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Abstract—Physical unclonable functions (PUFs) are used to
create unique device identifiers from their inherent fabrication
variability. Unstable readings and variation of the PUF response
over time are key issues that limit the applicability of PUFs in
real-world systems. In this project, we developed a fuzzy extractor
(FE) to generate robust cryptographic keys from ReRAM-based
PUFs. We tested the efficiency of the proposed FE using BCH
and Polar error correction codes. We use ReRAM-based PUFs
operating in pre-forming range to generate binary cryptographic
keys at ultra-low power with an objective of tamper sensitivity.
We investigate the performance of the proposed FE with real data
using the reading of the resistance of pre-formed ReRAM cells
under various noise conditions. The results show a bit error rate
(BER) in the range of 10−5 for the Polar-codes based method
when 10% of the ReRAM cell array is erroneous at Signal to
Noise Ratio (SNR) of 20dB.

This error rate is achieved by using helper data length of 512
bits for a 256 bit cryptographic key. Our method uses a 2:1
ratio for helper data and key, much lower than the majority of
previously reported methods. This property makes our method
more robust against helper data attacks.1

Keywords— Physically unclonable functions, IoT security,
hardware-based authentication, ReRAM technology, Fuzzy ex-
tractors.

I. INTRODUCTION

PUFs have been widely used for authentication and key generation
at costs much lower than the conventional approach of producing
secret keys by a server and distributing them among IoT devices
[1]. Using PUF-based key generation in IoT devices allows securing
information exchange between the low-powered IoT devices while
not imposing storage overhead on their limited memory. One of
the advantages of using PUFs is their ability to generate secret
session keys without the need to store the keys in their embedded
memory. Not storing the passwords in the memory will mitigate
attacks involving key extraction from non-volatile memory. PUFs are
also known to be robust against man-in-the middle attacks since these
attacks usually involve cloning the secret keys. This is not possible
when using a PUF-based cryptographic key generation.

As PUFs are based on the physical characteristics of a device, they
are prone to environmental changes such as temperature, humidity
variations and background noise. The response of an electronic PUF
can even vary over time by intensive use, known as the aging factor.
When using a PUF for authentication, a certain amount of error is
usually acceptable which accounts for the false authentication rate
(FAR) and false rejection rate (FRR) of a device. But, when a PUF
is used for key generation, error is not tolerated noting that, once a

1This material is based upon the work supported by the National Science
Foundation under Grant No. 1827753.

message has been encrypted using a particular key, it will require the
same exact key to be decrypted. Even a single bit error will not allow
the proper decryption of the message, thereby leading to information
loss between the devices.

Error correction codes (ECCs) are generally used in communi-
cation systems to correct errors in the transmitted messages due
to channel noise, interference, fading, Doppler effect, imperfect
synchronization, etc. These ECC methods cannot be used directly
in PUF-based protocols because the PUF errors are induced in
the original input message itself, and the error-free version is not
available in the first place. When the ECCs are applied directly to
PUF-based protocols, we will only multiply the errors already present
in the PUF response. Therefore, specialized protocols are required
to handle PUF errors. Fuzzy Extractors (FEs) are protocols used
to correct input errors using the concepts of ECC in their Secure
Sketch phase. FEs are usually designed in such a way that they can
encapsulate all the PUF errors into another vector, which can be
passed into the ECC decoder to correct the errors.

In this paper, we briefly explored the current trends in developing
FEs, along with reviewing the essentials of the ECCs and their decod-
ing schemes utilized for testing (e.g., successive cancellation, belief
propagation). FEs were first proposed in [2] to extract cryptographic
keys from noisy biometric data to allow reproduction of the key from
any noisy input data. In FE structures, we encapsulate PUF errors into
a vector to be fed into an ECC decoder, allowing the recovery of the
original response from the noisy version.

Fig. 1: Construction of a fuzzy extractor using a secure sketch.

Several methods have been used in the past to generate reliable and
reproducible cryptographic keys using different types of FEs. Some
of the remarkable methods include [3]–[14]. In [4], a key generation
scheme was proposed which employs BCH codes in its construction.
In this scheme, the key was extracted by XORing the PUF data with
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a random string produced by a random number generator, which is
made publicly available. The protocol was simulated in the MATLAB
environment to check the reproducibility of the PUF data. The FE
structure employs a BCH encoder and decoder to recover PUF data
using noisy PUF and helper data. This scheme, when given a noisy
PUF with a flipping probability of 0.15, produced a key at a bit error
rate (BER) of 0.1174% from the key stored in the server. This scheme
may be acceptable for authentication scenarios, where a certain error
margin is tolerated. In key generation schemes, where the key is used
for encrypting and decrypting data, the key error has to be zero.

In [15], a FE structure based on Polar codes for SRAM PUFs
was proposed. This work utilized a complex Hash-Aided SC decoder
to ensure that the key was reproducible. The results showed that the
key was reproducible with a failure probability of 10−9. This method
utilized relatively long helper data (896 bits of Helper data for a 128
bit key).

In this paper, we propose a FE to correct the PUF reading errors
with much shorter helper data. We tested our FE with real ReRAM
data extracted using a ReRAM PUF protocol proposed in [16].
This protocol is briefly summarized in section II-E. Different noise
conditions like burst error and random cell error were applied to the
real ReRAM cell data to simulate different noise conditions.

A. Contributions
The key contributions of this paper can be summarized as follows:
• We propose a novel FE structure that allows regeneration of

cryptographic keys from a PUF while utilizing 512 helper data
bits for a 256 bit cryptographic key. The efficiency of this model
is tested with BCH and Polar ECCs.

• We utilize and tested pre-formed ReRAM-based PUFs with
multiple-level ultra-low power current readings as a robust PUF
technology against side-channel attacks.

• We implement the ReRAM-based protocol integrated with the
proposed FE to test the efficiency of the FE.

• The ReRAM-based PUF protocol generates very stable crypto-
graphic keys with errors in the range of 10 parts per million.
In order to ensure that the ReRAM protocol will regenerate
robust cryptographic keys even in extreme conditions, we use
this protocol in conjunction with the proposed FE.

• This protocol has been tested with resistances from the pre-
formed ReRAM cell array. To simulate the error that might
occur in extreme conditions, we use Additive White Gaussian
Noise (AWGN) noise for testing.

II. BACKGROUND

This section provides a brief background on the concepts on which
the proposed protocol relies.

A. BCH Codes
BCH codes, invented by Bose, Chaudhuri, and Hocquenghem, are

a variant of cyclic ECC codes constructed over Galois field. The
design procedure ensures that up to a certain number of errors can
be recovered. The BCH codes are invented in the late sixties and
since then have been used in many communication and data storage
applications. These codes use syndrome-based decoders, which allow
simple hardware design appropriate for low-power devices.

B. Polar Codes
Proposed in 2009 by Erdal Arikan, polar codes were the first

deterministic construction of ECC with low encoding and decoding
complexity, which achieved Shannon capacity for binary discrete-
memoryless channels (B-DMC) [17]. Polar codes are a type of linear
block ECCs whose construction is based on channel polarization. The
key idea is using multiple recursive concatenations of short kernel
codes, which transforms the N copies of a physical channel into N
virtual outer channels whose capacity gets close either to 1 or 0,

if N is sufficiently large. The sum capacity of all of the virtual
channels before and after the recursive concatenation is constant.
Polar codes use this channel polarization property. The information in
polar codes is sent only through the channels whose channel capacity
is 1 (unfrozen bits). This approach helps us use the high-capacity
channels for error recovery in the PUF response and discard the bits
over low-capacity channels (frozen bits).

C. ReRAM PUF
The ReRAM PUFs that we designed for this work use memristor

cells that operate at very low electrical currents. The small currents
injected to allow the formation of ephemeral conductive paths in each
cell. The resistance values randomly vary cell-to-cell, at different
levels of injected current [18]. These resistances are used to extract
the ReRAM PUF “fingerprint”. These PUFs are not prone to side
channel analysis attacks owing to the very low power dissipated
from the device. The protocol to extract a fingerprint using ReRAM
memory is described in section II-E.

Pre-Formed ReRAMs: An important physical property that we
use in our PUFs is the resistance of the ReRAM cells measured
on pristine cells at very low injected currents, in the so-called “pre-
forming” range. The currents are so low that no visible drifts in the
resistance values are observed, which is desirable for the reliability
of the PUFs. Other important properties include:
• Extremely low variations of the resistance values of the same

cells when subjected to repetitive measurements. This is impor-
tant to minimize the intra-PUF BER. Typical intra-PUF relative
standard variation of the resistance was measured in the 1%
range.

• High variations of the cell-to-cell resistance values. This is
important to maximize entropy, leading to the generation of
high-entropy cryptographic keys without BER. Typical cell-to-
cell relative standard variation of the resistances was measured
in the 25% range.

• The optimal range of the injected current in which the measure-
ments are highly reproducible and does not disturb the cells is
50 nA to 1µA. Below 50 nA, the accuracy of the measurements
is questionable; above 5µA, we observed that the partial forming
of the cells results in a permanent lowering of the resistances.

D. Device Specification
Al/AlOx/W devices were used in this study with a device size

of 180 nanometer (nm). The bottom electrode, Tungsten (‘W’), was
deposited by sputtering, the switching layer (‘AlOx’) was deposited
by atomic layer deposition (ALD), and the top electrode, Aluminum
(‘Al’), was placed by reactive sputtering. Both the switching layer
and top electrode are Al-based materials, this design was intentional
for protection against invasive attacks: when the device is switched
‘ON’ by a conductive filament, it is not possible to identify the nm-
wide Al filament in the switching layer by Transmission Electron
Microscopy (TEM) analysis. Furthermore, an attacker cannot tell
whether Al material is from the top electrode or originally in the
switching layer. The equipment used to characterize the devices was
executed by Keysight’s B1500A Semiconductor Analyzer using a
High-Resolution Source Measure Unit (HRSMU) card. The devices
underwent forced current injections by current sweeps from 50 to
800nA in 50nA increments providing 16 unique resistances per cell.
The devices are read in reverse bias to reduce drifting effects of ion
migration. Each device was consecutively read for 50 cycles for the
16 different currents to understand the noise level of each cell at
different currents. An example of resistance for 2 different cells at
currents measured over 10 cycles is shown in table I.

E. ReRAM protocol
1) Server Level: The ReRAM protocol used to extract the PUF

output has been proposed in our previous work in [16]. Initially, a

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 22,2022 at 14:17:00 UTC from IEEE Xplore.  Restrictions apply. 



Cell 1
Current Cycles
100 nA 1798000 1803200 1800000 1794800 1799200 1797200 1809600 1791200 1802800 1795200
400 nA 1103700 1104800 1102700 1103500 1102100 1102400 1103500 1101200 1102000 1102700

Cell 2
Current Cycles
100 nA 1938000 1942000 1954800 1952000 1954800 1957600 1950000 1962800 1948400 1941200
400 nA 1180300 1187600 1187700 1196200 1190100 1179900 1183000 1178800 1192600 1187600

TABLE I: Sample Data extracted from 2 different ReRAM Cells over 2 currents(100nA and 400nA) over 10 cycles.

Fig. 2: The ReRAM key generation protocol.

random number T and password are XORed and hashed to extract a
message digest A. The last 24 bits of the message digest are selected
to define the current level to be injected into the PUF. A is then sent
to an eXtendable Output Function (XOF), which is needed to obtain
enough bits from A. For example, if we have a 1 Mbit array, we
need 10 bits to find the X-axis and 10 bits to find the Y-axis of a
particular cell. Therefore, to select 512 cells, we need a 10,240-bit
long stream out of the XOF.

The median of the current readings of the cell array is calculated
and called reference median (Rmed). For each cell, the resistance
value Ri under the injected current is compared to the Rmed. A
vector Ci is generated such that with element values ‘0’ and ‘1’,
respectively, if Rmed > Ri or Rmed < Ri.

In order to ensure that the cryptographic key is stable, equal
number of the most stable 0s and 1s in C are selected as the key.
A mask M is created to help allow the client side to select same
cryptographic key as the server side. The address of the reference
cell is appended to the mask M in order to find the Rmed on the
client end. The output of XOR of M and A is sent to the client using
handshake.

2) Client Level: At the client end, we use the information sent
through handshake to extract A and M . We use M to extract the
address of the reference cell to extract the R′med. Using M , we only
read values of the cells, which are stable (cells represented by 0 in the

M vector), and compare them with the reference median to calculate
our cryptographic key. The ReRAM protocol at the server and client
level is summarized in Figure 2.

III. PROPOSED FUZZY EXTRACTOR MODEL

We developed a basic FE protocol as shown in Figure 3. We
initially use the entire PUF data (N bits) and XOR it with a random
number x to calculate the vector r Part of the PUF response with
the size of k bits is encoded with the ECC to extract the encoded
version (N bits). This encoded version is XORed with the vector r
to calculate the vector s. This protocol uses the vectors s and x as
helper data.

In the authentication phase, when we have access to the Helper
data and the Noisy PUF data, we XOR x with the Noisy PUF to
calculate the Noisy vector r. This vector encapsulates all the Noisy
bits from the Noisy PUF data. It is then XORed with vector s, and the
resulting output is sent to the ECC decoder to remove the noise and
calculate the corrected part of the PUF response/output (k bits). The
corrected vector k is encoded with the ECC encoder whose output is
XORed with s to calculate the corrected version of r. This r is then
XORed with x to calculate the original PUF response, removing all
the errors from the Noisy PUF.
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(a) Registration Phase

(b) Authorization phase

Fig. 3: Proposed FE Protocol

IV. PRELIMINARY RESULTS AND ANALYSIS

This protocol has been tested using Polar codes and compared with
BCH codes at different lengths of K vectors. Varying the length
of K will change the error correction efficiency of the code. For
testing, we utilized Polar codes of codeword length N = 256 with
multiple message lengths K = 32, 64, 128 as well as the BCH codes
of codeword length N = 255 with data-bit lengths K = 37, 63
and 131. The BER comparison between the Polar and BCH codes
is shown in Figure 4, which shows that the proposed architecture
equipped with Polar codes has a better error correction capacity than
the BCH codes under similar noise conditions. The average BER of
the polar code of length N = 256 is 0.043% while the BER of
the BCH codes of length N = 255 is 0.055% at SNR: −10 dB.
This shows about 20% improvement for the error recovery rate of
the utilized Polar codes compared to the BCH codes with similar or
longer codewords.

These results will be used to check the stability of the proposed
FE architecture. Once the physical implementation of the architecture
using a System on Chip (SoC) is finalized, we will work on
developing the FE structure for Ternary data. For this purpose, we
will initially analyze the ReRAM data we have and extract any feature
which might affect the decoder structure.

Fig. 4: Comparison of BER of the FE using BCH and Polar
Codes

Fig. 5: Example of Random Errors in ReRAM cell array.

V. EXPERIMENTS AND RESULTS

After investigating the efficiency of the proposed FE architecture
using simulated data, we applied the developed FE to the real ReRAM
data (see section ??). As we have resistance data from 309 cells of a
ReRAM array at 16 different currents, we assume a 16× 16 = 256
ReRAM array that allows visualization of a square ReRAM array.
We utilize the ReRAM protocol described in section II-E to extract
PUF data, applied the proposed FE, and the results were observed
under different noise conditions. These tests have been conducted
1000 times, and the BER results are obtained by averaging over all
executions of the algorithm.

A. Test with random error in Real ReRAM data
In our simulations, we assume that 10% of the cells are erroneous

due to the random errors as well as the inherent PUF response
variations. For simulation, 25 random cells from the 256 ReRAM cell
array were randomly selected, and an AWGN is added to the readings
of these cells to simulate the PUF response variation under extreme
conditions. These noisy cells will be used in the authentication phase
(at the client level of the protocol). We applied the ReRAM protocol
coupled with the FE to this data. In the registration phase (at the
server end), the initial PUF response is used to create the Helper data
and the cryptographic key. In the authentication phase, we applied
a 10% random cell error in the PUF. This can be seen as the red
cells in Figure 5. This erroneous array is used in the authentication
phase to extract the cryptographic key. We explored the use of
different lengths of the k vector in both Polar and BCH codes. The
increase in the length of the k vector was expected to decrease the
correction capability of the utilized ECC. We use the Helper Data
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Fig. 6: Performance of BCH and Polar codes with random
error at different lengths of the vector k.

Fig. 7: Performance of Polar codes K = 128, 64 with random
error at different values of channel parameter p.

in the authentication phase protocol to regenerate the cryptographic
key.

Figure 6 shows the effect of the SNR of the AWGN on the
BER percentage of the ReRAM protocol-based FE. For this test,
we randomly selected 10% of the cells in the ReRAM array to be
erroneous at different lengths of the vector k using BCH and Polar
codes. We can observe a slight decrease in the BER of the BCH
codes by decreasing the length of the input vector k, especially at
low SNR values. However, this effect is not observed or is negligible
when Polar Codes are utilized, which can be considered as another
advantage for using Polar codes.

Figure 7 shows the effect of the channel crossover (i.e., bit flipping)
parameter p used in the calculation of the Bhattacharya parameter,
which helps determine the capacity of the channels in a Polar code-
based FE. The results show that when p = 0.1, 0.3 are selected, the
BER is very low and almost in the same range for different SNR

Fig. 8: Example of Burst Error in the ReRAM cell array.

Fig. 9: Performance of BCH and Polar codes with Burst error
at different lengths of the k vector

ratios. When the value of p increases beyond 0.3, the performance
of the code in terms of BER decreases by more than 50%. This
increase in the error rate could be due to the fact that at higher p
values, the channel assumes a higher percentage of error in the bits,
and as the error is lower than the expected range, it over corrects the
data thereby causing more errors.

B. Burst Error
To simulate burst errors, we assume that 10% of the neighbour

cells are in error. More specifically, we randomly select 5 start
positions with 5 adjacent cell positions in the 256 ReRAM cell array
to be erroneous (Burst error). These noisy burst error cells are used
in the authentication phase of the protocol. Similar to the previous
scenario (random error), we apply the same protocol to extract the
key. The Burst error can be seen by the red cells in Figure 8.

Figure 9 presents the effect of SNR on the achieved BER when the
length of the vector k changes in BCH and Polar codes. Similar to
the random error scenario, there is a slight decline in the BER when
decreasing the length of k in the case of Burst errors compared to
Random errors in both the coding schemes. This could be due to the
way the ReRAM protocol selects the cell addresses, since there is a
low probability that all the adjacent cells which are part of the Burst
error are picked in generating the cryptographic key. Similar to the
random error, when the BER percentage is very low, the effect of the
length of vector k is quite negligible in Polar codes with burst error,
while there is a slight decrease in the BER at low SNRs when using
BCH codes.

Figure 10 shows the effect of the channel parameter p, used in
calculating the Bhattacharya parameter, at Kvector = 64 and 128.
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TABLE II: Comparison of a few error correction schemes with our proposed model

Fuzzy Extractor scheme ECC Utilized PUF used Length of Key Length of Helper Data
BCH Repetition Code [19] Ring Oscillator PUF Optical PUF 128 2052
Reed Muller Generalized multiple
concatenated (GMC) Coding [20]

Inner code: Soft decision maximum
likelihood (SDML) decoder. Outer
Code: GMC Reed Muller Decoder

SRAM PUF 128 13952

FE based on Polar Codes [15] Polar(N = 1024) SRAM PUF 128 896

Proposed FE BCH (N = 255)
ReRAM PUF Operating
in Pre-forming Range 255 510

Proposed FE Polar (N = 256)
ReRAM PUF Operating
in Pre-forming Range 256 512

Fig. 10: Performance of Polar codes K = 128, 64 with Burst
error for different channel parameter p.

Similar to the random error case, the results show that when p is
low, the BER is very low and almost in the same range for different
SNR values. When the value of p increases beyond 0.3, the achieved
BER decreases. Table II compares the characteristics of the proposed
method with some previously reported methods, in terms of the key
length, the codeword length, the length of helper data, the utilized
memory technology, and the type of the employed ECC. A key
observation is that we achieved superior ECC performance with much
lower helper data length and shorter codewords using ReRAM PUFs
operating in Pre-forming Range.

VI. CONCLUSION AND DISCUSSION

We developed a fuzzy extractor using BCH and Polar codes and
tested its efficiency using real data obtained from ultra-low-power
pre-forming ReRAM cells. The results were generated based on a
random error and 10% burst error in the ReRAM array. Our technical
inspection revealed that the actual BER in cell arrays is in the orders
of 10 parts per million, which is much lower than our simulated error.
This gives confidence for using our method even with shorter helper
data.

The proposed Fuzzy Extractor allows key extraction with an error
rate of 5 ∗ 10−5 with a random cell error percentage of 10. The
performance of the fuzzy extractor was analyzed with BCH and
Polar codes under different noise conditions. Overall, the proposed
error rate is much lower than previously reported methods at similar
conditions and using shorter helper data, which makes our method
robust against helper data attacks. Also, using the ultra-low-power
technology substantially mitigates the PUF’s vulnerability against
side-channel and allows the PUF device to be tamper resistant.
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