikov spectral sequence (which can also
be cast as a homotopy fixed point spectral sequence). This spectral sequence receives a map from
the elliptic spectral sequence of tm f A F. Understanding the elliptic spectral sequence of tmf A F
thus provides key input for K(2)-local computations.
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Recently, there have been significant advancements towards carrying out an analogous pro-
gram at the prime p = 2 (see [3, 4, 8, 14]). But the program is still in progress. For example, the
only complete computation of the K(2)-local homotopy groups of a finite spectrum at p = 2 is the
computation of 7, Lg(,)Z for Z € Z, where Z is the class of Bhattacharya-Egger spectra admitting
a v,-self map (see [10, 11] and also [5]). The motivation for this project is to add to this bank of com-
putations, namely, to study Lg;)V(0), Lg(,)Y, but also Lg;)A; where A, is the cofiber of a v, -self
map of Y. For this, we found the need to understand the elliptic spectral sequence of tmf A V(0),
tmf AY and tmf A A;.In[33], the third author computes a K(2)-local E,-based Adams—Novikov
spectral sequence converging to 7, Lg ) (tmf A A;). From this computation, one can deduce that
of the elliptic spectral sequence of tmf A A;.

Here, we study the elliptic spectral sequences of tmf A V(0) and tmf AY. For F either V(0)
orY,tmf F =0for x<0and tmf F is determined by its values in the range 0 <*< 192. In this
paper, we obtain the following result, where the definition of what we mean by exotic extensions
is given in Definition 2.20.

Theorem 1.1. The elliptic spectral sequence for tmf A V(0) is depicted in Figures 4-7 and [6].
tmf,V(0) = tmf,,,RP?,

together with all exotic 2,1 and v extensions in the corresponding elliptic spectral sequence is as
displayed in Figures 8 and 9 in degrees 0 <x< 192.
Similarly, the elliptic spectral sequence for tmf A'Y is depicted in Figures 14-20 and [7].

tmf,Y = tmf, ;RP* A CP?,

together with all exotic 2,7 and v extensions and almost all exotic v,-extensions in the cor-
responding elliptic spectral sequence is as displayed in Figures 22 and 23 in degrees 0 <x< 192. In
particular,

2(tmf ,(RP? A CP?)) = 0.

Remark 1.2.

(1) In addition to charts in this paper, large, full range charts of the elliptic spectral sequences
can be found in [6, 7].

(2) Computing exotic extensions in this sense of Definition 2.20 can (and does in some places
here) leave ambiguity about the module structure. However, this definition of exotic exten-
sions, which we borrowed from [30], is very standard in these kinds of large spectral sequence
computations.

1.2 | Methods and comparison with existing work

To say a few words about our techniques, the major input in our computation is the elliptic spectral
sequence of tm f, which was first computed by Hopkins and Mahowald [21, chapter 15], and later
by Bauer [2]. The computation of the spectral sequence for tmf,V(0) is straightforward given
that data, while that of tmf,Y is more intricate. The technique we use for the latter relies on



THE TOPOLOGICAL MODULAR FORMS OF RP? AND RP? A CP? | 1867

an observation of the third author from [33]. For both V(0) and Y, computation of the exotic
extensions requires work and new input. Several techniques are used to achieve this, and the most
interesting among these is probably the Brown-Comenetz ‘self-duality’ of tm f,V(0) and tmf,Y
(see Theorem 2.7).

In [19], Bruner and Rognes do a thorough investigation of the classical Adams sequence of
tmf and some of its modules. (Note that the study of the classical Adams spectral sequence of
tmf probably goes back to Hopkins and Mahowald, and later to Henriques in [21, chapter 13].)
Among many other topics, including duality for topological modular forms which is relevant for
our approaches, they study the classical Adams spectral sequence of tmf smashed with many
finite spectra, including a study of tmf smashed with V(0). In particular, they also compute
tmf,V(0), determining all but a few 2,7, v-multiplications as well as v‘l‘-multiplications. Here,
we deliberately use the word multiplication in contrast to the word extension discussed above to
emphasize that Bruner-Rognes name all classes, which leads them to a more precise determina-
tion of multiplicative relations. During the writing of this paper, Bruner and Rognes shared their
charts and an advanced copy of some of the chapters of their book with us. However, our results
were obtained independently from theirs and via different methods. So, the two approaches com-
plement one another. We also use a few results on the classical Adams spectral sequence of tmf,
which we verified against both [21, chapter 13] and [19, Chapters 5 and 9]. Furthermore, [19, The-
orem 10.6] gives the key result on Brown-Commenetz duality for tmf (see Theorem 2.7), which
we use to resolve extensions.

Finally, we reiterate that for our applications, namely, as an input in the finite resolution
approach to K(2)-local homotopy theory, it is important to understand specifically the elliptic
spectral sequence instead of the classical Adams spectral sequence because of its close relation-
ship to the homotopy fixed point spectral sequence, a key tool in chromatic homotopy theory (see
the discussion above).

1.3 | Organization of the paper

In Section 2, we discuss the elliptic spectral sequences and other key tools used later in the paper.
In Section 3, we review the computation of the E,-term of the elliptic spectral sequence for tm f A
V(0). In Section 4, we compute the differentials and some exotic extensions. In Section 5, we turn
to the computation of the E,-term of the elliptic spectral sequence for tmf A'Y and in Section 6,
we compute the differentials and exotic extensions.

2 | BACKGROUND
Conventions 2.1. In this paper, all spectra are 2-local, in particular we will write tmf to mean

tmf ). All spectral sequence charts are drawn in Adams notation: for a spectral sequence E;’t =
Ext¥(...) the x-axis represents t — s and the y-axis represents s.

2.1 | (co)Truncated spectral sequences

In Section 6, we will use the (co-)truncation of the spectral sequence associated to a tower of
cofibrations. We will now recall the constructions and their basic properties. Let
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X, X, X, X, X, X,
I I I D
Iy I I Iy I,

be a tower of cofibrations of spectra. Let (E;"*, d,),, be the associated spectral sequence.
Let X;/X, be the cofiber of the evident map X, — X;. For any n € N, there is a tower of
fibrations, which we call the n-truncated tower:

Xo/Xn X1/X, X /Xy <— o =— X1 /X, =—pt
D D I
Iy I I I

We denote the terms of the resulting spectral sequence by E;”<n This spectral sequence computes
the homotopy groups of

sk, 1 X, = Xo/X,,-
There is a natural map from the original tower to the n-truncated tower. Let
TS : B - E),

be the induced map between the respective E,-terms. Then E yen =0 for s > n, while T "is an
isomorphism if s < n — 1 and an injection if s = n — 1. More generally, we have:

Lemma 2.2. Foreveryr > 2, the map T> " has the following properties:

n—1,and
n—-1-(@-1).

(i) T is injective for s <
(ii) T is bijective for s <
Proof. We prove this by induction on the r. From the above discussion, (i) and (ii) hold for r = 2.
Suppose both hold for some r > 2.

We prove that (i) holds at E, ;. Let [x] € Er ., be represented by an element x € Ef’t such
that s <n — 1 and Tfil([ x]) = 0. So, T>*(x) is the target of a d,-differential. That is, there exists
yEE,; Dol ! such that d,(y) = T¥'(x). Since s —r < n—r, TS""* is bijective by the induction
hypothesis. It follows that there exists y € EX"'"""! such that TS™"'"""1(3)) = y. So, by naturality
and the hypothesis that Tf’t is injective, d,(y) = x. This means that [x] = 0, and hence Tfil is
injective when s > n — 1.

Now, we prove that (ii) holds at E, ;. Let [x] € E* ril,<n with s < n —r — 1. We need to show
that [x] is in the image of Tr 11+ By the induction hypothesis, there is a class X € Ef’t such that

T%'(x) = x. It suffices to prove that X is a d,-cycle. By naturality,
T3 (d, () = (T3 (X)) = dy(x) = 0.

Since d,(x) € ES7""*""Y and s + r < n — 1, the induction hypothesis implies that d,(X) = 0. []

r,<n
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Next, we look at the co-truncated spectral sequence. Consider the following tower of fibrations,
which we call the n-co-truncated tower,

id id id
Yy<~— Y, ~— ..~ Y, =X, X1 X2
e D I e
Jo J1 Jn =1y Iniq Inia

whereY, = =Y, =X,andJ, = --- =J,_; = pt. We denote by Ef:;n the r-term of the spectral

sequence associated to this tower. There is an obvious map from the n-co-truncated tower to the
original one. This map induces a map of spectral sequences:

S,t o St S,t
T Er,;n - E>.

We observe that Ef;n = 0 for s < n, and that cT;’* is a bijection for s > n + 1 and a surjection for

s = n. The following lemma is proved as in Lemma 2.2.

Lemma 2.3. Foreveryr > 2, the map ch’t has the following properties:

6) ch’t is surjective for s > n, and
(ii) cT®" is bijective fors > n+r —1.
2.2 | The elliptic spectral sequence
In this section, we will introduce our main spectral sequence. Let
(A,A) = (Z[ay, a5, a5, 04,06, Z[ a1, Qy, a3, a4, A, S, T, £])
with
la;| = 2i, |r| = 4,|s] = 2,t| =6

be the Hopf algebroid of Weierstrass elliptic curves. Then the elliptic spectral sequence has the
form [2]

B} = Ext}'(A,A) = m,_tmf.

Consider the map
QSU(4) - QSU ~ BU

induced by the usual inclusion SU(4) — SU. Let X(4) be the Thom spectrum of the associated
virtual vector bundle over QSU (4). These spectra play a crucial role in the study of nilpotence and
periodicity in chromatic homotopy theory, in particular, in the work of Ravenel [36]. As outlined
in [21, chapter 9], the elliptic spectral sequence is the X(4)-based Adams spectral sequence for
tmf (see also [37]).
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Let us spell this out. We let R = tmf and E = tmf A X(4). Then
EAg E ~tmf AX(4) AX(4).

Let E be the fiber of the unit map R — E. For any tm f-module M, one can construct the Adams
tower

M%E/\RM%EAREARM%."

EAg M EAREAg M EAREAREAg M

by splicing together the cofiber sequences

— 1 — —
BN e M o B A M = EAg B Ag M.

We abbreviate

—AR

k ——Ak
X, :=E" AfM=~X4) AM,

—Ark ——Ak
I ;i=EANRE " AMgM~X@)AX(4) AM,

where X(4) is the fiber of the unit map S° — X(4). As a consequence, the associated spectral
sequence is identified with the X(4)-based Adams spectral sequence for M.
However, we have that the Hopf algebroid

(m.(E), m,(E Ag E)) = (. (tmf A X(4)), m(tmf A X(4) AX(4)))

is isomorphic to (A4, A). In particular, it is flat. Therefore, the E,-term of the associated spectral
sequence is identified with

E¥(M) = Ext}' (A, 7,(E Ag M)). (2.4)

See [1]. When M = tmf, this is precisely the elliptic spectral sequence, and more generally, this
is the elliptic spectral sequence for the tm f-module M.

By [15, Theorem 6.5], since X(4) is connected and 7y(X(4)) = Z, if M is connective, then
Lx@4yM =~ M and the spectral sequence (2.4) converges strongly in the sense of [13] to 7z, (M). In
this paper, we will be working with modules M of the form tmf A F (where F = V(0) or Y) and
with the elliptic spectral sequence which reads as

ES'™ = Bxt}'(A, m,(tmf AX(4) AF)) = 7,_(tmf AF).

To simplify the notation, we put
F.(F) :=n (tmf AX(4)AF)

noting that this is a A-comodule.
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The spectra we will be working with in this paper are 2-local. As described in [2, section 7], one
can simplify the computation of the cohomology of the Weierstrass Hopf algebroid

(A A2) 2 (A® Z5), A® Z(y)

as follows. Let A’ denote Z(,)[a;,a3] and f : A — A’ the evident projection. Let A’ denote A’ ® 4
A ®,4 A’, which is isomorphic to A’[s, t]/~, where the relations ~ are generated by

s* —6st + als3 —3ayt —3a35 =0
s — 27t + 3a1s5 - 9alszt + 3a%s4 - 9afst + afs3 —27a3t = 0.
The map between Hopf algebroids
[ (AgyAg) = (A, N)
induces an equivalence of the associated categories of comodules [2, sections 2 and 7], where
N A ® Aoy N

for an (A y), A(z))-comodule N. When F is the 2-localization of a finite spectrum, the E,-term of
the elliptic spectral sequence for

tmf AF ~ tmf(z) AF
is isomorphic to
ES'(tmf AF) = Ext} (A", A’ @ 4 F.(F)).

Remark 2.5. The spectrum tmf A X(4) is a complex oriented ring spectrum (for example, A =
. (tmf A X(4))is concentrated in even degrees). Let us denote by

H: MU — tmf AX(4)

the map of ring spectra inducing the complex orientation of tmf A X(4) given by the comple-
tion of the universal Weierstrass curve at the origin. Then H induces a homomorphism of Hopf
algebroids

H,: (MU,,MUMU) — ((tmf AX(4)),,tmf AX(4) AX(4)),) = (A,N).

Recall that MU, = Z[x,, X,,...] with |x;| = 2i and MU MU = MU,[m,, m,,...] with |m;| = 2i.
We note that H,(x;) = +a,. This is discussed in [2, (3.2)].

The map H also induces a map from the Adams-Novikov spectral sequence for 7,.(F) to the
elliptic spectral sequence for 7, (tmf A F), which converges to the Hurewitz map h: 7,.(F) —
. (tmf A F). Moreover, the induced map at the E,-term is induced by H,,.
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2.3 | Duality

In this section, we discuss Brown-Comenetz duality for tm f. This will be used for determining
some of the exotic extensions in our spectral sequences. First, we introduce the following notation.

Notation 2.6. Let A be a graded module over a graded commutative ring S and x € S. We let " A
be the module determined by (X" A); = A;_,. We denote by I' . A the x-power torsion of A, that is,

L A={meA|x'm=0,i> 0},
and by A/(x*) the module that fits into the exact sequence of S-modules
A— A[%] - A/(x®) > 0.
We will also denote by AY the Pontryagin dual of A, that is,
(AY), = Hom((4)_,, Q/2)
with the S-module structure given by (r.f)(m) = (~DV'/1 f(rm) for every r € S, f € (AV),
andm € A,,.

Now suppose that R is a commutative ring spectrum (for example, R = tmf) and M is a R-
module. For any x € 7,(R), we define M [%] to be

M[l] — hocolim(M = =M 5 52y 5 ),
X

We define M /(x) to be the cofiber of the natural map M - M [%]. Inductively, if (x;, X5, ..., X,,)
is a sequence of elements of 7, R, then we define

M /(X7 x50, s x,0) = (M /(x7°, X375 s X2 1)/ (X))

With this notation, using the long exact sequence on homotopy groups, we see that the cofiber
sequence

M - M[%] - M/(x®)
gives rise to the short exact sequence of 7, (R)-modules
0- 7, (M)/(x®) - 7,(M/(x*®)) - T (7,_,(M)) - 0.

Let I /7 be the spectrum representing the Pontryagin dual of stable homotopy groups, so that
for a spectrum X,

Ié /Z(X) := Hom(7,X,Q/2).

Then the Brown-Comenetz dual of a spectrum X is defined to be

I@/Z(X) = F(X,I@/Z).
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The literature contains a variety of references and methods for studying dualities of tm f and
related spectra. To name a few, we note work of Mahowald and Rezk [31], Stojanoska [39, 40],
Greenlees [27], and Bruner and Rognes [19, chapter 10].

Recall that throughout this paper tmf denotes the 2-localization tmf ,, according to
Conventions 2.1.

Theorem 2.7 [19, Theorem 10.6]. There is an equivalence of tm f-modules
Ig z(tmf /2%, ¢, A%)) ~ 2%tm .

Remark 2.8. Here and below, by ‘—/A%’, we really mean ‘—/(A%)®’ as A is an element of the E,-
term of the elliptic spectral sequence but it does not survive to the E -term. However, A% survives
and detects a class in 7 g,tm f. Note also that the class ¢, € mwgtmf reduces to v‘l‘ etmf AV(0)
and so c,-power torsion is the same as v;-power torsion when the latter makes sense.

Corollary 2.9. There are equivalences of tm f-modules

) Ig/z(tmf AV(0)/(2%,c,A®)) = Z¥tmf AV(0), and
(@) Ig z(tmf AY /22,2, A%) ~Ztmf AY.

Lemma 2.10. For X = tmf AV(0) ortmf AY, A3 acts injectively on (7. X) /().

Remark 2.11. The proof makes use of the structure of the E-terms of the elliptic spectral
sequences (see Figures 8,9, 22, and 23 and, for a single large chart, [6, 7]). So, this is a bit premature
but we want to have this result here to gather all our techniques in one place. We note that the
logic of the argument is not circular as the determination of the E -terms does not require this
lemma; it is needed in the proof of Corollary 2.12, which will be used to establish exotic extensions
in the elliptic spectral sequences.

Proof of Lemma 2.10. In this proof, write M = 7, X and M = 7, X /T, (7, X). For any 7 tmf-
module N, write T ,s(N) to denote the submodule consisting of elements that are A3-torsion.
Our goal is to show that Ts(M/c°) =0. But the quotient map M — M induces an

isomorphism M [c;l] = 1\_/1[021], and hence an isomorphism

M/c® = M/cP.

So, it is equivalent to prove that T ys(M / ¢;°) is zero, and we show that below.
The snake lemma applied to the diagram

0——M —— Mlc;'] M/c® 0
Pk
0*>]\_/I*>]\_/I[C;1] ]\_4/c:° 0

gives an exact sequence

Tas(M[c;']) > Tas(M /) > M /A% — Mc; /A8
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Therefore, if

(1) Tps(M[c;']) =0, and
(2) M/A® — M[c;1]/A8 is injective,

then we can conclude that T'ss (M/ ) =0.

We will explain why the conditions (1) and (2) hold for X = tmf A Y. The argument for tmf A
V(0) is more cumbersome, but can be adapted from this one.

All classes of . (tmf AY) detected in positive filtration in the elliptic spectral sequence are
c,-power torsion. Indeed, they are c,-power torsion at E_, and the spectral sequence has a hori-
zontal vanishing line. All elements in filtration zero are c,-free. From this, it follows that the edge
homomorphism M — Egg,* (to the zero line of the spectral sequence) induces an isomorphism
M = E%*. But E%* is a free module over F,[c,, A8] and so the conditions (1) and (2) follow.  []

Corollary 2.12. We have the following isomorphisms of 7 .tm f-modules

(V) Ty, G, (tmf AVO)/(A®)) = T, (x,_p(tmf AV(O)), and
@) T, (r,(tmf AY)/(A®)Y =T, (7,_g(tmf AY)).

Proof. In this proof, we let X = tmf A V(0). Since 7, X is 2-power torsion, we have X[1/2] ~.
Thus,

X/(2%) ~ TX. (2.13)

The long exact sequence in homotopy associated to the cofiber sequence

/@)~ M(z‘”)[}] — X/,
4
gives an exact sequence
0= (T X/@)/(E) = M (X)) = Ty (R/@™) = 0. @14)

By (2.13), we have

(7 (X/(2%2)) /() = (7,1 X) /(")
and
L, (7,1 (X/(2%))) = T, (7,5 X).
Since A8 acts injectively on 7, X, it also acts injectively on [, (7r,_,&). Moreover, A8 acts injec-
tively on (7, X)/(c;°) by Lemma 2.10. The short exact sequence (2.14) then shows that A% acts
injectively on 7, (X /(2%, ¢;’)). Therefore, we have that
T (X[(2%, ¢, A%)) = (m, X /(2%,¢°)) /(A%).

The 9-lemma then implies that the following is a short exact sequence of 7,.tm f-modules:

0 — (1,1 X)/ (e, A%) —» 7 (X/(2%, ¢, A%)) - T (T, ,X)/(A®) — 0. (2.15)
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By applying Hom(—, @/Z) to this exact sequence, we obtain
0 = (T, (m,_,X)/(A%))Y = m (X/(2%, ¢, A%))Y — ((m,_1X)/(c?, A7) = 0,

is an exact sequence of 7,.tm f-modules.
We see that the right most term is c,-free and the left most term is c,-torsion. In particular, it
follows that

(T, (0,2 X) /(M%) = T, (7, (X /(2%, ¢, A%))Y)
=T, (T dgz(X /2%, ¢, A%))),

where the second isomorphism comes from the definition of the Brown-Comenetz dual
Io/z(X/(2%,c;°, A%®)). Together with Corollary 2.9, we obtain an isomorphism of 7. tmf-
modules

(T, (7, 0)/(A%))Y 2 T2, (7, _,2)/(A%)"
> 52T, 7, (Ig /2 (X /2%, ¢, A%)))
> 225PT, (7,X)
> ¥1T, (7,4).
Substituting X for tmf A'Y and this last 19 with 17 gives the result for Y. 1

Remark 2.16. We will explain how to use Corollary 2.12 to compute extensions. Continue to let
X = tmf AV(0). Let K denote the kernel of the homomorphism induced by multiplication by A®
on I (7,&)/(A%). Since multiplication by A3 induces an isomorphism

o~

FC4(7T*X) — Fc4(7r* +192%) (2.17)
for %> 0, we see that, for —192 <t < 0,
K, =T, (7, X)/(A%),.

The snake lemma applied to the following diagram
1 1
A ¥

| |

0 —> K — I, (1,&)/(A%) == T, (7,X)/(A%)

0T () |+ | =T @) |+ ] —0

gives rise to the exact sequence

AS
0T, (7,X) — T, (T, 4190X) > K = 0.

Note that the injective map is an isomorphism for %> 0 and the surjective map is an isomor-
phism for < 0. Using (2.17) again, the homomorphism I'; (7, 19,&’) — K in the above short exact
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sequence induces an isomorphism
T, (. X), = Ky 195 = T, (X /(A%)); 10,

for0 <t <192.
Now let r be an element of m(tmf). If 0 <k <192 — [, multiplication by r induces a
commutative diagram

L, (70, X)) — Ky_195 2 T, (1, X) /(A®)_192

y y
L, (0 X)ipy — Kiyim102 2 T, (. 8) /(A®)iq 12102

By applying the Pontryagin dual to this commutative diagram, together with Corollary 2.12, we
obtain the commutative diagram

~

HOIH(FC4(7T*X)k, @/Z) 1—‘04(7-[*)()171—1(

. |

Hom(T, (77, X 41, Q/Z) == T, (M. X)171_11-

As a consequence, the cardinality of the image of
ri Ty (&) = To, (T,8) 4
is the same as that of
r: L, Xk = Te, (X171

In particular, this means that a non-trivial multiplication by r on stem k forces a non-trivial
multiplication by r on stem 171 — k — [.

Similarly, for tmf A'Y we obtain that a non-trivial multiplication by r on stem k forces a non-
trivial multiplication by r on stem 173 — k — L.

2.4 | The geometric boundary theorem
We also make use of the following result, due to Bruner [17]. A standard reference is [35, Theorem

2.3.4]. We apply this theorem to the X (4)-based Adams-Novikov spectral sequence and the cofiber
sequence

02 0! p 1
tmf AS" —>tmf AS - tmf AV(0)— tmf AS".

Using X(4).tmf = Aand X(4),.(tmf AV(0)) = A/2,we have X(4), p = 0 and hence a short exact
sequence

2
0>-A—>A->A/2-0. (2.18)
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Theorem 2.19 (Geometric Boundary Theorem). There are maps
8,1 EX(V(0)) » ESTH(SY)
such that
6, =081 Ey'(V(0)) > Ey*H(s°)
is the connecting homomorphism arising from (2.18). For all r,
5,d, =d, b,
and 8, is induced by §,. Furthermore, 8, is a filtered form of

D, mtmf AV(0) = m, tmf.

2.5 | Further observations on extensions

Here, we collect a few classical but useful extension results. Note that, in this paper, we use [30,
Definition 2.10] as our definition of an exotic extension. See Subsection 2.1 of that reference for a
detailed discussion. However, briefly, we have

Definition 2.20. [30, Definition 2.10] Let « € m.tmf be an element detected by a on the E_ -
term of the elliptic spectral sequence for tm f. An exotic extension by a is a pair of elements b and
c on the E_ -term of the elliptic spectral sequence for M (where M is a tm f-module) such that

(1) ab =0 on the E_ -term,

(2) there is an element 3 detected by b such that af3 is detected by c,

(3) ifan element 3’ detected by b’ is such that a8’ is detected by ¢, then the filtration of b’ is less
than or equal to that of b.

Note that this implies that if both a8 and a8’ are detected by c as in Figure 1, there is no exotic
extension from b’ to c.

Lemma 2.21. Let X be a spectrum. Consider the long exact sequence in homotopy
i p 2
o T X > 1, (XAV(0) > 1, 1 X — ...

2
associated to the cofiber sequence X — X — X AV(0). Let a € m,,_, X be an element of order 2. If
a’' € 7, (X AV(0)) is such that p.(a’) = a, then

2d’ =i,(na) € m,X AV(0).
Proof. This is a classical result (see, for example, [8, Lemma 3.1.5]). O

Remark 2.22. Lemma 2.21 will be used with X = tmf and tmf A C, where C, is the cofiber of
the Hopf map 7 : S' — S°. This gives all exotic 2-extensions in the elliptic spectral sequences for
tmf AV(0)and tmf AY,since Y = C, A V(0).
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8 12
FIGURE 1 Here, there is no exotic extensions from b’ to ¢, and so the dashed line would not be drawn.
Finally, we have the following classical result which is an analogue of Lemma 2.21.

Lemma 2.23. Letb € 7, X be such thatnb = 0. If b’ € ,,,,(C,) A X) is such that p,b" = b in the
long exact sequence on homotopy groups associated to

x5 X5 X AC, D 22X,
thennb’ =i (vb).

Proof. First, consider b = ¢ € 7,C, given by the inclusion SO — C, of the bottom cell. We have a
cofiber sequence

Cc, >, AC, 2 32C
n = Ey Aby = 276,
which is not split because of the non-triviality of Sq* in H* (Cy AC,, Z/2). We get a diagram

iy D«
70,Cy ——> 71,Cy A Cpy —— 7,22C,) —> 0

P, b

7 [
7T32C7) —— 7T3C7) —— 71'3(Cn A Cn)

For any b € 7,(C, A C,)) such that p,b" = 1, we must have nb’ # 0, else we could split the above

cofiber sequence. Since 5t = 0, nb’ € 1,(3Cy), where 73C, = Z /4{wi}. But in 7,C,)

2vt e (n,2,m) =(,n,2)n,

hence 2v € 7, (7;,2C,) and i,(2v) = 0 and nb" = i,(v0)
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For the general case, note that any class b : S” — X such that nb = 0 can be extended to a map

b: Z"C, — X. The claim then follows from the commutativity of the following diagram

"C, —=X"C, A C,, —=Z"2C,

l,; lb |

X —>XAC, — 22X

Then b’ = (b A C,), satisfies nb" = i, (vb). Now, suppose that p,b’ = b. Then b’ — b’ € ker p,, =
imi,. Therefore, n(b’ — b’) = 0s0, nb’ = i, (vbh) as well. O

2.6 | Self-maps and their cofibers

It is well-known that V(0) admits v‘l‘ self-maps, that is, maps =3V (0) — V(0) which induce multi-
plication by v‘l‘ in K(1)-homology for K(1) the first Morava K -theory. The map on MU-homology is
given by multiplication by x‘l‘ € MUyg. Under the map from the Adams-Novikov spectral sequence
of V(0) to that of the elliptic spectral sequence of tmf A V(0), x; maps to v; on the E,-term. See
the discussion surrounding (3.3). Any U‘l‘ self-map is detected by the same-named element. The
spectral sequence inherits an action of v} and the differentials are vj-linear.

Recall that we let Y be the spectrum V(0) A C,. In [20], Davis and Mahowald show that there
exist v, self-maps of Y, that is, maps Y — Y which induce multiplication by v; in K(1),Y. Any
of these is detected by the element v; on the E,-term of elliptic spectral sequence for tmf A Y and
the differentials are v, -linear.

In Lemma 6.41, we will be studying the v;-multiplication in tmf,Y. Some of the answers will
depend on the choice of v,-self map, so we give a bit of background here on this subject. This
material can be found in [20].

In [20], the authors show that there are in fact eight v, -self maps of Y. They also show thata v; -
self map of Y is detected in the Adams spectral sequence by an element of Extii3 (H*(Y),H*(Y)),
where A denotes the Steenrod algebra at p = 2.

A class of Ext}f(H *(Y), H*(Y)) is represented by a short sequence of .A-modules:

0—- Z*H*(Y) > M - H*(Y) - 0.

Let LA(1) be the sub-algebra of the Steenrod algebra generated by Sq' and Sq?. We know that
Extiil)(H *(Y),H*(Y)) = F, and its unique non-trivial class is represented by the short exact
sequence of .4(1)-module

0 - Z?H*(Y) » A1) » H*(Y) » 0,

where A(1) is isomorphic to .4(1) as an .4(1)-module, thus the notation. Davis and Mahowald
showed that a class of Extii3 (H*(Y), H*(Y)) which detects a v; -self map of Y is sent to the unique

non-trivial class of Extﬁl)(H *(Y), H*(Y)) (via the map induced by the inclusion A(1) C A).

To put an .A-module structure on A(1), it suffices to specify the Sg* action. Indeed, the action
of Sg¥, for k > 8 on A(1) is trivial for degree reasons. By the Adem relations, there must be a non-
trivial Sq* on the class of degree one of A(1). There are possibilities for a non-trivial action of Sq*

on the classes of degrees zero and two, giving rise to four different .4-module structures on A(1).
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This implies, in particular, that
Ext 2 (H*(Y), H*(Y)) = F®*.
Computing the first three stems of Exti’f (H*(Y),H*(Y)), we see that

S,8+2 rrr% * ~ [F2 ifs=2
B (HHY), HY(Y)) = {0 otherwise.
We deduce that there are eight homotopy classes of maps 2?Y — Y detected in
Ext}f(H *(Y),H*(Y)) and mapping non-trivially to Extiil)(H *(Y),H*(Y)). These are the
vy self-maps of Y.

It is somewhat surprising that out of eight v;-self-maps, there are only four homotopy types
which are distinguished by their cohomology, as is shown [20].

The singular cohomology of the cofiber of each of the v;-self maps on Y is isomorphic to one
of the four .4(1)s as an .A-module. We denote the cofibers realizing the four choices of Steenrod
algebra structure by A, [ij], with i, j € {0, 1}. Here, A, [ij] means that the cohomology of the spec-
trum A, [ij] has a non-trivial Sg* on the class of degree 0 (if i = 1) or 2 (if j = 1). For more details
and diagrams indicating the Steenrod algebra action, see [12, figure 1]. We use the notation A,, for
short, when we mean any or all of the four models.

3 | tmf,V(0): THE E,-PAGE

From now on, we will be working exclusively with 2-local spectra. We will write tmf for tmf ;)
to simplify the notation. Furthermore, we will be considering only elliptic spectral sequences for
M =tmf AF for F afinite spectrum and so shorten our notation even more to

E}'(F) 1= Ext} (A", A’ ®, F.(F)).

2
The map S° = S% induces multiplication by 2 on F,(S°) = A, which is injective. Thus, the cofiber
sequence

2
505 8% - v(0)
gives rise to a short exact sequence of A’-comodules
2
0o A5 A = A Q@ F,(V(0) — 0. (.1)

It follows that A’ ® , F,.(V(0)) is isomorphic to A’/(2) as a A’-comodule. Since (2) C A’ isa A’-
invariant ideal, we have that

Exty (A", A"/(2)) = Exty,  (A'/(2), A"/(2)).
See, for example, [35, Proposition A1.2.16]. So, we have a spectral sequence

E3'(V(0)) = Ext}) /(2)(,4’ /(2),A'/(2)) => m tmf A V(0). (3.2)
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A computation of the cohomology of (4’/(2),A’/(2)) is originally due to Hopkins and
Mahowald and can be found in [2, section 7; 21, chapter 15, section 7] Let us describe the answer
here and introduce some notation.

Classical computations of modular forms yield

xtH (A, A') = Zy)le4 6, Al/(c3 — 2 — (12)°D),

where
cy = a‘l‘ — 24a,0;4
¢ = —ab + 36a’a; — 21643
A =ajal —27a}
as well as
Bty (A'/(2).A'/(2) = 2/2[ay. Al

See, for example, [2; 38, IIL1]. The map on Ext®* induced by the mod 2 reduction (4’,A’) -
(A'/(2), N /(2)) sends ¢, + a} and ¢5 — a®.

There are also maps of Adams-Novikov spectral sequences, where H and h are as in
Remark 2.5:

Ext’s .p(BP,,BP,V(0)) —— 7,V(0)

MU wuMU,, MU, V(0)) —— 7, V(0)

: )

Ext,;,,(A'/(2),A"/(2)) ——=m.tmf A V(0)

Ext’

Further,

E BP BP(BP*7BP V(O)) = IFZ[Ul]
see [35, Theorem 4.3.2].
So, we have a € ExtA,/(z)(A’/(z),A’/(2)), v, € ExtBP sp(BP,BP,V(0)) and x, €

Ext ,(MU,,MU,V(0)), and

MU M
U 4 X P ay. (3.3)

Note that v; detects either of the two classes in 77,V (0) = Z/4 which map to 7 € 7;V(0) under
the homomorphism 7,V (0) — 7,S° in the long exact sequence in homotopy. We fix a choice and
callitv, € m,V(0). It follows that a; survives to detect the image of v; € 7,V (0) in m,tmf A V(0).
From now on, in mod 2 computations, we abuse notation and denote all classes we have named
a; by v;.
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0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

FIGURE 2 The E,-term of the elliptic spectral sequence for tmf A V(0) in the range 0 < ¢ — s < 50. A bullet
« denotes F, and a diamond ¢ denotes a copy of F,[v, ]. The lines of slope 1 denote multiplication by 7, and the
lines of slope 1/3 denote multiplication by v. Horizontal lines are v,-multiplications.

Now we will present the E, page of (3.2) as computed in [2, p.26; 21, p. 270; 40, figure. 5] (see
Figure 2). Even if the elliptic spectral sequence for V(0) is not multiplicative, E,(V(0)) is a ring and
we can completely describe the algebraic relations (which also follow from [2]). The ring structure
will be used in our computation of E,(Y) below.

Recall that § = §, was defined in Theorem 2.19. In the theorem below, x € E§’16(S°) is the
unique non-zero element.

Theorem 3.4 (Figure 2). The ring E,(V(0)) is isomorphic to
Falv1, A,%,7,v,x,]/(~)
for elements
RS Extl’z, Ve Ext1’4, K € Ext4’24, A € Ext®%

in the image of E,(S°) — E,(V(0)), as well as elements

U] € Exto’z, X € Extl’g, y e Extl16

in the image of 8, : E,(V(0)) — E,(S°) where
52(U1) = 77’ 52(x) = Vz’ 62(y) =K.

The relations (~) is the ideal generated by

(s=1) LY vix Y

(s=2) %] VX — U)X ny — v;x2 Xy y? —12A
(s=13) nx —v? x3 =12y

(s=4) n*A — vl

Furthermore, we have x = x? and §,(v?y) = 4x.
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Remark 3.5. The algebraic structure in Theorem 3.4 can also be deduced from the appendix of [4].

Remark 3.6. The element A is detected by v;' in the Bockstein spectral sequence computation of
[21, I1.2.7].

Remark 3.7. Let P denote the following pattern:

%%/

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

<

o

@

N

Then E;"*(V(0)) can be summarized additively as

E;*(V(0)) = P[k, Al/(An* — &ev}).

4 | tmf,V(0): THE DIFFERENTIALS AND EXTENSIONS

We begin with an observation that V(0) has a v‘l1 self-map, hence all differentials d, for r >
3 are v‘l‘ linear. Since 7, v, ® and A% are permanent cycles, all differentials are linear with
respect to multiplication by these elements. Note that there are no even length differentials due
to sparseness.

We will use the following methods when computing differentials in this section.

(1) The map of spectra
i:tmf —tmf AV(0)

induces a map of spectral sequences. Let dﬁmf denote the differentials in the spectral sequence
for tm f. We can import the differentials dﬁmf (a) = b from the spectral sequence for tm f if the
images of a and b are both non-trivial on the E, page of the spectral sequence for tmf A V(0).
Note also that the elliptic spectral sequence for tmf A V(0) is a module over the elliptic spec-
tral sequence for the ring spectrum tmf. For a € E,(S°), leta € E,(V(0)) denote i*(a) where

* 1 E.(S°) — E,(V(0))is induced from the unitmap i : S° — V(0). Then, for a € E,(S°) and
x € E.(V(0)) we have

d,(ax) = d;mf (a)x + ad,(x). (4.1)

(2) The long exact sequence in homotopy groups associated to the fiber sequence

tmfi tmf — tmf AV(0)
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FIGURE 3 The n-towers and the d, differentials between them

gives short exact sequences
0 — (mtmf)/2 - m;(tmf AV(0)) — ker,(m;_jtmf) — 0,

where ker,(7;_,tmf) is the subgroup of elements of order 2. This allows us to compute
the rank of m;(tmf A V(0)) and forces certain differentials by various dimension count
arguments.

(3) The Geometric Boundary Theorem, stated in Theorem 2.19.

For convenience of the reader, the large charts of the elliptic spectral sequence for tmf,V(0) can
be found in [6].

4.1 | The d;-differentials

Lemma 4.2 (Figure 3). The d;-differentials are A and v‘l‘-linear. They are determined by this
linearity, the differentials

d;(v]) = 1% ds()) = v,
and the module structure over the elliptic spectral sequence for tmf.

Proof. These differentials follow from the differential d3(afn) =n* in the elliptic spectral
sequence for tmf. Both the source and the target are not 7-torsion on the E; page, so we can
divide by 7 to get the first differential. Alternatively, the two listed d;-differentials occur in the
Adams-Novikov spectral sequence computing 7,V (0) so happen here also by naturality (see, for
example, [34, Theorem 5.13 (a)]).

Since A is a d5-cycle in the elliptic spectral sequence computing 7, tm f and the elliptic spectral
sequence for V(0) is a module over this spectral sequence, the d;-differentials are A-linear. For
degree reasons (making use of A and %-linearity), these determine all d;-differentials. O

The effect of the d; differentials is truncating the z-towers on the E; page. Figure 3 illustrates
this process. This figure contains only the 7-towers and omits the other classes. It does contain all
the d; differentials.
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FIGURE 4 d,and d,-differentials in stems 0-48. A o denotes F,[v}].

Remark 4.3. On the Es-page, all classes in filtrations s > 3 are v‘l‘—torsion. The v‘l‘—free classes are
concentrated in stemst — s # 5,6,7 mod 8.

4.2 | The d,-differentials

Lemma 4.4 (Figure 4). The ds-differentials are A*-linear. They are determined by this linearity, the
differential

ds(A) = % (24,0) — (23,5)
and the module structure over the elliptic spectral sequence for tmf.
Proof. The differential

ds(A) = &v

occurs in the spectral sequence for 7 tmf.
Linearity (4.1) over the spectral sequence for 7.tmf gives us, for x € E;k’*(V(O))

ds(A%x) = di™ (A%)x + A%d5(x) = 2A%vx + Ads(x) = Ads(x). 0

4.3 | Higher differentials

Since all the classes in filtrations 4 and above are in the ideal generated by %, the differentials that
have sources in filtrations 0-3 generate the other differentials with respect to the module structure
over the elliptic spectral sequence for tmf (denoted E;"*(S°)). We focus on these differentials in
the narrative (see Figures 4, 5, 6, and 7).
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48 52 56 60 64 68 72 76 80 84 88 92 96

FIGURE 5 Differentials in stems 48 to 96

Lemma 4.5. The d,-differentials are A*-linear and determined by

d,(Av?y) = #2pPv, (45,3) > (44,10)

d,(A%v2y) = A% %*nPy, (93,3) ~ (92,10)

and the module structure over the elliptic spectral sequence for tmf.
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FIGURE 6 Differentials in stems 96 to 140
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FIGURE 7 Differentials in stems 140 to 192



THE TOPOLOGICAL MODULAR FORMS OF RP? AND RP? A CP? | 1889

Proof. First, note that d;mf (A*) = A3pk in the spectral sequence for tmf. Therefore, using (4.1),
for any a € E,(V(0)) we have

d,(A%a) = A3np3Ra + Ad,(a).

Since A373% = 0, we get A*-linearity.
We give a proof for the differential d,(Av%y) = %>5v;. The proof for the other differential is
similar. In the spectral sequence for tmf, we have

d,(A4%) = %2,
But, for &, : E;’t V(0)) —» E;H’[(SO) the connecting homomorphism, we have
5,(Av?y) = Adw
and
8,(F%n*vy) = 7’

The differential when i = 0 then follows from Theorem 2.19.

Making use of the module structure over the spectral sequence for tm f, the only other possible
d,-differential for degree reasons is on A2v2y. But this class is in fact a d,-cycle since A%y is a
d,-cycle by sparseness. O

Lemma 4.6. Using the module structure over the elliptic spectral sequence for tmf, the
dgy-differentials are determined by the following differentials with i = 0, 1:

1) dg(A**) = A%R2x (48 + 96i,0) > (47 + 96i,9)
(2) dg(A?Mx) = A% Rk (55 + 96i,1) — (54 + 96i,10)
(3) dg(A3Hiy) = AlHHiR2e (73 + 96i,1) - (72 + 96i,10)
(4) dg(A>Te) = ARy (80 + 96i,2) > (79 + 96i,11)
(5) do(A%H¥0)) = A*R%0,x (50 4 96i,0) — (49 + 96i,9)
(6) do(AZ v, x) = A¥ Ry (57 + 96i,1) — (56 + 96i,10)
(7) dg(A3H0)) = AMHR20, x (74 + 96i,0) — (73 + 96i,9)
(8) dg(A3T,x) = Al R2yy (81 + 96i,1) — (80 + 96i,10)

Proof. We prove the claim for i = 0. To prove i = 1, one uses exactly the same arguments in
later stems.
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To show (1), note that A? cannot support any d, for r < 9 by sparseness. Then we have the
differential from the elliptic spectral sequence for tm f

dg(A%n) = ¢

and this differential becomes 7 divisible in the spectral sequence for tmf A V(0). For (2), we use
the same argument with the differential dy(A%e) = Ax?x7 from the elliptic spectral sequence for
tmf.

The differentials (3) and (4) are the images of the same differentials in the elliptic spectral
sequence for tmf. The differentials (5)-(8) are proved using Theorem 2.19. For example, the dif-
ferential dy(A%n) = #%¢ and the facts that 6(v;) = 7 and 8(v, x) = € together imply (5). The others
are similar.

It remains to argue that there are no other generating dq-differentials. As noted above, it suffices
to determine this on classes in filtration less than four.

Combining a comparison with the spectral sequence for tmf and sparseness, we see that the
only question is whether or not the classes A*x and A*v,x support non-trivial dgs. However,
a differential dg(A*x) = A%x%? together with 7-linearity would imply the differential dg(A%*e) =
A%xi?n. In the latter differential both source and target are in the image of the unit map from the
elliptic spectral sequence for tm f, hence this would also imply a differential d;mf (A%) = A%xie?y
in the elliptic spectral sequence for tm f, which does not happen. The same argument works for

A*v; x.
We will also see in the next lemma that the possible targets of these dgs are the sources of
z-multiples of the d,;-differentials (1) and (3) of Lemma 4.7. O

Lemma 4.7. Using the module structure over the elliptic spectral sequence for tmf, the
d,,-differentials are determined by the following differentials with i = 0, 1:

(1) dy, (M%) = A%y (62 + 96i,2) — (61 + 96i,13)
(2) dyy (A3HHxn) = AF4R3y? (87 + 96i,3) > (86 + 96i,14)
(3) dy;(ATTHy) = A% RSy, (63 +96i,1) — (62 + 96i,12)
(4) dy; (A% Hxv)) = AT, Ry (88 + 96i,2) > (87 + 96i,13)
(5) dy1(A%0;) = A3%%? (122,0) ~ (121,11).

Proof. The differentials (1) and (2) are images of the same differentials in the spectral sequence for
tmf. The differentials (3) and (4) follow from (1) and (2), respectively, using Theorem 2.19. The
differential (5) follows from the fact that 771, (¢m f A V(0)) does not contain v‘l‘—torsion, which can
be verified by comparing with 7 tm f using the long exact sequence on 7.

Sparseness and multiplicative structure guarantees that these are all the generating d;;-
differentials, except for a possible d;; on A7n?v,. However, 6,(A77?v;) = 0 but &, of the possible
target of this d,; is non-zero. O

Lemma 4.8. The d,;-differentials are determined by

di;(A%y) = A%3n? (111,1) ~ (110, 14).
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There are no dys-differentials and the d,,-differentials are determined by
d,, (A% ==ty (96,0) — (95,17).
The d,q-differentials are determined by
dio(A7V3) = B A3, 9? (177,3) ~ (176,22).

Proof. The first and second differentials follow from the facts that
respectively. The d, ¢-differential follows from the fact that the thereis no v‘l‘-torsion inm,(tmf A
V(0)).

There are no d;5 differentials and no other d;; and d;, for degree reasons. The only argu-
ment needed beyond sparseness and multiplicative structure to show that there are no other
d,;-differentials is as follows. There are possible d;3s on A3v® and A7»3. These classes are in the

image of the tmf spectral sequence. For tmf, d,3(A3v3) = 2&* and the target maps to zero in the
spectral sequence for tm f A V(0) and similarly for A7v3. O

Warning 4.9. The d,; differential above is in fact equivalent to the 2-extension in 7z;;ytmf. For
the reader familiar with names of classes, this corresponds to 2x, = 7,%>. For a recent detailed

treatment of this extension, see [19, chapter 9].

Lemma 4.10. There are no d,, -differentials. The d,;-differentials are determined by:

(1) dy;(An) = «° (121,1) ~ (120, 24)
(2) dy;(A%9?) = =°An (146,2) — (145,25)
(3) dy3(A%nu;) = ®OAL, (147,1) — (146, 24)
(4) dy3(A79%v)) = ®8A%9v, (172,2) — (171, 25).

Proof. The differentials (1) and (2) occur in the elliptic spectral sequence for tm f. The differential
(3) is the geometric boundary of (2) as in Theorem 2.19. The last differential is forced by the fact
that the v‘l‘—torsion in 5, (tmf A V(0)) is trivial. Another way to see differentials (3) and (4) is to
note that they follow from (1) and (2) using the module structure over the spectral sequence for
tmf and the fact that A>y € E,5(S°). We thank the referee for pointing this out. There are no d,,
or other d,;-differentials for degree reasons. O

The following is now immediate.
Lemma 4.11. The spectral sequence (3.2) computing tmf,V(0) collapses at E,, with a horizontal
vanishing line at s = 22, that is, Eiot (V(0)) = 0 fors > 22.
4.4 | Exotic extensions

We list the exotic extensions that do occur. All other possibilities can be ruled out using algebraic
structure and duality. We bring to the attention of the reader the precise meaning of exotic exten-
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FIGURE 8 Exotic extensions in the elliptic spectral sequence for tm f A V(0) in stems O to 96. This records
tmf,V(0) = tmf,, ,RP2.

sions given in Definition 2.20. Note also that all exotic 2-extensions are deduced from Lemma 2.21.
We do not discuss 2-extensions further but include them in our figures.

Lemma 4.12 (Figure 8). In stems 0 to 45, there are exotic extensions:

[An]y = ke from (25,1) to (28,6)
[Aelv = x&n from (32,2) to (35,7)
[Axn]v = @°n? from (39, 3) to (42,10)
[Avy ]y = 'V x from (26,0) to (29, 5)
[Av;x]y = xRV, from (33,1) to (36, 6)
[Axv, v = #*pv, from (40,2) to (43,9)
2y = &v,n? from (21, 3) to (24, 6).

Proof. The first three extensions are between elements from 7 tmf, see [2]. The next three are
forced by the fact that the connecting homomorphism in the long exact sequence on homotopy
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groups is a map of 7,5°-modules, the geometric boundary theorem, and the fact that under the
map

§: B3 (V(0)) —» ESFM(s%)

we have 8(v;) = n (and so 8(xv;) = €, §(xv;) = nx, etc.).
The last extension follows from duality and the fact that there is a v multiplication between
stems 147 and 150 (already present on the E,-page). O

Lemma 4.13 (Figure 8). In stems 46 to 96, there are exotic extensions:

1) [A%9?v = A3

(2) [A%v]n = Axe

(3) [A%v;n]v = Akxv
(4) [A%xv]n = Ak

(5) [A%xv]v = Akxnu,
(6) [A%xv]v = AR*p?y,
(7) [A%pv?]y = A%kun?

from (50,2) to (53,7)
from (51,1) to (52,6)
from (51,1) to (54, 6)
from (58,2) to (59, 7)
from (58,2) to (61,7)
from (65, 3) to (68, 10)
from (69, 3) to (72,6).

Proof. The first two extensions (1) and (2) are multiplicative relations that hold in 7 tm f. Exten-
sion (3) follows from (1) and Theorem 2.19. Extension (4) is dual to the algebraic » multiplication
from stem 112 to 113, and similarly for (5). Extension (6) involves classes in the image of i, and
this extension happens in tmf,. Finally, (7) is dual to the algebraic v multiplication from stem
99 to 102. O

Remark 4.14. Looking at the charts in [2], one might have expected extensions [A%xv]y = Ar?n?
and, by the Geometric Boundary Theorem, [A%yv]n = Ak?nu,. However, these are not exotic
extensions according to Definition 2.20.

We also note that [A%¢,|v # [Akxn] and [A3c v, |v # [A3n). The first comes from the fact that
in 7 tmf, there is no such extension. (This can be seen, for example, from the Adams spectral
sequence of tmf.) The second follows from the fact that the target has a non-trivial £-multiple
and v = 0.

Lemma 4.15 (Figure 9). In stems 97 to 144, there are exotic extensions:

M [a*glv =%

2) [A%]p =#°

(3) [A*keln = ARy

@) [8%n*]v = ARy

(5) [Adelv = A*xin

(6) [Axnlv = A*i*n?
(7) [A*kxv,]n = ARy,
(8) [A%xv,]v = A*xkv,
9) [A%xv;]v = A*R*nu,
(10) [A%v,]n = A%&*vn
1) [A*v; ]y = A3kv?
(12) [A5xnln = A3%%*nu;

(13) [A*yv?]y = [A*rU9?]

from (97, 1) to (100, 20)
from (99, 1) to (100, 20)
from (124, 6) to (125,21)
from (122,2) to (125,21)
from (128, 2) to (131,7)
from (135, 3) to (138, 10)
from (125, 5) to (126, 20)
from (129, 1) to (132, 6)
from (136,2) to 139, 9)
from (130, 2) to (131,17)
from (98,0) to (101, 7)
from (135, 3) to (136, 14)
from (117, 3) to (120, 6).
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FIGURE 9 Exotic extensions in the elliptic spectral sequence of tmf A V(0) in stems 96 to 192, recording
tmf,V(0) = tmf,,,RP>

Proof. Extensions (1)-(6) follow from studying i, : tmf, — tmf,V(0). Note that (4) is missing
from the [2] charts, but it is the [An]- multiple of the extension [A*y]v = %> as computed there.
We thank the referee for pointing this out. Extensions (7), (8), and (9) follow from (3), (5), and (6),
respectively, using Theorem 2.19.

For (11), note that by Theorem 2.19, [A*v; ] has geometric boundary [A%p]. Since [A*n]v # 0,
[A%*v;]v # 0 and this extension is the only choice. For (12), use Remark 2.16 and the algebraic
7 multiplication between m3stmf A V(0) and myctmf A V(0). A similar argument applies for

(13). (Il

Remark 4.16. There is no exotic v-extension on [A>c,] since the potential target is not annihilated
by %.
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Lemma 4.17 (Figure 9). In stems 145 to 191, there are exotic extensions:

1) [A%Y]y = [Ake] (from (147,1) to (148, 6))
(2) [A%xv]y = [A%2n?] (from (161, 3) to (162, 10))
(3) [Adrxnln = [A3"*n?v,] (from (155,7) to (156, 18))
(4) [A%yv]n = [A%%2vyn] (from (162, 2) to (163, 9))
(5) [Adxev,]n = [A%%°nv,] (from (150, 6) to (151, 21))
(6) [A%V3 v = Adi*u n? (from (153, 3) to (156, 18))
(7) [ASev,]np = A&y (from (154, 2) to (155, 7))
(8) [Abev,]v = Adrxv (from (154, 2) to (157,7))
(9) [ASxv]v = A%k%u n? (from (161, 3) to (164, 10))
(10) [ASyv2]v = [ASkv,n?] (from (165, 3) to (168, 6))

Proof. The first two extensions occur in tmf,. The third is also an extension in tmf,, namely,
[ASkxn]n = [A*2%3], but the image of the class [A*2%3] is detected by [A%%*n?v,] in tmf,V(0).
Extension (4) follows from (2) and Theorem 2.19. This result also implies (5) from the exten-
sions [A%%v3]n = [A%%°n?] in tmf,. All the extensions (6)-(10) follow from Corollary 2.12 and
Remark 2.16 and the data for algebraic multiplications in the range 3 < t — s < 20. 1

5 | tmf.Y:THE E,-PAGE
Let C,, be the cofiber of the Hopf map 7, so that there is an exact triangle

'L 50~ - s (5.1)

We define the spectrum Y to be V(0) A C,. which can be built from two different cofiber
sequences

2
C,) — C,7 Y,
which uses the multiplication by 2 on C,, and
SV(0) 2 V(0) - Y,

which uses the multiplication by # on V(0). Depending on the situation it will be more
advantageous to use either the former or the latter fiber sequence. We abbreviate

F.(F) :=n (tmf AX(4)AF),

where F will be one of the finite spectra of interest.

We now proceed to compute the E,-term of the elliptic spectral sequence computing the tmf-
homology of Y, namely, Extj\’,*(A’ VA" ® 4 Fu(Y)).

Let us first describe T’*(Cn). Since 7, (tmf A X(4)) = A is concentrated in even degrees, the
cofiber sequence (5.1) induces a short exact sequence on tmf A X(4)-homology

0—>A—F,(C) - Z*A - 0.
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This splits as a sequence of A-modules so that
F.(C)) = A® A

Multiplication by 2 on C, induces multiplication by 2 on tm f* A X(4)-homology, which is injective
because F, (Cn) is torsion-free. Thus, the cofiber sequence

G, i ¢, Y
induces a short exact sequence in tmf A X(4)-homology
0= Fo(Cy) = FulCy) = FL(Y) = 0,
and it follows that
F.() = A/Q@X*A/(2) (52)

as an A/(2)-module.
Likewise, since F,(V/(0)) is concentrated in even degrees, the induced map on tmf A X(4)-
homology of the cofiber sequence

SV(0) > V(0) > Y
is trivial. It follows that there is a short exact sequence of A-comodules
0-A/2)— F.(Y) - 22A/(2) — 0.

This short exact sequence of A-modules splits because of (5.2). Tensoring it with A’ over A, we
obtain a short exact sequence of A’-comodules, which splits as a sequence of A’-modules

0> A"/2) > A @, F.(Y)—>224"/(2) > 0. (5.3)

As F,(Y) is 2-torsion, (5.3) is a short exact sequence of A’ /(2)-module, and hence splits as such.
Therefore, applying Extj\’,* (A’,-) to (5.3), we get a long exact sequence of Exty;(A’, A’/(2))-
modules (see, for example, [16, p. 110, (3.3)]). Its connecting homomorphism
5 : Extyj(A,A'/(2)) - Ext (A, A'/(2) (5.4)

is given by multiplication with n € Extj\’,z(A’ , A’ /(2)). Here, as is often the case, we denote by 7
the class in Ext which detects the same-named homotopy class.

We present the effect of the connecting homomorphism separately for the v; -power torsion and
for the v, -free classes of E,(V(0)) in Figures 10 and 11, respectively.

In Figure 11, a o denotes a copy of F,[v;], a bullet denotes a copy of F, and a line of slope
1 denotes, as usual, multiplication by 7. Note that we have Ev‘l‘ = An*, hence Ev‘l‘ =0 in Ey(Y),
while v, itself is not nilpotent and A* is not v, torsion.

Proposition 5.5 (Figure 12). As a module over E,(V(0)), E,(Y) is generated by classes

alo,0], a[5,1], a[17, 3].
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FIGURE 10 The connecting homomorphism (5.4) for the v, -power torsion classes
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FIGURE 11 The connecting homomorphism (5.4) for the v, -free classes
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FIGURE 12 E,(Y) as amodule over E,(V(0)). The dashed lines are x-multiplications and dotted lines
y-multiplications. Other structure lines are as in Figure 2.

The submodule generated by a[0, 0] is isomorphic to E,(V(0))/n. There are Massey products
al5,1] = (v,1,a[0,0]), a[17,3] = (yx2,7,a[0,0])
and these classes are subject to the following relations. On the new classes, we have v, multiplications
vya[5,1] = xa[0,0] v,a[17,3] = x*a[5,1] v?a[17,3] = v*yal0,0],
7 and v multiplications

nal[5,1] = v?a[0,0], na[17,3] = va[17,3] = ya[17,3] =0
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as well as
2 _ 3z
vZya[5,1] = vy%al0,0].

Proof. Using the description of E,(V(0)), the effect of the connecting homomorphism & of (5.4) is
straightforward to compute. The cokernel is simply E,V(0)/7 as an E,(V(0))-module. Using the
multiplication on E,(V(0)), the kernel is generated by classes a[5, 1] and a[17, 3] defined, without
ambiguity, by

p.(a[5,1]) =v p,(a[17,3]) = nx?,

where p,, is induced by the map A’ ® , F,(Y) — Z2A4’/(2) of (5.3).
We now show the relations on the generators. Since 7a[0,0] = 0 and »?a[0, 0] # 0, the Juggling
formula

v?a[0,0] = (1,v,7)a[0,0] = 7(v,7,a[0,0])

implies that (v,n, a[0,0]) # 0. The Massey product (v, 7, a[0,0]) has zero indeterminacy, hence
by sparseness,

al5,1] = (v,n,al0,0])
and
nal5,1] = v?al0,0].
We have that v,y = 0 € Ext,"(4/(2), A/(2)). As a consequence,
v1al5,1] = v1(v,n,a[0,0])
= (vy, v, 9)al0, 0] (by juggling formula)
= xa[0, 0] (by [2, Formula 7.5])
The equation
va[17,3] = x%a[5,1]
follows from the fact that
2

vnx* = x%v

in E,(V(0)) and the definition of a[5,1] and a[17, 3] as the pre-image of v and 7x? by p,,
respectively. It follows then that

via[17,3] = v;x*a[5,1] (because v, a[17, 3] = x*a[5,1])
= x3a[0, 0] (because v;a[5,1] = xa[0,0])

= v?ya[0, 0] (because x> = v?y, cf. Theorem3.4)

The relations na[17, 3] = va[17,3] = ya[17, 3] = 0 follows for degree reasons.
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It remains to verify that v2ya[5, 1] = v]%a[0,0]. A juggling of Massey products gives
yv*(v,1,a[0,0]) = (yv*,v,7)al0,0].
The relation v2ya[5,1] = vf;%a[O, 0] then follows by Lemma 5.6 and the fact that na[0,0] = 0. []

Lemma 5.6. In Ext"(A’, A’/(2)), the Massey product (yv?,v,n) contains kv;. Furthermore, its

3
1

indeterminacy is equal to 7) Ext> 28(A’ , A" /(2)), which does not contain kv
Proof. By [2, formula 7.9], ®v? = (1,7, x), and so
®V; = Uy (n, %7, X) C (U7, %7, X) C (1, 01%77, X) = (0,0, X).
Here, we used the relation v, k7 = n%y. It follows that
v} € vy (1, 9%y, x) C (U, 9%y, x)
The indeterminacy of the latter is equal to

v Ext5 (A, A'/(2)) + x ExtH(A, A' /(2)) = Fyfoi*n),

which does not contain %©v?, so (v,7, 7%y, x) does not contain zero.
1 1
Now consider

<U1na yy V3> = <Ulna ya 772x) C <Ul77’ 772}’, x>‘
The indeterminacy of (v;7,y,v3) is vaxt3 28(A’ A'/(2)) + v3Ext> 21(A’,A’/(Z)) = F{v;*n*},
which is the same as the indeterminacy of (vln 7%y, x), hence (v;7,y,v*) does not contain zero

and contains ;Ev‘l‘.
Moreover, since

(17,3, v*) C (17, yv,v?)

and the indeterminacy of the latter is equal to nv, Ext™ 28(A’ A'/(2)) + v Ext* 24(A’ LA'/(2) =

4
1’

F,{v}?*n*}, which does not contain v
(v1m, yv,v*) = v} + Fpfv;*n*h
Finally, since

(U1, yv,v?) 2 (U1, v, V%) 2 v1(n, v, yv?)

and multiplication by v; induces an injective homomorphism on Ext® 3O(A’ ,A"/(2)), we obtain
that

7 + Fy{ur'n*} o (n, v, yv*) = (32, v, 7).
The conclusion of the lemma follows by observing that

zvs & Ind((yv?,v,7)) = n Bxt)7 (A", A'/(2)) D Fyfo}'n}. O
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Remark5.7. In E;’t(Y), there is at most one non-zero element in any bi-degree (s, t) with filtration
s > 0. There is also a unique non-zero element in bi-degree (0,0). So, for s > 0 or (s, t) = (0, 0), we
often denote by a[t — s, 5] € Ef’t(Y) the non-zero element, if it exists. Furthermore, when s = 0
and t > 0, we let a[t, 0] denote the element of Eg’t(Y) which is divisible by the largest power of A.

For example, E5°*(Y) = F,{v?°a[0, 0], v}*Aa[0, 0], v2A%a(0, 0]} and a[52, 0] = v2A2a[0, 0].
For our purposes, we also need a partial knowledge of Ext/*\’,* (A’/(2), M), where
M :=A"/Q2,a)) ®4/2) Fu(Y).

Since a; € A’ /(2)isa A’-primitive, A’ /(2, a;) is a A’-comodule. By tensoring (5.3) with A’ /(2, a;)
over A’ /(2), we obtain a diagram of short exact sequences of A’-comodules

0——=A/(2) ———= A"/ Bu F.(Y) ——= 224" /2) ——0

C [ e

0——=A"/(2,0) —=A"/(2,q)) ®a/2) Fu(Y) — ZZA'/(Z, a;)) —=0

We consider the long exact sequence derived from the bottom short exact sequence of the diagram
(5.8). The cohomology ring EXtA,/(2 “ )(A’/(2, a,),A’/(2,a,)) is computed in [2, section 7]. With
our notation,

Ext’ A’/(2a )(A /(2,a1),A’/(2,a))) = Fy[n,v, % 0,] /(0% —v3,1v),
where v, is represented by the A’-primitive a;. The bottom short exact sequence of the diagram

(5.8) splits as a sequence of A’ /(2, a;)-modules. However, it does not split as a one of A’ /(2, a,)-
comodules, as it represents the element 0 # 1 € Exth (A’ /(2,a,), A’ /(2,a;)). Therefore, the

A’/(2
connecting homomorphism
Exty) Jay )(A /2,a,),A"/(2,a))) = Extj\f}éﬁ)(A’ /2,a,),A’/(2,a,)) (5.9)

of the induced long exact sequence in Ext®’
We obtain:

N 2 )(A’ /(2,a;),—) is given by multiplication by .

Lemma 5.10. As a module over the ring F,[n,v, %, v,]/(v3n> — v3,9v), the cohomology group
BXU o) (42000, A'/(2,00) ® 1) FulY)
is generated by a[0,0] € Ext®? and a[5,1] € Ext"® with the relations
7al0,0] = 0, nal5,1] = v*al0,0].
Proof. By the description of the connecting homomorphism (5.9), we see that

Ext’, A,/(M )(A’/(Z a;), A’ /(2,a1) ® 2y Fu(Y)) = F, [, %,0,]/(v*){a0,0], a[5, 0]}
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FIGURE 13 Eth\’f/(z,al)(A,/(z’ a,), A /(2,a;) ®4/(2) F.(Y)) depicted in the coordinates (t — s, s)

asan F,[v, %, v,]/(»3)-module. Next, we determine the action of 7. We see easily that na[0,0] = 0.
To calculate nal5, 1], we remark that

v%al0,0] = (,v,71)al0,0] = (v, n,al0,0]),
where the first equality comes from the Massey product v?> = (1, v,7) and the second is a shulffle.
As v%a[0,0] # 0, (v,7,a[0,0]) is not trivial and must be equal to a[5,1] by sparseness. Hence,
v2a[0,0] = nal[5,1]. O
Remark 5.11. This calculation will be used in Lemma 6.25 in order to prove Proposition 6.24. It
has also an independent interest being the E,-term of the elliptic spectral sequence for tmf A A,
see Subsection 6.4 for a discussion on A;.

Although Proposition 5.5 gives us a very compact description of E,(Y), the elliptic spectral
sequence of tm f A Y is not a module over the elliptic spectral sequence of tm f A V(0) as the latter
is not even a multiplicative spectral sequence. However, the elliptic spectral sequence of tmf A Y
is a module over the elliptic spectral sequence of tmf. In fact, we get even more structure than

that from the fact that Y has v;-self maps. As explained in Subsection 2.6, we have:

Lemma 5.12 (v, -linearity). The differentials in the elliptic spectral sequence for tmf A'Y are v;-
linear.

We state the following ‘intermediate’ result for convenience of reference in the computations
below. The module structure of the elliptic spectral sequence spectral sequence of tmf A'Y over
thatof tm f is richer than what is stated here but that information can be read off of Proposition 5.5.
Corollary 5.13. As a module over

Fylvy, v, %, A]/ (v, 13, U‘l‘ﬁ),
E,(Y) is generated by
al0,0], a[5,1], a[12,2], a[15,1], a[17,3], a[20,2]

subject to the relations generated by

via[5,1] = via[12,2] = v,a[15,1] = va[12,2] = va[17,3] = 0
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and
2 _ .2 2 _ 32
v*a[15,1] = v7a[17,3], v“a[20,2] = v;%al0,0].
Furthermore, the differentials are F,[v, v, %, A%]/(vyv, 73, vf;?)-linear.

Proof. This follows from the results of this section and the fact that A8 is a permanent cycle in the
elliptic spectral sequence spectral sequence of tmf. O

6 | tmf.Y: THE DIFFERENTIALS AND EXTENSIONS

Our approach to computing the differentials of the elliptic spectral sequence for 7. (tmf AY) is
based largely on the analysis of the action of . More precisely, since % is a permanent cycle in the
elliptic spectral sequence for tm f, the elliptic spectral sequence for tm f A Y is a spectral sequence
of modules over F,[%], meaning that every term is a F,[#]-module and the differentials are maps
of F,[#]-modules. Note that the E_ -term is ®-torsion, since % is nilpotent in 7 tmf. But all the
intermediate terms E, for r < 23 do contain non-trivial #-free elements, that is, those elements
whose multiplication with %' is non-trivial for all i € N.

Lemma 6.1. The E,-term of the elliptic spectral sequence for tm f A'Y has the following properties.

(1) All classes in filtration greater than (r — 1) are R-free.
(2) All classes in filtration greater than or equal to 4 are divisible by %.

Proof. We prove these two properties by induction on r > 2. For r = 2, this follows from Propo-
sition 5.5. Suppose now that r > 2. Let a be a d,_,-cycle and [a] € E¥' the corresponding class.
Suppose that a lives in filtration s with s > (r — 1). We have that €[a] = 0 if and only if there exists
b € E,_; such that d,_,(b) = %a. Then, b must live in filtration (4 + s) — (r — 1) > 4. By the sec-
ond property, b is divisible by %, that is, there exists ¢ € E,_; such that #c = b. As a consequence
of the ®-linearity, #d,_,(c) = d,_;(b) = %a, and so #(d,_,(c) — a) = 0. Since (d,_,(c) —a) € E,_;
lives in filtration s greater than r — 2, it is #-free by the second property. It follows thatd,_;(c) = a,
and so [a] = 0. Therefore, the E,-term has the first property.

For the second property, suppose that a lives in filtration greater than or equal to 4. By the
second property for E,_;, there exists b € E,_; such that kb = a. It suffices to prove that b is a
d,_;-cycle. Suppose thatd,_;(b) = c. The latter implies that c lives in filtration greater that (r — 2),
hence is #-free by the first property. Since a is a d,_;-cycle by assumption, we have, by z-linearity,
that

0=d,_(a) =d,_(kb) = &c.
This means that c = 0 and so b is a d,_;-cycle, as required. O

Terminology.

(1) For a class x € E, having filtration less than four, we call the subset {&'x|i € N} C E, the &-
family of x. A k-family is called free if it contains infinitely many elements and is called torsion
otherwise.
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(2) Let x,y € E, have filtration less than four. We say that a %-family of x is truncated by the
%-family of y if there exists r such that d,(&"y) = ®"*'x for all n € N.

By part (2) of the above lemma, at any term of the spectral sequence, every class belongs to
some %-family. The following corollary tells us how these %-families are organized.

Corollary 6.2.

(1) Atany term of the spectral sequence, all non-zero k-power torsion classes survive to the E . -term.

(2) Every k-free family consisting of permanent cycles is truncated uniquely by another &-free family.
More precisely, if 0 # a € E, is a permanent cycle which generates a ®-free family, then there
exists a unique integer v’ > r for which there exists b € E,» having filtration less than four, such
that

d(®"b) = ©"*la

foralln € N, wherelis determined by r', the filtration of a and that of b, and moreover, {£'a|0 <
i < 1 — 1} consists of non-trivial permanent cycles surviving to the E . -term.

Proof. For part (1), let a € E, be a non-zero k-power torsion class. By part (1) of Lemma 6.1, a is in
filtration less than or equal to r — 1. It follows that a cannot be hit by any differential from the E, -
term onwards. Moreover, by part (1) of Lemma 6.1 again, the possible targets of d,,(a), ¥’ > r are
i-free classes. Since a € E, is #-power torsion, it is a permanent cycle, by #-linearity. Therefore,
a persists to the E__-term.

For part (2), let a be a permanent cycle of filtration strictly less than four which is z-free at the
E,-term. Then the #-family of a consists of permanent cycles. Since % is nilpotent at the E _-term of
the elliptic spectral sequence for tm f, some power of €-multiple of a must be hit by a differential.
Thus, there exists a smallest integer r’ > r and a smallest | € N for which there exists b € E,,
such that d,,(b) = ©la. By the minimality of 7/, a is %-free at the E,,-term, so is b, because by -
linearity, d,.(8"b) = %l*"a for all n € N. It also follows from the latter that all the classes Z¥a for
k <1 — 1arenon-zero i-power torsion classes on the E,,  ; -term, hence survives to the E ,-term by
part (1).

Finally, we claim that b has filtration less than four. If b had filtration greater than or equal
to 4, then b would be divisible by %, that is, there would exist ¢ € E,, such that ¥c = b, by
Lemma 6.1 part (2). By %-linearity, we have that #'a = d,/(b) = &d,(c), and so ®(%!"'a — d,/(c)) =
0. This implies that d,/(c) = ¥/~'a because d,(c) — #~'a, having filtration at least r/, is &-
free, by Lemma 6.1 part (1). This contradicts the minimality of #, so b has filtration less than
four. O

Slogan 6.3. The i-free families at the E,-page come in pairs. The first member of the pair is a
family consisting of permanent cycles. The second member is a family which eventually supports
differentials (that is, possibly at a later page) to truncate the first family.

Corollary 6.4. At the E,-term, we have the following.

(1) The homomorphism E¥' — ES'*'°% induced by multiplication by A8 is an injection for all s
and t.

(2) Ifaisa class of the E,-term such that A%a is a d,-cycle, then a is also a d,-cycle.
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Proof. We prove part (1) by induction on r > 2. For r = 2, this can be seen from the explicit struc-
ture of the E,-term. Suppose the E,,-term has these properties for ' < r. Let us prove part (1) for E,..
Leta € E,_, represent a class of E,.. If A%[a] = 0 € E,. This means that there exists b € E,_, such
that d,_,(b) = A8a. It is obvious that b lives in stem at least 192, hence there exists ¢ € E,_; such
that b = A8¢, by the induction hypothesis. It follows that A%(d,_;(c) — a) = 0,and so d,_;(c) = a
because of part (1) of the induction hypothesis. Thus, [a] = 0 € E,, as needed.

For part (2), by induction, suppose that a is a d,_;-cycle. We need to prove that a is a d,-cycle.
In effect, if d,.(a) = b, then

0 =d,(A%) = A%d,(a) = A%D.
By part (1), b = 0, and so d,(a) = 0, as needed. O
Finally, we will also use the following result to establish the differentials.

Lemma 6.5 (Vanishing line). The spectral sequence for w. tmf AY degenerates at the E,,-term
and has a horizontal vanishing line at s = 24, that is, Ey, = Es = 0 for s > 24,

Proof. We know that % is hit by a differential d,; in the elliptic spectral sequence for tmf, see
[2]. This means that at the E,,-term of the elliptic spectral sequence for tmf A 'Y, all the classes
are annihilated by %°, hence are &-power torsion. Therefore, by Lemma 6.1, all the classes in the
E,,-term are in filtrations less than 24, meaning that the spectral sequence has the horizontal
vanishing line at s = 24, that is, Ef’[ =0fors>24andr > 24. O

Remark 6.6. The cofiber sequence
V)= Y L 22v0) 2 2v(0)
gives rise to maps of spectral sequences
L B (V) = By'(Y), p.: By'(Y) = By A (V(0)

as well as a long exact sequence

ot VO) D tmf V() 2 tmf Y £ tmf, V(0) > .. ©6.7)

6.1 | Thed,, d; and d,-differentials

Note that for r even, E.(Y) = E,,;(Y) since the spectral sequence is concentrated in bi-degrees
(s,t) with ¢ even. The differentials in this section are depicted in Figures 14, 15, 16, and 17. In
addition, large charts of the elliptic spectral sequence for tmf,Y can be found in [7].

Proposition 6.8. There is no non-trivial d;-differential, and so E;(Y) = Es(Y).
Proof. Since A is a dj-cycle in the elliptic spectral sequence of tmf, the d-differentials are

F,[vy,v, %, A]/(vy7, v3,v‘1‘72)-1inear. All the generators listed in Corollary 5.13 are ds-cycles for
degree reasons. [l
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FIGURE 14 d,-differentials in stems 0 to 48 and %-free generators at E,

‘We then get the following result for degree reasons.
Corollary 6.9. The classes in stems t — s < 24 are permanent cycles.
Lemma 6.10. The ds-differentials are linear with respect to &, v, v, A*> and are determined by

ds(A) = vi, ds(Aa[5,1]) = vkal[5,1]

ds(Aa[15,1]) = vka[15,1], ds(Aa[20,2]) = vka[20,2]
under multiplication by elements of F5[A%, %, v,v,]/(vyv, V3, kv‘l‘).

Proof. For linearity, we only need to prove the A%-linearity. Note that ds(A) = v in the elliptic
spectral sequence of tm f. By Leibniz rule and the fact that E,(Y) is 2-torsion,

ds(A%x) = 2Ads(A)x + A%ds(x) = A%dy(x).
Using the module structure over the elliptic spectral sequence of tm f, we get
ds(Aa[5,1]) = ds(A)a[5,1] + Ads(al5,1]) = vika[5,1].
The other arguments are similar. O
Lemma 6.11. There are no non-trivial d,-differentials.
Proof. This is an immediate consequence of sparseness. O
The following observation will be crucial for our computation and is motivated by Slogan 6.3.

Corollary 6.12 (Figure 14). The &-free families on the Eq-term of the elliptic spectral sequence of
tmf AY instems 0 < t — s < 48 are given by the following 24 classes

alo,0] a[2,0] = v,a[0,0] a[4,0] = via[0,0]
al5,1] al7,1] = vya[5,1] al9,1] = vfa[S, 1]
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a[12,2] al[14,2] = v,a[12,2] a[15,1]

a[17,3] al19,3] = vya[17, 3] a[20,2]

a[26,0] = Av,a[0,0] a[28,0] = Av;al0,0] a[30,0] = Av;al0,0]
a[30, 2] = Av?al0,0] a[31,1] = Av;a[5,1] a[33,1] = Avia[5,1]
a[35,3] = Av?a[5,1] a[36,2] = Aa[12,2] a[38,2] = Avya[12,2]
a[41,3] = Aa[17, 3] al43,3] = Av,a[17,3] al45,3] = Avfa[17, 3]

Alli-free families at Eq are given by these classes and their A2-multiples. All the elements in filtrations
four and above are i-multiples of these generators.

The generators of the i-free families in stems 0 < ¢ — s < 48 are presented in Figure 14. The #-
free generators in the range 0 < t — s < 192 are given by products of these with 1, A%, A* and A and
all other #%-free generators are products of the latter ones with the powers of A%. By Corollary 6.2,
each #-free family consisting of permanent cycles is truncated by one other z-free family, and so
by exactly one because of sparseness — any two distinct #-free families have different bi-degrees.
Thus, using the A8-linearity and Corollary 6.4, we see that the 24 x 4 %-free generators in the range
0 < t — s < 192 organize themselves as follows. Exactly half of them are permanent cycles and the
other half are not. The z-family of each non-permanent %-free generator supports a differential
that hits the #-family of exactly one of the other permanent generators. Note that the truncation
must begin in stems less than four by Corollary 6.2. This allows us to determine longer differentials
before settling shorter ones.

All 24 -free generators in the range 0 < ¢ — s < 48 are permanent cycles due to sparseness and
in the next section we will find their ‘partners’.

6.2 | The dy-differentials

To analyze the d,-differentials, we make the following observation, which, in some sense, is a very
small part of the geometric boundary theorem as in [9, appendix 4].

Lemma 6.13. Let a € EX(Y) so that p,(a) € EX*"*(V(0)). Suppose p,(a) persists to the E,.-term
for some r' > r and that there is a non-trivial differential, d,,(p,a) # 0. Then d,»(a) # 0 for some
<.

Proof. This is a straightforward application of naturality. Indeed, the assumptions imply that a
cannot be hit by a differential d,» for " < r’. Furthermore, if a persists to the E,, term, then
d,.(a) = b for b such that p,(b) = d,.(p.(a)). O

Lemma 6.14 (Figures 15, 16, and 17). There are dq-differentials, fori = 0,1,

(1) dy(A*+2a[0,0]) = #2A%v,a[5,1] (7) dy(A%+2a[12,2]) = #2A%v,a[17,3]
(2) do(A%+2a[5,1]) = #2A%a[12,2] (8) do(A%+3y;a[5,1]) = ©R2A%+! v a[12,2]
(3) dy(A**3v,a[0,0]) = ©2A**vlal5,1] (9) dy(A**2v,a[0,0]) = ©2A%v2a[5,1]



THE TOPOLOGICAL MODULAR FORMS OF RP? AND RP? A CP? 1907

20

46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86

FIGURE 15 d; and d, differentials in stems 46 to 86

(4) dy(A**2a[17,3]) = ©*A*v}a(0,0] (10) do(A**+2v,a[5,1]) = ©2A%v,a[12,2]
(5) do(A*+3a[17,3]) = ©3A**1v2a[0,0] (11) dg(A%+3v,a[17,3]) = &3 A%*1v3al0,0]
(6) do(A%+3a[12,2]) = ©2A%+1v,a[17, 3] (12) dg(A**3v,a[12,2]) = ©2A%*1v2a[17,3]

Proof. Let i = 0. The differentials (1) and (3) are the image of a differential in E,(V(0)) under
i,. The second differential (2) follows v;-linearity and from the fact that dy(A**2x) = ©2A%x in
E,(V(0)), i,(x) = v;a[5,1] and i,(x) = v,a[12,2].

For (4), we use Lemma 6.13. In E,(V(0)), we have d,;(A%nx) = n*«3. Since p,(A%a[17,3]) =
A%nx, A%a[17,3] supports a differential of length at most 11. This d, is the only choice. The
argument for (5) is the same, with one more power of A.

For (6), note that p,(A3a[12,2]) = A3v;nx. Since dg(nuv,x) = vx&2A, the class A3a[12,2]
supports a differential of length at most 9. This is the only choice.

The arguments (1)-(6) when i = 1 are the same as those for i = 0.

For (7)—(8), note that from our computation above, tmfsY = Z/2. This forces (7) when i = 0.
Arguing in a similar way, tmf,Y =0, tmf55Y = Z/2 and tmf,,5Y = 0 imply the other dgs.

The d,-differentials (9)-(12) follow from those of (1), (2), (5), (6), respectively, by v;-
linearity. [l

Remark 6.15. It turns out these are all the d,-differentials. For degree reasons, there can be very
few other dgs. The class A3v;a[0,0] is the image of a dy-cycle in Eq(V(0)) so does not support a
dy. The only other possible d, differentials for degree reasons are as follows.

* A nontrivial dy on A3a[17,3]. This does not happen since it implies a nontrivial dy on
v;A%a[17, 3] = A*a[43, 3], but this family has already been paired: it is truncated by A®a[36, 2].

* A nontrivial dy on A*a[17, 3], truncating the %-family of A2a[4, 0]. We will see below that this
does not happen, but at this point, we leave this undecided.
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FIGURE 16 d,and d, differentials in stems 86 to 160
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FIGURE 17 d;and d, differentials in stems 160 to 194

6.3 | Higher differentials

We begin our analysis using Slogan 6.3. The reader should remember that we only need to ana-
lyze the generators of the i-free families, which are in filtration less than four. All differentials
discussed in this section are depicted in Figures 18 and 20.

Lemma 6.16. There are differentials

(1) dyg(A*a[5,1]) = #3al0,0]
(2) dyg(A3v;a[5,1]) = ®°Av,al0,0]
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FIGURE 19 d;; to d,, differentials in stems 120 to 160

(3) dyo(A*a[36,2] = ®5a[31,1]
(4) dyg(A*al41,3]) = ©°a[36,2]
(5) dyo(A*a26,0]) = &*a[41, 3]

Proof. For (1), since the element ©* € mg,(tmf A V(0)) is not divisible by 7 and %> € 7,9 (tmf A
V(0)) is divisible by #, the #-family of a[0, 0] in the elliptic spectral sequence for tmf A Y must be
truncated at ©°a[0, 0]. Remembering that the source has to have filtration less than four, the only
possibility is this differential.

Inspection then shows that the differentials (2)-(4) are the only possibilities to satisfy
Slogan 6.3. O

Lemma 6.17. There are differentials

(1) dy,(A*al0,0]) = %*a[15,1] and
(2) dy;(A*a[15,1]) = ®*a[30,2]

Proof. For (1), note that in 7, (tmf A V(0)), %3y is not divisible by 7 and &*y = 0. The class y maps
to a[15,1] under i, so it follows that the %-family of a[15, 1] is truncated at €*a[15, 1]. The only
possibility is this differential.

For (2), using the long exact sequence, we obtain that z;;(tmf AY) =2Z/2. By part
Lemma 6.16 (3), the class ®*a[31,1] € E;7’128 survives the spectral sequence and so detects the
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FIGURE 20 d,, to d,; differentials in stems 160 to 194

unique non-trivial class of 7;;,(tmf A Y). This implies that the class A*a[15,1] € E;’m must
support a differential. Taking into account the dy differentials proves (2). O

Lemma 6.18. There is a differential d,;(A*a[30,2]) = %°a[5, 1].

Proof. By inspection, taking into account the dgys, the only generators that can be paired with
a[5,1] are A*a[30, 2] and A*a[30, 0]. However, it cannot be A*a[30, 0] because such a differential
would have length 25, contradicting Lemma 6.5. O

Lemma 6.19. Fori = 0, 1, there are differentials:
(1) dy,(A%+2a[15,1]) = ©3A*a[2,0] and
(2) dq1(A%+2a[28,0]) = ©2A%a[35,3]

Proof. In (1), forbothi = 0, 1, these are the image of differentials in the spectral sequence E, (V' (0)).
Both source and targets survive to E;;(Y) and so these two differentials occur.
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For (2), the long exact sequence shows that 7r,s(tmf AY) = Z/2. Lemma 6.17 (1) implies that
the class ©3a[15,1] € E§3’88 survives the spectral sequence and detects the unique non-trivial ele-
ment of the 77,5 (tmf A Y). On the other hand, the class €2Av?a[5,1] € E;l’gé
Thus, it must be hit by a differential and this is the possibility.

For i = 1, by taking into account the dy-differentials and the d,,-differential Lemma 6.17 (2),
we see that A%a[35, 3] is a permanent cycle, which is -free at the E;;-term. By inspection, the
only class which can truncate its x-family is A®a[28, 0] by the indicated d,,-differential. O

is a permanent cycle.

Lemma 6.20. There are differentials:

(1) dy5(A%a[30,2]) = %%a[17,3] and
(2) di5(A%a[33,1]) = #3a[20,2]

Proof. For (1), it follows from (6.7) that 7r,4(tmf A Y) = Z /2. By sparseness, either A%a[30,2] or
A2a[30,0] is a permanent cycle detecting the non-zero element of 7z,4(tm f A Y). Suppose that

A%a[30,2] = A*v2a[0, 0]

is a permanent cycle detecting a class a € m4(tmf AY). At E,, A*»2a[0,0] is in the image of
i, : E,(V(0)) = Ey(Y) and so p,(A*v2a[0,0]) = 0. However, since 7,5(tmf AV(0)) =0, p,a #
0 in m,4(tmf A V(0)) and so is detected by a non-zero class in filtration s > 2, but such a class
does not exist. We conclude that A%a[30, 0] is a permanent cycle and that A%a[30, 2] supports the
stated differential.

For (2), by inspection, only A%a[33,1] and A*a[5,1] can support differentials truncating the
%-family of a[20, 2]. But A*a[5,1] is already paired with a[0, 0]. O

Proposition 6.21. The following classes are k-free permanent cycles:

A%a[4,0] A%a[9,1] AZa[14,2] A2a[19,3] A%a[20,2]

A)
A) A%a[30,0] A2a[35,3] A2%al45,3] A*a[17,3] A*a[20,2]

and the following classes are not permanent cycles:

A®af[4,0] A%a[9,1] A%a[14,2] A®a[19,3] A%a[20,2]

B) :
B) A®a[30,0] A®a[30,2] A°a[33,1] A®a[35,3] Afa[45,3]

Consequently, in the elliptic spectral sequence for tmf A'Y, each generator in (B) truncates some
«-multiple of one and only one generator in (A).

Proof. These are the remaining generators of #-free families. No class in (B) can be a permanent
cycle because the z-family of a class of (B) cannot be truncated. This means that all the 10 classes
of (B) are non-permanent cycles, and so all the 10 classes of (A) are permanent cycles. O

Lemma 6.22. We have the following differentials:

(1) dyg(A®al4,0]) = ®*A%a[19, 3] (5) dy;(A®a[20,2]) = ©*A2a[35, 3]
(2) di9(A%al9,1]) = #°A2%a[4,0] (6) di5(A%a[33,1]) = ©3A*a[20,2]
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(3) dyg(A®al14,2]) = ©°A%a[9,1] (7) dy;(A®a[35,3]) = ©°A2a[30,0]
(4) dyg(A®al19,3]) = ©°A%a[14,2] (8) d,3(A®al45,3]) = ©°A2a(20, 2]

Proof. Taking into account the differentials shown above, these are the only possible pairings
remaining between the classes in (B) which are the sources in (1)-(8) and classes of (A). O

Remark 6.23. There are only two generators in (B) left living in the same topological degree,
namely, A%a[30,0] and A®a[30, 2]. Each of these supports a differential truncating the %-families
of either A*a[17, 3] or A%a[45, 3] and one differential determines the other.

Determining the last differential pattern turns out to be unfortunately tricky (as far as we know).
A crucial step towards settling the last differentials is to establish the following extension in the

E -term of the elliptic spectral sequence for tmf AY.

Proposition 6.24. There is an exotic extension

v2(vA%al0,0]) = ©2A*a[17, 3].
To prove this extension, we need some intermediate results.

Lemma 6.25. In Extj\’f(A’, A'/(2,a;) ® F,(Y)), there is a Massey product

(n,v,A*a[12,2]) = A*a[17,3].
Proof. Since A*a[12,2] = nA*a[11,1] (see Lemma 5.10, also Figure 13), we have that
(n,v,A%*a[12,2]) = (n,v,nA%a[11,1]) 2 (,v,n)A%a[11,1] = v?a[11,1] = a[17,1].
The indeterminacy is zero since

nExty, (A, A /(2,a4) ® F.(Y)) + Ext 2(A', A'/(2))A%a[12,2] = 0.

Proposition 6.26. In Ext, " (A’, F,(Y)), there is a Massey product

(n,v,A*a[12,2]) = A*a[17,3].

Proof. Let f,: Extj‘\’,* (A, F.(Y)) — Extj'\’,* (A", A'/(2,a;) ® F,.(Y)) be the map induced by the
A-comodule homomorphism F,(Y) - A’ /(2,a;) ® F,(Y). By naturality of Massey products, we
have that

f(n,v,A%[12,2])) € (n,, f.(A%a[12,2])).
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Further, f,(A*a[12,2]) = A*a[12,2]. By Lemma 6.25, the above equation gives
f((n.v.A%[12,2])) = A*a[17,3].

The pre-image of A*a[17, 3] is the same-named class. The indeterminacy is zero. O

Lemma 6.27. There is an element of 7wyog(tmf A Y) detected by A*a[12, 2] and annihilated by .

Proof. We have already determined E_ (Y) in stems ¢ — s = 108, 148. We see that there is a short
exact sequence

0 — Z/2{%*A%a[20,2]} - G — Z/2{A*a[12,2]} = 0,
where G C myog(tmf AY) is the subgroup of elements detected in positive filtration. At the E -
term in stem ¢ — s = 148, the only non-zero class in positive filtration is €*A%a[20, 2]. In particular,

©2A*a[12,2] = 0. So, one of the classes detected by A*a[12, 2] satisfies the claim. O

We will denote also by A*a[12, 2] the element in 7r;,g(tmf A Y), which is detected by A*a[12, 2]
and is annihilated by #2.

Proposition 6.28. There are the following relations in . (tmf AY):

(1) v*[vA®al0,0]] # 0 and
(2) nlvAal0,0]] =0

Proof. The class detected by vA®a[0, 0] lifts to ,.(tmf A V(0)) and there is a lift detected by vAS.
Butin 7 (tmf A V(0)), v2[vAS] is not divisible by 7. O

Now, we use the truncated spectral sequences of Subsection 2.1, applied to the elliptic spectral
sequence of tmf A Y. As in Subsection 2.1, let

skig(tmf AY) =Xy /X157

for X,, the nth term of the X(4)-Adams tower of tmf AY. Then E"> _(Y) as in Subsection

2.1 is a spectral sequence computing 7, sk;s(tmf AY), and it satisfies Ei’iU(Y) =0fors>17.
Furthermore, we have a map of spectral sequences

W ,t S,t
TS BS(Y) — EX (V).

Proposition 6.29. In  (sk,¢(tmf A Y)), we have
(n,v,A*a[12,2]) = A*a[17,3].

Proof. In zr,(tmf AY), the product vA*a[12, 2], if not trivial, is detected in filtration 17. It follows
that vA*a[12,2] is equal to zero in 7, (sky¢(tmf A Y)). Thus, the Toda bracket (n,v, A%a[12,2])
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S,t

5 <17(Y), there is Massey product

can be formed. Proposition 6.26 means that in E
(n,v,A%a[12,2]) = A*a[17,3].

The conditions of the Moss Convergence Theorem [32] are satisfied, so the Toda bracket
(n,v,A*a[12,2]) contains A*a[17, 3] and the indeterminacy is zero. O

Proposition 6.30. In the elliptic spectral sequence for tmf A'Y, there is an exotic extension
na[152,2] = #?A*a[17, 3].

Proof. Since ®*A*a[17, 3] livesin filtration s = 11, it suffices to prove that extension in the E  -term
of the spectral sequence for sk,¢(tmf AY). The above proposition and the choice of A*a[12,2]
imply that

©2A*a[17,3] = (n,v, A*a[12,2])%* = n(v, A*a[12,2], 7%).

Since ®#2A*a[17,3] # 0 at E,, (v, A*a[12, 2], ©?) must be non-trivial, and it must be detected by a
class which is not in the kernel of 7. This forces (v, A*a[12, 2], %) to be detected by a[152, 2], and
sona[152,2] is detected by €2A*a[17, 3]. O

Proof of Proposition 6.24. Let 8 = [vA%a[0,0]]. By Proposition 6.28, 78 = 0 and we can form the
Toda bracket (v,n, 8). Then

n(v.n,B) = (n,v,n)B = v°B.

On the other hand, ¥ # 0 by Proposition 6.28. It follows that (v, 7, ) # 0. We see that it must
be detected by a[152, 2]. So, na[152, 2] = v and Proposition 6.30 implies that v24 is detected by
©2A%a[17,3]. O

Lemma 6.31. There are differentials:

(1) dy5(A%a[30,2]) = ©3A%a[17,3] and
(2) dy9(A%a[30,0]) = ©*A%a[45, 3]

Proof. Let
tmf AY « (tmf AY), « (tmf AY), < ...

be the Adams tower associated to the X(4)-based resolution of tmf A Y. We consider its 1-co-
truncated tower and the induced map of spectral sequences
S,t . S,t S,t
It E, =~ E>.
By Lemma 2.3, ch" is surjective for s > 1.
Let a = v?A%a[0,0] € E§’15 O*2 Thisisa permanent cycle representing a unique non-zero ele-
ment of 77,55(tmf A'Y), which in this proof we denote by «. Since a has positive filtration, there
is a class @ € E>22°*2 such that cT,(@) = a and the surjectivity of cT, guarantees that we can

2,21
choose a to be a permanent cycle. It then detects classes & € 7,5((tmf A Y);) that map to a.
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Since va is detected by b = #2A*a[17,3] € Eij’ls 3+11 (Proposition 6.24), v& must be detected in
ESI3*(cTy) for 3 < s < 11. Since E;’153+S(CT1) = 0 for 3 < s < 10 (this is true for E;™), v& must
be detected by a lift b of b.

Therelation®v = 0 € m.tmf implies thatkva = 0 € . ((tmf A Y),). Thisimplies thatd,(¢) =
15-r,174+(15-1) o pO+

r>l : 2,21
13, and hence so does cT,(¢). In particular, cT,(¢) # A®a[30, 0]. However, we find that

%b for some non-trivial element ¢ € E = 0, ¢ must live in filtration 1 < s <

d,(cT,(¢)) = cT,(&b) = % - cT,(b) = ®*A*a[17, 3].

The only way for this to make sense is if ¢T,(¢) is equal to A%a[30,2] and this is the desired
differential (1).
This differential then determines (2) as noted in Remark 6.23. O

Remark 6.32. From this discussion, we also learn that there is a non-trivial class in i,;5,V(0)
which is detected by a[153, 11].

6.4 | Exotic extensions

In this section, we resolve the exotic 2, 7, v and v; extensions in the elliptic spectral sequence of
tmf A'Y.The extensions are depicted in Figures 22 and 23.

We begin with the exotic n-extensions, which are few. To determine them, we use the following
strategies. First, the long exact sequence

oot V) D tmfV(0) < tmf,Y 2 tmf,_V(0) > .. 6.33)

We use the following basic, but useful facts.

Lemma 6.34. Fora € tmf,Y and b € tmf,V(0),

1) ifa=i,b, thenna =inb =0,
(2) p.na=np.a=0,and
(3) vyna =nv;a.

Proof. These are easy consequences of the long exact sequence on homotopy groups (6.33) com-
bined with the fact that composition as well as the smash product induces the 7,S°-module
structure in the stable homotopy category. O

Note further that Corollary 2.12 as described in Remark 2.16 gives a way to relate extensions in
different stems between the v;-power torsion classes. We also use Lemmas 2.21 and 2.23.

A stem-by-stem analysis using the above techniques then allows us to determine that the only
non-trivial exotic #-extensions are as follows:

Lemma 6.35. In the elliptic spectral sequence of Y, there are exotic extensions

1) n[A%va[5,1]] = #%a[17,3]

(2) n[A*va[5,1]] = #°a[5,1]

(3) n[A%va[5,1]] = ®*[A*a[17,3]]
[ [

(4) n[A%val20,2]] = #°[A%a[20,2]]
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FIGURE 21 Classical Adams spectral sequence E,-pages for tmf A V(0) (top) and tmf A'Y (bottom)
computed with Bruner’s Ext-program [18]

There are no other exotic n-extensions.

Proof. Extension (1) follows from Lemma 2.23. Extensions (2) and (4) follow from duality: (2) from
nlA%a[20,2]] = [A%v?a[17,3]] and (4) from na[5,1] = v2a[0, 0]. Finally, (3) is Proposition 6.30.
All possible exotic n-extensions are shown not to occur using Lemma 6.34, duality and
Lemma 2.23. In particular, the possible n-extensions with source in stems 52 < t — s < 57 are
shown not to occur using Lemma 2.23 and v, -linearity. [l
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FIGURE 22 Exotic extensions in the elliptic spectral sequence of tmf A Y. This records
tmf,Y = Fn?} ++3(RP? A CP?). The zigzags denote exotic v, -extensions that occur only for certain choices of v,

self-maps.
Now, we turn to the exotic 2-extensions.

Theorem 6.36. There are no exotic 2-extensions in the elliptic spectral sequence for Y and,

consequently,
2 tmf AY) =0.

Proof. Since we have a cofiber sequence
2 J q
tmf ANCy = tmf ACy = tmf ANY = Ztmf AC,,

we can apply Lemma 2.21 with X = tmf A C,, i = j and p = q. From this, we deduce thatifa’ €
m.tmf AY is in the image of j,, then it has order 2 and that if g,(a’) = a, then 2a’ = j,(na). It
follows that if 2a’ # 0, then 2a’ is divisible by 7.

This leaves one possible extension in stem 57. But such a 2-extension would lead, by duality, to
a 2-extension in stem 116. However, there are no 7-divisible classes in that stem. Since the E,-term
was 2-torsion and there are no exotic 2-extensions, 7 tmf A Y is annihilated by 2. [

Next, we turn to the v extensions.

Remark 6.37. We will use without mention that €v = 0 in tmf,-modules. This allows us to
eliminate many possible exotic v-extensions.
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FIGURE 23 Exotic extensions in the elliptic spectral sequence of tmf A Y. This records
tmf.Y = tmf,, ,(RP> A CP?). The zigzags denote exotic v, -extensions that occur only for certain choices of v;
self-maps.

Lemma 6.38. In the elliptic spectral sequence of Y, there are exotic extensions

(1) va[26,0] = a[29, 5] (8) va[103,1] = a[106, 16]
(2) val41,3] = a[44, 8] (9) va[124,0] = a[127,15]
(3) va[52,0] = a[55,7] (10) va[129,1] = a[132,16]
(4) va[54,2] = #2a[17, 3] (11) va[150,2] = a[153,11]
(5) va[67,3] = ©2a[30,0] (12) va[155,3] = a[158,16]
(6) va[98,0] = a[101,15] (13) va[165,3] = a[168,22]

(7) va[102,2] = %°a[5,1]

Proof. Extensions (1) and (6) follow from the extensions va[26,0] = a[29, 5] and va[98,0] =
a[101, 7], respectively, in z tmf A V(0) by applying i,. Extensions (2), (3), (5), and (9) follow
from examining the effect of p, and the extensions va[39, 3] = a[42,10], va[50,2] = a[53,7],
val65,3] = a[68,10] and va[122,2] = a[125,21] in 7w tmf A V(0), respectively.
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Extensions (4), (7), (12), and (13) are obtained by duality from algebraic extensions. Extensions
(10) and (8) follow by duality from (2) and (5).
Extension (11) is proved in Proposition 6.24. [l

Lemma 6.39. In the elliptic spectral sequence of Y, there are exotic extensions

(1) va[57,1] = %%a[20,2] and

(2) val62,2] = %al45, 3]
Dually, we have

(3) va[108,2] = a[111,17]

(4) va[113,3] = a[116, 18]

Together with Lemma 6.38, there are no other non-trivial exotic v-extensions.

To prove Lemma 6.39, we use the tm f-based Atiyah—Hirzebruch spectral sequence for Y, whose
filtration comes from the cellular filtration of Y. To set up notation, we have the E;-page of this
spectral sequence

E =@ _ mtmf => m, tmf AY.

n=0
For a homotopy class 8 in 7.tmf A'Y, we denote by a[n] the element that detects it in the E;-
page of the tm f-based Atiyah-Hirzebruch spectral sequence, where n is the Atiyah-Hirzebruch

filtration of 3, and « is a class in 7w .tmf. The stem of § is then the stem of « plus n.

Proof of Lemma 6.39. In our Atiyah-Hirzebruch notation, we can rewrite the two v-extensions of
Lemma 6.39 as

1) v - ®%x[3] = Anxx[1],
(2) v - ©3[2] = A*vk[0].

We first prove (2), namely, that v - ©°[2] = A*vk[0]. In 7, tmf A C,, we have
v-22[2] = (v, %%, 7)[0]

by [41, Lemma 5.3]. By Moss’s theorem and the differential d;;(A%x) = n%> in the elliptic spectral
sequence of tm f, we have

(v, %3, n) = A%vx.

Mapping this relation along the inclusion C, — Y gives us (2).
For (1), note that in 7, tmf A £C,, we have

v - ®2k[3] = (v, &1, m)[1]
by [41, Lemma 5.3]. Since #*«x is v-divisible in 77, tmf, we may shuffle

(v,ﬁzzc,n) = (1221<, V,7).
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By Moss’s theorem and the differential d5(Axk) = vic’k in tm f, we have
(R*%,v,n) = AnkR.

Pulling back this relation along the quotient map Y — ZC, gives (1).
Extensions (3) and (4) follow by duality. The fact that there are no other exotic v-extensions is
discussed below. Ll

Most possibilities for other exotic v-extensions are ruled out in a straightforward way by ana-
lyzing i, and p,,, duality, the fact that #v = 0. However, the following two extensions require us to
analyze the classical Adams spectral sequence. The following proof depends on checking algebraic
extensions in

Ext (HF)"(tmf AY), (HF,)")

using Bruner’s Ext-program [18]. See Figure 21 for classical Adams E,-charts for tmf A V(0) and
tmf AY, and see [21, chapter 13] for tm f.

Lemma 6.40. In tmf AY,

(1) va[31,1] =0,
(2) val36,2] =0.
Dually, we have,
(3) va[134,2] =0
(4) va[139,3] =0

Proof. To show this, we need to prove that

(1) val31,1] # a[34,6],
(2) val36,2] # a[39,7].

In our Atiyah-Hirzebruch notation, we can rewrite these extensions as

(D) v -x?[3] # xx[0],
(2) v - AV3[3] # Anx[0].

We give a proof for (1) that v - x2[3] # x%[0] using the classical Adams spectral sequence. We con-
sider the Adams spectral sequence for tmf A Y and its subquotients. We will show that the Adams
filtration of x?[3] is 7 and the Adams filtration of x#%[0] is 8. The fact that there is no such v-
extension follows from the algebraic fact that on the Adams E,-page, the h,-multiple of the first
element is not the second element, which is checked by a computer program.

For the class x%[0], it is clear that the Adams filtration of ki in 75, tm f is 8, (it is detected by the
element d;,g,) and it maps nontrivially on the Adams E,-pages along the map tmf — tmf AY.
The image under this map, which we denoted by d,¢[0], is a permanent cycle. It cannot be killed
due to filtration reasons. Therefore, the class x%[0] is detected by d,¢[0] and, in particular, it has
Adams filtration 8.

For the class x2[3], we first consider the class x?[1] in mytmf AV(0). Since mygtmf =
0, m3ptmf = 0, we have m3tmf A V(0) = 0. This forces three non-zero Adams differentials elimi-
nating the three elements in the Adams E,-page for tmf A V(0). In particular, we learn that x2[1]
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in myotmf A V(0) is detected by the only remaining element j[0] in Adams filtration 7, and that
there is a non-zero d;-differential from (¢ — s, s)-bi-degrees (31,6) to (30,9).

Considering the quotient map tmf AY — tmf A Z?V(0), we learn that x*[3] is detected in
Adams filtration at most 7. Considering the induced map on the Adams E,-pages, we also learn
that it is an isomorphism on the (¢ — s, 5)-bi-degrees (31,6) and (30,9). So, in particular, the ele-
ment in (¢ — s, s)-bi-degree (31,6) does not survive. Therefore, x2[3] is detected in Adams filtration
exactly 7.

For (2), that v - Av3[3] # Anx[0], we use the Adams spectral sequence again in a very similar
way. We will show that the Adams filtration of Av3[3] is 8 and the Adams filtration of Anx[0] is 9.
The fact that there is no such extensions then follows as in (1).

For the class Anx[0], it is clear that the Adams filtration of Anx in msgtmf is 9, (it is detected by
the element u,) and it maps nontrivially on the Adams E,-pages along the map tmf — tmf AY.
The image under this map, which we denoted by d,,¢[0], is a permanent cycle. It cannot be killed
due to filtration reasons. Therefore, the class Anx[0] is detected by u[0], and in particular it has
Adams filtration 9.

For the class Av3[3], we first consider the class Av® in 7y;tmf. The class Av? in 7wy tmf is
detected in the Adams filtration 8. Considering the quotient map tmf A Y — Z3tmf, welearn that
Av3[3] is detected in Adams filtration at most 8. To show that it is detected in Adams filtration 8,
we will show that the only other element in lower filtration, the class in (¢t — s, 5)-bi-degree (36,7),
supports a non-zero d,-differential.

The maps in the zigzag

tmf ASt <——tmf AV(0) ——=tmf AY

are isomorphisms in (t — s, s)-bi-degrees (36,7) and (35,9) on Adams E,-pages. So, the claimed
non-zero d,-differential follows from the one in the Adams spectral sequence of tmf, from (¢t —
s, 5)-bi-degrees (35,7) and (34,9). O

We now turn to the study of the v;-extensions. First, recall the discussion on v;-self maps and
A, from Subsection 2.6. The homotopy groups of tmf A A; are studied by the third author in
[33]. Furthermore, the knowledge of the homotopy groups of tm f A A; is sufficient to allow us to
deduce much of the action of v; on the homotopy groups of tm f A Y, via the long exact sequence
on homotopy of the cofiber sequence

L
tmf ASPY — tmf AY — tmf AA,.

Since the outcome depends on the choice of the v;-self-map, we call a v;-self-map of type I if its
cofiber is A;[01] or A;[10] and of type II, otherwise. Again, see Subsection 2.6 for the definition
of A,[ij].

Lemma 6.41.

(a) For all v;-self maps of Y, there are the following exotic v,-extensions, and those induced from
these by k-linearity:
1) vya[9,1] = a[11, 3]
(2) vya[15,1] = a[17,3]
) 30,2] = za[12,2]

via]
(4) v;a[33,1] = a[35,3]
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(5) vya[38,2] = %a[20,2]
(6) vA%al9,1] = A%a[11, 3]
(7) v1a[99,1] = ©3a[21, 3]
(8) v,a[104,2] = ©*a[26,0]
(9) vya[105,1] = a[107, 3]
(10) v;(v;a[108,2]) = #3a[52,0]
(11) vya[114,2] = #*a[36,2]
(12) either v;a[116,2] = ©%a[78,0] or v,a[116,2] = €a[98, 0]
(13) vy%a[105,1] = %3a[67, 3]
(14) vya[129,1] = a[131, 3]
(15) either v;a[131,3] = ®2a[93, 3] or v;a[131, 3] = a[113, 3]
(16) vya[134,2] = ka[116,2]
(17) v,xa[115,3] = ®a[117,13]
(18) vy(vya[139,3]) = ©3a[83, 3]
(19) v,%a[120,3] = ka[122,14]
(20) v,(v %a[124,0]) = &*a[68,2]
(21) vya[147,1] = %a[129,1];
(22) v,a[152,2] = a[134,2]
(23) v,a[156,10] = a[158,16]
(24) vya[162,2] = %2a[124,0]
(b) For v,-self-maps of type I, there are also the following v,-extensions, and those induced from
these by k-linearity:
(1) v,a[68,2] = %2a[30,2] and
(2) v,a[83,3] = &*a[15,1]

Proof. For all parts, except for (9), (12), (15), we see, by inspecting the relevant parts of the homo-
topy groups of appropriate tmf A A;[ij], that the targets of the stated v, extensions are sent to
zero via the natural map

m(tmf AY) - (tmf AA[ij]).

Therefore, they are in the image of a v,-multiplication and the stated v,-extensions are the
only possibilities.
For part (9), consider

sky(tmf AY) = (tmf AY)/(tmf AY)s,

where (tmf AY)s is the fifth term in the X(4)-Adams tower of tmf A Y. It is a module over
sk,(tmf). Since A* € myqs(sk,(tmyf)), this element acts on 7,sk,(tmf AY). We see that the
induced map 7. (tmf AY) — m sk,(tmf AY) sends a[9, 1] and a[11, 3] to non-trivial elements,
which we denote by the same names. Furthermore, it sends a[105,1] and a[107, 3] to elements
detected by the products A*a[9, 1] and A*a[11, 3]. Since v;a[9,1] = a[11, 3] by part (1),

v;A%a[9,1] = A*vyal9,1] = A*a[11,1]

in 7 sk,(tmf AY). It follows that v;a[105, 1] must be detected by a[107, 3] in the E -term of the
elliptic spectral sequence of tmf A Y. 1
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Remark 6.42. We are left with two undecided v, -extensions, namely, (12) and (13) in Lemma 6.41,
which we were unable to resolve.
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