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The sound of a vortex ring passing near a semi-infinite porous edge is investigated
analytically. A Green’s function approach solves the associated vortex sound problem
and determines the time-dependent pressure signal and its directivity in the acoustic far
field as a function of a single dimensionless porosity parameter. At large values of this
parameter, the radiated acoustic power scales on the vortex ring speed U and the nearest
distance between the edge and the vortex ring L as USL™, in contrast to the U°L™*
scaling recovered in the impermeable edge limit. Results for the vortex ring configuration
in a quiescent fluid furnish an analogue to scaling results from standard turbulence noise
generation analyses, and permit a direct comparison to experiments described in Part 2
that circumvent contamination of the weak sound from porous edges by background noise
sources that exist as a result of a mean flow.
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1. Introduction

The pioneering aeroacoustics analysis by Lighthill (1952) first determined that isolated
turbulent eddies in low-speed flows produce sound in a quadrupolar directivity pattern
with an intensity that is proportional to U3M? or U8, where U and M are the characteristic
flow speed and Mach number, respectively. The close proximity of turbulence to a solid
body amplifies its acoustic intensity and changes the directivity pattern of the scattered
sound: Curle (1955) showed that the radiated acoustic power of turbulence scattered by
acoustically compact bodies scales on U°, which is a factor of M2 increase in magnitude
for low Mach number flows that is accompanied by a shift to dipolar directivity. Ffowcs
Williams & Hall (1970) examined analytically a more efficient noise generation scenario
of turbulent eddies near a non-compact sharp edge, where the acoustic power scales on
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U?, i.e. M~3 louder than free-field turbulence; a cardioid directivity pattern for pressure
accompanies this change in acoustic intensity, which scales on the distance L between the
turbulent eddy and the edge as L=3. A sharp edge may be generalised geometrically into a
wedge, where Crighton & Leppington (1971) showed that a finite opening angle weakens
the acoustic field relative to the U velocity scaling for classical trailing edge noise.

The efficient conversion of turbulence energy into sound by rigid impermeable edges
continues to motivate strategies to disrupt the noise generation process through the
modification of trailing edge material properties. Crighton & Leppington (1970) carried
out one of the first such analytical investigations by imposing a point-reacting impedance
condition on a semi-infinite plate, where in certain parametric limits the plate may
be considered as either rigid or limp. The rigid limit recovers the results of Ffowcs
Williams & Hall (1970), and the so-called ‘limp’ edge limit produces a U® power scaling
and dipolar acoustic field that would be expected for turbulence noise produced by a
compact body or a solid body without an edge. More sophisticated models, including
flexural waves in a compliant edge, that were not considered by Crighton & Leppington
(1970) have since been investigated to study their effect on structural (Crighton 1972a)
and aerodynamic (Cannell 1975, 1976; Howe 1992, 1993a,b, 1994), noise, including the
influence of structural resonance on radiated sound for finite elastic sections (Leppington
1976; Abrahams 1981, 1983).

Porosity is a common design approach to mitigate noise generation that manipulates
the edge boundary condition. Ffowcs Williams (1972) determined that turbulence noise
from an infinite perforated screen scales on U® and has a dipolar directivity in a
high-porosity limit, which Nelson (1982) corroborated experimentally for a porous surface
away from its edges. Howe (1979) later examined the sound generation of a vortex passing
near a semi-infinite plate with a finite porous extension and showed that the porous
section reduces the sound level by relaxing the abrupt change in boundary conditions
at the impermeable edge. Kisil & Ayton (2018) constructed an analysis procedure for
this configuration and underscored the importance of secondary scattering from the
impermeable-porous junction for high-frequency turbulence sources. In addition to these
analytical works, the effect of porosity on edge noise reduction has been investigated
computationally (Khorrami & Choudhari 2003) and experimentally (Fink & Bailey 1980;
Geyer, Sarradj & Fritzsche 2010), and has been reviewed recently by Jaworski & Peake
(2020).

Further research attention has been directed towards how the combination of porosity
and elasticity reduces turbulence edge noise. Jaworski & Peake (2013) analysed the
scaling behaviour of turbulence sound radiated by semi-infinite poroelastic edges using
the Wiener—Hopf analysis technique. They recovered the US acoustic power scaling and
the dipole directivity results of Ffowcs Williams (1972) in the high-porosity limit for an
infinite perforated sheet, indicating that the effect of the edge on the acoustic scaling
behaviour is eliminated in this case. In other words, the acoustical non-compactness of an
impermeable edge is disrupted by surface porosity, which permits near-field fluid motions
through the edge that are associated with an acoustic dipole. Jaworski & Peake (2013)
also identified a new U’ velocity scaling for elastic edges under specific fluid loading
conditions. With the aim to relax the semi-infinite geometrical restriction, Cavalieri, Wolf
& Jaworski (2016) developed a boundary element method to determine numerically how
sound scatters from a finite poroelastic strip. Porosity reduced noise more effectively at
low frequencies with wavelengths that are large relative to the strip length, while elasticity
was more effective at high-frequency noise reduction. Therefore, poroelasticity may enable
broadband noise reduction for finite edge sections or aerofoils. More recent investigations
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and extensions involving finite geometries include a finite one-dimensional rigid plate with
a poroelastic extension (Ayton 2016), multiple finite plates with various material properties
(Colbrook & Ayton 2019; Colbrook & Kisil 2020), and generalised two-dimensional
poroelastic plates with straight, swept or serrated edges (Pimenta, Wolf & Cavalieri
2018).

Empirical support provided by Brooks & Hodgson (1981) and several other
measurement campaigns (see Crighton 1991) confirmed the U acoustic power and
cardioid directivity predictions by Ffowcs Williams & Hall (1970) for a rigid and
impermeable edge. However, direct experimental confirmation of the U% and U’ scalings
for highly porous or elastic edges, respectively, is not likely possible in conventional
aeroacoustic facilities due to secondary flow noise contributions that may become as loud
or louder than the edge noise itself. For example, turbulent boundary layers present on
wind tunnel walls and test article surfaces produce roughness noise (Devenport et al. 2018)
with a dipolar directivity and an intensity that scales on U® (Howe 1984). Therefore, the
mean flow associated with the turbulent boundary layer that generates edge noise is also
a source of acoustic contamination relative to sound produced at porous or elastic edges:
in a scaling sense, edge noise in the high-porosity limit would be indistinguishable from
roughness noise, which would dominate altogether the weaker U’ sound from elastic edges
in the appropriate parametric limit.

To circumvent this critical limitation, an alternative approach is proposed using a
moving vortex ring as an acoustic source in an otherwise quiescent fluid. The replacement
of the turbulence source with a coherent vortex structure is motivated by the seminal
analysis of Crighton (1972b), which determined analytically that a line vortex moving
round an edge produces the same U’ intensity scaling determined by wave scattering
analyses (Ffowcs Williams & Hall 1970; Crighton & Leppington 1970), where U is
the vortex ring speed in this configuration. The matched asymptotic results by Crighton
(1972b) were examined further and verified by Howe (1975) using a low-frequency Green’s
function, and by Mohring (1978) using a vector Green’s function. Kambe, Minota &

Tkushima (1985) validated the vortex sound approach by achieving the U? intensity scaling
using a vortex ring shot rectlinearly past a rigid impermeable edge, and confirmed its

cardioid directivity. Their analysis of vortex ring sound obtained an L™ intensity scaling
based on the minimum distance between the vortex path and the edge, which is distinct
from the scaling of Ffowcs Williams & Hall (1970) for turbulence scattering and is
particular to the vortex ring configuration. Crucially, the vortex ring configuration of
Kambe er al. (1985) does not require a background mean flow and therefore does not
introduce flow noise sources that would potentially corrupt an acoustic measurement of
the edge noise emission.

A theoretical-experimental campaign is reported here in two parts and uses the vortex
ring approach to measure directly the sound that it generates near a porous edge, which
aims to confirm by analogue the analytical predictions of Jaworski & Peake (2013). Part 1
describes the theoretical model against which measurements in Part 2 are compared, and
the remainder of this part is organised as follows. Section 2 describes the vortex sound
model and constructs the associated Green’s function to estimate the acoustic emission
of a vortex ring passing near a porous edge. This analysis takes the approach of Kambe
et al. (1985) used for an impermeable plate, and extends the results of Jaworski & Peake
(2013) for a porous plate to a vortex sound context. Section 3 discusses results from the
mathematical model, including the parametric limits of low and high porosity and their
influence on the directivity and acoustic intensity scaling behaviours. Conclusions and
final remarks are presented in § 4.
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Figure 1. Schematic of the porous half-plane and the coincident coordinate systems for the compact vortex
ring source y = (y1, ¥2, y3) and the observer at x = (x1, x2, x3).

2. Mathematical model
2.1. Vortex sound at low Mach numbers

Consider a rigid semi-infinite porous plate with negligible thickness that lies in the region
—00 < x1,¥1 <0, x,y2 =0, —00 < x3,y3 < 00 of the coincident Cartesian coordinate
systems {(x1, y1), (x2, ¥2), (x3, ¥3)}, as shown in figure 1. The porous plate is immersed in
an unbounded fluid at rest at infinity. The present work studies the acoustic emission by
an acoustically compact vortex ring source passing near the edge of a porous half plane.
Source compactness requires [/1 < 1, where [ is the length scale of the turbulent source,
and A is the wavelength of the emitted sound. The Mach number M, defined by U/c, is
assumed to be much smaller than unity, where U is the characteristic speed of the vortex
ring and c is the sound speed.

The sound resulting from the vortex ring interaction with the porous edge may be
described by the inhomogeneous wave equation forced by the Lamb vector (Howe 1998,
p. 188),

L2 v div(@ x v) CAY
= — — = pdiv(® x v), .
c2 a2 p=r
which admits a general solution in terms of a boundary integral,
0G(x,y;t— 1)
peen == [[@xvi.n . LEEL D gy 22)

Here, p is the acoustic pressure, p is the mean fluid density, @ is the vorticity distribution
in an ideal fluid neglecting viscous dissipation, v is the vorticity convection velocity, and
G(x,y;t — 1) is the time-domain Green’s function. At sufficiently low Mach numbers,
G(x, y; t — ) may be approximated by the compact Green’s function (Howe 1975), which
is described further in the next subsection.

2.2. Green’s function for a porous edge

In pursuit of an acoustic pressure prediction using (2.2), a Green’s function is now sought
that produces the solution at distant point x = (x1, X2, x3) due to an impulsive point source
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of unit strength at position y = (y1, y2, y3) near the edge of a porous half-plane (cf.

figure 1). The Green’s function also must exhibit outgoing wave behaviour and satisfy
(Howe 1998, p. 39)

1 9 2 . _
(za?—v )G(x,y,t—r)_5(x—y)5(t—f)v (2.3)

where the right-hand side represents the impulsive point source. The reciprocal theorem
(Rayleigh 1945) enables the positions of source y and observer x to be interchanged, i.e.
the mathematical set-up is identical to finding the sound field observed at a near point
y due to a monopole at a distant point x. The problem thus converts to the solution for
the Green’s function G as a function of observer positions y close to the edge, which is a
diffraction problem that can be solved in the manner described, for example, by Crighton &
Leppington (1970) or Jaworski & Peake (2013). The linearity of (2.3) permits the solution
to be written as

G = Go + G, (2.4)

where Gg and Gy are the time-domain velocity potentials for the incident field and the
scattered field, respectively. The time-domain Green’s function G is related to its Fourier

transform G by
1 +oo .
Gx,y; 1) = “om / G(x,y; k) e do, (2.5)
T J_

where k = w/c is the wavenumber, and o is the angular frequency

It is convenient to decompose G into the linear sum G = GO + Gs The expressions for
Go in (A3) and GS in (A8) are determined in Appendix A using the Wiener—Hopf analysis
of Jaworski & Peake (2013). Application of the Fourier inversion formula (2.5) to these
results yields the time-domain Green’s functions Gy and Gy, where Gy may be expanded
in a series form by following the procedure of Kambe et al. (1985). The essential results
from the reciprocal problem after reverting to the original configuration are

RS ( y>2 2
Go(y, x; 1) = 5(t,) + —Dté(tr) + ——=5-D; 8(t,) + - (2.6)
_ W' M, 0)
Gy(y,x; 1) = 32 D(Y) Y D} 8(ty), 2.7
where
1 [t - 0
D 8(1) = —/ (—iw)"e ' dw, D;,= —, (2.8a,b)
27 J_so at
X 1
tr=t——-, t,=1——|x— k| (2.9a,b)
c c
x=|x|, y=||y, k=(0,0,1). (2.10a—c)

Here, ®(Y) = Y/ sin (0/2) is the velocity potential about the edge, the projection of y
onto the (y1, y2)-plane, and ¥ = |Y|. The fractional derivative D}" is used as a convenient
and equivalent means of writing the inverse Fourier transform of the Green’s function
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solution of the scattered sound field. The variables m and n are the exponents of the
wavenumber k and the dimensional porosity parameter 4 = oy Kg/R. In this parametric
group, ay is the open area fraction of the surface with pores of nominal radius R, and
Kgr = 2Kgr/(mtR), where Ky, is the Rayleigh conductivity of the pore (Howe 1998; Jaworski
& Peake 2013); the conditions that the surface is weakly porous and has a pore feature size
that is small relative to the acoustic wavelength require oz%, « 1 and kR < 1, respectively.
The directivity function M (v, #) depends on the angular position of the observer. Note
that both M (1, 0) and the exponents m and n vary on the dimensionless porosity parameter
w/k, and must be determined numerically in general.

If Gp in (2.6) is substituted into (2.2), then the first two terms on the right-hand side
of (2.6) contribute nothing to the sound field due to the vanishing integral around the
half-plane surface, as has been shown previously by Powell (1964). Therefore, the total
Green’s function G = Go + G, may be approximated to leading order by G, only,

w" My, 0)
_® e 22
273/2¢m () X

provided that the third term of Gy in (2.6) remains subdominant. The form of the Green’s
function in (2.11) obviates that dG/dy3 is indeed subdominant to the magnitudes of the
derivatives in other two directions, i.e. dG/dy; and dG/dy,>. Therefore, the gradient
of the Green’s function with respect to y, dG(x, y; t)/dy, can be approximated by the
two-dimensional vector

0Gx,y;)  u" M@, 0)
ay © 2m3/2¢m

Gx,y; ) ~ D} §(ty), (2.11)

D;5(zs) (%@(Y), 8iy2<1§(Y), O) . (2.12)

Equation (2.12) may be reworked into a more useful form by introducing the stream
function ¥ (Y),

0
W (Y) = —Y'2cos 30 2.13)
which is related to the velocity potential @ (Y) by the Cauchy—Riemann equations
d el a 0
—d(Y)= —¥(Y), —&Y)=——uw(Y). (2.14a,b)
a1 ay2 ay2 ay1
Therefore, (2.12) can be rewritten as
IG(x,y;1) 0 w' o M, 0)
T = @ x [¥(Y) k] 5 3/2m D, 8(ty). (2.15)

The substitution of (2.15) into (2.2), the application of the incompressible, inviscid
vorticity equation (Howe 2003, p. 86),

ow
¥+Vx(wxv):0, (2.16)

and an integration by parts determine the final expression of the acoustic pressure in the
far field:
plx, 1) = pD; / / w3y, 1) F(x, ¥) D' 8(t, — 7) dy dr

=D [ P Y, @.17)

941 A28-6


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.313

Downloaded from https://www.cambridge.org/core. Lehigh University, on 27 Apr 2022 at 16:51:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.313

Noise generation by a vortex ring near a porous edge

where
wt o M@, 0)
m3/2¢m X

Fx,Y) = 7 v(Y). (2.18)
Note that ¢, has been replaced by #, =t — x/c in (2.17) for a compact turbulence source.
Specific details on the compact vortex ring source and its trajectory are described in the
next subsection.

2.3. Vorticity distribution and vortex ring motion

Consider a thin-cored vortex ring, whose centre moves in a plane perpendicular to the
y3-axis, as shown in figure 2. Here, O is the coordinate origin located at the half-plane
edge, and L is the nearest distance of the vortex ring path to the edge. It is assumed that
L is larger than the vortex radius a such that the vortex does not collide with the edge.
The unit vector normal to the plane of the vortex ring lies in the(y;, y2)-plane, and the
&-axis denotes the vortex path direction. The n-axis is taken to be perpendicular to the
&- and y3-axes as illustrated, and the origin of the (£, 1, y3) coordinate system is located
at the vortex ring centre. The vorticity of the vortex ring is assumed to be concentrated
on a circle of radius a with a small vortex core of radius o, and o/a < 1. The vorticity
components in the (€, n, y3) system are therefore

0,-I"6(6)8(¢ —a)sing, I"6(§) 5(¢ — a) cos @), (2.19)

where ¢ = ,/n? + y%, I' is the fixed strength of the vortex ring, ¢ is the azimuthal angle

of the vortex centre from the y3-axis, and ¢ the radial coordinate in the (7, y3)-plane. This
model set-up is the same as in Kambe et al. (1985), which in this work permits parametric
comparisons against their analysis for an impermeable edge.

Equation (2.17) determines the sound produced by the vortex ring passing near an edge
provided that its strength and trajectory are known. Here, it is assumed that the vortex ring
follows the rectilinear path shown in figure 2, which is justified on physical grounds in
Appendix C. Direct substitution of (2.19) into (2.17) yields

27
P (x, ‘4 ;) — prD"! / F(C =a, & = 0; C(t)) acos ¢ do, (2.20)
0

where C(f) represents the position of the vortex centre at time #, and the dependence of
F on x has been suppressed here for simplicity. Following the procedure by Kambe et al.
(1985), F may be approximated by the two-term Taylor expansion with respect to 1:

F(¢ =a,& =0;C) ~ F(C) + aa—nF(C) acos . (2.21)

Using (2.21), the integration in (2.20) produces

2w 2,.,n
a wa "t My, 0)
— 112 —
/0‘ Facos¢ dg = ma %F(C) = 52 ve (0), (2.22)
where vg is the complex velocity of the flow in the &-direction:

0 v (C) 0 D (0) (2.23)

Vg == — = — . .

57 o dE
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Figure 2. (a) Side view of the interaction between a semi-infinite porous plate and a vortex ring convecting
on a rectilinear path. (b) The local coordinate system of the vortex ring.

Thus the acoustic pressure expression is

X pl'n" M@, 0) | 2
P (x,t+ Z> = S D e v (Ol (2.24)
Note that a’ vg is the volume flux of the irrotational flow around the edge passing through
the vortex ring (Howe 2003). It is now clear that the temporal profile of the acoustic
pressure signal is proportional to a fractional rate of change of the volume flux through
the vortex ring that depends on m. The fractional acceleration of the flow through the
vortex ring Dit"ﬂ[na2 Ve (C)] must now be evaluated to furnish scaling estimates of the
acoustic emission.
Recall that D’;"+1 v:(C) = Dit"[D; ve (C)], and D; vg (C) may be adapted directly from
Kambe ef al. (1985):

D;ve (C) = UL *Dylg(®)], (2.25)

where 7 = Ut/L is the dimensionless time, and

g0 = ¥sin (36 - 2a), (2.26)

(2.27a,b)

- Y ~ Zei
T=2=@+D'" o=t (M) |

fcosa £ sinw
It is clear from (2.25) that g(7) is proportional to the volume flux through the vortex ring,
and its first time derivative is proportional to the acceleration of fluid through the vortex

ring. Here, the time origin 7 = 0 denotes the time instant when the vortex ring is at its
nearest distance L to the edge.

Therefore, D;”’Ll v: (C) in (2.24) may now be expressed as
DI v (O)] = JUmH L/ PDr (7)), (2.28)
and the substitution of (2.28), (2.26) and (2.27a,b) into (2.24) yields the acoustic pressure:

i ra®/" o™ My, e i}
p(x,z+f) pla v )D;"[g(t)]. (2.29)

= Syl 2empmi3/2
The undetermined exponents may be shown to be coupled on dimensional grounds, where
n is eliminated here using n + m = % Also, the velocity U of a vortex ring is proportional
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to its circulation I" (Lamb 1924, p. 224):

r [ 8 1
U= <ln o4 _ -) . (2.30)
dma

From (2.29), the far-field acoustic pressure radiated by a vortex ring passing near a
porous edge scales on

p ~ Um+2L—3/2—m’ (231)
and the corresponding acoustic intensity I7 is

p2
=" UrLv, (2.32)

pc
where y =2m + 4 and v = 2m + 3.

3. Results

The acoustic intensity scalings on the vortex ring velocity U and the nearest distance
of the vortex ring from the edge L depend on the value of m, which is a function of
the dimensionless porosity parameter w/k. Note that m must be evaluated numerically in
general but may be determined analytically for special cases of low- and high-porosity
limits. Complementary numerical analysis in Appendix A demonstrates that the edge
is effectively impermeable for 1/k < O(1072), and achieves its high-porosity limit for
w/k > O(10). Acoustic results for these special cases and for the general case of arbitrary
porosity value are provided in the following sections.

3.1. Impermeable edge
The edge becomes effectively impermeable in the low-porosity limit where w/k is
asymptotically small. By inspection of (All), it is easily found that m = % n =0, and
My, 6) = +/2sin (6/2)(sin ¥)'/2. In this case, (2.29) and (2.32) become

_ox\ _ pold?UP? sin(0/2) (siny)VZ 0
5420
IT o« U°L™ " sin” —, 3.2)
2

which agree with the analytical solution of Kambe ez al. (1985) and recover the U? scaling
law for radiated intensity and cardioid pressure directivity of Ffowcs Williams & Hall
(1970).

3.2. Edge with high porosity

The edge becomes acoustically transparent in the high-porosity limit of asymptotically

large w/k values, where (All) provides m =1, n = —1 and M@, 0) = sin6 sin .

2 B
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Figure 3. Time histories of (a) g(7) and (b) g(7), in the limit of high porosity, i /k >> 1. Results are plotted for
vortex path angles « = 0, —m/4, —m/2, —37 /4, —7 relative to the porous edge. The heavy line corresponds
to —1/2.

The far-field acoustic pressure and power behaviour are

S X\ pola*U?  sin@siny s
p(xi+2) = LT Dils @], (3.3)
I o UL sin? 0, (3.4)

which recover the U scaling law and the dipolar pressure directivity sin & by Jaworski &
Peake (2013). Equation (3.3) obviates that the acoustic pressure in the high-porosity limit
depends on D;[g(7)], i.e. is proportional to the acceleration of the fluid through the vortex
ring:

Dilg(®)] =@ = —3Y/?sin (36 — 3a), (3.5)

which was determined by Chen & Jaworski (2020).

Representative time histories of g(7) and £(7) are provided in figure 3 for five rectilinear
paths of the vortex ring past the porous edge, « = 0, —w/4, —nt/2, —3n /4, —7. Figure
3(b) together with (3.3) indicates that the acoustic pressure for each path changes rapidly
near 1 = 0, where the vortex ring passes closest to the edge. Note in figure 3(b) how the
acoustic pressure amplitude is affected weakly in the high-porosity limit by the vortex
path angle «. Also, the acoustic waveform in the high-porosity limit described by g(7) is

symmetric about 7 = 0 for a vortex ring passing perpendicular to the plane of the edge,
o =—1/2.

3.3. General porosity case

The acoustic pressure solution (2.17) for arbitrary values of the dimensionless porosity
parameter (/k requires numerical evaluation. We now consider the case of arbitrary
porosity effects, where the acoustic pressure is determined strictly by (2.29). The waveform
of the acoustic pressure is determined directly by fractional derivative D}'[g(#)], which can
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Figure 4. Acoustic directivity and corresponding pressure waveforms due to a vortex ring passing near a
semi-infinite porous edge with various values and limits of the dimensionless porosity parameter /k. The
vortex path angle is « = —1/2. (a) Acoustic pressure directivity. (b) Far-field pressure waveforms represented
by D"[g(#)] in (3.6).

be evaluated in the Caputo sense (Podlubny 1998):

mr_ 7 1 e soNm oA —iwf
Di'lg(] = E/ (—iw)" g(@)e™ ™ do

f _8(s) ds (3.6)
(l—m) @—sm '

where the full expression for g(s) is given in Appendix B, and G is the well-known gamma
function. The value of parameter m for the leading solution term follows (A13) and varies
on the dimensionless porosity parameter 1 /k, and this dependence is plotted in figure 6 in
Appendix A.

Figure 4 plots the acoustic directivity and the corresponding time-dependent pressure
waveforms of the noise emitted by a vortex ring passing near a semi-infinite porous edge,
as a function of the dimensionless porosity parameter. Appendix A details the process of
evaluation from M (Y, 0), where ¢ = /2. The transition of acoustic directivity from a
cardioid to a dipole occurs smoothly with increasing values of the porosity parameter.
Figure 4(b) illustrates how the asymmetric pressure waveform for impermeable edges
found in § 3.1 becomes increasingly symmetric as the porosity parameter increases, where
the direction of the vortex ring relative to the porous edge affects the waveform shape.

The dependence of the acoustic power scalings y and v on u/k, obtained readily from
(2.32) and (A13), are illustrated in figure 5. Both exponent values vary monotonically
between the formal asymptotic limits of low porosity (i/k < 1) and high porosity (u/k >
1). Figure 5 indicates that these limits may be refined by numerical computation, where the
edge is effectively impermeable for ;. /k < O(10~2) and the high-porosity limit is achieved
for u/k > O(10).

4. Conclusions

Acoustic emission by a vortex ring near a porous edge is considered analytically and
numerically. The mathematical approach integrates and extends the vortex ring acoustic
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Figure 5. Dependence of scaling exponents y and v on dimensionless porosity parameter jt/k. Acoustic
power is proportional to UYL~V

analysis of Kambe et al. (1985) for an impermeable edge and the porous edge scattering
analysis of Jaworski & Peake (2013) to furnish a time-dependent Green’s function for
porous edge noise generation. Changes to the time-dependent acoustic pressure and its
angular dependence in the acoustic far field depend solely on a single dimensionless
porosity parameter w/k, and the principal result (2.29) predicts the acoustic power scaling
relative to the velocity of vortex ring U and the nearest distance of the vortex ring to the
edge L. Special attention is paid to the parametric transition from impermeable to high
effective porosity limiting edge conditions, where the gradual change in sound pressure
directivity is accompanied by a monotonic change in acoustic power scaling from U°L~*
to UCL™. These directivity and source speed scaling results for a vortex ring confirm by
analogue known results from turbulence noise analysis (Ffowcs Williams & Hall 1970;
Jaworski & Peake 2013). The complete analysis developed here for porous edges enables
the transition from impermeable to porous edge acoustic behaviours to be examined
independently in terms of scaling on U, scaling on L, and the waveform of the acoustic
emission on the dimensionless porosity parameter. The analytical model developed in the
present work constitutes the theoretical basis to interrogate the associated experimental
campaign presented in Part 2.
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Appendix A. Green’s function for a porous edge
Application of the Fourier inversion formula (2.5) to (2.3) yields

(V2 + K5 G, y; k) = 8(x — ), (A1)

where kK = w/c is the wavenumber and o is the angular frequency. Here, x = (x1, x2, x3)
and y = (y1, y2, y3) represent the positions of the observer and the source, respectively.
By appeal to the reciprocal theorem (Rayleigh 1945), the positions of observer and

source may be interchanged without modifying the Green’s function, i.e. G(x, y; k) =
G(y, x; k). Therefore, the Green’s function may be expressed as

G(x, y; k) = Go(y, x; k) + Gs(y, x; k), (A2)

where Go( ¥, x; k) is the incident spherical wave generated by point source x in free space,

1

. eik|x—y\’ (A3)
dmlx —yl

Go(y, x; k) =

and GS (x, y; k) is the scattered solution due to the interaction of the incident field f}o and
the solid body (edge). At large distances of the source from the edge, where x = |x| — o0,
Gy can be expressed asymptotically as

Go(x, y; k) ~ Aexp[—ik(iy1 + F2y2)], (A4)
where
1
A = —— exp(ikx — ikx3y3) (A5)
4mx
and the direction of the source x is denoted by

X =x/x= (X1, %2, X3), (A6)

X1 =sinygcosby, X =sinygsinby, X3 = cos Y. (A7a—c)

From the result of the scattered field for a porous edge by Jaworski & Peake (2013), the
corresponding Green’s function for the scattered field may be determined:

. . T,
A 1 g eXp [1lcx — ik cos ¥oy3 + —1]
Gy(y, x: k) = —=i¥" 2032 B sin - 4
7 2 2

asY — 0, (A8)
X

where Y = (y% + y%)l/ 2 is the projection of y on the (y1, y2)-plane. Here, B is a variable
that depends on the wavenumber k, the properties of the porous edge, and the directivity
of the incident field:

B k sin Y sin 6
"~ K4 (ksinvgcosbp)’

(A9)

where K (ksincostp) is the ‘plus’ function of the associated Wiener—Hopf kernel
K () after multiplicative factorisation, denoted K (o) by Jaworski & Peake (2013, (4.12)).
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The kernel function K () can be rewritten as K (o) = (« + k)/?(a — k)'/? J (), where

(a % k)'/? are regular in the upper/lower half-planes of complex variable «, and J () — 1
as |a| — oo. Therefore,

Ki(@) =@+ "I (),
where

L [logJ) ds} . (A10)

(@) = exp [m - E—a

The integration contour C is chosen and extends from —oo to +00 on the real axis to avoid
the branch cuts from £k to =k & ico. Note that K (o) must be determined numerically,
but may be evaluated asymptotically in the limits of low or high edge porosity. At this point
the reciprocal theorem is evolved to revert to the original source—observer configuration,
which removes the subscripts on the angular positions. The analytical expressions for B
have been determined by Jaworski & Peake (2013) for two asymptotic limits of low and
high effective porosity:

0
(2k)'/? sin 3 (siny)V/?, p/k <1,

B~ (All)

w12k sin 6 sin ¥, w/k > 1,

where j1/k = ayKg/kR is the dimensionless porosity parameter.
For the purpose of investigating acoustic pressure directivity and scaling behaviours, it
is convenient to express B as

B =M, 0) K" u", (A12)

where m and n are the exponents of the wavenumber k and the parameter 1 = ayKg/R
composed of porosity of the half-plane, respectively, as described in detail in § 2.2. The
far-field directivity in this reciprocal problem for the scattered field follows from evaluating
M, 0) for fixed ¥ and varying 6 from — to 7. Note that both M (i, 6) and m vary with
the porosity parameter p, and must be determined numerically in general.
Equations (A9) and (A12) permit m to be computed as
me1— dlog[K  (k cos 0)]’ (A13)
dlogk

for v = /2 and u = 1. Figure 6 plots the dependence of m on w/k for 6 = w/4, whose
value does not affect these results.

Appendix B. Expression of g(s)
Equations (2.26) and (2.27a,b) yield
3 .
g(s) = (2 + 1)~ *sin | 2 tan~ ! (2R ET SN o0, (B1)
2 scosa £ sina
The first derivative of g(s) is obtained by direct application of the chain rule:

3 3 i
g(s) = ——s(s2 + 1)_7/4 sin| = tan~! w — 2«
2 2 scosa =+ sina

3 3 i
£ 224 1) M cos | 2 tan~! (AT O o], (B2)
2 2 scosa =+ sin«

where the upper sign holds for 0 < o < m, and the lower sign holds for —t < o < 0. Note
that (B 2) is used for the evaluation of the integral in (3.6) and is equivalent to (3.5).
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Figure 6. Dependence of wavenumber parameter m on the dimensionless porosity parameter 1 /k.
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Figure 7. Schematic of a vortex ring path (blue) affected by hydrodynamic interactions with a semi-infinite
porous edge. The vortex path is idealised as three continuous segments: two rectilinear segments and one
circular arc with radius L. The turning angle of the vortex path is denoted as S.

Appendix C. Estimate of vortex-edge interaction time

Kambe et al. (1985, figure 6) and Yoas (2021, figure 4.1) indicate experimentally that the
path of a vortex ring near a porous edge is not perfectly rectilinear due to its hydrodynamic
interaction with the edge, where the change in path becomes more pronounced with
increasing vortex ring speed (or circulation, cf. (2.30)). Figure 7 illustrates an idealisation
of the modified path, where the vortex ring approaches along a straight path, turns by
angle B towards the edge along a circular arc of radius L, and leaves along a different

941 A28-15


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2022.313

Downloaded from https://www.cambridge.org/core. Lehigh University, on 27 Apr 2022 at 16:51:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2022.313

H. Chen, Z.W. Yoas, J.W. Jaworski and M.H. Krane

straight path. The model developed in § 2 for a single rectilinear vortex ring path is justified
if the duration of time over which the path turns is small relative to the period of the
acoustic waveform.

Here, it is assumed conservatively that the vortex ring maintains the same speed U in
the circular arc as is does on the rectilinear segments. The dimensionless traverse time of
the vortex ring in the arc segment may be estimated as

- Ut L
t, = a = E 131 (Cl)

a

where t, = (LB)/U, B is the turning angle of the vortex path, and a is the radius of the
vortex ring. In Yoas (2021), L = 9.8 mm and @ = 6.5 mm, and the maximum value of the
turning angle f is approximately 13.3°. Furthermore, figure 4(b) suggests a dimensionless
acoustic waveform period of approximately 8. Therefore, the ratio of the vortex-edge
interaction time and the effective period of the waveform is approximately 7,/8 = 4.4 %.
Therefore, the influence of the path turning due to the vortex-edge interaction on the entire
pressure waveform is marginal and may be neglected in the present work.
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