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ARTICLE INFO ABSTRACT

Associate Editor: E. Tekkaya Today’s manufacturing processes are pushed to their limits to generate products with ever-increasing quality at
low costs. A prominent hurdle on this path arises from the multiscale, multiphysics, dynamic, and stochastic
nature of many manufacturing systems, which motivated many innovations at the intersection of artificial in-
telligence (AI), data analytics, and manufacturing sciences. This study reviews recent advances in Mechanistic-
Al defined as a methodology that combines the raw mathematical power of Al methods with mechanism-driven
principles and engineering insights. Mechanistic-AI solutions are systematically analyzed for three aspects of
manufacturing processes, i.e., modeling, design, and control, with a focus on approaches that can improve data
requirements, generalizability, explainability, and capability to handle challenging and heterogeneous
manufacturing data. Additionally, we introduce a corpus of cutting-edge Mechanistic-Al methods that have
shown to be very promising in other scientific fields but yet to be applied in manufacturing. Finally, gaps in the
knowledge and under-explored research directions are identified, such as lack of incorporating manufacturing
constraints into AI methods, lack of uncertainty analysis, and limited reproducibility and established bench-
marks. This paper shows the immense potential of the Mechanistic-AI to address new problems in manufacturing
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systems and is expected to drive further advancements in manufacturing and related fields.

1. Introduction

Manufacturing is an imperative part of the global economy ac-
counting for 10-30 percent of the gross domestic product in major
industrialized countries (West and Lansang, 2018). Historical examples
also show innovations in manufacturing nurture key advances in the
automotive, aerospace, electronics, and biomedical industries such as
3D bioprinting of tissues and organs (Murphy and Atala, 2014). Partic-
ularly, recent advances have moved manufacturing toward design
freedom and flexibility allowing the production of highly optimized and
individualized parts while remaining cost-effective even for low-volume
productions. However, many manufacturing processes are known for
their intricacies in changing material shapes and properties.

As a prevalent challenge in manufacturing, we face complex in-
teractions between materials, setups, and energy sources, while the
underlying physics is not fully understood. High-dimensional spatio-

* Corresponding author.
E-mail address: zhengtao.gan@northwestern.edu (Z. Gan).

https://doi.org/10.1016/j.jmatprotec.2021.117485

temporal behaviors are common in manufacturing applications, and
critical responses happen in length scales that are orders of magnitudes
apart. As an example, in metal-based additive manufacturing, the in-
teractions between the laser beam and material particles happen in
micro-scale, the melt pool dynamics, grain, and porosity evolution occur
in meso-scale, and mechanical and thermal behavior appear in macro-
scale. While significant progress has been made to accurately simulate
these multiscale behaviors using numerical simulations, conventional
methods are often prohibitively time- and resource-consuming, espe-
cially for cases where an iterative solution is needed (e.g., inverse
problems, robust design, uncertainty analysis). To exacerbate the
problem, manufacturing systems are prone to noise, disturbance, and
unknown hidden variables which make the process difficult to accu-
rately predict. The behavior of manufacturing systems is known to vary
even between similar machines or for one machine over time. As a
result, the task of decision-making and understanding manufacturing
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processes has remained a daunting engineering effort.

At the same time, manufacturing practices have undergone a digi-
talization paradigm. This trend can be evidently seen in the strategic
road maps across the globe such as the Industry 4.0 framework intro-
duced by Germany, the “Manufacturing USA” institutes in the US, and
the “China Manufacturing 2025 strategic plan in China, all of which
emphasize systematic digital data collection and large-scale networking
and communication capabilities to advance manufacturing systems.
Putting these pieces together, one can see that manufacturing systems
generate data with continuously increasing quality and variety, and
these data sources are valuable assets and should be utilized to advance
current capabilities.

In recent years, Artificial Intelligence (AI) has shown significant
progress in automating activities that are associated with human
thinking, such as planning, decision making, and problem-solving. An
over sixfold increase in the number of publications from 2015 to 2020
(Zhang et al., 2021) and an estimated 15.7 trillion-dollar worth of
economy in 2030 (PwC, 2021) are only a few indications of the vast
existing and future impact of Al in both academia and industry. Al so-
lutions are capable of processing large-scale data from a wide range of
sources, including images, text, audio, 3D geometries, to name a few. As
a result, we observe a surge in Al-enabled approaches to enhance pre-
diction, design, and control capabilities of advanced manufacturing
processes that leverage the recent trend of manufacturing digitalization
and large-scale data acquisition platforms. The increasing popularity of
investigating AI methods in manufacturing applications as well as the
geographical distribution of publications can be observed in Fig. 1. This
cross-disciplinary research area attempts to address critical
manufacturing challenges such as improving quality variability and
process efficiency and enabling high-dimensional design for tailored
material and geometric properties, with the potential to drastically alter
the capabilities of these multi-billion-dollar industries. Al methods
provide an exciting alternative to many conventional computational
methods in manufacturing as they offer high predictive flexibility with
fast inference time. Additionally, Al tools are often compact and easier
to maintain compared to their conventional counterparts which can
involve large code bases with tens of thousands of lines of code.

Despite the many benefits of Al-enabled tools, three key shortcom-
ings hinder the widespread adoption of such tools in manufacturing: (1)
unavailability of large enough high-quality data, (2) limited general-
ization to unseen samples, and (3) lack of interpretability. Developing
useful databases from raw information is expensive for complex engi-
neering tasks as such databases need to be carefully processed and
curated to minimize the impact of mislabeled instances, imbalances,
outliers, and noises. Furthermore, the behavior of manufacturing ma-
chines can change over time as machines age, which results in a
continuous and costly process of data preparation. Al methods often
overfit the data provided to them during the training process, meaning
that they exploit the database imbalances and noises to resemble the
training samples too closely. The overfitting reduces the accuracy of the
solution for new data, especially when new data has a different
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distribution compared to the training database. Therefore, a naive
implementation of AI methods can easily violate the physical principles
of the modeled phenomenon. Developing generalizable solutions is a
core effort of Al researchers and practitioners; however, the state-of-the-
art methods often fall short of the outside-of-training accuracy required
in precise engineering problems. Lastly, Al solutions are often treated as
black-boxes and offer limited tools to trace the reasoning behind their
decision-making patterns. While interpretability might not be a critical
factor in applications such as advertising recommendation systems,
unreliable action in manufacturing plants can have devastating financial
and safety consequences. Therefore, explainability is another important
feature of solutions in manufacturing.

To address the above-mentioned challenges, we advocate
Mechanistic-AI methods, in which mechanism-driven principles of
manufacturing processes and engineering insights are embedded into Al
solutions to increase their data efficiency, generalizability, and
explainability. A schematic of the Mechanistic-AI framework is illus-
trated in Fig. 2. This framework covers multiscale and multiphysics
modeling, which is complemented by Al methods to simplify model
calibration, validation, and mesh generation. Moreover, the known
physical mechanisms could inform AI methods for accurate predictions
(i.e., physics-informed learning), and the AI methods, in turn, can be
used to discover new mechanisms from experimental data (i.e., data-
driven discovery). As a data-centric framework, high-quality high-res-
olution experimental data with appropriate mechanistic feature engi-
neering and data processing is required for model validation and Al
training. The physics-informed AI and well-validated physics-based
models, in turn, generate more data. Therefore, Mechanistic-Al provides
an interconnected framework between the three components of physical
mechanisms, Al methods, and data, which enables a new generation of
modeling, design, and control in manufacturing. In this article, we re-
view notable advances in Mechanistic-AI methods in manufacturing
systems, introduce a corpus of promising approaches that have not been
applied to manufacturing yet, and lay out our vision for influential
future directions in this field. We note that the multiphysics modeling
with model calibration and validation is beyond the scope of this study.
For those topics, interested readers can refer to the reviews by Guna-
segaram and Steinbach (2021) and Wei et al. (2021).

In recent years, several publications have reviewed various aspects of
Al in manufacturing. Li et al. (2017) discussed a system-level architec-
ture for integration of Al in smart manufacturing facilities and the role of
key parties, governments, and technologies in the formation and future
of the intelligent manufacturing industry. Sharp et al. (2018) deployed
natural language processing (NLP) to extract trends and insights from a
corpus of 4000 literature related to machine learning (ML) in
manufacturing applications and identified decision support, lifecycle
management, and digital knowledge management as important appli-
cations of ML in manufacturing literature. Wang et al. (2018) presented
a technical summary of deep learning algorithms (such as CNN, RBM,
Autoencoder, and RNNs) and their applications in manufacturing
quality inspection, fault assessment diagnostics, and defect prognosis.
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Gao et al. (2020) identified four building blocks of the life cycle of
manufacturing data as data collection, data processing, data learning,
and data security and elaborated various methods to tackle current
challenges within each item. Arinez et al. (2020) adopted a
system-process-material hierarchical plant organization and reviewed
the literature to incorporate Al decision-making and analytics tools
within and across manufacturing hierarchical levels. A review dedicated
to Al tools health monitoring in manufacturing systems can be found in
Zhao et al. (2019). Zhang and Gao (2021) summarized recent advances
in data processing and curation techniques in manufacturing systems
such as denoising, outlier detection, imputation, balancing, and
annotation.

Our review article distinguishes itself by providing a new perspective
on approaches that transform generic Al techniques into Mechanistic-Al
solutions that offer better interpretability and reliability, enable mech-
anisms discovery, and handle various types of heterogeneous
manufacturing data. In what follows, we introduce various classes of
manufacturing data and data sources in Section 2. Section 3 provides a
discussion on combining physical knowledge and data-driven methods
for modeling and discovery in manufacturing processes. We discuss
mechanistic feature processing (Section 3.1), physics-informed
modeling methods in manufacturing (Section 3.2), and data-driven
discovery in manufacturing (Section 3.3). Later, we investigate and
categorize several Al methods in manufacturing that are targeted toward
design and control tasks in Sections 4 and 5, respectively. Finally, we
conclude this article with a summary of promising future research di-
rections for Mechanistic-Al in manufacturing in Section 6.

2. Manufacturing data
2.1. Manufacturing data types and databases

A key trend over the past decade is widespread digitalization across
many fields fueled by the availability of inexpensive sensing devices. In
manufacturing, digitalization trends, e.g., cyber-physical systems and
Internet of Things (IoT) (Lee et al., 2015), have increased the visibility
and accessibility to information and drastically changed the amount,
quality, diversity, and richness of available manufacturing data.

Physical
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informed

Data-driven

% discovery

Journal of Materials Processing Tech. 302 (2022) 117485

Fig. 2. A schematic of Mechanistic-Al for
advanced manufacturing processes, including
the building blocks and their interactions. Two
cycles connect the Mechanistic-AI building
blocks. The red arrows represent a cycle of the
information flow: physical mechanisms can
create data via modeling techniques, data can
be used to train Al methods with appropriate
mechanistic feature processing, and Al methods
can discover new physical mechanisms by
combining experimental data (i.e., data-driven
discovery). The dark blue arrows represent a
reverse cycle: physical mechanisms can inform
Al methods (i.e., physics-informed machine
learning), Al methods can create more data, and
data can be used to calibrate and validate
mechanistic models to elucidate physical
mechanisms. The Mechanistic-AI enables
scientific-driven process modeling, design, and
control. (For interpretation of the references to
color in this figure legend, the reader is referred
to the web version of this article.)

Process
Control

Manufacturing generates a wide spectrum of heterogeneous data which
can be broadly categorized into three different types of (1) experimental
data, (2) simulation data, and (3) engineer/user data.

The development of novel sensors to measure complex behavior of
materials and manufacturing systems with high accuracy and frequency
is an ongoing research area. Additionally, many sensing technologies
have matured, leading to lowering equipment costs and ease of avail-
ability. As the result, various measurement technologies and sensing
methods have become more standardized components of modern
manufacturing pipelines from controlling and monitoring during the
manufacturing process to test and analysis methods after the products
are manufactured. These experimental sources provide data on the
material and manufacturing processes across several time and length
scales. Some of the popular sensing methods and their data types are
compiled in Fig. 3. As it can be seen, manufacturing produces a wide
range of in-situ and ex-situ data including scalar measurements in static
or time-series forms (such as load cells, vibration, acoustic, fracture, and
fatigue data), geometry data (such as point clouds in optical scanning),
video data (such as measurements from DIC, IR, and X-ray), and static
image data (such as data from X-ray diffraction, scanning electron mi-
croscopy, and electron backscatter diffraction). Increasingly, several of
such sensing data are compiled together to reduce uncertainty in mea-
surement or to collect a more complete set of the attributes of
manufacturing systems. For example, Muhammad et al. (2021) com-
bined X-ray computed tomography (CT) and DIC methods to record
detailed microstructural features and local strain evolution and char-
acterize deformation responses of additively manufactured samples.

Advances in numerical simulation methods such as finite element
method (FEM), computational fluid dynamics (CFD), and lattice Boltz-
mann method (LBM), along with the increasing computational capacity
generated another source of valuable data stemming from fundamental
physical laws. Designs and manufacturing process plans are digitalized
through CAD and CAM models, providing detailed information about
the geometry, desired tolerances and surface qualities, design intent,
and process execution. Additionally, engineers and users, while a source
of a smaller portion of data, are a unique source of information in
manufacturing plants and provide invaluable manual demonstrations,
know-hows, and reporting discrepancies and irregularities (Waterman,
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Fig. 3. Samples of in-situ and ex-situ measurement and material characterization techniques common in manufacturing. This data includes scalar, time-series, point

cloud, and image/video measurements.

2017). At the same time, some research is dedicated to the development
of efficient knowledge management systems in manufacturing to create,
link, maintain, and update heterogeneous manufacturing data, such as
studies done by Ko et al. (2021) and Lu et al. (2018). For example, Lu
et al. (2018) proposed a four-tier framework consisting of data, infor-
mation, knowledge, and application. In their framework, a bottom-up
analysis is used to extract engineering knowledge and a top-down
method is proposed for goal-oriented active data generation.
High-quality databases and benchmarks are imperative for the
adoption of Al in manufacturing. Such benchmarks allow scientists to
meaningfully track the progress of the field and compare different
methodologies, which is nearly impossible if each study is performed on
a separate database. Additionally, publicly available databases lower the
barrier to research and deploy Al systems as they can significantly
reduce the time-consuming and expensive data gathering and curation
steps of the AI development life-cycle. Fortunately, in recent years, we

observe the emergence of various databases with applications in
manufacturing.

Several public databases provide a wide range of 3D manufacturing-
related geometries in various formats such as CAD files, images, and
depth maps. ABC geometric database (Koch et al., 2019) contains 1.75
million CAD files for industrial designs. MVTec ITODD (Drost et al.,
2017) is developed for industrial object detection tasks and includes 28
objects and 3500 labeled scenes resulted from two 3D sensors and three
grayscale cameras. T-LESS (Hodan et al., 2017) provides 50K images for
6D pose estimation with over 30 industry-relevant objects. Online
communities such as Thingiverse (Thingiverse. and com,2021., 2021)
have accumulated large-scale collections of designs for additive
manufacturing parts, which are used to create curated databases by
other studies. Thingil0k (Zhou and Jacobson, 2016) contains 10,000 3D
printing models in 72 categories and over 4000 tags. Berman and Quek
(2020) collected over a million 3D files, images, and metadata for
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additive manufacturing parts and published their database as Thingi-
Pano. HowDIY website (Berman et al., 2021) is developed not only as a
collection of 3D printing designs but also as a platform to provide
collaborative support and computationally-guided tools in various steps
of 3D printing. A current limitation of such geometric databases for
manufacturing applications is that they are mostly designed for generic
plastic 3D printing, lack process-specific information (e.g., support
structure and toolpath), and do not cover a broad enough range of
manufacturing processes. Some recent geometric databases target spe-
cific design and manufacturing applications. For example, Biked
(Regenwetter et al., 2021) is a database of 4,500 bicycles that includes
the individual components, bike class, and numerical design parameters.

Researchers have also invested in developing databases that incor-
porate the performance of manufacturing processes, notable examples of
which are described here. Sundar and Sundararaghavan (2020) devel-
oped a database of over 300K simulated microstructures that are
resulted from various permutations of tension, compression, and rolling
in different directions. This database allows for data-driven in-
vestigations to find the relationships between the manufacturing process
sequences and the microstructure evolution. Oak Ridge National Labo-
ratory (ORNL) (Scime et al., 2021) released a dataset containing
layer-wise powder bed images from three different powder bed printing
technologies: laser powder bed fusion, electron beam powder bed
fusion, and binder jetting. The dataset was mainly designed for anomaly
defects detection using image segmentation or other computer vision
techniques. Several databases are published that connect additive
manufacturing process conditions and part performances. NIST Additive
Manufacturing Metrology Testbed (Lane and Yeung, 2019) provides
melt pool monitoring data for ten nickel-based superalloy 625 (IN625)
parts with varying scan strategies. NIST AM-BENCH database (Levine
et al., 2020) published extensive in-situ and ex-situ measurements (e.g.,
part deflection, residual strain, melt pool geometry, part tensile prop-
erties) for metal and polymer materials. Air Force Research Laboratory
(AFRL) AM modeling challenge series data (Cox et al., 2021) provided
experimental data at macro- and micro-scale including manufacturing
process parameters, residual strain, geometry, microstructural details,
and stress-strain behavior. The Additive Manufacturing Materials
Database (https://ammd.nist.gov/) is a collaborative database that
contains information about the material properties, machine parame-
ters, build design, in-process, and post-process data points. These
growing attempts to establish rich manufacturing databases can greatly
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facilitate Mechanistic-AI methods to find complex manufacturing
mechanisms between heterogeneous data types.

2.2. Manufacturing data platforms

Cloud manufacturing can further facilitate and automate the data-
base generation for both proprietary and non-proprietary data sources.
Although several different definitions are available in the literature
(Siderska and Jadaan, 2018), cloud manufacturing can be defined as a
cloud-based platform that collects manufacturing resources from pro-
viders online, analyzes collected resources, and offers the various tools
and suggestions on manufacturing processes to customers. The term
“cloud manufacturing” first appeared in literature in Li et al. (2010) and
since then it has gained significant research interests. Notable research
on the cloud manufacturing concepts and their implementations are
reviewed by Siderska and Jadaan (2018) and Bouzary and Chen (2018).

Fig. 4 illustrates the architecture of cloud manufacturing proposed
by Esposito et al. (2016) that consists of 4 layers: manufacturing
resource layer, virtual resource layer, service layer, and application
layer. The manufacturing resource layer refers to the local facilities that
manage production, shipping, operational tasks. The virtual layer con-
tains virtual models and simulation tools of physical resources that
ceaselessly produce data to construct a multi-resource database. This
data can be used for the optimization of the production cycle and
providing recommendations to customers. On top of the virtual layer,
the service layer oversees the scheduling and monitoring of the
manufacturing process. Finally, the application layer offers a web-based
user interface that visualizes tasks performed in the cloud platform.

Despite great advances in the concepts and application protocols of
cloud manufacturing, most of them rely on centralized cloud systems
and suffer from information transparency and data security. In recent
years, decentralization of cloud manufacturing with blockchain tech-
nology is trending in the literature, such as Aghamohammadzadeh and
Fatahi Valilai (2020) and Barenji (2021). The fundamental idea of this
research path is to establish a highly secure blockchain platform for the
multi-resource databases that allows providers and customers to match,
negotiate transactions, and establish contracts.

Zhu et al. (2020) proposed an Ethereum-based cloud manufacturing
platform to solve a benchmark problem that entails 939 job requests
from 100 users. They used the k-nearest neighbors (KNN) algorithm for
the service composition and successfully mediated 934 jobs. Yu et al.
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Fig. 4. Layered architecture of cloud manufacturing which includes manufacturing resource, virtual resource, service, and application abstractions (Esposito

et al., 2016).
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(2020) developed a blockchain-based cloud manufacturing architecture
combined with a particle swarm optimization (PSO) solver for the ser-
vice composition problem. Wang et al. (2021) reported an architecture
of blockchain cloud manufacturing that utilizes machine learning
techniques such as support vector machine (SVM) and neural network
for service composition tasks. Zhang et al. (2021) studied a blockchain
consensus protocol to reduce the energy consumption during the Proof
of Work (PoW) process, leading to a higher transaction speed and sus-
tainable cloud manufacturing platform. Many blockchain ecosystems
are originally designed to transfer a small amount of transaction data,
which is not compatible with cloud manufacturing transactions that
involve a large volume of manufacturing data. To address this issue,
Hasan et al. (2021) developed a middleware software architecture inside
the Ethereum network that can store and transfer larger manufacturing
data. Such technologies in cloud manufacturing enable the creation of
highly secure, anti-tampering, traceable, and transparent multi-resource
and multi-fidelity databases for further usage in AI methods.

3. Mechanistic-AI in manufacturing modeling and discovery

For decades, trial-and-error experiments and physics-based modeling
were deployed to model various aspects of manufacturing processes,
including material properties and product quality. However, trial-and-
error approaches are often time-consuming and expensive due to the
vast number of process and material parameters, as well as the high
expense of experimental tests. Physics-based modeling methods provide
many tools to understand complex mechanics in manufacturing pro-
cesses. But, leaning on physics-based modeling alone can be insufficient
in many challenging manufacturing problems for several reasons:

e The accuracy of the popular simulation tools (e.g., FEM) largely
depends on the mesh quality. Therefore, manufacturing applications
can require extremely fine mesh structures to properly simulate
intricate material behaviors, which consequently leads to high
computational demand (Francois et al., 2017).

Formulating the governing equations and solver settings is a non-
trivial task due to the multiscale and multiphysics nature of
manufacturing processes and their complex boundary conditions.
Experimental data are generally used for calibration and validation,
which requires significant manual engineering, instead of seamlessly
embedding them into simulation tools. This disconnection motivates
finding the next generation of integrated simulation approaches to
better understand complex mechanisms in manufacturing.

Data-driven approaches come into play as promising alternatives
considering the increase in data accessibility and parallel computing
power. But, data-driven approaches rely on a vast amount of labeled
high-fidelity data, which can be difficult to obtain through experiments
or simulations. This hinders the wide application of data-driven methods
in manufacturing modeling. To exploit the power of data-driven ap-
proaches, classical physics-based modeling, and experimental data, we
advocate for utilizing Mechanistic-Al for modeling and discovering
physical mechanisms in manufacturing.

There are two fundamental components in an Al solution: a machine
learning model and the data to train the model with. Both of these
components can be reformed to convey the mechanistic aspects of a
manufacturing process; hence, creating a Mechanistic-Al approach.
Physical insights can be embedded into training data by employing a
host of techniques such as mechanistic feature selection and exploiting
data invariants, as detailed in Section 3.1. At the same time, the machine
learning model can be augmented with physical knowledge of
manufacturing processes by how the solution is structured, the formu-
lation of the model, as well as the training process. These advancements
are elaborated upon in Section 3.2. We also discuss a third aspect of AI-
enabled modeling approaches, known as system identification, which
allows the discovery of fundamental physical laws from data, as
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explained in Section 3.3.
3.1. Mechanistic feature processing

Successful application of any Al framework largely depends on the
nature and relevance of the features considered. Meaningful features are
particular helpful in establishing process-structure-property relation-
ships (DebRoy et al., 2018) and designing and optimization of
manufacturing processes (Yoshimura, 2007) as these tasks require high
explainability and generalizability. Processing raw training data into
features that are most efficient in representing relevant aspects of a
manufacturing task can drastically improve the suitability of the Al so-
lution for resolving realistic manufacturing problems. Therefore,
mechanistic feature processing can play an important role, irrespective
of the data types, i.e., experimental, simulation, or user data. Generally,
the purpose of feature processing in machine learning is to select the
most important features out of many in order to make the training
process easier or faster. Here, we refer to mechanistic feature processing
as data selection and manipulation techniques that utilize mechanistic
or physical insight of manufacturing processes to do the same. Particu-
larly, we introduce two classes of solutions to achieve this goal: (1)
selecting most important and physically meaningful features in a given
task, and (2) using the existing invariants in the data to transform or
augment the data. These two solutions are elaborated in the following
subsections.

3.1.1. Mechanistic feature selection and importance analysis

An inappropriate feature selection generates information with a high
noise-to-signal ratio and low correlation to target, which impedes the
training process and reduces the accuracy and generalizability of Al
solutions. The underlying physical aspects of a manufacturing process
can inspire meaningful and mechanistic feature selection in various
tasks. Current literature in manufacturing lacks a unifying framework
for the selection of mechanistic features; rather, the selection process is
highly domain-specific with heavy reliance on the experience of experts
in the field. Here, we highlight several inspiring examples of mechanistic
features across the manufacturing fields.

In additive manufacturing processes, various interacting mecha-
nisms affect the performance of parts. Gu et al. (2021) proposes the
concept of Material-Structure-Performance Integrated Additive
Manufacturing (MSPI-AM), which integrates parallel multi-material,
multi-functional, and multiscale materials design and production. The
authors discuss many relevant mechanistic features for realizing an
advanced hybrid manufacturing system. For example, to produce a
multi-functional and multi-material part, the feature selection requires
identifying an appropriate lattice structure, crystal orientation,
composition, and material gradient distribution.

Geometric features can play an integral part in analyzing
manufacturing performance. Mycroft et al. (2020) used geometric fea-
tures extracted from CAD such as voxel map, thickness, mesh
complexity, and curvature to predict the Hausdorff printability measure
for the powder bed fusion process. Note that while in some
manufacturing processes, such as forming, global aspects of the geom-
etry significantly affect the distribution of forces, in other processes,
such as machining, the geometric effects are mostly local. Therefore,
understanding the direct and indirect region of influence of each phys-
ical energy source can assist in selecting important features in
manufacturing tasks. In geometry optimization tasks, i.e., topology
optimization, mechanistic features such as toughness,
force-displacement curves, mass, and geometric parameters can be used
to efficiently optimize complex geometries (Gongora et al., 2020).

Metallic alloy material design tasks can benefit from thermodynamic
and structural properties as the mechanistic features because they con-
trol the property of the manufactured alloys. Such features become
critical to assess physical phenomena that are hard to observe experi-
mentally such as surface energy (Hebert, 2016). Tian et al. (2021)
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showed that high-throughput density functional theory (DFT) features
are helpful to select a suitable alloy composition for a desired mechan-
ical performance. In microstructure analysis tasks a significant body of
research suggests utilizing statistical metrics as material descriptors
(Huber et al., 2020). The key idea behind these works is to convert a
microstructure image with multiple phases into an n-point correlation
function, where the probability of finding a specific phase is represented
as a function of relative distance. Other metallurgical data such as
Electron Backscatter Diffraction (EBSD) features, average grain size, and
volume fraction of other phases are also used as features in multiple
studies, such as Baturynska et al. (2018) and Herriott and Spear (2020).

Once a set of features are selected, relative importance analysis can
reveal additional physical insights. As the result of importance analysis,
one can remove low-impact features, which simplifies and accelerates
the training and prediction processes. Tree-based methods, such as
Random Forest, naturally provide statistical importance analysis of the
input features (Biau and Scornet, 2016). Two measures of importance
are commonly used in the Random Forest. The first measure, i.e.,
accuracy-based importance, is based on the change in accuracy if the
feature is excluded. The second measure, i.e., Gini-based importance, is
based on the decrease of Gini impurity (or node purity) when a feature is
chosen to split a node. Both measures can be used to order mechanistic
features and identify dominant features in advanced manufacturing
processes. Xie et al. (2021) identified important temperature ranges for
ultimate tensile strength (UTS) from infrared temperature data in ad-
ditive manufacturing. They found two dominant temperature ranges in
process-induced thermal histories, and those ranges have a significant
influence on the resulting UTS of the printed Inconel 718 material. The
dominant ranges were identified purely from experimental data without
prior knowledge but they surprisingly coincided with the theoretical
results. As shown in Fig. 5, the first temperature range,
1212.99-1365.35 °C, align with the solidus and liquidus temperatures of
the Inconel 718, and the second important range, 654.32-857.47 °C, is
related to ' and y’ precipitate formation temperature during solid-state
transformation. Du et al. (2021) evaluated the Gini-based importance of
the mechanistic features on balling defect in additive manufacturing.
They concluded that the Marangoni number and solidification cooling
time are the two most important features that describe the balling effect
of the additive manufacturing process.

While the aforementioned importance analysis methods rely on tree-
based models, permutation feature importance was proposed in Alt-
mann et al. (2010) as a broader alternative. The permutation feature
importance can be used for any fitted model such as neural networks.
This method is based on a simple idea that measures the decrease in the
model score (e.g., coefficient of determination R?) if the values of a
feature are randomly shuffled. This approach breaks the relationship
between each feature and the model output, thereby the decrease in the
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Fig. 5. Relative importance of temperature ranges in processing-induced
thermal histories for ultimate tensile strength (UTS) (Xie et al., 2021).
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model score can indicate the importance of the feature. Overall, feature
importance analysis is an effective tool to enhance explainability in
Mechanistic-Al Identifying dominant mechanistic features will benefit
process-structure-properties quantification and materials design in
advanced manufacturing because it not only provides a smaller set of
features required to be considered in the model, but also generates
physical insights into the mechanisms of manufacturing processes.

3.1.2. Utilizing data invariants

Another approach to integrating physical aspects of a process into
data is by exploiting the known data invariants, i.e. the aspects of data
that do not influence the output. Knowing data invariants allows the
development of databases that encourages Al model to be insensitive to
unimportant correlations in the data which might exist due to the
limited data size or biased source of information. There are generally
two approaches to inform the database of such invariants: data aug-
mentations and invariant representation.

In data augmentations, starting from a database, one can generate
multiple augmented copies of the data where the copies are altered in
invariant dimensions while keeping the output prediction similar to the
original database. Using this method, we increase the size of the data-
base and simultaneously encourage the machine learning model to
disregard irrelevant features and correlations as it trains to accurately
predict the response for original and augmented samples. The pinnacle
of data augmentation is in image processing where it is a common
practice to add altered versions of images to the database by applying
several operations such as flipping, rotations, scaling, shearing, crop-
ping, and varying levels of brightness and contrast.

Alternatively, we can transform the database into a representation
that is inherently invariant to physically irrelevant aspects of the data.
By training the machine learning model in the invariant representation
space, we ensure the results of the model remain the same with changing
irrelevant features of the data. A scientifically significant example of
such an approach is dimensional invariance, where we can develop
models that are insensitive to units and scales by representing features as
dimensionless numbers. A dimensionless number is a power-law
monomial of some physical quantities (Barenblatt, 2003). There is no
physical dimension (such as mass, length, or energy) assigned to a
dimensionless number. Using dimensionless numbers can significantly
simplify the problems by reducing the number of variables that describe
a physical phenomenon or process, thereby reducing the number of
experiments (or simulations) required to understand and design the
physical system. Furthermore, the dimensionless numbers are physically
interpretable and thus provide elegant insights into the behavior of
complex systems. Moreover, the dimensionless numbers do not change if
the measurement system of units is changed. This allows revealing a
scale-invariant relationship using small-scale experiments, which can
include small length scales, small time scales, or small energy scales.

3.2. Physics-informed model development

Machine learning models are the second pillar of AI solutions. The
development and training process of the ML models involve various
engineering choices, which can be tuned to embed physical insights or
constraints into the solution. Therefore, physics-informed model
development is a key ingredient in the proposed Mechanistic-Al
framework. Here, we present a collectively exhaustive categorization
of approaches to embedding physical knowledge into the model devel-
opment process including (1) structuring the problem into a multi-level
model where different modules are developed using a combination of
data-driven and physics-based models, (2) designing data-driven ar-
chitectures that integrate physics in their formulation, and (3) custom-
izing the model training process. Each category is explained in the
following subsections.
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3.2.1. Multi-level modeling

One fundamental approach to impose physics knowledge into an Al
solution is by structuring the original task into submodules, where each
submodule is responsible for predicting aspects of the overall model. The
submodules can be structured in parallel to compensate for each other’s
inaccuracies or in series to break the task into simpler and more phys-
ically traceable steps. There are two main benefits to adopting this
multi-level modeling method. First, the structuring of the modeling task
introduces aspects of physics in the model as it enforces predicting of
physically meaningful intermediate parameters. This is in contrast to the
data-driven end-to-end paradigm where flexible learning comes with the
cost of intermediate parameters that are, at best, very difficult to
interpret. Second, this multi-level modeling approach opens many pos-
sibilities to combine physics-based modeling methods with data-driven
methods. One can use physics-based modeling where reliable and effi-
cient solutions exist and compensate them with data-driven methods.
Therefore, instead of solely relying on experimental data from in-situ
and ex-situ measurements and monitoring to build models, hybrid
physics-based and data-driven modeling approaches can take advantage
of numerical simulations to provide additional insights that cannot be
easily captured through experiments. For example, maintaining con-
stant melt pool size in AM process is important to achieve consistent
properties of built parts (Gockel et al., 2014); however, it is difficult to
track melt pool evolution based on experimental data alone. On the
contrary, physics-based models can provide detailed information of melt
pool dimensions, as deployed by Gawade et al. (2021) and Zhu et al.
(2021).

An interesting example of multi-level methodology is presented by
Ren et al. (2021), where a two-level data-driven model is developed to
predict melt-pool size in the multi-track building of laser powder bed
fusion AM. The lower-level model captures the pre-scan initial temper-
ature for each layer and uses it as a feature in the upper-level model to
predict melt-pool size. Their model achieved a lower relative mean
squared error than the pure machine learning model, without the need
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for a large amount of training data. Wang et al. (2020) developed a
multi-level model for long-term prediction of tool wear in machining
processes. Their model consists of a physics-based model and a
bi-directional GRU data-driven model. The outputs of both models are
passed through a dense neural network regressor to produce the final
prediction, as depicted in Fig. 6. Du et al. (2021) developed a two-level
physics-based and data-driven model where six simulation-based in-
termediate parameters of volumetric energy density, surface tension
force, Marangoni number, Richardson number, pool aspect ratio, and
the solidification time are initially computed using a thermal-fluid
model; later, data-driven modeling is deployed to classify balling or
non-balling cases in laser powder bed fusion (L-PBF). In Du et al. (2020),
a steady-state computational model is used to compute temperature,
strain rate, traverse force, flow stress, shear stress, and torque in friction
stir welding, the outputs of the simulation is later used to predict the
binary tool failure with a high accuracy of 98%.

A current limitation of multi-level modeling that combines physics-
based and data-driven methods is that one needs to acquire data and
train each ML model individually, which drastically increases the cost of
data handling, development, and maintenance. This is because neural
networks training requires access to gradients while most conventional
physics-based models do not generate the gradient information. To
address this challenge, a research direction has recently emerged to
develop differentiable simulations, which allow a natural integration of
physics-based simulation methods with neural networks. Alpha Fold
(Senior et al., 2020) presented a breakthrough in solving the protein
folding problem by combining a neural network model to compute a
distance matrix between amino acid components with a differentiable
physics-based simulation to compute the geometry of the protein.
Recent studies have expanded differentiable simulations to fluid dy-
namics (Holl et al., 2020), computer vision simulations (Holl et al.,
2020), and robotics and control applications (Qiao et al., 2020).
Therefore, the extension of differentiable simulations to manufacturing
applications can open new avenues in Mechanistic-Al models that
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Fig. 6. A multi-level model that combines data-driven and physics-based modeling methods for tool wear prediction (Wang et al., 2020).
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seamlessly integrate physics-based and data-driven approaches.

3.2.2. Model architecture design

The second approach to embed physics in data-driven model devel-
opment is by developing customized formulations and architectures for
machine learning models that by design uphold certain physical attri-
butes. Some of the most popular neural networks (e.g., CNN, RNN,
attention mechanism) belong to this class. CNNs inherently process
neighboring information by passing a local kernel through the image.
RNNs (e.g., LSTM and GRU) are designed to pass long-term correlations
for an arbitrary number of time-steps without saturating the gradient
information through gated mechanisms. Arguably, one of the main
reasons behind the explosive adoption of neural networks is the flexi-
bility and scalability of their formulation that allows creating a wide
range of architectures for different applications. Introducing novel ar-
chitectures is an extremely active research field with every year
numerous new formulations and architectures are developed inspired by
biology (Hasani et al., 2020), physics (Owhadi and Yoo, 2019), or
heuristics of the task at hand (Cohen et al., 2019). For example, inspired
by biology, Hasani et al. (2020) developed a neural network formulation
that incorporates an abstraction of synapse interactions in neurons.
Their model is a neural ordinary differential equation (neural ODE)
architecture that incorporates conductance-based synapse formulations.
The authors show that they can perform time-series prediction with
higher stability and expressivity compared to conventional recurrent
neural networks.

In the manufacturing field, Mozaffar et al. (2021) presented a model
of AM thermal responses such that it generalizes to unseen complex
geometries. To achieve this, they developed a customized neural
network architecture that computes mesh-level dependencies inspired
by finite element calculations and aggregates neighboring interactions
to capture long-term evolution of thermal responses given the
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manufacturing process parameters such as laser power, toolpath, and
material properties. The architecture consists of graph neural networks
for mesh-based computations and recurrent neural network for time
series analysis, as depicted in Fig. 7. Zhang et al. (2020) developed a
recurrent neural network-based architecture which is augmented by an
attention mechanism to predict the tensile strength in fused deposition
modeling (FDM) processes. In their architecture, they exploit the layered
nature of AM processes and correspond each layer to one LSTM cell to
extract the relative influence of each layer on the final part behavior.
Saha et al. (2021) developed a new architecture, called HiDeNN, that
defines the weights and bias as functions of nodal positions and is
designed to find the optimal nodal positions by minimizing the potential
energy of mechanics problems. They embedded a scaling network into a
neural network to automatically discover dimensionless numbers from
experimental data, which is later passed through a dense neural network
layer to predict final parameters of interest (see proposed architecture in
Fig. 8). This method is applied in a fluid mechanics problem and
recovered Reynolds number Re and relative surface roughness Ra*. Note
that this method is currently limited to predicting dimensionless outputs
and it can be impractical to determine the number of dimensionless
parameters in many complex systems, which can be a worthwhile topic
for future improvements.

Another promising example is the Al-coupled crystal plasticity-based
modeling techniques, which is one of the virtual material characteriza-
tion methods that have been widely utilized to facilitate the research and
development of new materials and manufacturing methods. Ali et al.
(2019) used a fully connected neural network model coupled with a
rate-dependent crystal plasticity finite element method formulation to
predict the stress-strain and texture evolution of AA6063-T6. The run-
time comparison test shows that the developed model saves more than
99.9% of the computational time compared to the conventional crystal
plastic model. Ibragimova et al. (2021) designed a framework where an
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Fig. 7. A customized neural network architecture which uses mesh-level elemental and nodal features to compute local geometry-dependent interactions for thermal
modeling of AM processes. The network receives manufacturing process parameters as local features and predicts evolution of thermal responses over an arbitrary

number of time steps (Mozaffar et al., 2021).
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Fig. 8. A customized neural network architecture which embeds a constraint of physical dimensions of different input parameters in network design (Saha

et al., 2021).

ensemble of fully connected neural networks are trained with the dataset
generated from crystal plasticity simulations to model stress-strain and
texture evolution for face-centered cubic (FCC) family crystals under a
non-monotonic strain path. Each neural network in the ensemble was
used to predict a component of the output variables separately and a
comparison test was performed to design the architecture of the network
for each variable. The results show that the model predicts the stress
with an average error of less than 10 MPa and the texture evaluation less
than 1A°.

3.2.3. Customized model training

The third approach to integrating physical knowledge into data-
driven modeling is by customizing their training process. A prominent
research direction in this line is introduced by Raissi et al. (2017) in
which an additional loss function based on the residuals of physical
conservation laws is incorporated into regular neural network loss in
order to guide the training process of neural networks. This method of
customized training by augmenting the loss function is named as
physics-informed neural network (PINN) (Raissi et al., 2017). There are
two main advantages for PINNs: (1) it can seamlessly combine experi-
mental data with partially or fully understood physics-based models,
which means that model predictions can fit physical laws and experi-
ments at the same time (2) it only needs space and time coordinates as
inputs and does not require the corresponding output like velocity,
pressure, or temperature field because it optimizes model parameters by
minimizing a loss function including governing equations. That is to say,
unlike classical ML approaches, it does not need to prepare a training set
before training.

Specifically, PINNs are designed to find the mapping from co-
ordinates to a partial differential equations (PDEs) solution using feed-
forward neural networks. Based on automatic differentiation in
PyTorch or Tensorflow, we can easily compute derivatives with different
terms in PDEs and then obtain the residuals of conservation laws.
Experimental data prediction error can also be added in the loss function
as a soft penalty. Therefore, the general form of the loss function can be
written as:

Loss = ﬂlMSEpDE + ﬂzMSEda[a (1)
where MSEppg is the error that encourages lower residuals of PDEs on
sampled coordinates and MSEqq is the error of the approximation u(x, t)
at known data points. 1; and A, determine the importance of MSEppg and
MSE 444, respectively. Note that several variations of PINNs are proposed
for static, continuous dynamics, and discrete-time dynamics problems.
For example, in a continuous-time network, one can consider coordinate
x and time t as inputs and uniformly sample them inside the time and
space domain, while for a discrete-time network, one can consider co-
ordinate x as the input and the unrolled solution of u(i=1,2,..,n)as
the output.

PINNs have achieved promising results in fluid mechanics (e.g., Jin
etal., 2021; Cai et al., 2021), biology (e.g., Yin et al., 2021; Arzani et al.,
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2021), and environmental study (e.g., He et al., 2019). However, only a
few studies have attempted to deploy PINNs in manufacturing applica-
tions. Zhu et al. (2021) applied PINNs in three-dimensional additive
manufacturing (AM) process modeling to predict temperature field and
melt pool dynamics with a moderate number of data points. They
imposed the Dirichlet boundary conditions using a Heaviside function
instead of a soft penalty in the loss function to accelerate the training
process. The input of the network includes AM parameters, material
properties, and location of interests, and the outputs are the corre-
sponding temperature and melt pool velocities. Their model is validated
on 2018 NIST AM-Benchmark test data and reveals the potential for
PINNs in advanced manufacturing.

Apart from modifying the loss function, one can develop a custom-
ized curriculum for the training process in a transfer learning scheme.
Researchers studied methods to pre-train a surrogate model with a large
amount of simulated data and then fine-tune the model with a smaller
number of experimental data, (e.g., Jha et al., 2019; Moges et al., 2021).
The motivation behind this method is to take advantage of both exper-
imental data and simulated data while avoiding the drawbacks of each
data type, i.e., limited accuracy of simulation data and limited avail-
ability of experiments. Jha et al. (2019) developed a deep transfer
learning approach to achieve robust material property prediction, which
is shown in Fig. 9. They first pre-trained a data-driven model with a large
computational dataset (about 341 K samples) and later trained the
model with a small set of experimental data. They showed that
compared to training a model from scratch, transfer learning achieves
lower prediction error.

Moges et al. (2021) developed a hybrid modeling framework that
integrates physics-based data with measurement data to predict
melt-pool width in laser powder bed fusion processes. They generated a
set of melt pool data with different process conditions using a
high-fidelity CFD model and collected experimental data from ex-situ
melt pool optical images with similar process parameters. To build a
hybrid model, they first trained a surrogate model based on simulation
data using polynomial regression. They further train their model to
minimize the residual error in experiment results using unbiased adap-
tive sampling between simulation and experimental data, which led to
more accurate model compared to the physics-based simulations. The
schematic of their hybrid modeling approach is shown in Fig. 10.

Interestingly, Kapusuzoglu and Mahadevan (2020) studied three
variations of physics-informed model development approaches
mentioned in this section for fused filament fabrication (FFF) processes.
Their simulated data came from a sequential multiphysics model
(thermal model and polymer sintering model) which can generate a
dataset about porosity and bond quality under different process condi-
tions. They included a small number of experimental data and studied
eight separate hybrid modeling methods in three categories. Their re-
sults show that incorporating physical constraints in the loss function
enables the model to produce the most physically consistent results,
while the multi-level modeling and hybrid training methods lead to
suboptimal results.
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Fig. 9. Deep transfer learning of material property prediction by training from large computational datasets (such as Open Quantum Materials Database (OQMD))
and fine-tune the model with a small number of measurement data (Jha et al., 2019).
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Fig. 10. Workflow for hybrid modeling approach to predict melt-pool width in
laser powder bed fusion processes (Moges et al., 2021).

Finally, despite the progress and advantages of customized modeling
development methods, such as PINNs, currently there are important
limitations to these approaches: (1) many complex system does not have
a closed form of governing Eq. (2) experimental data is usually scare and
noise and how to combine low-fidelity with high-felity is still an open-
question; and (3) the optimization and network design require trial
and error with many hyperparamters.
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3.3. Data-driven discovery in manufacturing

Most of the advanced manufacturing processes have multiphysics
and multiscale nature, in which we know some physics while missing
some information about boundary conditions and governing equations
(Karniadakis et al., 2021). For example, in laser-based manufacturing,
high energy laser beam interacts with a substrate material, which could
lead to intensive vaporization of the melted material (Gan et al., 2021).
We still do not fully understand the complex interactions between laser,
liquid material, vapor plume, and possible laser-induced plasma.
Despite the progress in the development of models to quantify the
complex manufacturing processes and match the experimental mea-
surements, this development process can be tedious and
time-consuming, involving proposing a hypothesis, examining model
assumptions, selecting appropriate equations and boundary conditions,
and developing numerical methods to solve the problems. In addition,
sophisticated calibration techniques are required for tuning unknown
parameters in the models.

Recent advances in machine learning and AI have introduced an
alternative methodology, called data-driven discovery, which promises
to discover governing equations and underlying properties of a system
directly from collected data. This new methodology can significantly
accelerate the quantification of the hidden physical mechanisms and
interactions underlying the manufacturing processing. The identified
compact equations or laws could enable efficient process and materials
design in advanced manufacturing. In this section, we review several
rapidly evolving methods for discovering (1) differential equations and
(2) dimensionless scaling laws from data. Furthermore, we discuss how
to apply those mathematical methods to advanced manufacturing fields.

3.3.1. Data-driven discovery of differential equations

A milestone in the field of data-driven discovery of differential
equations is the sparse identification of nonlinear dynamics (SINDy)
proposed by Brunton et al. (2016). It was inspired by an earlier work
(Schmidt and Lipson, 2009) on extracting hidden equations of a
nonlinear dynamical system from data using symbolic regression (Koza,
1992). SINDy is a machine learning algorithm that extracts dynamical
systems, described by ordinary differential equations (ODEs) or partial
differential equations (PDEs), from collected data. Time-series data can
be used for discovering ODEs as expressed in Eq. (2), where x is the state
variables evolving in time t needed to describe the system and f(-) is an
unknown function to be identified from data. Spatio-temporal data are
required to discover PDEs as expressed in Eq. (3), where u is a
spatio-temporal field evolving in space and time.
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Given a set of time-series data or spatio-temporal field data, SINDy
aims to discover a sparse set of governing equations out of a pre-defined
pool of possible mathematical forms that could describe the data. SINDy
can identify ODE or PDE equations that are sparse and have as few de-
grees of freedom as possible, similar to the Lorenz equations or Navier-
Stokes (N-S) equations. This is in contrast with most modern over-
parameterized machine learning methods, such as neural networks.

A schematic of the SINDy algorithm is illustrated in Fig. 11 using a
simple example of a Lorentz system. Assuming that we only have access
to observed data from the Lorentz system (i.e., measurements of the
state x, y, and z in time). One can arrange this data into a matrix X,
where every row of X is a measurement in time. We can also compute the
state derivatives x, y, and z using numerical methods (e.g., finite dif-
ferences or Total Variational Derivative Chartrand, 2011), and similarly
arrange them into a matrix X. In the SINDy method, we create a library
matrix that consists of all possible terms that describe the dynamics of
the system, starting with linear terms and gradually expanding to
nonlinear expressions. For example, the library matrix @(X) can consist
of x, y and z, as well as nonlinear terms X2, Xy, X2, y2 and up to the
fifth-order polynomials. Ideally, we want our library ©(X) to include all
dominant terms that are required to describe the left-hand side de-
rivatives X, y, and z. It is noted that the terms in the library (gray col-
umns in Fig. 11) O(X) can be computed from the measured data x, y, and
z. Now, the problem is reduced to a sparse optimization problem with
the objective to find the fewest terms in this library of candidate dy-
namics @(X) that best describe the time derivatives X. Several sparse
optimization algorithms can be deployed to find the sparse coefficient
matrix =Z. Examples of the sparse optimization algorithms include lasso
(Tibshirani, 1996) (i.e., linear regression with L-1 norm regularization)
and sequential threshold least-squares (STLS) (Brunton et al., 2016).
Finally, one can use the selected terms in @(X) and corresponding co-
efficients in £ to reconstruct a minimalistic model of the dynamical
system. In this case, the authors showed that they can recover the
complete form of the Lorentz equations.

Compared to the traditional methods, such as brute force search
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(Korf, 1999) and the genetic programming method (Schmidt and Lipson,
2009), the SINDy algorithm is more efficient and scalable (Kaheman
etal., 2020). Although the dynamical equations are assumed to be linear
combinations of nonlinear candidate terms in the library, this assump-
tion is reasonably valid for many engineering dynamical systems. Many
improvements and extensions are proposed to the SINDy algorithm to
discover PDEs (Rudy et al., 2017), identify dominant coordinate systems
(Champion et al., 2019), and handle with time-varying coefficients (Li
et al., 2019a). Importantly, the identification of multiscale models for
anisotropic material responses is studied in Brunton and Kutz (2019).
Fortunately, these methods are widely available for researchers as the
authors released an open-source Python library of the algorithms,
Pysindy (de Silva et al., 2020), and Steven Brunton, the first author of
the SINDy paper, has made a series of well-made tutorial videos on
YouTube (Brunton, 2021).

Recently, the SINDy algorithm and its variants have been applied in
several sciences and engineering fields, including fluid mechanics
(Brunton et al., 2020b), biology (Mangan et al., 2016), system control
(Kaiser et al., 2018), materials chemistry (Bartel et al., 2018), aerospace
engineering (Brunton et al., 2020a), and magnetohydrodynamics
(Kaptanoglu et al., 2020). However, very few people successfully apply
the SINDy or other data-driven discovery methods to advanced
manufacturing fields and address the unique challenges of this inter-
disciplinary research. Note that the accuracy of the identified equations
and expressions highly depends on the data quality. In-situ, high-speed,
high-resolution measurement data is invaluable for the data-driven
discovery of manufacturing processes. To discover
experimentally-validated dynamical systems (i.e., governing ODEs and
PDEs) underlying the manufacturing processes, in-situ measurements
including time series (e.g., temperature series in time) or
spatio-temporal fields (e.g., strain fields in space and time) data are
required. Examples of in-situ measurements that are appropriate to be
analyzed using the SINDy algorithm include high-speed photography
(Chen et al., 2013), infrared thermography (Yang et al., 2017), syn-
chrotron X-ray imaging (Zhao et al., 2017), X-ray computed tomo-
graphic (CT) (Thompson et al., 2016), in-situ X-ray Diffraction (XRD)
(Oh et al., 2021), particle image velocimetry (PIV) (Ho et al., 2020), and
digital image correlation (DIC) (Xie et al., 2019).
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3.3.2. Data-driven discovery of dimensionless scaling laws

Dimensionless numbers and the relationships between them, i.e.,
dimensionless scaling laws, play a critical role in scientific fields. More
than 1200 dimensionless numbers have been discovered in an extremely
wide range of fields, including physics and chemistry, fluid and solid
mechanics, thermodynamics, electromagnetism, geophysics and ecol-
ogy, and various engineering disciplines (Kunes, 2012). In advanced
manufacturing, much effort has been directed at identifying process-
and material-related dimensionless numbers and scaling laws to simplify
the highly multivariable manufacturing processes with multiple inter-
acting physical phenomena. Some of the dimensionless scaling laws are
claimed to be “universal®, which apply broadly and remain accurate for
different materials, processing conditions, even manufacturing pro-
cesses. For example, a recent study identified a universal dimensionless
scaling law for laser-induced vapor depression morphology (i.e.,
keyhole aspect ratio) (Gan et al., 2021) as shown in Fig. 12.

Many scaling laws are provided in the field of advanced
manufacturing and have been validated by experimental data. The
predicted manufacturing variables include relative density of fabricated
parts (Rankouhi et al., 2021), lack-of-fusion porosity (Gan et al., 2021),
laser-induced melt pool geometries (Yang et al., 2021), laser absorp-
tivity (Ye et al., 2019), keyhole geometries (Wang and Liu, 2019),
keyhole porosity (Gan et al., 2021), hot tearing susceptibility (Monroe
and Beckermann, 2014), dimensionless cooling rate (Bontha et al.,
2006), and dimensionless thermal strain parameter (Knapp et al., 2017).
Most of the mentioned dimensionless numbers and scaling laws are
identified using dimensional analysis (Tan, 2011), which carefully ex-
amines the units of the physical systems to identify a set of dimensionless
numbers that constitute the essential and scale-invariant physical re-
lationships (Jofre et al., 2020). However, the classical dimensional
analysis based on Buckingham # theorem (Buckingham, 1914) has two
well-known limitations: (1) the derived dimensionless numbers are not
unique, and (2) the relation between dimensionless numbers (i.e.,
scaling law) remains unknown for general cases, and thus it is impos-
sible to measure the relative importance of the dimensionless numbers
or identify a dominant set of dimensionless numbers. Therefore, the
conventional approach can be time-consuming as it requires multiple
trial and error iterations.

The classical dimensional analysis can be complemented by
advanced data science and Al i.e., data-driven dimensional analysis
(Constantine et al., 2017). This methodology provides a systematic way
to integrate data science and dimensional analysis and overcome the
limitations of the classical dimensional analysis and discover
high-quality universal dimensionless scaling laws from data. Mendez
and Ordonez (2005) proposed an algorithm called SLAW (i.e., Scaling
LAWSs) to identify the form of a power law from experimental data (or
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simulation data). The proposed SLAW combines dimensional analysis
with multivariate linear regressions. This approach has been applied to
some engineering areas, such as ceramic-to-metal joining (Mendez and
Ordonez, 2005) and plasma confinement in Tokamaks (Murari et al.,
2015). This algorithm assumes the relationship between the dimen-
sionless numbers obeys a power law, which is invalid in many applica-
tions. For example, the relationship between friction factor and
Reynolds number in the turbulent regime of the pipe flow dynamics is
not a power law. Constantine et al. (2016) proposed a rigours mathe-
matical framework to estimate unique and relevant dimensionless
groups. Active subspace methods are connected to dimensional analysis,
which reveals that all physical laws are ridge functions (Constantine
et al.,, 2016). They demonstrated their algorithms using both laminar
and turbulent viscous pipe flow examples. Their method is applicable to
idealized physical systems meaning that (1) the experiments can be
conducted for arbitrary values of the independent input variables (or
dependent input variables with a known probability density function),
and (2) noises or errors in the input and output are negligible. Saha et al.
(2021) proposed a Hierarchical Deep Learning Neural Network
(HiDeNN) to combine deep learning and dimensional analysis to
discover dimensionless numbers from experimental data. This method is
recently generalized as a methodology, called dimensionless learning
(Xie et al., 2021), in which the principle of dimensional invariance is
embedded in machine learning to automatically discover dominant
dimensionless numbers and scaling laws from data. The proposed
approach has been demonstrated using noisy experimental data
collected from a wide range of problems including turbulent
Rayleigh-Benard convection, vapor depression dynamics, and porosity
formation in additive manufacturing.

Data-driven dimensional analysis is still an active field. Much effort
is required to improve the efficiency, interpretability, predictivity, and
robustness of the algorithms. Using the developed algorithms to explore
high-quality manufacturing data, many universal dimensionless
numbers and scaling laws are expected to be discovered, which can
provide elegant insights for manufacturing process optimization, defects
elimination, new materials development, and mechanical performances
improvement.

4. Al in manufacturing design

In design tasks, we attempt to identify the process of building a part
that meets a set of requirements. Design in manufacturing has tradi-
tionally been studied in two separate steps: (1) conceptual design and
(2) process design. The conceptual design step refers to the envisioning
of the geometric parts and materials. In practice, the conceptualization
step is a mostly deterministic process that is performed using computer-
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aided design (CAD) software. The process design step, on the other hand,
realizes a manufacturing setting to achieve the developed conceptual
design. Process design involves several steps including manufacturing
process selection, process parameters optimization, and system-level
optimization given machine availability, supply chain, and main-
tenance-often developed using computer-aided manufacturing (CAM)
and computer-aided process planning (CAPP) tools. The optimality of
the design involves multiple competing factors such as quality of the
part under various performance metrics (e.g., strength, geometric ac-
curacy, thermal behavior), cost, production rate, and the robustness of
the solution to defects and disturbances.

Design has remained one of the core engineering and scientific
pursuits due to several challenging aspects of the process. The infor-
mation involved in the design process is often unstructured, high-
dimensional, noisy, and sparse; thus, making the mapping between re-
quirements and design difficult to discover. Manufacturing involves
many discrete choices and nonlinear constraints, which generates poor-
conditioned optimization settings. Additionally, there is a nontrivial
level of uncertainty in the design process (e.g., due to machine-specific
behavior, discrepancies in modeling tools, and unknown material
characteristics) that make the process stochastic. Therefore, the design
process requires years of experience to efficiently produce reliable parts
and involves tedious and expensive rounds of trial and error.

Traditionally, designers use Design for Manufacturing (DFM)
guidelines to reduce the complexity of the design process. These
guidelines are based on rough characteristics of the design geometric
components and lack the complexity to adequately analyze complex
designs. Additionally, existing DFM does not offer a unifying set of
principles for manufacturing processes; rather, the rules are vastly
different for each process. For example, several studies developed
guidelines that are only applicable to specific types of metal-based AM
processes (e.g., Kranz et al., 2015; Walton and Moztarzadeh, 2017).
Therefore, a design engineer needs to make critical decisions about the
manufacturing process as early as conceptualization in order to use such
DFM tools, which makes various tasks within conceptual and process
design highly intertwined. Other conventional attempts to automate the
design process build upon detection systems with manually engineered
geometric features (e.g., Han et al., 2000; Kazhdan et al., 2004) or so-
phisticated manufacturing ontologies (e.g., Jang et al., 2008; Dinar and
Rosen, 2017), both of which are difficult to adapt and scale to new
processes as they heavily rely on expert knowledge. In this section, we
advocate for novel Al solutions in manufacturing design problems as Al
provides a unique capability to explore massive design spaces and
complex interactions common in manufacturing processes. We look for
design methods that offer better performance than the conventional
approaches or reduce the number of steps in the design process by

Conceptual Design
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integrating multiple tasks, as shown in Fig. 13.

We categorize publications on Al in manufacturing design into two
classes of (1) direct mapping of functional requirements to design pa-
rameters, and (2) inverse design optimization. Noteworthy de-
velopments and successful examples in each category are elaborated
upon in the following subsections with a focus on methods to incorpo-
rating physical mechanisms and constraints of manufacturing processes
into Al formulations. Note that while modeling methods can greatly
facilities in design tasks, as we discussed modeling advances in Section
3, here, we exclude those contributions.

4.1. Direct mapping for design

As the ultimate goal of design is to find optimal design parameters
given functional requirements, a natural approach is to directly map
requirements to parameters. This is particularly a compatible concept
with modern deep learning methods since they are known for extracting
complex and unsuspected correlations between various data structures.
Therefore, several compelling research areas have recently emerged that
fit into this design category. A popular approach to analyze
manufacturing and material systems is to hierarchically model the re-
lationships between the manufacturing process parameters, material
structure, properties, and performances (PSPP) (Olson, 1997). There-
fore, Al can be used to model any of such causal relationships in the
reverse direction, producing a design tool.

Jiang et al. (2020) took a supervised learning approach to directly
map the strain-stress response curve to the design parameters of unit
structures geometries in a polymer jetting process. They used the data
extracted from 300 parts to train a fully connected neural network that
predicts the desired design of unit structures in a customized ankle brace
design. Their design framework with reverse PSPP connections is
depicted in Fig. 14. Hashimoto and Nakamoto (2021) used machine
learning to design the process plan for machining processes. The authors
developed a U-net architecture performing voxel-wise segmentation on
243 3D geometries, which is labeled according to past machining pro-
cesses performed by skilled experts. The inputs and outputs of the
network are one-hot encoded and include the voxel geometry, accuracy
measures (with two states for low and high accuracy requirements),
cutting tool type (with two states for ball and flat endmills), and toolpath
pattern (with three states for contour line, scanning-line, and
along-surface patterns). In a hierarchical decision-making process, first,
the voxel-wise cutting tool type is predicted given the geometry and
required accuracy. Later, the cutting tool type is used along with other
inputs to decide the toolpath pattern. The voxel-wise predictions are
aggregated using a majority voting method to produce the final decision
for each major machining surface. Zhao et al. (2020) proposed a

Process Design y
« Process sequence selection

Conventional Functional - * Idea generation - I - - Manufacturing
Desian Requirements * CAD design l'glcilcr;%snd process parameter Instructions
9 * Material selection " N
« Process efficiency optimization
Al-Enabled Decision Making and Optimization
* Inverse process-structure- < Continuous space §
property-performance optimization and surrogate \
Functional g mapping modeling - Manufacturing
Al-Enabled Requirements * Manufacturing guideline + Sample generation of design Instructions
na. e extraction candidates |
Design « Sequential mapping with * Generative methods for — =

reinforcement learning

design representation and
creation

Fig. 13. Design in conventional design includes several disconnected steps in conceptual design and process design (top). Al-enabled design methods that aim to
autonomously optimize the design process and integrate several design tasks (bottom).

14



M. Mozaffar et al.

Process
Raw material properties (melting point,

thermal conductivity, etc.)

Equipment (FDM, DMD, SLA, etc.) Melting point () ,‘ ik ON Output
O iy O\rer

Fabrication parameters (speed, layer height,

temperature, etc.) [
- -’
Machine learning = %

Output design >

b

Requirements

Convolutional layers

2w

Input
structure data
(e.g. image)

Fre
PN

CNN example architecture for structure-property modeling

Journal of Materials Processing Tech. 302 (2022) 117485

Hidden
layer 1

Hidden
layer L-1

0 acceptable
L1 voids

Machine learning architecture for
process-structure modeling

Structure
Spatial distribution
Voids
etc.

Fully-connected

layers .
¥ Classification

layer
> I >

Skip connection

Feature extraction}

Fig. 14. Conventional process-structure-property (PSP) modeling establishes a causal link between manufacturing and material parameters. Using ML, each link
within the PSP relationships can be modeled in the reverse direction to produce a design tool. For instance, the desired mechanical properties can be linked to

required microstructure descriptors (Jiang et al., 2020).

data-driven method to select a manufacturing process between milling,
turning, and casting based on shape, quality, and material properties.
They compute a histogram based on various attributes of the CAD ge-
ometry, including curvatures distribution, rotational symmetry, and
pairwise surface point distances. The geometric descriptors along with
material properties (e.g., yield strength, Young’s modulus, thermal
conductivity) and quality attributes (global surface roughness and
tolerance) are fed into decision-tree classifiers and trained to achieve an
accuracy of 88% on complex geometries while training on 81 parts.

As another intriguing application of supervised learning in design,
recent studies explored the capability of machine learning to better
extract automated guidelines for manufacturing processes. Williams
et al. (2019) developed a deep learning model to evaluate the manu-
facturability of additively manufactured parts. Their model, trained over
72,000 synthetic samples, receives voxelized CAD geometries, and
generates manufacturing metrics such as support mass and build time.
Guo et al. (2021) assessed the manufacturability of metal cellular
structures in the direct metal laser sintering process, where parts with
severe warpage due to residual stress, cracking, and delamination are
classified as non-printable. This research trains a hierarchical autoen-
coder to extract dense features of the voxelized geometries. Further-
more, to effectively train a convolutional neural network classifier based
on limited experimental data, they proposed a semi-supervised method,
in which a generative adversarial network is trained to differentiate
between labeled experimental data, unlabeled experimental data, and
synthesized data; hence, forcing the network to maximally utilize
valuable experimental data. Zhang et al. (2018) trained a network with
3D convolutional layers to recognize machining features in the vox-
elized space. The model is trained over 144,000 geometries using an
incremental learning approach and achieves an accuracy of 97%. To
assist the conceptual design process, Kwon et al. (2021) developed a
multi-modal search to retrieve inspirational 3D design examples based
on text keywords, geometric appearance, and functional similarities.
Using a neural network-based architecture and contrastive learning,
they extract embeddings of text and visual queries, in which parts with
similar attributes map to close embeddings in the design latent space.
For new search inquiries, the new embedding values are extracted and
the database sample closest to them in the embedding space is retrieved.

There is a key drawback in the existing supervised methods for
design. Manufacturing processes commonly involve many constraints
that limit the feasible space of design parameters, performances, as well
as the path to reach them. The correlational direct mapping methods in
the literature disregard such constraints and, therefore, can easily lead
to unfeasible solutions. This is particularly challenging as many of such
constraints are complex and cannot be easily formalized. Reinforcement
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Learning (RL) offers a plausible solution to this problem. In RL an agent
can learn to optimize an arbitrary reward function by exploring the
design space. By shaping the rewards in a way that we penalize
constraint violations, the agent can implicitly learn about the constraints
of the design space and avoid unfeasible solutions. RL methods are well-
suited in applications with a sequential decision-making nature as they
exploit the temporal aspects of the agent interactions and identify the
influence of individual actions on the final performance (known as the
credit assignment problem). Dornheim et al. (2021) developed an RL
agent that finds multi-step processing paths to reach the desired
microstructure in metal forming processes (see Fig. 15). The state rep-
resentation is defined as a transformation of orientation distribution
function (ODF) using generalized spherical harmonics. This trans-
formation considers the symmetry conditions in microstructures and
thus allows for a more condensed representation. To avoid sparsity in
the reward structure, they introduce a potential-based dense reward
function based on the distance between the current and target micro-
structural patterns. They deploy a model-free agent, based on the deep Q
network (DQN) formulation, to dynamically adjust the displacement of
the die in the process with the aim to find a path from an initial structure
to one of the equivalent target structures. Interestingly, the proposed RL
framework learns the most achievable target structure by the agent
along with the path to process path to reach it.

Mozaffar et al. (2020) utilized the RL framework for the tool path
design task in additive manufacturing. They build upon three predom-
inant RL algorithms, namely DQN, PPO, and SAC, to design tool paths
for arbitrary section geometries in a pixelized space and showed that RL
methods can surpass the performance of engineered zig-zag toolpath
strategies common in industrial practices when defining a dense reward
structure is possible. However, they point out that model-free RL algo-
rithms struggle in scenarios with sparse rewards. Lee et al. (2019)
investigated the performance of a variation of the DQN method, double
deep Q-network, in engineering design of microfluidic devices. In their
papers, the RL agent designs the location of several micro-pillars to
achieve an arbitrary desired flow pattern in pixel space. They deploy a
reward-shaping strategy that provides small rewards encouraging the
agent to approach the goal and a large reward for finding acceptable
solutions. Additionally, they demonstrate that the trained agent can be
fine-tuned to outside of training problems (e.g., different numbers of
micro-pillars) with minimal refinement training.

4.2. Inverse design optimization

Another approach to design in manufacturing is to follow the cau-
sality link that produces the performance and formulate it as an
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optimization problem where one iteratively modifies the design pa-
rameters to minimize an objective function related to the part perfor-
mance. Many have adopted and applied PSPP as a framework to model
material evolution in manufacturing processes. However, as the for-
mulations for linking part behaviors are rarely differentiable, gradient-
based optimization tools are not readily applicable. Additionally,
gradient-free methods can be computationally expensive as they scale
poorly to high-dimensional problems. A well-established practice is to
develop surrogate models on top of the physics-based simulation tools to
provide inexpensive access to gradients and perform the optimization in
the surrogate space. Shahan and Seepersad (2012) developed such a
surrogate model using a Bayesian network classifier to improve the
design of unmanned aerial vehicles. A similar method is used in Mat-
thews et al. (2016) to optimize the stiffness of metamaterials. Pacheco
et al. (2003) proposed a multi-stage Bayesian surrogate in a thermal
design problem.

Recently, the same philosophy is combined with modern machine
learning and optimization methods. Tang et al. (2021) developed a
method to design an AM-built shoe sole with minimum pressure points
while simultaneously adjusting the overall geometry and porous struc-
ture. They divide the part into sub-regions to allow applying different
patterns in sensitive areas. A Gaussian Process Regression is trained to
predict the parametrized lattice behavior using 40 simulation samples,
and a sequential linear programming optimizer is deployed to find pa-
rameters leading to a decreased level of pressure points. Finally, they
compile the proposed design by connecting sub-region lattice structures.
Mohamed et al. (2021) optimized the dimensional accuracy of cylin-
drical parts in fused deposition modeling processes. They used a
second-order definitive screening design method to generate a design of
experiment space, capturing 99% of the variation in the response with a
small number of samples, train a fully connected neural network, and
optimize the process on the developed surrogate model.

While arguable a less popular approach since the rise of the neural
networks, evolutionary-based optimization methods have also been
studied for the manufacturing design tasks in the literature. Ghosh and
Martinsen (2020) deployed and benchmarked various evolutionary
optimization methods, including Non-Dominated Sorting Genetic Al-
gorithm (NSGA-III) and Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) for process design in manufacturing. They
demonstrated that using a Gaussian kernel regression surrogate model,
they can optimize 11 different manufacturing design tasks in the liter-
ature involving turning, grinding, heat exchanger tube, milling, abrasive
water jet machining, dry turning, drilling, welding, and emulsification
processes. A similar concept is demonstrated in other manufacturing
design tasks by Abbas et al. (2020) and Vukelic et al. (2021).

Differentiable physics-based approach (Hu et al., 2019), as discussed
in Section 3.2.1, is an alternative to surrogate modeling. In differentiable
simulations, the gradients of an arbitrary computational path can be
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efficiently computed using the automatic differentiation (AD) formula-
tion. This enables high-dimensional gradient-based optimization
without the need for surrogate modeling and provides natural integra-
tion with neural networks which can be particularly helpful in design
tasks. An example of this approach in manufacturing is presented by
Mozaffar and Cao (2021) where a differentiable simulation for thermal
analysis of additive manufacturing and demonstrated that the
physics-based simulation combined with neural networks can design
time-series laser power to achieve desired thermal and melt pool
behavior.

Instead of optimizing toward a single design, many design applica-
tions can benefit from methods that generate multiple promising can-
didates. Paul et al. (2019) developed a method that designs a spectrum
of microstructures with optimized thermal expansion, stiffness coeffi-
cient, and yield stress. In their approach, a database of high-quality
microstructures, represented by ODF, is initially generated using engi-
neering heuristics. The performance of microstructures in the database
is evaluated and a random forest model is trained that predicts perfor-
mances based on samples in the top 10% and bottom 10% performance
brackets of the database. Analyzing the trained random forest model
allows to automatically generate insights on the most promising explo-
ration directions and re-populate the database with high-performing
samples. By repeating with process iteratively, they accumulate
high-quality design samples over time. Tamura et al. (2021) imple-
mented a sampling-based method to optimize process parameters in
powder manufacturing (gas atomization process) for Ni-Co-based su-
peralloy powder in turbine-disk applications. They used an iterative
process where a Bayesian model is trained, potential promising di-
rections are detected, and used to generate new data. Their method
resulted in an increased yield of 77.85% from 10%-30% in traditional
methods and reduced cost by 72%. More generally, the active learning
approach, i.e., using trained models to dynamically adapt and augment
the training database, has been explored to complement both surrogate
modeling and sampling-based methods, as demonstrated by Lookman
et al. (2019) and Tran et al. (2020).

Recent advances in generative models such as variational autoen-
coders (VAEs) (Kingma and Welling, 2013) and generative adversarial
networks (GANs) (Goodfellow et al., 2014) have opened new avenues in
manufacturing design. VAEs simultaneously train an encoder and a
decoder neural networks to reconstruct the input while the information
is passed through a computational bottleneck. GANSs, on the other hand,
train two competing networks where a generator attempts to produce
samples that are indistinguishable from real data while a discriminator
learns the discrepancies between the synthesis data from the generator
and original data in the database. Both VAEs and GANs produce three
valuable assets for engineering design: (1) a latent space that condenses
the implicit restrictions and correlations of the design space, (2) a gen-
erator/decoder neural network that can map the latent space into the
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original design space, and (3) a regressor that can be used in various
feature extraction, dimensionality reduction, and classification tasks.
While VAEs and GANs offer similar capabilities, VAEs are more known
for extracting meaningful and interpretable latent spaces while GANs
generally perform better in generating realistic samples.

Generative models can be treated as a source of new designs. To
improve the functional performance of generative models, one can
iteratively update the database by performance filtering. Shu et al.
(2020) developed a self-updating approach where starting from a
database consisting of geometrical designs, a GAN model is trained to
generate new samples. The new samples are evaluated using a
physics-based simulation and the top-performing samples replace parts
of the original database. By repeating this process, the design database
would be populated with higher quality examples which subsequently
leads to a performance-driven GAN model. Oh et al. (2019) optimized
for both engineering performance and aesthetics by combining topology
optimization and generative modeling in a 2D wheel design case. In their
proposed framework, they iteratively apply topology optimization on
the GANs output and the original database to create high-quality designs
and train GANSs to generate samples with high novelty. This process is
repeated until a substantial amount of novel and acceptable designs are
generated.

Another exciting approach to introduce physical knowledge into
generative models is to augment the neural networks and training pro-
cess with additional terms representing their performance. Chen and
Ahmed (2021) developed a GAN model that simultaneously maximizes
the diversity, novelty, and performance of generated samples. They
augmented the standard GAN loss function with additional terms using
determinantal point process (DPP) formulation which encourages the
generative network to produce high-quality samples while reducing
similarity in a batch of samples. They demonstrate their method for the
conceptual design of the airfoil cross-section. Nobari et al. (2021)
modified the GAN loss formulation to impose range constraints on 3D
geometries and demonstrated their method on producing novel air-
planes with an arbitrary range of value and aspect ratio. In Wang et al.
(2020), the authors trained a VAE to encode microstructural information
into a low-dimensional latent space. They augmented the VAE network
that reconstructs a pixelized RVE with a regressor that predicts its
stiffness matrix and showed that the latent representation provides a
meaningful interpolation of the topological and mechanical properties.
As demonstrated in Fig. 16, this method enables producing functionally
graded designs in multiscale systems.

Characteristics of
Latent Space
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5. Al in manufacturing process control and monitoring
5.1. Al in manufacturing process control

Process control is an essential step in manufacturing to ensure the
quality and efficiency of a manufacturing process. Due to the strength of
Al methods in automatically and efficiently extracting information from
big data, Al methods can be applied in manufacturing process control in
two primary ways: (1) control-oriented data-driven modeling methods
and (2) autonomous decision-making approaches.

A control-oriented model is a model that describes the system
behavior and is also suitable in model-based controllers (Landers et al.,
2020). As we already discussed previously, physics-based analytical
models are often not complete enough to accurately describe
manufacturing systems due to their complexity from multiple process
variables and uncertainty in the environments. The data-driven meth-
odology can provide an interesting alternative as it can accurately es-
timations complex states of the dynamical system. Additionally, using
data-driven models can be more efficient than solving the full-scale
physical-based models, which is an imperative criterion in control tasks.

Several early works have used neural networks to develop data-
driven models for manufacturing processes, where the relationship be-
tween the input process parameters and output variables is described as
a static model, e.g., cutting force (Tandon and El-Mounayri, 2001) and
surface finish (Ozel et al., 2007) in machining, springback in metal
forming (Viswanathan et al., 2003). While these static models provide a
basic understanding of the process and could be used for optimizing
process parameters (Landers et al., 2020), there are not suitable for
designing advanced model-based controllers, e.g., model predictive
control (MPC), which requires a dynamic model of the process. The
dynamic model of a process can be written as:

Y1 =f (k, w) ()]

where yi and uy are the output state and control signal at step k. Once the
dynamic model is known, the future output state can be predicted. MPC
determines the control signal at each time step by optimizing the tra-
jectory over a fixed horizon H:

min L(Ve, e, Yer1, Uit 15 Vi, Ues i)
St Vi Uiy Virts Uit --Yicr o> ) < 0

(5)

where L is the cost function and ¢ represent the constraints.
Data-driven models can be applied to identify the dynamics of
manufacturing processes for model-based control applications. A stan-
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dard linear model that has been used in manufacturing process control is
the auto-regressive model with exogenous inputs (ARX). A general ARX
model could be expressed as:

p

Ng
Vi1 = E AiYy1-i + E bittgy—i
=1 =1

where a;, b; are the coefficients to be trained. Least-squares regression is
usually used to identify the relative coefficients by minimizing the
prediction error in the training dataset. An example of this application is
presented in (Xia et al., 2020) where they developed a feedback control
system to control the melt pool width for the wire arc additive
manufacturing process. ARX model is used to model the dynamic rela-
tionship between the wire feed speed and the melt pool width and an
MPC controller is designed to control the melt pool width.

Using a linear model like ARX can lead to satisfying results if the
dynamics in simple and low-dimensional. However, most manufacturing
systems are relatively complex with nonlinear effects. Potocnik and
Grabec (2002) used nonlinear MPC to control the cutting process. A
neural network is trained to model the process dynamics and the genetic
algorithm is used to solve the nonlinear optimization problem. The
NN-based nonlinear MPC is demonstrated in a simulated cutting process
to improve the surface quality by preventing tool oscillations.

In the control field, researchers have studied advanced data-driven
models such as Gaussian Processes (GPs) (Kocijan et al., 2004), Koop-
man Operator (Mamakoukas et al., 2020), SINDy (Fasel et al., 2021),
and deep neural networks (Lenz et al., 2015) for dynamics system
identification. While most of these approaches have been designed in
robot control, many of them can be promising methods in
manufacturing applications because of the strength in accuracy or
training sample efficiency. Lenz et al. (2015) proposed a deep neural
network structure for learning the dynamics in the food cutting process.
A recurrent structure called Transforming Recurrent Units (TRU) is
designed to form the long-term latent features. By incorporating the
features from long-term information, short-term dynamic response, and
the current control inputs, the dynamic relationship is modeled. A
multi-stage pre-training method is proposed where an auto-encoder is
used to initialize the non-recurrent parameters in TRU and a then model
is pre-trained for single-step prediction before the actual training pro-
cess. The experimental results show that the proposed model improved
the accuracy by 46% compared to the standard recurrent neural network
in modeling the dynamic relationships in the food cutting process. Kaiser
et al. (2018) proposed SINDy-MPC framework where SINDy is used to
identify the dynamics for MPC application. The results show that
compared to regular neural networks, SINDy has the strength that it
requires a relatively low amount of data. It is also more robust on data
with noise and takes lower execution time. Edwards et al. (2021)
developed a software package named AutoMPC. ARX, GPs, Koopman
Operator, SINDy, and neural network models are implemented in the
package and an auto-tuning method is developed. The developed
auto-tuning method can help to select the hyperparameters of each
model automatically and compare the performance of different system
identification models.

The second way that AI can benefit manufacturing process control is
to directly learn the control strategy. RL is an emerging tool to perform
control. Dornheim et al. (2020) used model-free Q learning to improve
the blank holder force optimal control in deep drawing processes. In
their proposed approach, the process state is defined as the full infor-
mation history by concatenating the action history and observable his-
tory, where the dimension of the state vector is time-dependent, and a
set of neural networks are used to approximate the Q-function at each
time step. The RL algorithm is trained and evaluated in the FEM simu-
lation and the results show that, after 200 episodes, it gives better per-
formance than a baseline from an exhaustive search. Ogoke and
Farimani (2021) developed an RL framework for melt pool depth control
in the laser powder bed fusion process. They deployed Proximal Policy

(6)
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Optimization (PPO) algorithm to control the scan speed and the laser
power in a simulated setting and demonstrated a successful melt pool
control with two different toolpath strategies. While both of the above
studies executed RL-based control only in simulation, Masinelli et al.
(2020) implemented an RL-based feedback control system for wielding
process in an experimental setting, as shown in Fig. 17. A deep con-
ventional neural network is used to extract the low dimensional features
from the monitored acoustic and optic signals, and to classify the signals
for forming the rewards by comparing them with a reference signal.
Q-learning and Policy Gradient algorithms are tested in experiments and
the results show that Q-learning requires less training time and episodes
to reach an acceptable performance.

5.2. Al-enabled manufacturing process monitoring

Process monitoring is an important source of information for fault
detection, process prognosis, and control in manufacturing systems.
Generally, manufacturing process monitoring can be summarized into
two levels: (1) observable monitoring (2) unobservable monitoring. The
first level is the monitoring of manufacturing process variables that can
be directly measured by sensing devices or easily calculated from the
sensing signals, such as the cutting force in machining and temperature
field in additive manufacturing. The second level includes the moni-
toring of the process or part conditions that are not directly sensed but
could be inferred from the measured information, such as tool condition
and defect detection. Traditionally, unobservable monitoring is difficult
to achieve because it heavily relies on human interpretation such as
image data. In some cases, the features embedded in the data are not
even obvious to human experts. With the rapid development of Al and
computer vision techniques which have the natural strength to auto-
matically extract features from images, Al-enabled monitoring systems
have become widely used in a range of manufacturing processes.

Recently, Al-enable monitoring have been applied to various
manufacturing applications such as tool condition monitoring (e.g.,
Hesser and Markert, 2019; Li et al., 2019b) and chatter detection (e.g.,
Tran et al., 2020; Rahimi et al., 2021). Part quality monitoring in ad-
ditive manufacturing processes is an example of Al-enable monitoring
that has drawn much attention. Scime and Beuth (2018) developed a
process image-based defect detection and classification method for
powder bed fusion process using an AI algorithm called
bag-of-keypoints. The image after preprocessing for eliminating the in-
fluence of light conditions is first divided into small patches. 37 different
filters are selected and applied to each image patch for feature extraction
and the filter response vector of each pixel is are grouped into different
clusters using K-means algorithm. A histogram of the percentage of each
cluster is created for the image patch and finally, the image patch is
classified into categories including anomaly-free, recoater hopping,
recoater streaking, debris, super-elevation, part failure, incomplete
spreading by comparing the histogram with the database.

Baumgartl et al. (2020) used deep CNN for defect detection in the
powder bed fusion process. They used thermal images instead of regular
images as the input and trained a model to detect the defect with an
accuracy of 96.8%. Scime et al. (2020) developed a pixel-wise semantic
segmentation model, called Dynamic Segmentation CNN (DSCNN), for
anomaly detection in powder bed fusion process. Their proposed DSCNN
model takes different scales of the image and the pixel coordinates as the
input to classify each pixel of the image. This is because the pixel is not
only influenced by the surrounding pixels but also the global status of
the image. A schematic of the proposed architecture is shown in Fig. 18,
where four parallel networks are used to extract features at different
scales and all the features are concatenated for the final segmentation
task.

Supervised learning requires a lot of labeled data for training, and in
the monitoring tasks, much of the data needs to be labeled manually.
Gobert et al. (2018) used the post-build high-resolution 3D CT data of
the AM manufactured parts to generate the groud-truth for the training
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data. The defects are defined as the discontinuity of the scanned voxel
data and are automatically calculated and matched with the in-situ
images as the label. Westphal and Seitz (2021) used transfer learning
to train deep CNN for defect detection. A VGG16/Xception model
pre-trained with the ImageNET dataset is used for feature extraction and
the final classification layers are only changed for the monitoring task.
In the first step of the training, all the pre-trained weights are fixed and
only the weights of the classification layers are trained. Later, all weights
are set to train simultaneously to fine-tune the model. Furthermore,
undersampling and oversampling are used to solve the problem of
imbalanced data between normal and defected samples and achieve an
accuracy of over 95% while training on 4000 images. Li et al. (2020)
proposed an identification consistency-based approach, as shown in
Fig. 19 for semi-supervised learning-based defect detection to alleviate
the need for large amounts of high-quality labelled data. In this

approach the loss function is designed based on four principles: (1)
correct classification of the noisy and blurred image variants from data
augmentation (2) consistency of the features extracted from unlabelled
image patches and their variants (3) consistency of the features extrac-
ted from different patches of the same image (4) diversity of the features
extracted from image patches of different images. The result shows that
the proposed approach can classify the over-melt, under-melt and
well-weld conditions with good accuracy using 1720 image patches
from 40 images with labels.

6. Future directions
With the increasing popularity of Al solutions, several research

questions arise to address shortcomings of state-of-the-art Al techniques
in manufacturing such as lack of interpretability, big data requirements,
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limited physical meaning, stability, and generalizability to distributions
outside of training data. Our review indicates that Mechanistic-Al ap-
proaches are effective steps toward resolving these issues by integrating
our knowledge of the data and physics of the process into machine
learning solutions. In this section, we summarized the prevailing trends
found in this study and discuss promising future research directions.

6.1. Databases, benchmarks, and security in manufacturing data

6.1.1. Need for high-quality experimental and simulation data

Manufacturing involves a wide range of experimental, simulation,
and user data. As Al tools are known to be data-hungry, large-scale high-
quality and high-resolution measurements and high-fidelity simulations
are needed to develop, effectively train, and deploy Al models. Despite
the significant progress in the quality and quantity of available
manufacturing data, several aspects of the manufacturing data remain
challenging. Experimental databases are often unbalanced and prone to
human- and sensory-related errors and therefore require massive in-
vestment in post-processing and curation (e.g., Freitas and Curry, 2016;
Zhang and Gao, 2021). At the same time, simulation data suffer from
unknown physics, high computational cost due to the curse of dimen-
sionality, and high variance in their fidelity.

6.1.2. Heterogenous data fusion in deep learning

Some of the challenges stem from the heterogeneous and unstruc-
tured nature of manufacturing data where CAD files, simulation data,
and various sensory information need to be fused together. If fused
properly, these data sources can complement each other’s sparsity, ac-
curacy, and uncertainty and create an expanded multi-modal database.
While combining data sources in manufacturing has been the topic of
several studies (e.g., Lu et al., 2015; Guo et al., 2019) manufacturing
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data fusion in the context of Al formulations and methodologies is still
an open question. Providing the connections between different data
sources so that they hold the spatial and temporal structure of data and
avoid information leaks, dilution, and the high noise-to-signal ratio is an
understudied topic of research. Additionally, methods to integrate
experimental and simulation data are vital in many manufacturing ap-
plications not only because collecting experimental data can be pro-
hibitively expensive, but also because the large corpus of available
computational methods provides unique insights that are not measur-
able experimentally.

6.1.3. Reproducibility and established benchmarks

Reproducibility is a major concern in publications addressing Al in
manufacturing. Many publications do not share their data, which
essentially makes the study unreproducible. Additionally, many AI so-
lutions involve non-trivial implementation details, which significantly
affects the final product and how it can be used in practice. The quality
of data, the feature processing pipeline, and handling of outlier cases can
lead to tangible variations in Al performance. Details of the model (e.g.,
stateful vs stateless RNN, batch normalization scheme, initialization,
model selection to balance precision and recall) and the optimization
know-hows (e.g., batching process, gradient clipping, cyclic learning
rate) can be the difference between a functional and a nonfunctional Al
solution. This problem is particularly pronounced in RL setting where
one deals with dynamic data. As these details are often missed from
pseudocodes published in papers, we strongly encourage the
manufacturing community to publish their implementations and data-
sets along with their papers. While we observe a surge in the availability
of public databases related to manufacturing tasks, they are mostly
geared toward geometric analysis and additive manufacturing behavior.
Even in those applications, the field lacks established practices for
comparing newly proposed methodologies with clear benchmarks. As it
stands, most papers in the field are tested on individual databases, which
cannot be meaningfully compared to other related works. Although
some authors compare their new approaches with their implementation
of past methods, a concern can arise that a proposed approach can
outperform past work only due to better implementation or more
extensive hyperparameter optimization. Having established bench-
marks in major manufacturing applications can largely mitigate these
concerns.

6.1.4. Biases in manufacturing data

Biases can cause harmful consequences in various stages of the Al life
cycle, many of which stem from data collection and curation. Three
sources of biases during data preparation are identified in Suresh and
Guttag (2019) as representation, measurement, and aggregation biases.
Representation bias occurs when the developed database does not suf-
ficiently represent the environment Al solution faces during production.
An example of this source of biases is an Al solution that is trained on the
data generated by one manufacturing machine (or a small subset of
machines) and fails to generalize across larger production facilities.
Measurement bias can happen due to not only faulty sensors but also
missteps during the preprocessing and feature selection and cause the
processed data not to properly estimate the qualities of interest. For
instance, various types of measurement techniques with different reso-
lutions and errors might be used to measure the same quantity and
introduce a measurement bias in the database. Aggregation bias occurs
when data from the larger context is used in a particular application
without adjusting the data to capture nuances of the deployment envi-
ronment. As an example, an Al trained over generic 3D geometries
designed for computer vision tasks may extract features focused on vi-
sual characteristics of the object and neglect the manufacturability and
performance aspects of the analysis. Therefore, a model that is trained,
or even pre-trained in a transfer learning fashion, on vision tasks can
introduce aggregation biases to manufacturing applications. Therefore,
further studies are needed to advance our understanding of the influence
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of such biases in critical manufacturing components and effective
methods to mitigate them.

6.1.5. Cloud manufacturing and security

Cloud manufacturing is an innovative platform that generates and
maintains a large and high-quality database through the cooperation of
numerous companies and individuals. Blockchain-based cloud
manufacturing is trending recently to decentralize the network and keep
security tight. However, even the blockchain technique cannot prevent a
data breach (i.e., unauthorized access to the database, retrieval, or
modification of the data) that happens inside a company by malicious
insiders such as past employers and business competitors. The data
breach might cause a serious data loss or falsification, leading to a
tremendous economic loss. To prevent and prepare for the data
breaches, (Esposito et al., 2016) proposed two crucial steps. Firstly, a
proper key management system should be developed inside a company.
The system records who have the key and revokes the keys if not used.
Secondly, companies should be able to detect a data breach, notify
related personnel, and record them forensically to prepare for a lawsuit.
As a little volume of studies has been reported in the area of data breach
prevention in manufacturing, further studies should be conducted in this
area.

6.2. Data-driven modeling and discovery in manufacturing

6.2.1. Frameworks for mechanistic feature selection

Extraction of mechanistic features still replies on domain experi-
ences. Selecting appropriate mechanistic features for complex problems
could be very challenging. Developing systematic data-driven ap-
proaches, which can automatically identify dominant mechanistic fea-
tures from different manufacturing data sources, is an interesting topic.
Moreover, the extracted mechanistic features might have various
physical dimensions (or units). Dimensional analysis (Barenblatt, 2003)
can be a very useful principle to guarantee the dimensional homogeneity
(Rudolph et al., 1996) of the discovered relationships.

6.2.2. Large-scale Mechanistic-AI modeling in manufacturing

Mechanistic-AI methods have the potential to capture complex
process-structure-properties relationships in advanced manufacturing.
They can tackle the problems with missing/noisy boundary conditions
and material laws, which are currently impossible or extremely expen-
sive to solve through traditional methods. However, embedding phys-
ical, chemical, and material mechanisms into Al systems remains a non-
trial task. Researchers have proposed several approaches, such as
mechanistic feature extraction, specialized network architecture, and
regularization of loss functions. Much effort needs to be directed at
improving the developed methods to solve real manufacturing problems
with high uncertainty and variability during the processes.

6.2.3. Extension of PINNs to manufacturing applications

Physics-informed neural network has been successfully applied to
additive manufacturing. It can be extended to broader manufacturing
techniques, such as metal forming, welding, and micro-manufacturing.
A challenge is to improve the generalization capabilities of PINN
(Raissi et al., 2019), especially for the problems with complex geometry
and transient boundary condition.

6.2.4. Advance transfer learning using highly generalizable models

Transfer learning is another interesting future direction. Transferring
trained models and identified knowledge from one material to another
or from one manufacturing technique to another is currently extremely
challenging. Dimensionless scale-invariant relationships play an
important role in properly transferring knowledge because they offer
better generalization capability compared to transitional empirical
equations.
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6.2.5. Data-driven physics discovery

Data-driven discovery, such as SINDy method (Brunton et al., 2016),
is a very promising approach to discover new underlying physical,
chemical, and material mechanisms from noisy manufacturing data.
Generating more high-quality in-situ experimental data and
high-fidelity simulation data is crucial in the near future. Data-driven
dimensional analysis is another important area that requires signifi-
cant improvements in the future. The developed algorithms can be used
to discover more universal dimensionless numbers and scaling laws from
manufacturing processing data, which provides a smaller set of param-
eters to describe the highly multivariable manufacturing processes. It is
noted that describing or predicting the widest range of phenomena with
a minimum of variables is always the central goal in science and physics
(Kunes, 2012).

6.3. Data-driven design methods in manufacturing

6.3.1. Supervised learning and constraint satisfaction for design

Design in manufacturing is challenging due to the high-dimensional
spaces and discreet choices involved as well as the complexity of the
physical mechanisms during the manufacturing processes. Mechanistic-
Al methods have the potential to efficiently solve inverse problems with
hidden physics for process design. Several papers have explored the
potential of Al methods to solve manufacturing design problems by (1)
establishing a direct mapping between functional requirements and
design parameters, or (2) formulate an optimization problem to explore
the design space. Supervised learning has shown to be an effective tool
to extract correlational requirement-to-design parameter relationships.
However, state-of-the-art practices lack incorporating physical con-
straints of the problem into the learning method. As the result, these
methods are only reliable for problems with simple constraints or within
a limited range of parameters. As an example, consider the problem of
toolpath design to achieve favorable material behavior. We can generate
a database of tool paths and their resulting material properties and train
a model to produce a toolpath given the properties. Naturally, the su-
pervised learning method interpolates between database points, which
can easily lead to physically unfeasible or overlapping tool paths.
Therefore, studying representations in which such interpolation is valid
or approaches to enforce physical constraints is a crucial step in
broadening the applications of supervised learning in design. Various
ideas in physics-informed modeling techniques (as reviewed in Section
3.2) can be deployed in design applications to soft or hard impose the
constraints.

6.3.2. Reinforcement learning in design

RL offers an alternative to supervised learning when the design in-
volves a sequential decision-making process. Constraints can be
implicitly introduced into the solution by penalizing constrain viola-
tions. However, RL methods are known for their poor sample efficiency.
Furthermore, as RL methods explore many unfeasible and potentially
dangerous design spaces, they can rarely be trained on experimental
manufacturing setups. To address these challenges, future research is
needed to expand the capabilities of off-policy RL methods to allow
training on historic data and enable data reuse. Additionally, further
investigations need to bridge the gap between RL methods trained on
simulation environments and real setups. While several examples of RL
in manufacturing were presented in Section 4.1, the performance of RL
agents heavily depends on the quality of reward function to break down
the complexity of the overarching goal. As many manufacturing
decision-making processes involve sparse signals where the goals cannot
be trivially divided into subtasks, advancements in sparse credit
assignment are vital in the future. Model-based RL has the potential to
address some of these challenges. As an alternative to purely explorative
methods, model-based RL can utilize its underlying model to perform
look-ahead planning and search (e.g., Monte Carlo Tree Search) and
therefore offer better sample efficiency and compatibility with reward
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sparsity.

6.3.3. Process-informed design exploration using generative models

Recent advancements in generative models, such as GANs, opened
new possibilities to discover condensed latent design spaces. While
recent studies have expanded the capability of GANs and VAEs to
generate high-quality designs by incorporating performance metrics,
much of the focus has been dedicated to esthetic and geometric features.
The extension of generative methods to complex physical aspects of
manufacturing processes has remained unsolved. Therefore, a promising
future direction is physics-informed generative models that leverage
PINN in GANSs training to facilitate extracting generalizable and physi-
cally valid correlations.

6.3.4. Uncertainty quantification in scientific deep learning

Despite tremendous progress in manufacturing process modeling and
design using AI, most of these studies lack uncertainty analysis or
quantification in their deep learning framework. However, in
manufacturing, it is often critical and expected to assess the reliability of
deep learning models before they are deployed (Jiang et al., 2018).
Uncertainty analysis in deep learning methods has attracted several
research ideas in computer vision (Michelmore et al., 2018), medical
image analysis (Kwon et al., 2020), and natural language processing
(Xiao and Wang, 2019) with Bayesian approximation (Gal and Ghah-
ramani, 2016) and ensemble learning techniques (Lakshminarayanan
et al., 2016) as the two most widely used uncertainty quantification
methods. Several state-of-the-art trends in deep learning uncertainty
quantification are reviewed by Abdar et al. (2021). Therefore, we
believe rigorous uncertainty analysis in the context of Al solutions in
manufacturing is a vital topic for future research which can significantly
accelerate the industrial adoption of the field.

6.3.5. Lack of integrated design steps

Many methods have been emerged to provide an integrated design
than an individual design task (e.g., conceptual design, process plan-
ning, process parameter optimization). However, we find insufficient
research effort into integrating multiple design steps. The inter-
connectivity of manufacturing design tasks is a key reason behind its
complexity. Al methods have caused a fundamental shift from solutions
with numerous subtasks to overarching end-to-end systems. We believe
future research into end-to-end design methods that bridge between
intertwined manufacturing design tasks can be profoundly influential in
the field.

6.4. Data-driven control and monitoring in manufacturing

6.4.1. Adoption of advanced Mechanistic-Al in control

It is commonly acknowledged that process control is a crucial
component in manufacturing processes that can improve the quality and
stability of a manufacturing process. Al techniques have been and will be
increasingly applied to manufacturing process control because of their
ability to handle and learn information from big data. Most of the cur-
rent literature on model-based manufacturing process control utilizes
linear models or relatively simple data-driven models, such as ARX
model, for modeling the system dynamics. It has been shown that Al
techniques such as SINDy and deep neural networks can be effectively
used to model system dynamics and have been applied in the control of
robots and autonomous vehicles. We expect future research in
manufacturing process control will adopt these techniques to control-
oriented manufacturing modeling to achieving better accuracy and ef-
ficiency. Additionally, as the current literature solely deploys physics-
based or data-driven models, we believe hybrid Mechanistic-Al models
can advance current control capabilities in the field.

6.4.2. Efficient reinforcement learning for control
While RL methods can be used in manufacturing process control
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without knowing the system model, there is currently limited applica-
tion in the real manufacturing process because of the high cost to train
the model. Previous research has implemented RL-based process control
on top of simulations with hundreds of episodes and it will be extremely
expensive in the real world. How to train an RL model with good ac-
curacy using combined a large amount of simulation data and a rela-
tively small amount of experimental data will be an important field to
explore.

6.4.3. Auto-labeling and efficient learning in process monitoring

For the process monitoring, a lot of current work used supervised
learning to train a model that can identify the process condition from
images, where a large number of labeled images are required for
training. Thus, questions such as how to efficiently get enough labeled
data for training, and how to train a model with less labeled data, need
to be further studied.

6.4.4. Robustness in Al process monitoring

In most studies on Al-enabled process monitoring, the model is
trained and tested on the prepared dataset, and has not been validated
and applied to experimental or industrial setups. One reason for this gap
between research and industry is that oftentimes the trained model is
sensitive to the environmental condition. Therefore, when the envi-
ronmental condition is changed or a different machine is used for the
same process, the model is no longer accurate. In the past few years,
methods like stability learning (Zheng et al., 2016) and Parseval net-
works (Cisse et al., 2017) attempted to address these challenges with
limited success. We believe that improving the robustness of the
Al-enabled process monitoring techniques to make them more appli-
cable in real industry settings will be an important future direction.
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