
Journal of Materials Processing Tech. 302 (2022) 117485

Available online 29 December 2021
0924-0136/© 2021 Elsevier B.V. All rights reserved.

Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, 
and control of advanced manufacturing processes: Current state 
and perspectives 

Mojtaba Mozaffar a, Shuheng Liao a, Xiaoyu Xie a, Sourav Saha b, Chanwook Park a, Jian Cao a, 
Wing Kam Liu a, Zhengtao Gan a,* 
a Department of Mechanical Engineering, Northwestern University, Evanston 60208, IL, USA 
b Theoretical and Applied Mechanics, Northwestern University, Evanston 60208, IL, USA   

A R T I C L E  I N F O   

Associate Editor: E. Tekkaya  

Keywords: 
Scientific data science 
Deep learning 
Additive manufacturing 
Physics-informed machine learning 
Data-driven discovery 
Data-driven design 

A B S T R A C T   

Today’s manufacturing processes are pushed to their limits to generate products with ever-increasing quality at 
low costs. A prominent hurdle on this path arises from the multiscale, multiphysics, dynamic, and stochastic 
nature of many manufacturing systems, which motivated many innovations at the intersection of artificial in
telligence (AI), data analytics, and manufacturing sciences. This study reviews recent advances in Mechanistic- 
AI, defined as a methodology that combines the raw mathematical power of AI methods with mechanism-driven 
principles and engineering insights. Mechanistic-AI solutions are systematically analyzed for three aspects of 
manufacturing processes, i.e., modeling, design, and control, with a focus on approaches that can improve data 
requirements, generalizability, explainability, and capability to handle challenging and heterogeneous 
manufacturing data. Additionally, we introduce a corpus of cutting-edge Mechanistic-AI methods that have 
shown to be very promising in other scientific fields but yet to be applied in manufacturing. Finally, gaps in the 
knowledge and under-explored research directions are identified, such as lack of incorporating manufacturing 
constraints into AI methods, lack of uncertainty analysis, and limited reproducibility and established bench
marks. This paper shows the immense potential of the Mechanistic-AI to address new problems in manufacturing 
systems and is expected to drive further advancements in manufacturing and related fields.   

1. Introduction 

Manufacturing is an imperative part of the global economy ac
counting for 10-30 percent of the gross domestic product in major 
industrialized countries (West and Lansang, 2018). Historical examples 
also show innovations in manufacturing nurture key advances in the 
automotive, aerospace, electronics, and biomedical industries such as 
3D bioprinting of tissues and organs (Murphy and Atala, 2014). Partic
ularly, recent advances have moved manufacturing toward design 
freedom and flexibility allowing the production of highly optimized and 
individualized parts while remaining cost-effective even for low-volume 
productions. However, many manufacturing processes are known for 
their intricacies in changing material shapes and properties. 

As a prevalent challenge in manufacturing, we face complex in
teractions between materials, setups, and energy sources, while the 
underlying physics is not fully understood. High-dimensional spatio- 

temporal behaviors are common in manufacturing applications, and 
critical responses happen in length scales that are orders of magnitudes 
apart. As an example, in metal-based additive manufacturing, the in
teractions between the laser beam and material particles happen in 
micro-scale, the melt pool dynamics, grain, and porosity evolution occur 
in meso-scale, and mechanical and thermal behavior appear in macro- 
scale. While significant progress has been made to accurately simulate 
these multiscale behaviors using numerical simulations, conventional 
methods are often prohibitively time- and resource-consuming, espe
cially for cases where an iterative solution is needed (e.g., inverse 
problems, robust design, uncertainty analysis). To exacerbate the 
problem, manufacturing systems are prone to noise, disturbance, and 
unknown hidden variables which make the process difficult to accu
rately predict. The behavior of manufacturing systems is known to vary 
even between similar machines or for one machine over time. As a 
result, the task of decision-making and understanding manufacturing 

* Corresponding author. 
E-mail address: zhengtao.gan@northwestern.edu (Z. Gan).  

Contents lists available at ScienceDirect 

Journal of Materials Processing Tech. 

journal homepage: www.elsevier.com/locate/jmatprotec 

https://doi.org/10.1016/j.jmatprotec.2021.117485 
Received 15 October 2021; Received in revised form 24 December 2021; Accepted 26 December 2021   

mailto:zhengtao.gan@northwestern.edu
www.sciencedirect.com/science/journal/09240136
https://www.elsevier.com/locate/jmatprotec
https://doi.org/10.1016/j.jmatprotec.2021.117485
https://doi.org/10.1016/j.jmatprotec.2021.117485
https://doi.org/10.1016/j.jmatprotec.2021.117485
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmatprotec.2021.117485&domain=pdf


Journal of Materials Processing Tech. 302 (2022) 117485

2

processes has remained a daunting engineering effort. 
At the same time, manufacturing practices have undergone a digi

talization paradigm. This trend can be evidently seen in the strategic 
road maps across the globe such as the Industry 4.0 framework intro
duced by Germany, the “Manufacturing USA” institutes in the US, and 
the “China Manufacturing 2025” strategic plan in China, all of which 
emphasize systematic digital data collection and large-scale networking 
and communication capabilities to advance manufacturing systems. 
Putting these pieces together, one can see that manufacturing systems 
generate data with continuously increasing quality and variety, and 
these data sources are valuable assets and should be utilized to advance 
current capabilities. 

In recent years, Artificial Intelligence (AI) has shown significant 
progress in automating activities that are associated with human 
thinking, such as planning, decision making, and problem-solving. An 
over sixfold increase in the number of publications from 2015 to 2020 
(Zhang et al., 2021) and an estimated 15.7 trillion-dollar worth of 
economy in 2030 (PwC, 2021) are only a few indications of the vast 
existing and future impact of AI in both academia and industry. AI so
lutions are capable of processing large-scale data from a wide range of 
sources, including images, text, audio, 3D geometries, to name a few. As 
a result, we observe a surge in AI-enabled approaches to enhance pre
diction, design, and control capabilities of advanced manufacturing 
processes that leverage the recent trend of manufacturing digitalization 
and large-scale data acquisition platforms. The increasing popularity of 
investigating AI methods in manufacturing applications as well as the 
geographical distribution of publications can be observed in Fig. 1. This 
cross-disciplinary research area attempts to address critical 
manufacturing challenges such as improving quality variability and 
process efficiency and enabling high-dimensional design for tailored 
material and geometric properties, with the potential to drastically alter 
the capabilities of these multi-billion-dollar industries. AI methods 
provide an exciting alternative to many conventional computational 
methods in manufacturing as they offer high predictive flexibility with 
fast inference time. Additionally, AI tools are often compact and easier 
to maintain compared to their conventional counterparts which can 
involve large code bases with tens of thousands of lines of code. 

Despite the many benefits of AI-enabled tools, three key shortcom
ings hinder the widespread adoption of such tools in manufacturing: (1) 
unavailability of large enough high-quality data, (2) limited general
ization to unseen samples, and (3) lack of interpretability. Developing 
useful databases from raw information is expensive for complex engi
neering tasks as such databases need to be carefully processed and 
curated to minimize the impact of mislabeled instances, imbalances, 
outliers, and noises. Furthermore, the behavior of manufacturing ma
chines can change over time as machines age, which results in a 
continuous and costly process of data preparation. AI methods often 
overfit the data provided to them during the training process, meaning 
that they exploit the database imbalances and noises to resemble the 
training samples too closely. The overfitting reduces the accuracy of the 
solution for new data, especially when new data has a different 

distribution compared to the training database. Therefore, a naive 
implementation of AI methods can easily violate the physical principles 
of the modeled phenomenon. Developing generalizable solutions is a 
core effort of AI researchers and practitioners; however, the state-of-the- 
art methods often fall short of the outside-of-training accuracy required 
in precise engineering problems. Lastly, AI solutions are often treated as 
black-boxes and offer limited tools to trace the reasoning behind their 
decision-making patterns. While interpretability might not be a critical 
factor in applications such as advertising recommendation systems, 
unreliable action in manufacturing plants can have devastating financial 
and safety consequences. Therefore, explainability is another important 
feature of solutions in manufacturing. 

To address the above-mentioned challenges, we advocate 
Mechanistic-AI methods, in which mechanism-driven principles of 
manufacturing processes and engineering insights are embedded into AI 
solutions to increase their data efficiency, generalizability, and 
explainability. A schematic of the Mechanistic-AI framework is illus
trated in Fig. 2. This framework covers multiscale and multiphysics 
modeling, which is complemented by AI methods to simplify model 
calibration, validation, and mesh generation. Moreover, the known 
physical mechanisms could inform AI methods for accurate predictions 
(i.e., physics-informed learning), and the AI methods, in turn, can be 
used to discover new mechanisms from experimental data (i.e., data- 
driven discovery). As a data-centric framework, high-quality high-res
olution experimental data with appropriate mechanistic feature engi
neering and data processing is required for model validation and AI 
training. The physics-informed AI and well-validated physics-based 
models, in turn, generate more data. Therefore, Mechanistic-AI provides 
an interconnected framework between the three components of physical 
mechanisms, AI methods, and data, which enables a new generation of 
modeling, design, and control in manufacturing. In this article, we re
view notable advances in Mechanistic-AI methods in manufacturing 
systems, introduce a corpus of promising approaches that have not been 
applied to manufacturing yet, and lay out our vision for influential 
future directions in this field. We note that the multiphysics modeling 
with model calibration and validation is beyond the scope of this study. 
For those topics, interested readers can refer to the reviews by Guna
segaram and Steinbach (2021) and Wei et al. (2021). 

In recent years, several publications have reviewed various aspects of 
AI in manufacturing. Li et al. (2017) discussed a system-level architec
ture for integration of AI in smart manufacturing facilities and the role of 
key parties, governments, and technologies in the formation and future 
of the intelligent manufacturing industry. Sharp et al. (2018) deployed 
natural language processing (NLP) to extract trends and insights from a 
corpus of 4000 literature related to machine learning (ML) in 
manufacturing applications and identified decision support, lifecycle 
management, and digital knowledge management as important appli
cations of ML in manufacturing literature. Wang et al. (2018) presented 
a technical summary of deep learning algorithms (such as CNN, RBM, 
Autoencoder, and RNNs) and their applications in manufacturing 
quality inspection, fault assessment diagnostics, and defect prognosis. 

Fig. 1. The number of published papers for 
each year (left) and the geographical distribu
tion of affiliations for publications on the 
intersection of AI and manufacturing (right). 
The size and color of circles in the world map 
indicate the number of publications affiliated 
with each country. The papers are extracted 
from the Scopus database using keywords: 
[artificial intelligence, or neural network, or 
machine learning, or supervised learning, or 
reinforcement learning], and [manufacturing, 
or metal forming, or tool wear, or metal plas
ticity, or additive manufacturing, or 
manufacturing design, or manufacturing 
control].   
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Gao et al. (2020) identified four building blocks of the life cycle of 
manufacturing data as data collection, data processing, data learning, 
and data security and elaborated various methods to tackle current 
challenges within each item. Arinez et al. (2020) adopted a 
system-process-material hierarchical plant organization and reviewed 
the literature to incorporate AI decision-making and analytics tools 
within and across manufacturing hierarchical levels. A review dedicated 
to AI tools health monitoring in manufacturing systems can be found in 
Zhao et al. (2019). Zhang and Gao (2021) summarized recent advances 
in data processing and curation techniques in manufacturing systems 
such as denoising, outlier detection, imputation, balancing, and 
annotation. 

Our review article distinguishes itself by providing a new perspective 
on approaches that transform generic AI techniques into Mechanistic-AI 
solutions that offer better interpretability and reliability, enable mech
anisms discovery, and handle various types of heterogeneous 
manufacturing data. In what follows, we introduce various classes of 
manufacturing data and data sources in Section 2. Section 3 provides a 
discussion on combining physical knowledge and data-driven methods 
for modeling and discovery in manufacturing processes. We discuss 
mechanistic feature processing (Section 3.1), physics-informed 
modeling methods in manufacturing (Section 3.2), and data-driven 
discovery in manufacturing (Section 3.3). Later, we investigate and 
categorize several AI methods in manufacturing that are targeted toward 
design and control tasks in Sections 4 and 5, respectively. Finally, we 
conclude this article with a summary of promising future research di
rections for Mechanistic-AI in manufacturing in Section 6. 

2. Manufacturing data 

2.1. Manufacturing data types and databases 

A key trend over the past decade is widespread digitalization across 
many fields fueled by the availability of inexpensive sensing devices. In 
manufacturing, digitalization trends, e.g., cyber-physical systems and 
Internet of Things (IoT) (Lee et al., 2015), have increased the visibility 
and accessibility to information and drastically changed the amount, 
quality, diversity, and richness of available manufacturing data. 

Manufacturing generates a wide spectrum of heterogeneous data which 
can be broadly categorized into three different types of (1) experimental 
data, (2) simulation data, and (3) engineer/user data. 

The development of novel sensors to measure complex behavior of 
materials and manufacturing systems with high accuracy and frequency 
is an ongoing research area. Additionally, many sensing technologies 
have matured, leading to lowering equipment costs and ease of avail
ability. As the result, various measurement technologies and sensing 
methods have become more standardized components of modern 
manufacturing pipelines from controlling and monitoring during the 
manufacturing process to test and analysis methods after the products 
are manufactured. These experimental sources provide data on the 
material and manufacturing processes across several time and length 
scales. Some of the popular sensing methods and their data types are 
compiled in Fig. 3. As it can be seen, manufacturing produces a wide 
range of in-situ and ex-situ data including scalar measurements in static 
or time-series forms (such as load cells, vibration, acoustic, fracture, and 
fatigue data), geometry data (such as point clouds in optical scanning), 
video data (such as measurements from DIC, IR, and X-ray), and static 
image data (such as data from X-ray diffraction, scanning electron mi
croscopy, and electron backscatter diffraction). Increasingly, several of 
such sensing data are compiled together to reduce uncertainty in mea
surement or to collect a more complete set of the attributes of 
manufacturing systems. For example, Muhammad et al. (2021) com
bined X-ray computed tomography (CT) and DIC methods to record 
detailed microstructural features and local strain evolution and char
acterize deformation responses of additively manufactured samples. 

Advances in numerical simulation methods such as finite element 
method (FEM), computational fluid dynamics (CFD), and lattice Boltz
mann method (LBM), along with the increasing computational capacity 
generated another source of valuable data stemming from fundamental 
physical laws. Designs and manufacturing process plans are digitalized 
through CAD and CAM models, providing detailed information about 
the geometry, desired tolerances and surface qualities, design intent, 
and process execution. Additionally, engineers and users, while a source 
of a smaller portion of data, are a unique source of information in 
manufacturing plants and provide invaluable manual demonstrations, 
know-hows, and reporting discrepancies and irregularities (Waterman, 

Fig. 2. A schematic of Mechanistic-AI for 
advanced manufacturing processes, including 
the building blocks and their interactions. Two 
cycles connect the Mechanistic-AI building 
blocks. The red arrows represent a cycle of the 
information flow: physical mechanisms can 
create data via modeling techniques, data can 
be used to train AI methods with appropriate 
mechanistic feature processing, and AI methods 
can discover new physical mechanisms by 
combining experimental data (i.e., data-driven 
discovery). The dark blue arrows represent a 
reverse cycle: physical mechanisms can inform 
AI methods (i.e., physics-informed machine 
learning), AI methods can create more data, and 
data can be used to calibrate and validate 
mechanistic models to elucidate physical 
mechanisms. The Mechanistic-AI enables 
scientific-driven process modeling, design, and 
control. (For interpretation of the references to 
color in this figure legend, the reader is referred 
to the web version of this article.)   
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2017). At the same time, some research is dedicated to the development 
of efficient knowledge management systems in manufacturing to create, 
link, maintain, and update heterogeneous manufacturing data, such as 
studies done by Ko et al. (2021) and Lu et al. (2018). For example, Lu 
et al. (2018) proposed a four-tier framework consisting of data, infor
mation, knowledge, and application. In their framework, a bottom-up 
analysis is used to extract engineering knowledge and a top-down 
method is proposed for goal-oriented active data generation. 

High-quality databases and benchmarks are imperative for the 
adoption of AI in manufacturing. Such benchmarks allow scientists to 
meaningfully track the progress of the field and compare different 
methodologies, which is nearly impossible if each study is performed on 
a separate database. Additionally, publicly available databases lower the 
barrier to research and deploy AI systems as they can significantly 
reduce the time-consuming and expensive data gathering and curation 
steps of the AI development life-cycle. Fortunately, in recent years, we 

observe the emergence of various databases with applications in 
manufacturing. 

Several public databases provide a wide range of 3D manufacturing- 
related geometries in various formats such as CAD files, images, and 
depth maps. ABC geometric database (Koch et al., 2019) contains 1.75 
million CAD files for industrial designs. MVTec ITODD (Drost et al., 
2017) is developed for industrial object detection tasks and includes 28 
objects and 3500 labeled scenes resulted from two 3D sensors and three 
grayscale cameras. T-LESS (Hodan et al., 2017) provides 50K images for 
6D pose estimation with over 30 industry-relevant objects. Online 
communities such as Thingiverse (Thingiverse. and com,2021., 2021) 
have accumulated large-scale collections of designs for additive 
manufacturing parts, which are used to create curated databases by 
other studies. Thingi10k (Zhou and Jacobson, 2016) contains 10,000 3D 
printing models in 72 categories and over 4000 tags. Berman and Quek 
(2020) collected over a million 3D files, images, and metadata for 

Fig. 3. Samples of in-situ and ex-situ measurement and material characterization techniques common in manufacturing. This data includes scalar, time-series, point 
cloud, and image/video measurements. 
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additive manufacturing parts and published their database as Thingi
Pano. HowDIY website (Berman et al., 2021) is developed not only as a 
collection of 3D printing designs but also as a platform to provide 
collaborative support and computationally-guided tools in various steps 
of 3D printing. A current limitation of such geometric databases for 
manufacturing applications is that they are mostly designed for generic 
plastic 3D printing, lack process-specific information (e.g., support 
structure and toolpath), and do not cover a broad enough range of 
manufacturing processes. Some recent geometric databases target spe
cific design and manufacturing applications. For example, Biked 
(Regenwetter et al., 2021) is a database of 4,500 bicycles that includes 
the individual components, bike class, and numerical design parameters. 

Researchers have also invested in developing databases that incor
porate the performance of manufacturing processes, notable examples of 
which are described here. Sundar and Sundararaghavan (2020) devel
oped a database of over 300K simulated microstructures that are 
resulted from various permutations of tension, compression, and rolling 
in different directions. This database allows for data-driven in
vestigations to find the relationships between the manufacturing process 
sequences and the microstructure evolution. Oak Ridge National Labo
ratory (ORNL) (Scime et al., 2021) released a dataset containing 
layer-wise powder bed images from three different powder bed printing 
technologies: laser powder bed fusion, electron beam powder bed 
fusion, and binder jetting. The dataset was mainly designed for anomaly 
defects detection using image segmentation or other computer vision 
techniques. Several databases are published that connect additive 
manufacturing process conditions and part performances. NIST Additive 
Manufacturing Metrology Testbed (Lane and Yeung, 2019) provides 
melt pool monitoring data for ten nickel-based superalloy 625 (IN625) 
parts with varying scan strategies. NIST AM-BENCH database (Levine 
et al., 2020) published extensive in-situ and ex-situ measurements (e.g., 
part deflection, residual strain, melt pool geometry, part tensile prop
erties) for metal and polymer materials. Air Force Research Laboratory 
(AFRL) AM modeling challenge series data (Cox et al., 2021) provided 
experimental data at macro- and micro-scale including manufacturing 
process parameters, residual strain, geometry, microstructural details, 
and stress-strain behavior. The Additive Manufacturing Materials 
Database (https://ammd.nist.gov/) is a collaborative database that 
contains information about the material properties, machine parame
ters, build design, in-process, and post-process data points. These 
growing attempts to establish rich manufacturing databases can greatly 

facilitate Mechanistic-AI methods to find complex manufacturing 
mechanisms between heterogeneous data types. 

2.2. Manufacturing data platforms 

Cloud manufacturing can further facilitate and automate the data
base generation for both proprietary and non-proprietary data sources. 
Although several different definitions are available in the literature 
(Siderska and Jadaan, 2018), cloud manufacturing can be defined as a 
cloud-based platform that collects manufacturing resources from pro
viders online, analyzes collected resources, and offers the various tools 
and suggestions on manufacturing processes to customers. The term 
“cloud manufacturing” first appeared in literature in Li et al. (2010) and 
since then it has gained significant research interests. Notable research 
on the cloud manufacturing concepts and their implementations are 
reviewed by Siderska and Jadaan (2018) and Bouzary and Chen (2018). 

Fig. 4 illustrates the architecture of cloud manufacturing proposed 
by Esposito et al. (2016) that consists of 4 layers: manufacturing 
resource layer, virtual resource layer, service layer, and application 
layer. The manufacturing resource layer refers to the local facilities that 
manage production, shipping, operational tasks. The virtual layer con
tains virtual models and simulation tools of physical resources that 
ceaselessly produce data to construct a multi-resource database. This 
data can be used for the optimization of the production cycle and 
providing recommendations to customers. On top of the virtual layer, 
the service layer oversees the scheduling and monitoring of the 
manufacturing process. Finally, the application layer offers a web-based 
user interface that visualizes tasks performed in the cloud platform. 

Despite great advances in the concepts and application protocols of 
cloud manufacturing, most of them rely on centralized cloud systems 
and suffer from information transparency and data security. In recent 
years, decentralization of cloud manufacturing with blockchain tech
nology is trending in the literature, such as Aghamohammadzadeh and 
Fatahi Valilai (2020) and Barenji (2021). The fundamental idea of this 
research path is to establish a highly secure blockchain platform for the 
multi-resource databases that allows providers and customers to match, 
negotiate transactions, and establish contracts. 

Zhu et al. (2020) proposed an Ethereum-based cloud manufacturing 
platform to solve a benchmark problem that entails 939 job requests 
from 100 users. They used the k-nearest neighbors (KNN) algorithm for 
the service composition and successfully mediated 934 jobs. Yu et al. 

Fig. 4. Layered architecture of cloud manufacturing which includes manufacturing resource, virtual resource, service, and application abstractions (Esposito 
et al., 2016). 
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(2020) developed a blockchain-based cloud manufacturing architecture 
combined with a particle swarm optimization (PSO) solver for the ser
vice composition problem. Wang et al. (2021) reported an architecture 
of blockchain cloud manufacturing that utilizes machine learning 
techniques such as support vector machine (SVM) and neural network 
for service composition tasks. Zhang et al. (2021) studied a blockchain 
consensus protocol to reduce the energy consumption during the Proof 
of Work (PoW) process, leading to a higher transaction speed and sus
tainable cloud manufacturing platform. Many blockchain ecosystems 
are originally designed to transfer a small amount of transaction data, 
which is not compatible with cloud manufacturing transactions that 
involve a large volume of manufacturing data. To address this issue, 
Hasan et al. (2021) developed a middleware software architecture inside 
the Ethereum network that can store and transfer larger manufacturing 
data. Such technologies in cloud manufacturing enable the creation of 
highly secure, anti-tampering, traceable, and transparent multi-resource 
and multi-fidelity databases for further usage in AI methods. 

3. Mechanistic-AI in manufacturing modeling and discovery 

For decades, trial-and-error experiments and physics-based modeling 
were deployed to model various aspects of manufacturing processes, 
including material properties and product quality. However, trial-and- 
error approaches are often time-consuming and expensive due to the 
vast number of process and material parameters, as well as the high 
expense of experimental tests. Physics-based modeling methods provide 
many tools to understand complex mechanics in manufacturing pro
cesses. But, leaning on physics-based modeling alone can be insufficient 
in many challenging manufacturing problems for several reasons:  

• The accuracy of the popular simulation tools (e.g., FEM) largely 
depends on the mesh quality. Therefore, manufacturing applications 
can require extremely fine mesh structures to properly simulate 
intricate material behaviors, which consequently leads to high 
computational demand (Francois et al., 2017).  

• Formulating the governing equations and solver settings is a non- 
trivial task due to the multiscale and multiphysics nature of 
manufacturing processes and their complex boundary conditions.  

• Experimental data are generally used for calibration and validation, 
which requires significant manual engineering, instead of seamlessly 
embedding them into simulation tools. This disconnection motivates 
finding the next generation of integrated simulation approaches to 
better understand complex mechanisms in manufacturing. 

Data-driven approaches come into play as promising alternatives 
considering the increase in data accessibility and parallel computing 
power. But, data-driven approaches rely on a vast amount of labeled 
high-fidelity data, which can be difficult to obtain through experiments 
or simulations. This hinders the wide application of data-driven methods 
in manufacturing modeling. To exploit the power of data-driven ap
proaches, classical physics-based modeling, and experimental data, we 
advocate for utilizing Mechanistic-AI for modeling and discovering 
physical mechanisms in manufacturing. 

There are two fundamental components in an AI solution: a machine 
learning model and the data to train the model with. Both of these 
components can be reformed to convey the mechanistic aspects of a 
manufacturing process; hence, creating a Mechanistic-AI approach. 
Physical insights can be embedded into training data by employing a 
host of techniques such as mechanistic feature selection and exploiting 
data invariants, as detailed in Section 3.1. At the same time, the machine 
learning model can be augmented with physical knowledge of 
manufacturing processes by how the solution is structured, the formu
lation of the model, as well as the training process. These advancements 
are elaborated upon in Section 3.2. We also discuss a third aspect of AI- 
enabled modeling approaches, known as system identification, which 
allows the discovery of fundamental physical laws from data, as 

explained in Section 3.3. 

3.1. Mechanistic feature processing 

Successful application of any AI framework largely depends on the 
nature and relevance of the features considered. Meaningful features are 
particular helpful in establishing process-structure-property relation
ships (DebRoy et al., 2018) and designing and optimization of 
manufacturing processes (Yoshimura, 2007) as these tasks require high 
explainability and generalizability. Processing raw training data into 
features that are most efficient in representing relevant aspects of a 
manufacturing task can drastically improve the suitability of the AI so
lution for resolving realistic manufacturing problems. Therefore, 
mechanistic feature processing can play an important role, irrespective 
of the data types, i.e., experimental, simulation, or user data. Generally, 
the purpose of feature processing in machine learning is to select the 
most important features out of many in order to make the training 
process easier or faster. Here, we refer to mechanistic feature processing 
as data selection and manipulation techniques that utilize mechanistic 
or physical insight of manufacturing processes to do the same. Particu
larly, we introduce two classes of solutions to achieve this goal: (1) 
selecting most important and physically meaningful features in a given 
task, and (2) using the existing invariants in the data to transform or 
augment the data. These two solutions are elaborated in the following 
subsections. 

3.1.1. Mechanistic feature selection and importance analysis 
An inappropriate feature selection generates information with a high 

noise-to-signal ratio and low correlation to target, which impedes the 
training process and reduces the accuracy and generalizability of AI 
solutions. The underlying physical aspects of a manufacturing process 
can inspire meaningful and mechanistic feature selection in various 
tasks. Current literature in manufacturing lacks a unifying framework 
for the selection of mechanistic features; rather, the selection process is 
highly domain-specific with heavy reliance on the experience of experts 
in the field. Here, we highlight several inspiring examples of mechanistic 
features across the manufacturing fields. 

In additive manufacturing processes, various interacting mecha
nisms affect the performance of parts. Gu et al. (2021) proposes the 
concept of Material-Structure-Performance Integrated Additive 
Manufacturing (MSPI-AM), which integrates parallel multi-material, 
multi-functional, and multiscale materials design and production. The 
authors discuss many relevant mechanistic features for realizing an 
advanced hybrid manufacturing system. For example, to produce a 
multi-functional and multi-material part, the feature selection requires 
identifying an appropriate lattice structure, crystal orientation, 
composition, and material gradient distribution. 

Geometric features can play an integral part in analyzing 
manufacturing performance. Mycroft et al. (2020) used geometric fea
tures extracted from CAD such as voxel map, thickness, mesh 
complexity, and curvature to predict the Hausdorff printability measure 
for the powder bed fusion process. Note that while in some 
manufacturing processes, such as forming, global aspects of the geom
etry significantly affect the distribution of forces, in other processes, 
such as machining, the geometric effects are mostly local. Therefore, 
understanding the direct and indirect region of influence of each phys
ical energy source can assist in selecting important features in 
manufacturing tasks. In geometry optimization tasks, i.e., topology 
optimization, mechanistic features such as toughness, 
force-displacement curves, mass, and geometric parameters can be used 
to efficiently optimize complex geometries (Gongora et al., 2020). 

Metallic alloy material design tasks can benefit from thermodynamic 
and structural properties as the mechanistic features because they con
trol the property of the manufactured alloys. Such features become 
critical to assess physical phenomena that are hard to observe experi
mentally such as surface energy (Hebert, 2016). Tian et al. (2021) 
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showed that high-throughput density functional theory (DFT) features 
are helpful to select a suitable alloy composition for a desired mechan
ical performance. In microstructure analysis tasks a significant body of 
research suggests utilizing statistical metrics as material descriptors 
(Huber et al., 2020). The key idea behind these works is to convert a 
microstructure image with multiple phases into an n-point correlation 
function, where the probability of finding a specific phase is represented 
as a function of relative distance. Other metallurgical data such as 
Electron Backscatter Diffraction (EBSD) features, average grain size, and 
volume fraction of other phases are also used as features in multiple 
studies, such as Baturynska et al. (2018) and Herriott and Spear (2020). 

Once a set of features are selected, relative importance analysis can 
reveal additional physical insights. As the result of importance analysis, 
one can remove low-impact features, which simplifies and accelerates 
the training and prediction processes. Tree-based methods, such as 
Random Forest, naturally provide statistical importance analysis of the 
input features (Biau and Scornet, 2016). Two measures of importance 
are commonly used in the Random Forest. The first measure, i.e., 
accuracy-based importance, is based on the change in accuracy if the 
feature is excluded. The second measure, i.e., Gini-based importance, is 
based on the decrease of Gini impurity (or node purity) when a feature is 
chosen to split a node. Both measures can be used to order mechanistic 
features and identify dominant features in advanced manufacturing 
processes. Xie et al. (2021) identified important temperature ranges for 
ultimate tensile strength (UTS) from infrared temperature data in ad
ditive manufacturing. They found two dominant temperature ranges in 
process-induced thermal histories, and those ranges have a significant 
influence on the resulting UTS of the printed Inconel 718 material. The 
dominant ranges were identified purely from experimental data without 
prior knowledge but they surprisingly coincided with the theoretical 
results. As shown in Fig. 5, the first temperature range, 
1212.99–1365.35 ∘C, align with the solidus and liquidus temperatures of 
the Inconel 718, and the second important range, 654.32–857.47 ∘C, is 
related to γ′ and γ′ precipitate formation temperature during solid-state 
transformation. Du et al. (2021) evaluated the Gini-based importance of 
the mechanistic features on balling defect in additive manufacturing. 
They concluded that the Marangoni number and solidification cooling 
time are the two most important features that describe the balling effect 
of the additive manufacturing process. 

While the aforementioned importance analysis methods rely on tree- 
based models, permutation feature importance was proposed in Alt
mann et al. (2010) as a broader alternative. The permutation feature 
importance can be used for any fitted model such as neural networks. 
This method is based on a simple idea that measures the decrease in the 
model score (e.g., coefficient of determination R2) if the values of a 
feature are randomly shuffled. This approach breaks the relationship 
between each feature and the model output, thereby the decrease in the 

model score can indicate the importance of the feature. Overall, feature 
importance analysis is an effective tool to enhance explainability in 
Mechanistic-AI. Identifying dominant mechanistic features will benefit 
process-structure-properties quantification and materials design in 
advanced manufacturing because it not only provides a smaller set of 
features required to be considered in the model, but also generates 
physical insights into the mechanisms of manufacturing processes. 

3.1.2. Utilizing data invariants 
Another approach to integrating physical aspects of a process into 

data is by exploiting the known data invariants, i.e. the aspects of data 
that do not influence the output. Knowing data invariants allows the 
development of databases that encourages AI model to be insensitive to 
unimportant correlations in the data which might exist due to the 
limited data size or biased source of information. There are generally 
two approaches to inform the database of such invariants: data aug
mentations and invariant representation. 

In data augmentations, starting from a database, one can generate 
multiple augmented copies of the data where the copies are altered in 
invariant dimensions while keeping the output prediction similar to the 
original database. Using this method, we increase the size of the data
base and simultaneously encourage the machine learning model to 
disregard irrelevant features and correlations as it trains to accurately 
predict the response for original and augmented samples. The pinnacle 
of data augmentation is in image processing where it is a common 
practice to add altered versions of images to the database by applying 
several operations such as flipping, rotations, scaling, shearing, crop
ping, and varying levels of brightness and contrast. 

Alternatively, we can transform the database into a representation 
that is inherently invariant to physically irrelevant aspects of the data. 
By training the machine learning model in the invariant representation 
space, we ensure the results of the model remain the same with changing 
irrelevant features of the data. A scientifically significant example of 
such an approach is dimensional invariance, where we can develop 
models that are insensitive to units and scales by representing features as 
dimensionless numbers. A dimensionless number is a power-law 
monomial of some physical quantities (Barenblatt, 2003). There is no 
physical dimension (such as mass, length, or energy) assigned to a 
dimensionless number. Using dimensionless numbers can significantly 
simplify the problems by reducing the number of variables that describe 
a physical phenomenon or process, thereby reducing the number of 
experiments (or simulations) required to understand and design the 
physical system. Furthermore, the dimensionless numbers are physically 
interpretable and thus provide elegant insights into the behavior of 
complex systems. Moreover, the dimensionless numbers do not change if 
the measurement system of units is changed. This allows revealing a 
scale-invariant relationship using small-scale experiments, which can 
include small length scales, small time scales, or small energy scales. 

3.2. Physics-informed model development 

Machine learning models are the second pillar of AI solutions. The 
development and training process of the ML models involve various 
engineering choices, which can be tuned to embed physical insights or 
constraints into the solution. Therefore, physics-informed model 
development is a key ingredient in the proposed Mechanistic-AI 
framework. Here, we present a collectively exhaustive categorization 
of approaches to embedding physical knowledge into the model devel
opment process including (1) structuring the problem into a multi-level 
model where different modules are developed using a combination of 
data-driven and physics-based models, (2) designing data-driven ar
chitectures that integrate physics in their formulation, and (3) custom
izing the model training process. Each category is explained in the 
following subsections. 

Fig. 5. Relative importance of temperature ranges in processing-induced 
thermal histories for ultimate tensile strength (UTS) (Xie et al., 2021). 
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3.2.1. Multi-level modeling 
One fundamental approach to impose physics knowledge into an AI 

solution is by structuring the original task into submodules, where each 
submodule is responsible for predicting aspects of the overall model. The 
submodules can be structured in parallel to compensate for each other’s 
inaccuracies or in series to break the task into simpler and more phys
ically traceable steps. There are two main benefits to adopting this 
multi-level modeling method. First, the structuring of the modeling task 
introduces aspects of physics in the model as it enforces predicting of 
physically meaningful intermediate parameters. This is in contrast to the 
data-driven end-to-end paradigm where flexible learning comes with the 
cost of intermediate parameters that are, at best, very difficult to 
interpret. Second, this multi-level modeling approach opens many pos
sibilities to combine physics-based modeling methods with data-driven 
methods. One can use physics-based modeling where reliable and effi
cient solutions exist and compensate them with data-driven methods. 
Therefore, instead of solely relying on experimental data from in-situ 
and ex-situ measurements and monitoring to build models, hybrid 
physics-based and data-driven modeling approaches can take advantage 
of numerical simulations to provide additional insights that cannot be 
easily captured through experiments. For example, maintaining con
stant melt pool size in AM process is important to achieve consistent 
properties of built parts (Gockel et al., 2014); however, it is difficult to 
track melt pool evolution based on experimental data alone. On the 
contrary, physics-based models can provide detailed information of melt 
pool dimensions, as deployed by Gawade et al. (2021) and Zhu et al. 
(2021). 

An interesting example of multi-level methodology is presented by 
Ren et al. (2021), where a two-level data-driven model is developed to 
predict melt-pool size in the multi-track building of laser powder bed 
fusion AM. The lower-level model captures the pre-scan initial temper
ature for each layer and uses it as a feature in the upper-level model to 
predict melt-pool size. Their model achieved a lower relative mean 
squared error than the pure machine learning model, without the need 

for a large amount of training data. Wang et al. (2020) developed a 
multi-level model for long-term prediction of tool wear in machining 
processes. Their model consists of a physics-based model and a 
bi-directional GRU data-driven model. The outputs of both models are 
passed through a dense neural network regressor to produce the final 
prediction, as depicted in Fig. 6. Du et al. (2021) developed a two-level 
physics-based and data-driven model where six simulation-based in
termediate parameters of volumetric energy density, surface tension 
force, Marangoni number, Richardson number, pool aspect ratio, and 
the solidification time are initially computed using a thermal-fluid 
model; later, data-driven modeling is deployed to classify balling or 
non-balling cases in laser powder bed fusion (L-PBF). In Du et al. (2020), 
a steady-state computational model is used to compute temperature, 
strain rate, traverse force, flow stress, shear stress, and torque in friction 
stir welding, the outputs of the simulation is later used to predict the 
binary tool failure with a high accuracy of 98%. 

A current limitation of multi-level modeling that combines physics- 
based and data-driven methods is that one needs to acquire data and 
train each ML model individually, which drastically increases the cost of 
data handling, development, and maintenance. This is because neural 
networks training requires access to gradients while most conventional 
physics-based models do not generate the gradient information. To 
address this challenge, a research direction has recently emerged to 
develop differentiable simulations, which allow a natural integration of 
physics-based simulation methods with neural networks. Alpha Fold 
(Senior et al., 2020) presented a breakthrough in solving the protein 
folding problem by combining a neural network model to compute a 
distance matrix between amino acid components with a differentiable 
physics-based simulation to compute the geometry of the protein. 
Recent studies have expanded differentiable simulations to fluid dy
namics (Holl et al., 2020), computer vision simulations (Holl et al., 
2020), and robotics and control applications (Qiao et al., 2020). 
Therefore, the extension of differentiable simulations to manufacturing 
applications can open new avenues in Mechanistic-AI models that 

Fig. 6. A multi-level model that combines data-driven and physics-based modeling methods for tool wear prediction (Wang et al., 2020).  
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seamlessly integrate physics-based and data-driven approaches. 

3.2.2. Model architecture design 
The second approach to embed physics in data-driven model devel

opment is by developing customized formulations and architectures for 
machine learning models that by design uphold certain physical attri
butes. Some of the most popular neural networks (e.g., CNN, RNN, 
attention mechanism) belong to this class. CNNs inherently process 
neighboring information by passing a local kernel through the image. 
RNNs (e.g., LSTM and GRU) are designed to pass long-term correlations 
for an arbitrary number of time-steps without saturating the gradient 
information through gated mechanisms. Arguably, one of the main 
reasons behind the explosive adoption of neural networks is the flexi
bility and scalability of their formulation that allows creating a wide 
range of architectures for different applications. Introducing novel ar
chitectures is an extremely active research field with every year 
numerous new formulations and architectures are developed inspired by 
biology (Hasani et al., 2020), physics (Owhadi and Yoo, 2019), or 
heuristics of the task at hand (Cohen et al., 2019). For example, inspired 
by biology, Hasani et al. (2020) developed a neural network formulation 
that incorporates an abstraction of synapse interactions in neurons. 
Their model is a neural ordinary differential equation (neural ODE) 
architecture that incorporates conductance-based synapse formulations. 
The authors show that they can perform time-series prediction with 
higher stability and expressivity compared to conventional recurrent 
neural networks. 

In the manufacturing field, Mozaffar et al. (2021) presented a model 
of AM thermal responses such that it generalizes to unseen complex 
geometries. To achieve this, they developed a customized neural 
network architecture that computes mesh-level dependencies inspired 
by finite element calculations and aggregates neighboring interactions 
to capture long-term evolution of thermal responses given the 

manufacturing process parameters such as laser power, toolpath, and 
material properties. The architecture consists of graph neural networks 
for mesh-based computations and recurrent neural network for time 
series analysis, as depicted in Fig. 7. Zhang et al. (2020) developed a 
recurrent neural network-based architecture which is augmented by an 
attention mechanism to predict the tensile strength in fused deposition 
modeling (FDM) processes. In their architecture, they exploit the layered 
nature of AM processes and correspond each layer to one LSTM cell to 
extract the relative influence of each layer on the final part behavior. 
Saha et al. (2021) developed a new architecture, called HiDeNN, that 
defines the weights and bias as functions of nodal positions and is 
designed to find the optimal nodal positions by minimizing the potential 
energy of mechanics problems. They embedded a scaling network into a 
neural network to automatically discover dimensionless numbers from 
experimental data, which is later passed through a dense neural network 
layer to predict final parameters of interest (see proposed architecture in 
Fig. 8). This method is applied in a fluid mechanics problem and 
recovered Reynolds number Re and relative surface roughness Ra*. Note 
that this method is currently limited to predicting dimensionless outputs 
and it can be impractical to determine the number of dimensionless 
parameters in many complex systems, which can be a worthwhile topic 
for future improvements. 

Another promising example is the AI-coupled crystal plasticity-based 
modeling techniques, which is one of the virtual material characteriza
tion methods that have been widely utilized to facilitate the research and 
development of new materials and manufacturing methods. Ali et al. 
(2019) used a fully connected neural network model coupled with a 
rate-dependent crystal plasticity finite element method formulation to 
predict the stress-strain and texture evolution of AA6063-T6. The run
time comparison test shows that the developed model saves more than 
99.9% of the computational time compared to the conventional crystal 
plastic model. Ibragimova et al. (2021) designed a framework where an 

Fig. 7. A customized neural network architecture which uses mesh-level elemental and nodal features to compute local geometry-dependent interactions for thermal 
modeling of AM processes. The network receives manufacturing process parameters as local features and predicts evolution of thermal responses over an arbitrary 
number of time steps (Mozaffar et al., 2021). 
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ensemble of fully connected neural networks are trained with the dataset 
generated from crystal plasticity simulations to model stress-strain and 
texture evolution for face-centered cubic (FCC) family crystals under a 
non-monotonic strain path. Each neural network in the ensemble was 
used to predict a component of the output variables separately and a 
comparison test was performed to design the architecture of the network 
for each variable. The results show that the model predicts the stress 
with an average error of less than 10 MPa and the texture evaluation less 
than 1A∘. 

3.2.3. Customized model training 
The third approach to integrating physical knowledge into data- 

driven modeling is by customizing their training process. A prominent 
research direction in this line is introduced by Raissi et al. (2017) in 
which an additional loss function based on the residuals of physical 
conservation laws is incorporated into regular neural network loss in 
order to guide the training process of neural networks. This method of 
customized training by augmenting the loss function is named as 
physics-informed neural network (PINN) (Raissi et al., 2017). There are 
two main advantages for PINNs: (1) it can seamlessly combine experi
mental data with partially or fully understood physics-based models, 
which means that model predictions can fit physical laws and experi
ments at the same time (2) it only needs space and time coordinates as 
inputs and does not require the corresponding output like velocity, 
pressure, or temperature field because it optimizes model parameters by 
minimizing a loss function including governing equations. That is to say, 
unlike classical ML approaches, it does not need to prepare a training set 
before training. 

Specifically, PINNs are designed to find the mapping from co
ordinates to a partial differential equations (PDEs) solution using feed- 
forward neural networks. Based on automatic differentiation in 
PyTorch or Tensorflow, we can easily compute derivatives with different 
terms in PDEs and then obtain the residuals of conservation laws. 
Experimental data prediction error can also be added in the loss function 
as a soft penalty. Therefore, the general form of the loss function can be 
written as: 

Loss = λ1MSEPDE + λ2MSEdata (1)  

where MSEPDE is the error that encourages lower residuals of PDEs on 
sampled coordinates and MSEdata is the error of the approximation u(x, t) 
at known data points. λ1 and λ2 determine the importance of MSEPDE and 
MSEdata, respectively. Note that several variations of PINNs are proposed 
for static, continuous dynamics, and discrete-time dynamics problems. 
For example, in a continuous-time network, one can consider coordinate 
x and time t as inputs and uniformly sample them inside the time and 
space domain, while for a discrete-time network, one can consider co
ordinate x as the input and the unrolled solution of ui (i = 1, 2, . . , n) as 
the output. 

PINNs have achieved promising results in fluid mechanics (e.g., Jin 
et al., 2021; Cai et al., 2021), biology (e.g., Yin et al., 2021; Arzani et al., 

2021), and environmental study (e.g., He et al., 2019). However, only a 
few studies have attempted to deploy PINNs in manufacturing applica
tions. Zhu et al. (2021) applied PINNs in three-dimensional additive 
manufacturing (AM) process modeling to predict temperature field and 
melt pool dynamics with a moderate number of data points. They 
imposed the Dirichlet boundary conditions using a Heaviside function 
instead of a soft penalty in the loss function to accelerate the training 
process. The input of the network includes AM parameters, material 
properties, and location of interests, and the outputs are the corre
sponding temperature and melt pool velocities. Their model is validated 
on 2018 NIST AM-Benchmark test data and reveals the potential for 
PINNs in advanced manufacturing. 

Apart from modifying the loss function, one can develop a custom
ized curriculum for the training process in a transfer learning scheme. 
Researchers studied methods to pre-train a surrogate model with a large 
amount of simulated data and then fine-tune the model with a smaller 
number of experimental data, (e.g., Jha et al., 2019; Moges et al., 2021). 
The motivation behind this method is to take advantage of both exper
imental data and simulated data while avoiding the drawbacks of each 
data type, i.e., limited accuracy of simulation data and limited avail
ability of experiments. Jha et al. (2019) developed a deep transfer 
learning approach to achieve robust material property prediction, which 
is shown in Fig. 9. They first pre-trained a data-driven model with a large 
computational dataset (about 341 K samples) and later trained the 
model with a small set of experimental data. They showed that 
compared to training a model from scratch, transfer learning achieves 
lower prediction error. 

Moges et al. (2021) developed a hybrid modeling framework that 
integrates physics-based data with measurement data to predict 
melt-pool width in laser powder bed fusion processes. They generated a 
set of melt pool data with different process conditions using a 
high-fidelity CFD model and collected experimental data from ex-situ 
melt pool optical images with similar process parameters. To build a 
hybrid model, they first trained a surrogate model based on simulation 
data using polynomial regression. They further train their model to 
minimize the residual error in experiment results using unbiased adap
tive sampling between simulation and experimental data, which led to 
more accurate model compared to the physics-based simulations. The 
schematic of their hybrid modeling approach is shown in Fig. 10. 

Interestingly, Kapusuzoglu and Mahadevan (2020) studied three 
variations of physics-informed model development approaches 
mentioned in this section for fused filament fabrication (FFF) processes. 
Their simulated data came from a sequential multiphysics model 
(thermal model and polymer sintering model) which can generate a 
dataset about porosity and bond quality under different process condi
tions. They included a small number of experimental data and studied 
eight separate hybrid modeling methods in three categories. Their re
sults show that incorporating physical constraints in the loss function 
enables the model to produce the most physically consistent results, 
while the multi-level modeling and hybrid training methods lead to 
suboptimal results. 

Fig. 8. A customized neural network architecture which embeds a constraint of physical dimensions of different input parameters in network design (Saha 
et al., 2021). 
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Finally, despite the progress and advantages of customized modeling 
development methods, such as PINNs, currently there are important 
limitations to these approaches: (1) many complex system does not have 
a closed form of governing Eq. (2) experimental data is usually scare and 
noise and how to combine low-fidelity with high-felity is still an open- 
question; and (3) the optimization and network design require trial 
and error with many hyperparamters. 

3.3. Data-driven discovery in manufacturing 

Most of the advanced manufacturing processes have multiphysics 
and multiscale nature, in which we know some physics while missing 
some information about boundary conditions and governing equations 
(Karniadakis et al., 2021). For example, in laser-based manufacturing, 
high energy laser beam interacts with a substrate material, which could 
lead to intensive vaporization of the melted material (Gan et al., 2021). 
We still do not fully understand the complex interactions between laser, 
liquid material, vapor plume, and possible laser-induced plasma. 
Despite the progress in the development of models to quantify the 
complex manufacturing processes and match the experimental mea
surements, this development process can be tedious and 
time-consuming, involving proposing a hypothesis, examining model 
assumptions, selecting appropriate equations and boundary conditions, 
and developing numerical methods to solve the problems. In addition, 
sophisticated calibration techniques are required for tuning unknown 
parameters in the models. 

Recent advances in machine learning and AI have introduced an 
alternative methodology, called data-driven discovery, which promises 
to discover governing equations and underlying properties of a system 
directly from collected data. This new methodology can significantly 
accelerate the quantification of the hidden physical mechanisms and 
interactions underlying the manufacturing processing. The identified 
compact equations or laws could enable efficient process and materials 
design in advanced manufacturing. In this section, we review several 
rapidly evolving methods for discovering (1) differential equations and 
(2) dimensionless scaling laws from data. Furthermore, we discuss how 
to apply those mathematical methods to advanced manufacturing fields. 

3.3.1. Data-driven discovery of differential equations 
A milestone in the field of data-driven discovery of differential 

equations is the sparse identification of nonlinear dynamics (SINDy) 
proposed by Brunton et al. (2016). It was inspired by an earlier work 
(Schmidt and Lipson, 2009) on extracting hidden equations of a 
nonlinear dynamical system from data using symbolic regression (Koza, 
1992). SINDy is a machine learning algorithm that extracts dynamical 
systems, described by ordinary differential equations (ODEs) or partial 
differential equations (PDEs), from collected data. Time-series data can 
be used for discovering ODEs as expressed in Eq. (2), where x is the state 
variables evolving in time t needed to describe the system and f(⋅) is an 
unknown function to be identified from data. Spatio-temporal data are 
required to discover PDEs as expressed in Eq. (3), where u is a 
spatio-temporal field evolving in space and time. 

Fig. 9. Deep transfer learning of material property prediction by training from large computational datasets (such as Open Quantum Materials Database (OQMD)) 
and fine-tune the model with a small number of measurement data (Jha et al., 2019). 

Fig. 10. Workflow for hybrid modeling approach to predict melt-pool width in 
laser powder bed fusion processes (Moges et al., 2021). 
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d
dt

x = f (x) (2)  

∂
∂t

u = N(u) (3) 

Given a set of time-series data or spatio-temporal field data, SINDy 
aims to discover a sparse set of governing equations out of a pre-defined 
pool of possible mathematical forms that could describe the data. SINDy 
can identify ODE or PDE equations that are sparse and have as few de
grees of freedom as possible, similar to the Lorenz equations or Navier- 
Stokes (N-S) equations. This is in contrast with most modern over- 
parameterized machine learning methods, such as neural networks. 

A schematic of the SINDy algorithm is illustrated in Fig. 11 using a 
simple example of a Lorentz system. Assuming that we only have access 
to observed data from the Lorentz system (i.e., measurements of the 
state x, y, and z in time). One can arrange this data into a matrix X, 
where every row of X is a measurement in time. We can also compute the 
state derivatives ẋ, ẏ, and ż using numerical methods (e.g., finite dif
ferences or Total Variational Derivative Chartrand, 2011), and similarly 
arrange them into a matrix Ẋ. In the SINDy method, we create a library 
matrix that consists of all possible terms that describe the dynamics of 
the system, starting with linear terms and gradually expanding to 
nonlinear expressions. For example, the library matrix Θ(X) can consist 
of x, y and z, as well as nonlinear terms x2, xy, xz, y2 and up to the 
fifth-order polynomials. Ideally, we want our library Θ(X) to include all 
dominant terms that are required to describe the left-hand side de
rivatives ẋ, ẏ, and ż. It is noted that the terms in the library (gray col
umns in Fig. 11) Θ(X) can be computed from the measured data x, y, and 
z. Now, the problem is reduced to a sparse optimization problem with 
the objective to find the fewest terms in this library of candidate dy
namics Θ(X) that best describe the time derivatives Ẋ. Several sparse 
optimization algorithms can be deployed to find the sparse coefficient 
matrix Ξ. Examples of the sparse optimization algorithms include lasso 
(Tibshirani, 1996) (i.e., linear regression with L-1 norm regularization) 
and sequential threshold least-squares (STLS) (Brunton et al., 2016). 
Finally, one can use the selected terms in Θ(X) and corresponding co
efficients in Ξ to reconstruct a minimalistic model of the dynamical 
system. In this case, the authors showed that they can recover the 
complete form of the Lorentz equations. 

Compared to the traditional methods, such as brute force search 

(Korf, 1999) and the genetic programming method (Schmidt and Lipson, 
2009), the SINDy algorithm is more efficient and scalable (Kaheman 
et al., 2020). Although the dynamical equations are assumed to be linear 
combinations of nonlinear candidate terms in the library, this assump
tion is reasonably valid for many engineering dynamical systems. Many 
improvements and extensions are proposed to the SINDy algorithm to 
discover PDEs (Rudy et al., 2017), identify dominant coordinate systems 
(Champion et al., 2019), and handle with time-varying coefficients (Li 
et al., 2019a). Importantly, the identification of multiscale models for 
anisotropic material responses is studied in Brunton and Kutz (2019). 
Fortunately, these methods are widely available for researchers as the 
authors released an open-source Python library of the algorithms, 
Pysindy (de Silva et al., 2020), and Steven Brunton, the first author of 
the SINDy paper, has made a series of well-made tutorial videos on 
YouTube (Brunton, 2021). 

Recently, the SINDy algorithm and its variants have been applied in 
several sciences and engineering fields, including fluid mechanics 
(Brunton et al., 2020b), biology (Mangan et al., 2016), system control 
(Kaiser et al., 2018), materials chemistry (Bartel et al., 2018), aerospace 
engineering (Brunton et al., 2020a), and magnetohydrodynamics 
(Kaptanoglu et al., 2020). However, very few people successfully apply 
the SINDy or other data-driven discovery methods to advanced 
manufacturing fields and address the unique challenges of this inter
disciplinary research. Note that the accuracy of the identified equations 
and expressions highly depends on the data quality. In-situ, high-speed, 
high-resolution measurement data is invaluable for the data-driven 
discovery of manufacturing processes. To discover 
experimentally-validated dynamical systems (i.e., governing ODEs and 
PDEs) underlying the manufacturing processes, in-situ measurements 
including time series (e.g., temperature series in time) or 
spatio-temporal fields (e.g., strain fields in space and time) data are 
required. Examples of in-situ measurements that are appropriate to be 
analyzed using the SINDy algorithm include high-speed photography 
(Chen et al., 2013), infrared thermography (Yang et al., 2017), syn
chrotron X-ray imaging (Zhao et al., 2017), X-ray computed tomo
graphic (CT) (Thompson et al., 2016), in-situ X-ray Diffraction (XRD) 
(Oh et al., 2021), particle image velocimetry (PIV) (Ho et al., 2020), and 
digital image correlation (DIC) (Xie et al., 2019). 

Fig. 11. Schematic of the SINDy algorithm using an example of the Lorenz equations (Brunton et al., 2016). It includes three parts: (I) true Lorenz system used for 
data generation, (II) sparse regression to solve for active terms in the dynamics, and (III) identified system. 
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3.3.2. Data-driven discovery of dimensionless scaling laws 
Dimensionless numbers and the relationships between them, i.e., 

dimensionless scaling laws, play a critical role in scientific fields. More 
than 1200 dimensionless numbers have been discovered in an extremely 
wide range of fields, including physics and chemistry, fluid and solid 
mechanics, thermodynamics, electromagnetism, geophysics and ecol
ogy, and various engineering disciplines (Kunes, 2012). In advanced 
manufacturing, much effort has been directed at identifying process- 
and material-related dimensionless numbers and scaling laws to simplify 
the highly multivariable manufacturing processes with multiple inter
acting physical phenomena. Some of the dimensionless scaling laws are 
claimed to be “universal“, which apply broadly and remain accurate for 
different materials, processing conditions, even manufacturing pro
cesses. For example, a recent study identified a universal dimensionless 
scaling law for laser-induced vapor depression morphology (i.e., 
keyhole aspect ratio) (Gan et al., 2021) as shown in Fig. 12. 

Many scaling laws are provided in the field of advanced 
manufacturing and have been validated by experimental data. The 
predicted manufacturing variables include relative density of fabricated 
parts (Rankouhi et al., 2021), lack-of-fusion porosity (Gan et al., 2021), 
laser-induced melt pool geometries (Yang et al., 2021), laser absorp
tivity (Ye et al., 2019), keyhole geometries (Wang and Liu, 2019), 
keyhole porosity (Gan et al., 2021), hot tearing susceptibility (Monroe 
and Beckermann, 2014), dimensionless cooling rate (Bontha et al., 
2006), and dimensionless thermal strain parameter (Knapp et al., 2017). 
Most of the mentioned dimensionless numbers and scaling laws are 
identified using dimensional analysis (Tan, 2011), which carefully ex
amines the units of the physical systems to identify a set of dimensionless 
numbers that constitute the essential and scale-invariant physical re
lationships (Jofre et al., 2020). However, the classical dimensional 
analysis based on Buckingham π theorem (Buckingham, 1914) has two 
well-known limitations: (1) the derived dimensionless numbers are not 
unique, and (2) the relation between dimensionless numbers (i.e., 
scaling law) remains unknown for general cases, and thus it is impos
sible to measure the relative importance of the dimensionless numbers 
or identify a dominant set of dimensionless numbers. Therefore, the 
conventional approach can be time-consuming as it requires multiple 
trial and error iterations. 

The classical dimensional analysis can be complemented by 
advanced data science and AI, i.e., data-driven dimensional analysis 
(Constantine et al., 2017). This methodology provides a systematic way 
to integrate data science and dimensional analysis and overcome the 
limitations of the classical dimensional analysis and discover 
high-quality universal dimensionless scaling laws from data. Mendez 
and Ordonez (2005) proposed an algorithm called SLAW (i.e., Scaling 
LAWs) to identify the form of a power law from experimental data (or 

simulation data). The proposed SLAW combines dimensional analysis 
with multivariate linear regressions. This approach has been applied to 
some engineering areas, such as ceramic-to-metal joining (Mendez and 
Ordonez, 2005) and plasma confinement in Tokamaks (Murari et al., 
2015). This algorithm assumes the relationship between the dimen
sionless numbers obeys a power law, which is invalid in many applica
tions. For example, the relationship between friction factor and 
Reynolds number in the turbulent regime of the pipe flow dynamics is 
not a power law. Constantine et al. (2016) proposed a rigours mathe
matical framework to estimate unique and relevant dimensionless 
groups. Active subspace methods are connected to dimensional analysis, 
which reveals that all physical laws are ridge functions (Constantine 
et al., 2016). They demonstrated their algorithms using both laminar 
and turbulent viscous pipe flow examples. Their method is applicable to 
idealized physical systems meaning that (1) the experiments can be 
conducted for arbitrary values of the independent input variables (or 
dependent input variables with a known probability density function), 
and (2) noises or errors in the input and output are negligible. Saha et al. 
(2021) proposed a Hierarchical Deep Learning Neural Network 
(HiDeNN) to combine deep learning and dimensional analysis to 
discover dimensionless numbers from experimental data. This method is 
recently generalized as a methodology, called dimensionless learning 
(Xie et al., 2021), in which the principle of dimensional invariance is 
embedded in machine learning to automatically discover dominant 
dimensionless numbers and scaling laws from data. The proposed 
approach has been demonstrated using noisy experimental data 
collected from a wide range of problems including turbulent 
Rayleigh-Benard convection, vapor depression dynamics, and porosity 
formation in additive manufacturing. 

Data-driven dimensional analysis is still an active field. Much effort 
is required to improve the efficiency, interpretability, predictivity, and 
robustness of the algorithms. Using the developed algorithms to explore 
high-quality manufacturing data, many universal dimensionless 
numbers and scaling laws are expected to be discovered, which can 
provide elegant insights for manufacturing process optimization, defects 
elimination, new materials development, and mechanical performances 
improvement. 

4. AI in manufacturing design 

In design tasks, we attempt to identify the process of building a part 
that meets a set of requirements. Design in manufacturing has tradi
tionally been studied in two separate steps: (1) conceptual design and 
(2) process design. The conceptual design step refers to the envisioning 
of the geometric parts and materials. In practice, the conceptualization 
step is a mostly deterministic process that is performed using computer- 

Fig. 12. A scaling law for keyhole aspect ratio controlled by the Keyhole number, a dimensionless number combining seven process parameters and material 
properties (Gan et al., 2021). 
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aided design (CAD) software. The process design step, on the other hand, 
realizes a manufacturing setting to achieve the developed conceptual 
design. Process design involves several steps including manufacturing 
process selection, process parameters optimization, and system-level 
optimization given machine availability, supply chain, and main
tenance–often developed using computer-aided manufacturing (CAM) 
and computer-aided process planning (CAPP) tools. The optimality of 
the design involves multiple competing factors such as quality of the 
part under various performance metrics (e.g., strength, geometric ac
curacy, thermal behavior), cost, production rate, and the robustness of 
the solution to defects and disturbances. 

Design has remained one of the core engineering and scientific 
pursuits due to several challenging aspects of the process. The infor
mation involved in the design process is often unstructured, high- 
dimensional, noisy, and sparse; thus, making the mapping between re
quirements and design difficult to discover. Manufacturing involves 
many discrete choices and nonlinear constraints, which generates poor- 
conditioned optimization settings. Additionally, there is a nontrivial 
level of uncertainty in the design process (e.g., due to machine-specific 
behavior, discrepancies in modeling tools, and unknown material 
characteristics) that make the process stochastic. Therefore, the design 
process requires years of experience to efficiently produce reliable parts 
and involves tedious and expensive rounds of trial and error. 

Traditionally, designers use Design for Manufacturing (DFM) 
guidelines to reduce the complexity of the design process. These 
guidelines are based on rough characteristics of the design geometric 
components and lack the complexity to adequately analyze complex 
designs. Additionally, existing DFM does not offer a unifying set of 
principles for manufacturing processes; rather, the rules are vastly 
different for each process. For example, several studies developed 
guidelines that are only applicable to specific types of metal-based AM 
processes (e.g., Kranz et al., 2015; Walton and Moztarzadeh, 2017). 
Therefore, a design engineer needs to make critical decisions about the 
manufacturing process as early as conceptualization in order to use such 
DFM tools, which makes various tasks within conceptual and process 
design highly intertwined. Other conventional attempts to automate the 
design process build upon detection systems with manually engineered 
geometric features (e.g., Han et al., 2000; Kazhdan et al., 2004) or so
phisticated manufacturing ontologies (e.g., Jang et al., 2008; Dinar and 
Rosen, 2017), both of which are difficult to adapt and scale to new 
processes as they heavily rely on expert knowledge. In this section, we 
advocate for novel AI solutions in manufacturing design problems as AI 
provides a unique capability to explore massive design spaces and 
complex interactions common in manufacturing processes. We look for 
design methods that offer better performance than the conventional 
approaches or reduce the number of steps in the design process by 

integrating multiple tasks, as shown in Fig. 13. 
We categorize publications on AI in manufacturing design into two 

classes of (1) direct mapping of functional requirements to design pa
rameters, and (2) inverse design optimization. Noteworthy de
velopments and successful examples in each category are elaborated 
upon in the following subsections with a focus on methods to incorpo
rating physical mechanisms and constraints of manufacturing processes 
into AI formulations. Note that while modeling methods can greatly 
facilities in design tasks, as we discussed modeling advances in Section 
3, here, we exclude those contributions. 

4.1. Direct mapping for design 

As the ultimate goal of design is to find optimal design parameters 
given functional requirements, a natural approach is to directly map 
requirements to parameters. This is particularly a compatible concept 
with modern deep learning methods since they are known for extracting 
complex and unsuspected correlations between various data structures. 
Therefore, several compelling research areas have recently emerged that 
fit into this design category. A popular approach to analyze 
manufacturing and material systems is to hierarchically model the re
lationships between the manufacturing process parameters, material 
structure, properties, and performances (PSPP) (Olson, 1997). There
fore, AI can be used to model any of such causal relationships in the 
reverse direction, producing a design tool. 

Jiang et al. (2020) took a supervised learning approach to directly 
map the strain-stress response curve to the design parameters of unit 
structures geometries in a polymer jetting process. They used the data 
extracted from 300 parts to train a fully connected neural network that 
predicts the desired design of unit structures in a customized ankle brace 
design. Their design framework with reverse PSPP connections is 
depicted in Fig. 14. Hashimoto and Nakamoto (2021) used machine 
learning to design the process plan for machining processes. The authors 
developed a U-net architecture performing voxel-wise segmentation on 
243 3D geometries, which is labeled according to past machining pro
cesses performed by skilled experts. The inputs and outputs of the 
network are one-hot encoded and include the voxel geometry, accuracy 
measures (with two states for low and high accuracy requirements), 
cutting tool type (with two states for ball and flat endmills), and toolpath 
pattern (with three states for contour line, scanning-line, and 
along-surface patterns). In a hierarchical decision-making process, first, 
the voxel-wise cutting tool type is predicted given the geometry and 
required accuracy. Later, the cutting tool type is used along with other 
inputs to decide the toolpath pattern. The voxel-wise predictions are 
aggregated using a majority voting method to produce the final decision 
for each major machining surface. Zhao et al. (2020) proposed a 

Fig. 13. Design in conventional design includes several disconnected steps in conceptual design and process design (top). AI-enabled design methods that aim to 
autonomously optimize the design process and integrate several design tasks (bottom). 

M. Mozaffar et al.                                                                                                                                                                                                                              



Journal of Materials Processing Tech. 302 (2022) 117485

15

data-driven method to select a manufacturing process between milling, 
turning, and casting based on shape, quality, and material properties. 
They compute a histogram based on various attributes of the CAD ge
ometry, including curvatures distribution, rotational symmetry, and 
pairwise surface point distances. The geometric descriptors along with 
material properties (e.g., yield strength, Young’s modulus, thermal 
conductivity) and quality attributes (global surface roughness and 
tolerance) are fed into decision-tree classifiers and trained to achieve an 
accuracy of 88% on complex geometries while training on 81 parts. 

As another intriguing application of supervised learning in design, 
recent studies explored the capability of machine learning to better 
extract automated guidelines for manufacturing processes. Williams 
et al. (2019) developed a deep learning model to evaluate the manu
facturability of additively manufactured parts. Their model, trained over 
72,000 synthetic samples, receives voxelized CAD geometries, and 
generates manufacturing metrics such as support mass and build time. 
Guo et al. (2021) assessed the manufacturability of metal cellular 
structures in the direct metal laser sintering process, where parts with 
severe warpage due to residual stress, cracking, and delamination are 
classified as non-printable. This research trains a hierarchical autoen
coder to extract dense features of the voxelized geometries. Further
more, to effectively train a convolutional neural network classifier based 
on limited experimental data, they proposed a semi-supervised method, 
in which a generative adversarial network is trained to differentiate 
between labeled experimental data, unlabeled experimental data, and 
synthesized data; hence, forcing the network to maximally utilize 
valuable experimental data. Zhang et al. (2018) trained a network with 
3D convolutional layers to recognize machining features in the vox
elized space. The model is trained over 144,000 geometries using an 
incremental learning approach and achieves an accuracy of 97%. To 
assist the conceptual design process, Kwon et al. (2021) developed a 
multi-modal search to retrieve inspirational 3D design examples based 
on text keywords, geometric appearance, and functional similarities. 
Using a neural network-based architecture and contrastive learning, 
they extract embeddings of text and visual queries, in which parts with 
similar attributes map to close embeddings in the design latent space. 
For new search inquiries, the new embedding values are extracted and 
the database sample closest to them in the embedding space is retrieved. 

There is a key drawback in the existing supervised methods for 
design. Manufacturing processes commonly involve many constraints 
that limit the feasible space of design parameters, performances, as well 
as the path to reach them. The correlational direct mapping methods in 
the literature disregard such constraints and, therefore, can easily lead 
to unfeasible solutions. This is particularly challenging as many of such 
constraints are complex and cannot be easily formalized. Reinforcement 

Learning (RL) offers a plausible solution to this problem. In RL an agent 
can learn to optimize an arbitrary reward function by exploring the 
design space. By shaping the rewards in a way that we penalize 
constraint violations, the agent can implicitly learn about the constraints 
of the design space and avoid unfeasible solutions. RL methods are well- 
suited in applications with a sequential decision-making nature as they 
exploit the temporal aspects of the agent interactions and identify the 
influence of individual actions on the final performance (known as the 
credit assignment problem). Dornheim et al. (2021) developed an RL 
agent that finds multi-step processing paths to reach the desired 
microstructure in metal forming processes (see Fig. 15). The state rep
resentation is defined as a transformation of orientation distribution 
function (ODF) using generalized spherical harmonics. This trans
formation considers the symmetry conditions in microstructures and 
thus allows for a more condensed representation. To avoid sparsity in 
the reward structure, they introduce a potential-based dense reward 
function based on the distance between the current and target micro
structural patterns. They deploy a model-free agent, based on the deep Q 
network (DQN) formulation, to dynamically adjust the displacement of 
the die in the process with the aim to find a path from an initial structure 
to one of the equivalent target structures. Interestingly, the proposed RL 
framework learns the most achievable target structure by the agent 
along with the path to process path to reach it. 

Mozaffar et al. (2020) utilized the RL framework for the tool path 
design task in additive manufacturing. They build upon three predom
inant RL algorithms, namely DQN, PPO, and SAC, to design tool paths 
for arbitrary section geometries in a pixelized space and showed that RL 
methods can surpass the performance of engineered zig-zag toolpath 
strategies common in industrial practices when defining a dense reward 
structure is possible. However, they point out that model-free RL algo
rithms struggle in scenarios with sparse rewards. Lee et al. (2019) 
investigated the performance of a variation of the DQN method, double 
deep Q-network, in engineering design of microfluidic devices. In their 
papers, the RL agent designs the location of several micro-pillars to 
achieve an arbitrary desired flow pattern in pixel space. They deploy a 
reward-shaping strategy that provides small rewards encouraging the 
agent to approach the goal and a large reward for finding acceptable 
solutions. Additionally, they demonstrate that the trained agent can be 
fine-tuned to outside of training problems (e.g., different numbers of 
micro-pillars) with minimal refinement training. 

4.2. Inverse design optimization 

Another approach to design in manufacturing is to follow the cau
sality link that produces the performance and formulate it as an 

Fig. 14. Conventional process-structure-property (PSP) modeling establishes a causal link between manufacturing and material parameters. Using ML, each link 
within the PSP relationships can be modeled in the reverse direction to produce a design tool. For instance, the desired mechanical properties can be linked to 
required microstructure descriptors (Jiang et al., 2020). 
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optimization problem where one iteratively modifies the design pa
rameters to minimize an objective function related to the part perfor
mance. Many have adopted and applied PSPP as a framework to model 
material evolution in manufacturing processes. However, as the for
mulations for linking part behaviors are rarely differentiable, gradient- 
based optimization tools are not readily applicable. Additionally, 
gradient-free methods can be computationally expensive as they scale 
poorly to high-dimensional problems. A well-established practice is to 
develop surrogate models on top of the physics-based simulation tools to 
provide inexpensive access to gradients and perform the optimization in 
the surrogate space. Shahan and Seepersad (2012) developed such a 
surrogate model using a Bayesian network classifier to improve the 
design of unmanned aerial vehicles. A similar method is used in Mat
thews et al. (2016) to optimize the stiffness of metamaterials. Pacheco 
et al. (2003) proposed a multi-stage Bayesian surrogate in a thermal 
design problem. 

Recently, the same philosophy is combined with modern machine 
learning and optimization methods. Tang et al. (2021) developed a 
method to design an AM-built shoe sole with minimum pressure points 
while simultaneously adjusting the overall geometry and porous struc
ture. They divide the part into sub-regions to allow applying different 
patterns in sensitive areas. A Gaussian Process Regression is trained to 
predict the parametrized lattice behavior using 40 simulation samples, 
and a sequential linear programming optimizer is deployed to find pa
rameters leading to a decreased level of pressure points. Finally, they 
compile the proposed design by connecting sub-region lattice structures. 
Mohamed et al. (2021) optimized the dimensional accuracy of cylin
drical parts in fused deposition modeling processes. They used a 
second-order definitive screening design method to generate a design of 
experiment space, capturing 99% of the variation in the response with a 
small number of samples, train a fully connected neural network, and 
optimize the process on the developed surrogate model. 

While arguable a less popular approach since the rise of the neural 
networks, evolutionary-based optimization methods have also been 
studied for the manufacturing design tasks in the literature. Ghosh and 
Martinsen (2020) deployed and benchmarked various evolutionary 
optimization methods, including Non-Dominated Sorting Genetic Al
gorithm (NSGA-III) and Multi-Objective Evolutionary Algorithm based 
on Decomposition (MOEA/D) for process design in manufacturing. They 
demonstrated that using a Gaussian kernel regression surrogate model, 
they can optimize 11 different manufacturing design tasks in the liter
ature involving turning, grinding, heat exchanger tube, milling, abrasive 
water jet machining, dry turning, drilling, welding, and emulsification 
processes. A similar concept is demonstrated in other manufacturing 
design tasks by Abbas et al. (2020) and Vukelic et al. (2021). 

Differentiable physics-based approach (Hu et al., 2019), as discussed 
in Section 3.2.1, is an alternative to surrogate modeling. In differentiable 
simulations, the gradients of an arbitrary computational path can be 

efficiently computed using the automatic differentiation (AD) formula
tion. This enables high-dimensional gradient-based optimization 
without the need for surrogate modeling and provides natural integra
tion with neural networks which can be particularly helpful in design 
tasks. An example of this approach in manufacturing is presented by 
Mozaffar and Cao (2021) where a differentiable simulation for thermal 
analysis of additive manufacturing and demonstrated that the 
physics-based simulation combined with neural networks can design 
time-series laser power to achieve desired thermal and melt pool 
behavior. 

Instead of optimizing toward a single design, many design applica
tions can benefit from methods that generate multiple promising can
didates. Paul et al. (2019) developed a method that designs a spectrum 
of microstructures with optimized thermal expansion, stiffness coeffi
cient, and yield stress. In their approach, a database of high-quality 
microstructures, represented by ODF, is initially generated using engi
neering heuristics. The performance of microstructures in the database 
is evaluated and a random forest model is trained that predicts perfor
mances based on samples in the top 10% and bottom 10% performance 
brackets of the database. Analyzing the trained random forest model 
allows to automatically generate insights on the most promising explo
ration directions and re-populate the database with high-performing 
samples. By repeating with process iteratively, they accumulate 
high-quality design samples over time. Tamura et al. (2021) imple
mented a sampling-based method to optimize process parameters in 
powder manufacturing (gas atomization process) for Ni-Co-based su
peralloy powder in turbine-disk applications. They used an iterative 
process where a Bayesian model is trained, potential promising di
rections are detected, and used to generate new data. Their method 
resulted in an increased yield of 77.85% from 10%–30% in traditional 
methods and reduced cost by 72%. More generally, the active learning 
approach, i.e., using trained models to dynamically adapt and augment 
the training database, has been explored to complement both surrogate 
modeling and sampling-based methods, as demonstrated by Lookman 
et al. (2019) and Tran et al. (2020). 

Recent advances in generative models such as variational autoen
coders (VAEs) (Kingma and Welling, 2013) and generative adversarial 
networks (GANs) (Goodfellow et al., 2014) have opened new avenues in 
manufacturing design. VAEs simultaneously train an encoder and a 
decoder neural networks to reconstruct the input while the information 
is passed through a computational bottleneck. GANs, on the other hand, 
train two competing networks where a generator attempts to produce 
samples that are indistinguishable from real data while a discriminator 
learns the discrepancies between the synthesis data from the generator 
and original data in the database. Both VAEs and GANs produce three 
valuable assets for engineering design: (1) a latent space that condenses 
the implicit restrictions and correlations of the design space, (2) a gen
erator/decoder neural network that can map the latent space into the 

Fig. 15. Reinforcement learning agent finds a manufacturing path in the microstructure space to reach an equivalent target structure (A). Evolution of the designed 
microstructures during the training process (B) (Dornheim et al., 2021). 
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original design space, and (3) a regressor that can be used in various 
feature extraction, dimensionality reduction, and classification tasks. 
While VAEs and GANs offer similar capabilities, VAEs are more known 
for extracting meaningful and interpretable latent spaces while GANs 
generally perform better in generating realistic samples. 

Generative models can be treated as a source of new designs. To 
improve the functional performance of generative models, one can 
iteratively update the database by performance filtering. Shu et al. 
(2020) developed a self-updating approach where starting from a 
database consisting of geometrical designs, a GAN model is trained to 
generate new samples. The new samples are evaluated using a 
physics-based simulation and the top-performing samples replace parts 
of the original database. By repeating this process, the design database 
would be populated with higher quality examples which subsequently 
leads to a performance-driven GAN model. Oh et al. (2019) optimized 
for both engineering performance and aesthetics by combining topology 
optimization and generative modeling in a 2D wheel design case. In their 
proposed framework, they iteratively apply topology optimization on 
the GANs output and the original database to create high-quality designs 
and train GANs to generate samples with high novelty. This process is 
repeated until a substantial amount of novel and acceptable designs are 
generated. 

Another exciting approach to introduce physical knowledge into 
generative models is to augment the neural networks and training pro
cess with additional terms representing their performance. Chen and 
Ahmed (2021) developed a GAN model that simultaneously maximizes 
the diversity, novelty, and performance of generated samples. They 
augmented the standard GAN loss function with additional terms using 
determinantal point process (DPP) formulation which encourages the 
generative network to produce high-quality samples while reducing 
similarity in a batch of samples. They demonstrate their method for the 
conceptual design of the airfoil cross-section. Nobari et al. (2021) 
modified the GAN loss formulation to impose range constraints on 3D 
geometries and demonstrated their method on producing novel air
planes with an arbitrary range of value and aspect ratio. In Wang et al. 
(2020), the authors trained a VAE to encode microstructural information 
into a low-dimensional latent space. They augmented the VAE network 
that reconstructs a pixelized RVE with a regressor that predicts its 
stiffness matrix and showed that the latent representation provides a 
meaningful interpolation of the topological and mechanical properties. 
As demonstrated in Fig. 16, this method enables producing functionally 
graded designs in multiscale systems. 

5. AI in manufacturing process control and monitoring 

5.1. AI in manufacturing process control 

Process control is an essential step in manufacturing to ensure the 
quality and efficiency of a manufacturing process. Due to the strength of 
AI methods in automatically and efficiently extracting information from 
big data, AI methods can be applied in manufacturing process control in 
two primary ways: (1) control-oriented data-driven modeling methods 
and (2) autonomous decision-making approaches. 

A control-oriented model is a model that describes the system 
behavior and is also suitable in model-based controllers (Landers et al., 
2020). As we already discussed previously, physics-based analytical 
models are often not complete enough to accurately describe 
manufacturing systems due to their complexity from multiple process 
variables and uncertainty in the environments. The data-driven meth
odology can provide an interesting alternative as it can accurately es
timations complex states of the dynamical system. Additionally, using 
data-driven models can be more efficient than solving the full-scale 
physical-based models, which is an imperative criterion in control tasks. 

Several early works have used neural networks to develop data- 
driven models for manufacturing processes, where the relationship be
tween the input process parameters and output variables is described as 
a static model, e.g., cutting force (Tandon and El-Mounayri, 2001) and 
surface finish (Özel et al., 2007) in machining, springback in metal 
forming (Viswanathan et al., 2003). While these static models provide a 
basic understanding of the process and could be used for optimizing 
process parameters (Landers et al., 2020), there are not suitable for 
designing advanced model-based controllers, e.g., model predictive 
control (MPC), which requires a dynamic model of the process. The 
dynamic model of a process can be written as: 

yk+1 = f (yk, uk) (4)  

where yk and uk are the output state and control signal at step k. Once the 
dynamic model is known, the future output state can be predicted. MPC 
determines the control signal at each time step by optimizing the tra
jectory over a fixed horizon H: 

min L(yk, uk, yk+1, uk+1, ...yk+H , uk+H)

s.t. ϕ(yk, uk, yk+1, uk+1, ...yk+H , uk+H) ≤ 0 (5)  

where L is the cost function and ϕ represent the constraints. 
Data-driven models can be applied to identify the dynamics of 

manufacturing processes for model-based control applications. A stan

Fig. 16. Variational autoencoder network are trained to identify a dense latent space for microstructure geometry and properties which allows for multiscale 
microstructure design (Wang et al., 2020). 
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dard linear model that has been used in manufacturing process control is 
the auto-regressive model with exogenous inputs (ARX). A general ARX 
model could be expressed as: 

yk+1 =
∑na

i=1
aiyk+1−i +

∑nb

i=1
biuk+1−i (6)  

where ai, bi are the coefficients to be trained. Least-squares regression is 
usually used to identify the relative coefficients by minimizing the 
prediction error in the training dataset. An example of this application is 
presented in (Xia et al., 2020) where they developed a feedback control 
system to control the melt pool width for the wire arc additive 
manufacturing process. ARX model is used to model the dynamic rela
tionship between the wire feed speed and the melt pool width and an 
MPC controller is designed to control the melt pool width. 

Using a linear model like ARX can lead to satisfying results if the 
dynamics in simple and low-dimensional. However, most manufacturing 
systems are relatively complex with nonlinear effects. Potočnik and 
Grabec (2002) used nonlinear MPC to control the cutting process. A 
neural network is trained to model the process dynamics and the genetic 
algorithm is used to solve the nonlinear optimization problem. The 
NN-based nonlinear MPC is demonstrated in a simulated cutting process 
to improve the surface quality by preventing tool oscillations. 

In the control field, researchers have studied advanced data-driven 
models such as Gaussian Processes (GPs) (Kocijan et al., 2004), Koop
man Operator (Mamakoukas et al., 2020), SINDy (Fasel et al., 2021), 
and deep neural networks (Lenz et al., 2015) for dynamics system 
identification. While most of these approaches have been designed in 
robot control, many of them can be promising methods in 
manufacturing applications because of the strength in accuracy or 
training sample efficiency. Lenz et al. (2015) proposed a deep neural 
network structure for learning the dynamics in the food cutting process. 
A recurrent structure called Transforming Recurrent Units (TRU) is 
designed to form the long-term latent features. By incorporating the 
features from long-term information, short-term dynamic response, and 
the current control inputs, the dynamic relationship is modeled. A 
multi-stage pre-training method is proposed where an auto-encoder is 
used to initialize the non-recurrent parameters in TRU and a then model 
is pre-trained for single-step prediction before the actual training pro
cess. The experimental results show that the proposed model improved 
the accuracy by 46% compared to the standard recurrent neural network 
in modeling the dynamic relationships in the food cutting process. Kaiser 
et al. (2018) proposed SINDy-MPC framework where SINDy is used to 
identify the dynamics for MPC application. The results show that 
compared to regular neural networks, SINDy has the strength that it 
requires a relatively low amount of data. It is also more robust on data 
with noise and takes lower execution time. Edwards et al. (2021) 
developed a software package named AutoMPC. ARX, GPs, Koopman 
Operator, SINDy, and neural network models are implemented in the 
package and an auto-tuning method is developed. The developed 
auto-tuning method can help to select the hyperparameters of each 
model automatically and compare the performance of different system 
identification models. 

The second way that AI can benefit manufacturing process control is 
to directly learn the control strategy. RL is an emerging tool to perform 
control. Dornheim et al. (2020) used model-free Q learning to improve 
the blank holder force optimal control in deep drawing processes. In 
their proposed approach, the process state is defined as the full infor
mation history by concatenating the action history and observable his
tory, where the dimension of the state vector is time-dependent, and a 
set of neural networks are used to approximate the Q-function at each 
time step. The RL algorithm is trained and evaluated in the FEM simu
lation and the results show that, after 200 episodes, it gives better per
formance than a baseline from an exhaustive search. Ogoke and 
Farimani (2021) developed an RL framework for melt pool depth control 
in the laser powder bed fusion process. They deployed Proximal Policy 

Optimization (PPO) algorithm to control the scan speed and the laser 
power in a simulated setting and demonstrated a successful melt pool 
control with two different toolpath strategies. While both of the above 
studies executed RL-based control only in simulation, Masinelli et al. 
(2020) implemented an RL-based feedback control system for wielding 
process in an experimental setting, as shown in Fig. 17. A deep con
ventional neural network is used to extract the low dimensional features 
from the monitored acoustic and optic signals, and to classify the signals 
for forming the rewards by comparing them with a reference signal. 
Q-learning and Policy Gradient algorithms are tested in experiments and 
the results show that Q-learning requires less training time and episodes 
to reach an acceptable performance. 

5.2. AI-enabled manufacturing process monitoring 

Process monitoring is an important source of information for fault 
detection, process prognosis, and control in manufacturing systems. 
Generally, manufacturing process monitoring can be summarized into 
two levels: (1) observable monitoring (2) unobservable monitoring. The 
first level is the monitoring of manufacturing process variables that can 
be directly measured by sensing devices or easily calculated from the 
sensing signals, such as the cutting force in machining and temperature 
field in additive manufacturing. The second level includes the moni
toring of the process or part conditions that are not directly sensed but 
could be inferred from the measured information, such as tool condition 
and defect detection. Traditionally, unobservable monitoring is difficult 
to achieve because it heavily relies on human interpretation such as 
image data. In some cases, the features embedded in the data are not 
even obvious to human experts. With the rapid development of AI and 
computer vision techniques which have the natural strength to auto
matically extract features from images, AI-enabled monitoring systems 
have become widely used in a range of manufacturing processes. 

Recently, AI-enable monitoring have been applied to various 
manufacturing applications such as tool condition monitoring (e.g., 
Hesser and Markert, 2019; Li et al., 2019b) and chatter detection (e.g., 
Tran et al., 2020; Rahimi et al., 2021). Part quality monitoring in ad
ditive manufacturing processes is an example of AI-enable monitoring 
that has drawn much attention. Scime and Beuth (2018) developed a 
process image-based defect detection and classification method for 
powder bed fusion process using an AI algorithm called 
bag-of-keypoints. The image after preprocessing for eliminating the in
fluence of light conditions is first divided into small patches. 37 different 
filters are selected and applied to each image patch for feature extraction 
and the filter response vector of each pixel is are grouped into different 
clusters using K-means algorithm. A histogram of the percentage of each 
cluster is created for the image patch and finally, the image patch is 
classified into categories including anomaly-free, recoater hopping, 
recoater streaking, debris, super-elevation, part failure, incomplete 
spreading by comparing the histogram with the database. 

Baumgartl et al. (2020) used deep CNN for defect detection in the 
powder bed fusion process. They used thermal images instead of regular 
images as the input and trained a model to detect the defect with an 
accuracy of 96.8%. Scime et al. (2020) developed a pixel-wise semantic 
segmentation model, called Dynamic Segmentation CNN (DSCNN), for 
anomaly detection in powder bed fusion process. Their proposed DSCNN 
model takes different scales of the image and the pixel coordinates as the 
input to classify each pixel of the image. This is because the pixel is not 
only influenced by the surrounding pixels but also the global status of 
the image. A schematic of the proposed architecture is shown in Fig. 18, 
where four parallel networks are used to extract features at different 
scales and all the features are concatenated for the final segmentation 
task. 

Supervised learning requires a lot of labeled data for training, and in 
the monitoring tasks, much of the data needs to be labeled manually. 
Gobert et al. (2018) used the post-build high-resolution 3D CT data of 
the AM manufactured parts to generate the groud-truth for the training 
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data. The defects are defined as the discontinuity of the scanned voxel 
data and are automatically calculated and matched with the in-situ 
images as the label. Westphal and Seitz (2021) used transfer learning 
to train deep CNN for defect detection. A VGG16/Xception model 
pre-trained with the ImageNET dataset is used for feature extraction and 
the final classification layers are only changed for the monitoring task. 
In the first step of the training, all the pre-trained weights are fixed and 
only the weights of the classification layers are trained. Later, all weights 
are set to train simultaneously to fine-tune the model. Furthermore, 
undersampling and oversampling are used to solve the problem of 
imbalanced data between normal and defected samples and achieve an 
accuracy of over 95% while training on 4000 images. Li et al. (2020) 
proposed an identification consistency-based approach, as shown in 
Fig. 19 for semi-supervised learning-based defect detection to alleviate 
the need for large amounts of high-quality labelled data. In this 

approach the loss function is designed based on four principles: (1) 
correct classification of the noisy and blurred image variants from data 
augmentation (2) consistency of the features extracted from unlabelled 
image patches and their variants (3) consistency of the features extrac
ted from different patches of the same image (4) diversity of the features 
extracted from image patches of different images. The result shows that 
the proposed approach can classify the over-melt, under-melt and 
well-weld conditions with good accuracy using 1720 image patches 
from 40 images with labels. 

6. Future directions 

With the increasing popularity of AI solutions, several research 
questions arise to address shortcomings of state-of-the-art AI techniques 
in manufacturing such as lack of interpretability, big data requirements, 

Fig. 17. RL-based feed back control system (Masinelli et al., 2020).  

Fig. 18. Structure of Dynamic Segmentation CNN (Scime et al., 2020).  
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limited physical meaning, stability, and generalizability to distributions 
outside of training data. Our review indicates that Mechanistic-AI ap
proaches are effective steps toward resolving these issues by integrating 
our knowledge of the data and physics of the process into machine 
learning solutions. In this section, we summarized the prevailing trends 
found in this study and discuss promising future research directions. 

6.1. Databases, benchmarks, and security in manufacturing data 

6.1.1. Need for high-quality experimental and simulation data 
Manufacturing involves a wide range of experimental, simulation, 

and user data. As AI tools are known to be data-hungry, large-scale high- 
quality and high-resolution measurements and high-fidelity simulations 
are needed to develop, effectively train, and deploy AI models. Despite 
the significant progress in the quality and quantity of available 
manufacturing data, several aspects of the manufacturing data remain 
challenging. Experimental databases are often unbalanced and prone to 
human- and sensory-related errors and therefore require massive in
vestment in post-processing and curation (e.g., Freitas and Curry, 2016; 
Zhang and Gao, 2021). At the same time, simulation data suffer from 
unknown physics, high computational cost due to the curse of dimen
sionality, and high variance in their fidelity. 

6.1.2. Heterogenous data fusion in deep learning 
Some of the challenges stem from the heterogeneous and unstruc

tured nature of manufacturing data where CAD files, simulation data, 
and various sensory information need to be fused together. If fused 
properly, these data sources can complement each other’s sparsity, ac
curacy, and uncertainty and create an expanded multi-modal database. 
While combining data sources in manufacturing has been the topic of 
several studies (e.g., Lu et al., 2015; Guo et al., 2019) manufacturing 

data fusion in the context of AI formulations and methodologies is still 
an open question. Providing the connections between different data 
sources so that they hold the spatial and temporal structure of data and 
avoid information leaks, dilution, and the high noise-to-signal ratio is an 
understudied topic of research. Additionally, methods to integrate 
experimental and simulation data are vital in many manufacturing ap
plications not only because collecting experimental data can be pro
hibitively expensive, but also because the large corpus of available 
computational methods provides unique insights that are not measur
able experimentally. 

6.1.3. Reproducibility and established benchmarks 
Reproducibility is a major concern in publications addressing AI in 

manufacturing. Many publications do not share their data, which 
essentially makes the study unreproducible. Additionally, many AI so
lutions involve non-trivial implementation details, which significantly 
affects the final product and how it can be used in practice. The quality 
of data, the feature processing pipeline, and handling of outlier cases can 
lead to tangible variations in AI performance. Details of the model (e.g., 
stateful vs stateless RNN, batch normalization scheme, initialization, 
model selection to balance precision and recall) and the optimization 
know-hows (e.g., batching process, gradient clipping, cyclic learning 
rate) can be the difference between a functional and a nonfunctional AI 
solution. This problem is particularly pronounced in RL setting where 
one deals with dynamic data. As these details are often missed from 
pseudocodes published in papers, we strongly encourage the 
manufacturing community to publish their implementations and data
sets along with their papers. While we observe a surge in the availability 
of public databases related to manufacturing tasks, they are mostly 
geared toward geometric analysis and additive manufacturing behavior. 
Even in those applications, the field lacks established practices for 
comparing newly proposed methodologies with clear benchmarks. As it 
stands, most papers in the field are tested on individual databases, which 
cannot be meaningfully compared to other related works. Although 
some authors compare their new approaches with their implementation 
of past methods, a concern can arise that a proposed approach can 
outperform past work only due to better implementation or more 
extensive hyperparameter optimization. Having established bench
marks in major manufacturing applications can largely mitigate these 
concerns. 

6.1.4. Biases in manufacturing data 
Biases can cause harmful consequences in various stages of the AI life 

cycle, many of which stem from data collection and curation. Three 
sources of biases during data preparation are identified in Suresh and 
Guttag (2019) as representation, measurement, and aggregation biases. 
Representation bias occurs when the developed database does not suf
ficiently represent the environment AI solution faces during production. 
An example of this source of biases is an AI solution that is trained on the 
data generated by one manufacturing machine (or a small subset of 
machines) and fails to generalize across larger production facilities. 
Measurement bias can happen due to not only faulty sensors but also 
missteps during the preprocessing and feature selection and cause the 
processed data not to properly estimate the qualities of interest. For 
instance, various types of measurement techniques with different reso
lutions and errors might be used to measure the same quantity and 
introduce a measurement bias in the database. Aggregation bias occurs 
when data from the larger context is used in a particular application 
without adjusting the data to capture nuances of the deployment envi
ronment. As an example, an AI trained over generic 3D geometries 
designed for computer vision tasks may extract features focused on vi
sual characteristics of the object and neglect the manufacturability and 
performance aspects of the analysis. Therefore, a model that is trained, 
or even pre-trained in a transfer learning fashion, on vision tasks can 
introduce aggregation biases to manufacturing applications. Therefore, 
further studies are needed to advance our understanding of the influence 

Fig. 19. Overview of the identification consistency-based approach (Li 
et al., 2020). 

M. Mozaffar et al.                                                                                                                                                                                                                              



Journal of Materials Processing Tech. 302 (2022) 117485

21

of such biases in critical manufacturing components and effective 
methods to mitigate them. 

6.1.5. Cloud manufacturing and security 
Cloud manufacturing is an innovative platform that generates and 

maintains a large and high-quality database through the cooperation of 
numerous companies and individuals. Blockchain-based cloud 
manufacturing is trending recently to decentralize the network and keep 
security tight. However, even the blockchain technique cannot prevent a 
data breach (i.e., unauthorized access to the database, retrieval, or 
modification of the data) that happens inside a company by malicious 
insiders such as past employers and business competitors. The data 
breach might cause a serious data loss or falsification, leading to a 
tremendous economic loss. To prevent and prepare for the data 
breaches, (Esposito et al., 2016) proposed two crucial steps. Firstly, a 
proper key management system should be developed inside a company. 
The system records who have the key and revokes the keys if not used. 
Secondly, companies should be able to detect a data breach, notify 
related personnel, and record them forensically to prepare for a lawsuit. 
As a little volume of studies has been reported in the area of data breach 
prevention in manufacturing, further studies should be conducted in this 
area. 

6.2. Data-driven modeling and discovery in manufacturing 

6.2.1. Frameworks for mechanistic feature selection 
Extraction of mechanistic features still replies on domain experi

ences. Selecting appropriate mechanistic features for complex problems 
could be very challenging. Developing systematic data-driven ap
proaches, which can automatically identify dominant mechanistic fea
tures from different manufacturing data sources, is an interesting topic. 
Moreover, the extracted mechanistic features might have various 
physical dimensions (or units). Dimensional analysis (Barenblatt, 2003) 
can be a very useful principle to guarantee the dimensional homogeneity 
(Rudolph et al., 1996) of the discovered relationships. 

6.2.2. Large-scale Mechanistic-AI modeling in manufacturing 
Mechanistic-AI methods have the potential to capture complex 

process-structure-properties relationships in advanced manufacturing. 
They can tackle the problems with missing/noisy boundary conditions 
and material laws, which are currently impossible or extremely expen
sive to solve through traditional methods. However, embedding phys
ical, chemical, and material mechanisms into AI systems remains a non- 
trial task. Researchers have proposed several approaches, such as 
mechanistic feature extraction, specialized network architecture, and 
regularization of loss functions. Much effort needs to be directed at 
improving the developed methods to solve real manufacturing problems 
with high uncertainty and variability during the processes. 

6.2.3. Extension of PINNs to manufacturing applications 
Physics-informed neural network has been successfully applied to 

additive manufacturing. It can be extended to broader manufacturing 
techniques, such as metal forming, welding, and micro-manufacturing. 
A challenge is to improve the generalization capabilities of PINN 
(Raissi et al., 2019), especially for the problems with complex geometry 
and transient boundary condition. 

6.2.4. Advance transfer learning using highly generalizable models 
Transfer learning is another interesting future direction. Transferring 

trained models and identified knowledge from one material to another 
or from one manufacturing technique to another is currently extremely 
challenging. Dimensionless scale-invariant relationships play an 
important role in properly transferring knowledge because they offer 
better generalization capability compared to transitional empirical 
equations. 

6.2.5. Data-driven physics discovery 
Data-driven discovery, such as SINDy method (Brunton et al., 2016), 

is a very promising approach to discover new underlying physical, 
chemical, and material mechanisms from noisy manufacturing data. 
Generating more high-quality in-situ experimental data and 
high-fidelity simulation data is crucial in the near future. Data-driven 
dimensional analysis is another important area that requires signifi
cant improvements in the future. The developed algorithms can be used 
to discover more universal dimensionless numbers and scaling laws from 
manufacturing processing data, which provides a smaller set of param
eters to describe the highly multivariable manufacturing processes. It is 
noted that describing or predicting the widest range of phenomena with 
a minimum of variables is always the central goal in science and physics 
(Kunes, 2012). 

6.3. Data-driven design methods in manufacturing 

6.3.1. Supervised learning and constraint satisfaction for design 
Design in manufacturing is challenging due to the high-dimensional 

spaces and discreet choices involved as well as the complexity of the 
physical mechanisms during the manufacturing processes. Mechanistic- 
AI methods have the potential to efficiently solve inverse problems with 
hidden physics for process design. Several papers have explored the 
potential of AI methods to solve manufacturing design problems by (1) 
establishing a direct mapping between functional requirements and 
design parameters, or (2) formulate an optimization problem to explore 
the design space. Supervised learning has shown to be an effective tool 
to extract correlational requirement-to-design parameter relationships. 
However, state-of-the-art practices lack incorporating physical con
straints of the problem into the learning method. As the result, these 
methods are only reliable for problems with simple constraints or within 
a limited range of parameters. As an example, consider the problem of 
toolpath design to achieve favorable material behavior. We can generate 
a database of tool paths and their resulting material properties and train 
a model to produce a toolpath given the properties. Naturally, the su
pervised learning method interpolates between database points, which 
can easily lead to physically unfeasible or overlapping tool paths. 
Therefore, studying representations in which such interpolation is valid 
or approaches to enforce physical constraints is a crucial step in 
broadening the applications of supervised learning in design. Various 
ideas in physics-informed modeling techniques (as reviewed in Section 
3.2) can be deployed in design applications to soft or hard impose the 
constraints. 

6.3.2. Reinforcement learning in design 
RL offers an alternative to supervised learning when the design in

volves a sequential decision-making process. Constraints can be 
implicitly introduced into the solution by penalizing constrain viola
tions. However, RL methods are known for their poor sample efficiency. 
Furthermore, as RL methods explore many unfeasible and potentially 
dangerous design spaces, they can rarely be trained on experimental 
manufacturing setups. To address these challenges, future research is 
needed to expand the capabilities of off-policy RL methods to allow 
training on historic data and enable data reuse. Additionally, further 
investigations need to bridge the gap between RL methods trained on 
simulation environments and real setups. While several examples of RL 
in manufacturing were presented in Section 4.1, the performance of RL 
agents heavily depends on the quality of reward function to break down 
the complexity of the overarching goal. As many manufacturing 
decision-making processes involve sparse signals where the goals cannot 
be trivially divided into subtasks, advancements in sparse credit 
assignment are vital in the future. Model-based RL has the potential to 
address some of these challenges. As an alternative to purely explorative 
methods, model-based RL can utilize its underlying model to perform 
look-ahead planning and search (e.g., Monte Carlo Tree Search) and 
therefore offer better sample efficiency and compatibility with reward 
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sparsity. 

6.3.3. Process-informed design exploration using generative models 
Recent advancements in generative models, such as GANs, opened 

new possibilities to discover condensed latent design spaces. While 
recent studies have expanded the capability of GANs and VAEs to 
generate high-quality designs by incorporating performance metrics, 
much of the focus has been dedicated to esthetic and geometric features. 
The extension of generative methods to complex physical aspects of 
manufacturing processes has remained unsolved. Therefore, a promising 
future direction is physics-informed generative models that leverage 
PINN in GANs training to facilitate extracting generalizable and physi
cally valid correlations. 

6.3.4. Uncertainty quantification in scientific deep learning 
Despite tremendous progress in manufacturing process modeling and 

design using AI, most of these studies lack uncertainty analysis or 
quantification in their deep learning framework. However, in 
manufacturing, it is often critical and expected to assess the reliability of 
deep learning models before they are deployed (Jiang et al., 2018). 
Uncertainty analysis in deep learning methods has attracted several 
research ideas in computer vision (Michelmore et al., 2018), medical 
image analysis (Kwon et al., 2020), and natural language processing 
(Xiao and Wang, 2019) with Bayesian approximation (Gal and Ghah
ramani, 2016) and ensemble learning techniques (Lakshminarayanan 
et al., 2016) as the two most widely used uncertainty quantification 
methods. Several state-of-the-art trends in deep learning uncertainty 
quantification are reviewed by Abdar et al. (2021). Therefore, we 
believe rigorous uncertainty analysis in the context of AI solutions in 
manufacturing is a vital topic for future research which can significantly 
accelerate the industrial adoption of the field. 

6.3.5. Lack of integrated design steps 
Many methods have been emerged to provide an integrated design 

than an individual design task (e.g., conceptual design, process plan
ning, process parameter optimization). However, we find insufficient 
research effort into integrating multiple design steps. The inter
connectivity of manufacturing design tasks is a key reason behind its 
complexity. AI methods have caused a fundamental shift from solutions 
with numerous subtasks to overarching end-to-end systems. We believe 
future research into end-to-end design methods that bridge between 
intertwined manufacturing design tasks can be profoundly influential in 
the field. 

6.4. Data-driven control and monitoring in manufacturing 

6.4.1. Adoption of advanced Mechanistic-AI in control 
It is commonly acknowledged that process control is a crucial 

component in manufacturing processes that can improve the quality and 
stability of a manufacturing process. AI techniques have been and will be 
increasingly applied to manufacturing process control because of their 
ability to handle and learn information from big data. Most of the cur
rent literature on model-based manufacturing process control utilizes 
linear models or relatively simple data-driven models, such as ARX 
model, for modeling the system dynamics. It has been shown that AI 
techniques such as SINDy and deep neural networks can be effectively 
used to model system dynamics and have been applied in the control of 
robots and autonomous vehicles. We expect future research in 
manufacturing process control will adopt these techniques to control- 
oriented manufacturing modeling to achieving better accuracy and ef
ficiency. Additionally, as the current literature solely deploys physics- 
based or data-driven models, we believe hybrid Mechanistic-AI models 
can advance current control capabilities in the field. 

6.4.2. Efficient reinforcement learning for control 
While RL methods can be used in manufacturing process control 

without knowing the system model, there is currently limited applica
tion in the real manufacturing process because of the high cost to train 
the model. Previous research has implemented RL-based process control 
on top of simulations with hundreds of episodes and it will be extremely 
expensive in the real world. How to train an RL model with good ac
curacy using combined a large amount of simulation data and a rela
tively small amount of experimental data will be an important field to 
explore. 

6.4.3. Auto-labeling and efficient learning in process monitoring 
For the process monitoring, a lot of current work used supervised 

learning to train a model that can identify the process condition from 
images, where a large number of labeled images are required for 
training. Thus, questions such as how to efficiently get enough labeled 
data for training, and how to train a model with less labeled data, need 
to be further studied. 

6.4.4. Robustness in AI process monitoring 
In most studies on AI-enabled process monitoring, the model is 

trained and tested on the prepared dataset, and has not been validated 
and applied to experimental or industrial setups. One reason for this gap 
between research and industry is that oftentimes the trained model is 
sensitive to the environmental condition. Therefore, when the envi
ronmental condition is changed or a different machine is used for the 
same process, the model is no longer accurate. In the past few years, 
methods like stability learning (Zheng et al., 2016) and Parseval net
works (Cisse et al., 2017) attempted to address these challenges with 
limited success. We believe that improving the robustness of the 
AI-enabled process monitoring techniques to make them more appli
cable in real industry settings will be an important future direction. 
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