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Abstract

We introduce environment predictive coding, a self-
supervised approach to learn environment-level representa-
tions for embodied agents. In contrast to prior work on self-
supervised learning for images, we aim to jointly encode a
series of images gathered by an agent as it moves about
in 3D environments. We learn these representations via a
zone prediction task, where we intelligently mask out por-
tions of an agent’s trajectory and predict them from the un-
masked portions, conditioned on the agent’s camera poses.
By learning such representations on a collection of videos,
we demonstrate successful transfer to multiple downstream
navigation-oriented tasks. Our experiments on the photore-
alistic 3D environments of Gibson and Matterport3D show
that our method outperforms the state-of-the-art on chal-
lenging tasks with only a limited budget of experience.

1. Introduction

In visual navigation tasks, an intelligent embodied agent
must move around a 3D environment using its stream of
egocentric observations to sense objects and obstacles, typ-
ically without the benefit of a pre-computed map. Signifi-
cant recent progress on this problem can be attributed to the
availability of large-scale visually rich 3D datasets [5, 63,
55], developments in high-quality 3D simulators [1, 35, 50,
62], and research on deep memory-based architectures that
combine geometry and semantics for learning representa-
tions of the 3D world [24, 31, 10, 17, 8, 9].

Deep reinforcement learning approaches to visual nav-
igation often suffer from sample inefficiency, overfitting,
and instability in training. Recent contributions work to-
wards overcoming these limitations for various navigation
and planning tasks. The key ingredients are learning good
image-level representations [14, 21, 37, 51], and using mod-
ular architectures that combine high-level reasoning, plan-
ning, and low-level navigation [24, 8, 19, 45].

Prior work uses supervised image annotations [39, 14,
51] and self-supervision [21, 37] to learn good image rep-
resentations that are transferrable and improve sample effi-

ciency for embodied tasks. While promising, such learned
image representations only encode the scene in the nearby
locality. However, embodied agents also need higher-level
semantic and geometric representations of their history of
observations, grounded in 3D space, in order to reason
about the larger environment around them.

Therefore, a key question remains: how should an agent
moving through a visually rich 3D environment encode its
series of egocentric observations? Prior navigation meth-
ods build environment-level representations of observation
sequences via memory models such as recurrent neural net-
works [60], maps [31, 10, 8], episodic memory [17], and
topological graphs [48, 9]. However, these approaches typ-
ically use hand-coded representations such as occupancy
maps [10, 8, 45, 33, 19] and semantic labels [40, 7], or spe-
cialize them by learning end-to-end for solving a specific
task [60, 31, 42, 12, 17].

In this work, we introduce environment predictive coding
(EPC), a self-supervised approach to learn flexible repre-
sentations of 3D environments that are transferrable to a va-
riety of navigation-oriented tasks. The key idea is to learn to
encode a series of egocentric observations in a 3D environ-
ment so as to be predictive of visual content that the agent
has not yet observed. For example, consider an agent that
just entered the living room in an unfamiliar house and is
searching for a refrigerator. It must be able to predict where
the kitchen is and reason that it is likely to contain a refrig-
erator. The proposed EPC model aims to learn representa-
tions that capture these natural statistics of real-world envi-
ronments in a self-supervised fashion, by watching videos
recorded by other agents. See Fig. 1.

To this end, we devise a self-supervised zone prediction
task in which the model learns environment embeddings by
watching egocentric view sequences from other agents nav-
igating in 3D environments in pre-collected videos. Specif-
ically, we segment each video into zones of visually and ge-
ometrically connected views, while ensuring limited over-
lap across zones in the same video. Then, we randomly
mask out zones, and predict the masked views conditioned
on both the unmasked zones’ views and the masked zones’
camera poses. Intuitively, to perform this task successfully,



Figure 1: Environment Predictive Coding: During self-supervised learning, our model is given video walkthroughs of various 3D
environments. We mask portions out of the trajectory (dotted lines) and learn to infer them from the unmasked parts (in red). We
specifically mask out all overlapping views in a local neighborhood to limit the content shared with the unmasked views. The resulting
EPC encoder builds environment-level representations of the seen content that are predictive of the unseen content (marked with a “?”),
conditioned on the camera poses. The agent then uses this learned encoder in multiple navigational tasks in novel environments.

the model needs to reason about the geometry and semantics
of the environment to figure out what is missing. We devise
a transformer-based model to infer the masked visual fea-
tures. Our general strategy can be viewed as a context pre-
diction task in sequential data [15, 57, 28]—but, very dif-
ferently, aimed at representing high-level semantic and ge-
ometric priors in 3D environments to aid embodied agents
who act in them.

Through extensive experiments on Gibson and Matter-
port3D, we show that our method achieves good improve-
ments on multiple navigation-oriented tasks compared to
both state-of-the-art models and baselines that learn image-
level embeddings.

2. Related work

Self-supervised visual representation learning: Prior
work leverages self-supervision to learn image and video
representations from large collections of unlabelled data.
Image representations attempt proxy tasks such as inpaint-
ing [44] and instance discrimination [41, 11, 30], while
video representation learning leverages signals such as
temporal consistency [59, 18, 34] and contrastive predic-
tions [28, 56]. The VideoBERT project [56, 57] jointly
learns video and text representations from unannotated
videos via filling in masked out information. Dense Predic-
tive Coding [28, 29] learns video representations that cap-
ture the slow-moving semantics in videos. Whereas these
methods focus on capturing human activity for video recog-
nition, we aim to learn geometric and semantic cues in 3D
spaces for embodied agents. Accordingly, unlike the exist-
ing video models [56, 57, 28], which simply infer missing
frame features, our approach explicitly grounds its predic-
tions in the 3D relationships between views.

Representation learning via auxiliary tasks for RL: Re-
inforcement learning approaches often suffer from high
sample complexity, sparse rewards, and unstable training.

Prior work tackles these challenges by using auxiliary tasks
for learning image representations [39, 21, 37, 52, 66]. In
contrast, we encode image sequences from embodied agents
to obtain environment-level representations. Recent work
also learns state representations via future prediction and
implicit models [26, 16, 22, 27, 23]. In particular, neural
rendering approaches achieve impressive reconstructions
for arbitrary viewpoints [16, 36]. However, unlike our idea,
they focus on pixelwise reconstruction, and their success
has been limited to synthetically generated environments
like DeepMind Lab [3]. In contrast to any of the above, we
use egocentric videos to learn predictive feature encodings
of photorealistic 3D environments to capture their naturally
occurring regularities.

Scene completion: Past work in scene completion performs
pixelwise reconstruction of 360 panoramas [32, 46], im-
age inpainting [44], voxelwise reconstructions of 3D struc-
tures and semantics [53], and image-level extrapolation of
depth and semantics [54, 65]. Recent work on visual navi-
gation extrapolates maps of room-types [61, 40] and occu-
pancy [45]. While our approach is also motivated by antic-
ipating unseen elements, we learn to extrapolate in a high-
dimensional feature space (rather than pixels, voxels, or se-
mantic categories) and in a self-supervised manner without
relying on human annotations. Further, the proposed model
learns from egocentric video sequences captured by other
agents, without assuming access to detailed scans of the full
3D environment as in past work.

Learning image representations for navigation: Prior
work exploits ImageNet pretraining [24, 2, 10], mined ob-
ject relations [64], video [6], and annotated datasets from
various image tasks [51, 9] to aid navigation. While these
methods also consider representation learning in the context
of navigation tasks, they are limited to learning image-level
functions for classification and proximity prediction. In
contrast, we learn predictive representations for sequences



of observations conditioned on the camera poses.

3. Approach

We propose environment predictive coding (EPC) to
learn self-supervised environment-level representations
(Sec. 3.1). To demonstrate the utility of these representa-
tions, we integrate them into a transformer-based navigation
architecture and refine them for individual tasks (Sec. 3.2).
As we will show in Sec. 4, our approach leads to both bet-
ter performance and better sample efficiency compared to
existing approaches.

3.1. Environment predictive coding

Our hypothesis is that it is valuable for an embodied
agent to learn a predictive coding of the environment. The
agent must not just encode the individual views it observes,
but also learn to leverage the encoded information to antic-
ipate the unseen parts of the environment. Our key idea is
that the environment embedding must be predictive of un-
observed content, conditioned on the agent’s camera pose.
This equips an agent with the structural and semantic pri-
ors of 3D environments to quickly perform new tasks, like
finding the refrigerator or covering more area.

We propose the proxy task of zone prediction to achieve
this goal (see Fig. 2). For this task, we use a dataset of
egocentric video walkthroughs collected in parallel by other
agents deployed in various unseen environments (Fig. 2,
top). For each video, we assume access to RGB-D, egomo-
tion data, and camera intrinsics. Specifically, our current
implementation uses egocentric camera trajectories from
photorealistic scanned indoor environments (Gibson [63])
to sample the training videos; we leave leveraging in-the-
wild consumer video as a challenge for future work.

We do not assume that the agents who generated those
training videos were acting to address a particular naviga-
tion task. In particular, their behavior need not be tied to the
downstream navigation-oriented tasks for which we test our
learned representation. For example, a training video may
show agents moving about to maximize their area coverage,
or simply making naive forward-biased motions, whereas
the encoder we learn is applicable to an array of naviga-
tion tasks (as we will demonstrate in Sec. 4). Furthermore,
we assume that the environments seen in the videos are not
accessible for interactive training. In practice, this means
that we can collect data from different robots deployed in a
large number of environments in parallel, without having to
actually train our navigation policy on those environments.
These assumptions are much weaker than those made by
prior work on imitation learning and behavioral cloning that
rely on task-specific data generated from experts [4, 20].

Our method works as follows. First, we automatically
segment videos into “zones” which contain frames with sig-
nificant view overlaps. We then perform the self-supervised

zone prediction task on the segmented videos. Finally, we
incorporate the learned environment encoder into an array
of downstream navigation-oriented tasks. We explain each
step in detail next.

Zone generation At a glance, one might first consider
masking arbitrary individual frames in the training videos.
However, doing so is inadequate for representation learning,
since unmasked frames having high viewpoint overlap with
the masked frame can make its prediction trivial. Instead,
our approach masks zones of frames at once. We define a
zone to be a set of frames in the video which share a signif-
icant overlap in their viewpoints. We also require that the
frames across multiple zones share little to no overlap.

To generate these zones, we first cluster frames in the
videos based on the amount of pairwise-geometric over-
lap between views. We estimate the viewpoint overlap
(0, 0;) between two frames o;, 0; by measuring their in-
tersection in 3D point clouds obtained by backprojecting
depth inputs into 3D space. See Appendix for more de-
tails. For a video of length L, we generate a distance matrix
D € REXL where D; ; = 1 — 1(0;,0;). We then per-
form hierarchical agglomerative clustering [38] to cluster
the video frames into zones based on D (see Fig. 2, bottom
left). While these zones naturally tend to overlap near their
edges, they typically capture disjoint sets of content in the
video. Note that the zones segment video trajectories, not
floorplan maps, since we do not assume access to the full
3D environment.

Zone prediction task Having segmented the video into
zones, we next present our EPC zone prediction task to learn
environment embeddings (see Fig. 2). The main motivation
in this task is to infer unseen zones in the video by pre-
viewing the global context spanning multiple seen zones.
We randomly divide the video v into seen zones {Z{ ; }7.;
(cyan) and unseen zones {Z ;}7, (yellow), where a zone
Z is a tuple of images and the corresponding camera poses
Z; = {(04,p5) |1Zi|. Given the seen zones, and the camera
pose from an unseen zone p;, ;, we need to infer a feature
encoding of the unseen zone Z, ;. To perform this task, we
first extract visual features = from each RGB-D frame o in
the video using pretrained CNNs (see Sec. 3.2). These fea-
tures are concatenated with the corresponding pose p and
projected using an MLP M to obtain the image-level em-
bedding. The target features for the unseen zone Z ; are
obtained by randomly sampling an image within the zone
and extracting its camera pose and features:
i = M([z,p]), where (z,p) ~ Z; ;. (1)
We use a transformer-based encoder-decoder model [58]
to perform this task. Our model consists of an environ-
ment encoder and a zone decoder which infers the zone fea-
tures (see Fig. 2, bottom). The environment encoder uses
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Figure 2: We propose the zone prediction task for self-supervised learning of environment embeddings from video walkthroughs generated
by other agents. Each frame consists of the egocentric view and camera pose (top left). We group the frames in video v into seen zones

in cyan {Z7 o, -

,Z4 »} and unseen zones in yellow {Z; o, -

+Zu.m} (top row). The zones are generated automatically based on

viewpoint overlap in 3D space (bottom left). Given a camera pose p;, ; sampled from the unseen zone Z,, ;, we use a transformer-based

encoder-decoder architecture that generates environment embeddings £ from the seen zones, and predicts the feature encoding fuz of
Z,,.; conditioned on the pose p;, ; (bottom center). The model is trained to distinguish the positive f,, ; from negatives in the same video

{fu ;}i=i as well from other videos { f’}:s (bottom right).

the image-level embeddings M ([x, p]) from the input zones
and performs multi-headed self-attention to generate the en-
vironment embeddings £.

The zone decoder attends to £ using the camera pose
from the unseen zone py, ; and predicts the zone features as
follows:

fui = ZoneDecoder (€, Dai)- )

We transform all poses in the input zones relative to py, ;
before encoding, which provides the model an egocentric
view of the world. The environment encoder, zone de-
coder, and the projection function M are jointly trained us-
ing noise-contrastive estimation [25]. We use fm as the
anchor and fy ; from Eqn. 1 as the positive. We sample
negatives from other unseen zones in the same video and
from all zones in other videos. The loss for the i unseen
zone in video v is:

Sim(fu,iaf;),i)
sim(fu,i,f2 )+ 2 sim(fu,i, )
j wHv,k

j=1

3)

where sim(q, k) = exp(#lkk| %) and 7 is a temperature hy-
perparameter. The idea is to predict zone representations
that are closer to the ground truth, while being sufficiently
different from the negative zones. Since the unseen zones
have only limited overlap with the seen zones, the model
needs to effectively reason about the geometric and seman-
tic context in the seen zones to differentiate the positive
from the negatives. We discourage the model from simply
capturing video-specific textures and patterns by sampling
negatives from within the same video.

3.2. Environment embeddings for embodied agents

Having introduced our approach to learn environment
embeddings in a self-supervised fashion, we now briefly
overview how these embeddings are used for agents per-
forming navigation-oriented tasks. To this end, we inte-
grate our pre-trained environment encoder into the Scene
Memory Transformer (SMT) [17]. Our choice of SMT is
motivated by the recent successes of transformers in both
NLP [15] and vision [57, 17]. However, our idea is poten-
tially applicable to other forms of memory models as well.

We briefly overview the SMT architecture (see Fig. 3,
center). It consists of a scene memory that stores visual
features {z;}!_, and agent poses {p;}!_, generated from
the observations seen during an episode. The environment
encoder uses self-attention on the history of observations to
generate a richer set of environment embeddings {e;}!_;.
At a given time-step ¢ + 1, the policy decoder attends to
the environment embeddings using the inputs 0,41, which
consist of the visual feature = and agent pose p at time ¢+ 1.
The outputs of the policy decoder are used to sample an
action a;4; and estimate the value v;4;. We detail each
component in the Appendix.

To incorporate our EPC environment embeddings, we
modify two key components from the original SMT model.
First, and most importantly, we initialize the environment
encoder with our pre-trained EPC (see Fig. 3, left). Sec-
ond, we replace the end-to-end trained image encoders with
MidLevel features that are known to be useful across a va-
riety of embodied tasks [51] (see Fig. 3, right).1 We con-

'We pick MidLevel features [51] due to their demonstrated strong per-
formance, though alternate image encoders are similarly applicable.
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Figure 3: Integrating environment-level pre-training for navigation: Left: The first level of transfer occurs for the environment-level
representations. We transfer the proposed EPC environment encoder and projection function M that are pre-trained for zone prediction.
Right: The second level of transfer occurs for the image-level representations. We transfer a pre-trained MidLevel image encoder [51] to
generate visual features for each input in the scene memory. Center: To train the SMT on a task, we keep the visual features frozen, and
finetune the environment encoder and projection function M with the rest of the SMT model.

sider two visual modalities as inputs: RGB and depth. For
RGB, we extract features from the pre-trained models in the
max-coverage set proposed by [51]. These include surface
normals, keypoints, semantic segmentation, and 2.5D seg-
mentation. For depth, we extract features from pre-trained
models that predict surface normals and keypoints from
depth [67]. For training the model on a navigation task,
we keep the visual features frozen, and only finetune the
environment encoder, policy decoder, policy 7, and value
function V.

4. Experiments

First, we review the experimental setup for the down-
stream navigation tasks (Sec. 4.1). Next, we detail the
self-supervised learning setup and visualize the learned
EPC embeddings (Sec. 4.2). We then evaluate the pre-
trained EPC environment embeddings on multiple down-
stream tasks that require an embodied agent to move intel-
ligently through an unmapped environment (Sec. 4.3). Fi-
nally, we evaluate the sensitivity of self-supervised learning
to noise in the video data (Sec. 4.4), and assess noise robust-
ness of the learned policies on downstream tasks (Sec. 4.5).

4.1. Experimental setup for downstream navigation

We perform experiments on the Habitat simulator [49]
with Matterport3D (MP3D) [5] and Gibson [63], two chal-
lenging and photorealistic 3D datasets with ~ 90 and 500
scanned real-world indoor environments, respectively. Our
observation space consists of 171 x 128 RGB-D observa-
tions and odometry sensor readings that provide the rela-
tive agent pose p = (x,y, #) w.r.t the agent pose at t = 0.
Our action space consists of: MOVE-FORWARD by 25cm,
TURN-LEFT by 30°, and TURN-RIGHT by 30°. For all meth-

ods, we assume noise-free actuation during training for sim-
plicity. We evaluate with both noise-free and noisy sensing
(pose, depth).

We use MP3D for interactive RL training, and reserve
Gibson for evaluation. We use the default train/val/test split
for MP3D [49] for 1000-step episodes. For Gibson, which
has smaller environments, we evaluate on the 14 valida-
tion environments for 500-step episodes. Following prior
work [45, 8], we divide results on Gibson into small and
large environments.

We evaluate our approach on three standard tasks from
the literature:

1. Area coverage [10, 8, 47]: The agent is rewarded for
maximizing the area covered (in m?) within a fixed time
budget.

2. Flee [21]: The agent is rewarded for maximizing the
flee distance (in m), i.e., the geodesic distance between its
starting location and the terminal location, for fixed-length
episodes.

3. Object coverage [17, 47]: The agent is rewarded for
maximizing the number of categories of objects covered
during exploration (see Appendix). Since Gibson lacks ex-
tensive object annotations, we evaluate this task only on
MP3D.

Together, these tasks capture different forms of ge-
ometric and semantic inference in 3D environments
(e.g., area/object coverage encourage finding large open
spaces/new objects, respectively). We compare our ap-
proach to the following baselines:

Scratch baselines: We randomly initialize the visual en-
coders and policy and train them end-to-end for each task.
Images are encoded using ResNet-18. Agent pose and past
actions are encoded using FC layers. These are concate-
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Figure 4: Each row shows one zone prediction example. Left: Top-down view of the 3D environment from which the video was sampled.
The cyan viewing frusta correspond to the average pose for three input zones. Given the images and camera poses from each input zone,
and a target camera pose (green frustum), the model predicts the corresponding zone feature (the masked green zone). Center: Given the
inferred feature, we rank three masked (unobserved) zones from within the same video, where green is the positive zone and the red are the
negatives. For each zone, we show four randomly sampled images along with the retrieval confidence. Our method retrieves the positive
with high confidence. The model correctly predicts the existence of the narrow corridor (top row) and a kitchen counter (bottom row) given
the target poses. Right: Top two retrieved zones from other videos that are closest to the inferred feature. The features predicted by the
model are general enough to retrieve related concepts from other videos (narrow corridors and kitchens).

nated to obtain the features at each time step. We use three
temporal aggregation schemes. Reactive (scratch) has no
memory. RNN (scratch) uses a 2-layer LSTM as the tem-
poral memory. SMT (scratch) uses a Scene Memory Trans-
former for aggregating observations [17].

SMT (MidLevel): extracts image features from pre-trained
encoders that solve various mid-level perceptual tasks [51].
This is an ablation of our model from Sec. 3.2 that uses
the same image features, but randomly initializes the en-
vironment encoder. This SoTA image-level encoder is a
critical baseline to show the impact of our proposed EPC
environment-level encoder.

SMT (Video): Inspired by Dense Predictive Coding [28],
this baseline uses MidLevel features and pre-trains the en-
vironment encoder as a video-level model using the same
training videos as our model. It uses 25 consecutive frames
as inputs and predicts the features sampled from the next 15
frames (following timespans used in prior work [28]). We
mask out the camera poses in the inputs and query based on
the time (not pose). We train the model using the NCE loss
in Eqn. 3.

OccupancyMemory: This is similar to the SoTA Active
Neural SLAM model [8] that maximizes area coverage, but
upgraded to use ground-truth depth to build the map (in-
stead of RGB) and a state-of-the-art PointNav agent [60]
for low-level navigation (instead of a planner). It represents
the environment as a top-down occupancy map.

All models are trained in PyTorch [43] with DD-

PPO [60] for 15M frames with 64 parallel processes and
the Adam optimizer. See Appendix.

4.2. Self-supervised learning with EPC

We generate walkthroughs for self-supervised learning
from 332 Gibson training environments. Note that these en-
vironments are not accessible to the RL agent for interactive
training.

We collect the video data using two policies: 1) an SMT
(scratch) agent that was trained to perform area-coverage
on MP3D, and 2) a heuristic navigation agent that moves
forward until colliding, then turns (cf. Sec. 4.4). We test the
impact of each video source separately below.

In both cases, the agents explore each Gibson environ-
ment starting from multiple locations and gather the RGB-
D and odometer readings for 500 steps per video. This re-
sults in ~5,000 videos per agent, which we divide into an
80-20 train/val split. We use these videos to pre-train en-
vironment encoders on the EPC zone prediction task for 50
epochs. The hyperparameters are provided in Appendix D.
We qualitatively analyze the masked zone prediction results
from EPC in Fig. 4.

4.3. Downstream task performance

Now we transfer these features to downstream naviga-
tion tasks. Tab. 1 shows the results. On both datasets, we
observe the following ordering:



Area coverage (m?) Flee (m) Object coverage (#obj)
Method Gibson-S Gibson-L MP3D Gibson-S  Gibson-L MP3D MP3D-cat. MP3D-inst.
Reactive (scratch)  17.4+0.2 228+0.6 68.0+13 19+01 25+03 51+0.3 6.2+0.0 19.0+0.2
RNN (scratch) 20.6 £0.4 28.6+0.3 79.0+20 23+02 28+04 58£0.0 6.0+0.0 18.6+0.2
SMT (scratch) 23.0+0.6 32.3+£0.8 104.8+2.2 32+02 44+04 6.9+0.6 7.0+0.2 23.2+0.9
SMT (MidLevel) 29.1+0.1 472+1.6 155.6 +£2.0 42+0.0 6.0£04 10.6+£0.3 7.6+0.2 26.8 + 0.6
SMT (Video) 28.8+0.4 476+24 141.2+44 40400 65+04 10.8+0.6 7.5+0.1 26.0 +£ 0.2
OccupancyMemory 29.4+0.0 67.44+0.9 155.6+14 28+0.0 7.0+04 14.1+06 78+01 27.8+04
EPC 31.5+0.1 622+1.0 1724+06 4.4+00 8.0+04 126+0.2 9.0+00 36.4+1.0

Table 1: Downstream task performance at the end of the episode. Gibson-S/L means small/large. MP3D-cat./inst. means cate-
gories/instances. All methods are evaluated on three random seeds. Here EPC uses video walkthroughs collected by an exploration
agent that maximizes its area coverage. See Appendix for performance vs. time step plots.
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Reactive (scratch) < RNN (scratch) < SMT (scratch).
“)
This is in line with results reported by [17] and verifies our
implementation of SMT. Using MidLevel features for SMT
leads to significant gains in performance versus training im-
age encoders from scratch.

Environment Predictive Coding (EPC) effectively com-
bines environment-level and image-level pretraining to pro-
vide substantial improvements compared to only image-
level pretraining from SMT (MidLevel), particularly for
larger environments. Furthermore, SMT (Video)—the
video-level pre-training strategy—significantly underper-
forms EPC, as it ignores the underlying spatial informa-
tion during self-supervised learning. This highlights EPC’s
value in representing the underlying 3D spaces of the walk-
throughs instead of treating them simply as video frames.
EPC also competes closely and even slightly outperforms
the state-of-the-art OccupancyMemory on the geometric
tasks area coverage and flee, while providing a signifi-
cant gain on object coverage. Thus, our model competes
strongly with the purely geometric representation model on
the tasks that the latter was designed for, while outperform-
ing it significantly on the semantic task. Note that Occu-
pancyMemory performs poorly on Flee in Gibson-S since
its goal sampling strategy is biased towards larger environ-
ments. See Appendix H.

Finally, in Fig. 5, we can see that environment-level pre-
training from EPC offers significantly higher sample effi-
ciency: our method reaches the best performance of SMT
(MidLevel) 4-8x faster. This advantage persists even after
accounting for the ~2M frames of off-policy experience in
the video data (see Tab. 4). This confirms our hypothesis:
transferring environment-level representations learned via
contextual reasoning can help embodied agents learn faster
compared to the current approach of transferring image-
level encoders alone.

4.4. Sensitivity analysis of self-supervised learning

Next we analyze the sensitivity of EPC to 1) sensory
noise in the videos and 2) the exploration strategy used
for video data collection. Specifically, we inject noise in
the depth and pose data from the walkthrough videos us-
ing existing noise models from [13] and [45]. The depth
noise model combines disparity-based quantization, high-
frequency noise, and low-frequency distortion [13]. The
odometry noise is based on data collected from a LoCoBot
robot [45, 8]. We also replace the video walkthroughs from
the area-coverage agent with an equivalent amount of data
collected by a simple heuristic used in prior work [10, 47].
The heuristic instructs the video agent to move as follows:
move forward until colliding, then turn left or right by a
random amount, then continue moving forward.

Tab. 2 shows the impact of each of these changes on
the downstream task performance. For reference, we com-



Area coverage (m?) Flee (m) Object coverage (#obj)
Method Gibson-S Gibson-L MP3D Gibson-S  Gibson-L MP3D MP3D-cat. MP3D-inst.
SMT (MidLevel) 29.1+0.1 472+£17 155.7+20 424+00 6.0+04 106+03 76=+£01 26.8+0.6
EPC 31.5+£0.1 622+10 1725+06 454+0.0 80+05 12.7+02 9.0+£01 364+1.0
EPC w/ noisy depth 314+04 605+14 1713+£50 42401 76+10 11.5+05 86=£01 352406
EPC w/ noisy depth and pose  32.24+0.1 63.6+3.2 181.0+15 4.9+02 79+02 133+04 85+02 338+12
EPC w/ heuristic video policy 31.4+0.3 61.6+23 176.4+48 45+£02 71+£04 123+04 85+0.1 359+0.1

Table 2: Impact of noisy video data (corrupted pose and/or depth) and a simple heuristic policy for video generation on EPC self-supervised

learning. EPC maintains its advantage over the SMT (MidLevel) which

randomly initializing the environment encoders.

Area coverage (m?) Flee (m) Object cov. (#cat.)
Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D,P
SMT (MidLevel) 155.7+2.0 145.14+23 1342+18 106+03 106+06 108+04 7.6+02 73+01 73+0.2
OccupancyMemory  155.6 £ 1.4 86.6 + 2.2 85.2+24 14.1+0.6 109+0.2 102+03 7.8+0.1 58+0.0 58+0.0
EPC 172.5+0.6 161.6+3.1 159.3+2.0 12.74+0.2 12.0+0.8 12.0+0.1 9.0+0.1 85+0.1 8.5+0.3

Table 3: Comparing robustness to sensor noise on downstream tasks in

Matterport3D. Note: NF denotes noise free sensing, N-D denotes

noisy depth (and noise-free pose), and N-D,P denotes noisy depth and pose. See Appendix G for full results.

pare these with random initilization of the environment en-
coder in SMT (MidLevel). Our approach EPC is reason-
ably robust to changes in the video data during SSL train-
ing. The performance remains stable when noise is injected
into depth inputs. While it starts to decline on object cover-
age when we further inject noise into the pose inputs, EPC
still retains its advantages over SMT (MidLevel). Note that
we do not employ any noise-correction mechanisms, which
could better limit this decline [8, 45]. Finally, the per-
formance is not significantly impacted when we use video
data from the simple exploration heuristic, emphasizing that
EPC does not require a strong exploration policy for the
agent that generates the self-supervised training videos, nor
does it require a tight similarity between the tasks demon-
strated in the videos and the downstream tasks.

4.5. Robustness of learned policies to sensor noise

In the previous experiments, we assume the availabil-
ity of ground-truth depth and pose sensors for downstream
tasks (Tab. 2 added pose and depth noise to the walkthrough
videos only). Now, we relax these assumptions and re-
evaluate all methods by injecting noise in the depth and
pose sensors for downstream tasks (same noise models from
prior work that we applied in Sec. 4.4), without any noise-
correction. This is a common evaluation protocol for as-
sessing noise robustness [10, 47]. We compare the top three
methods on MP3D in Tab. 3 and provide the complete set
of results in Appendix G. As expected, the performance de-
clines slightly as we add noise to more sensors (depth, then
pose). However, most approaches are reasonably stable.
EPC outperforms all methods when all noise sources are
added. OccupancyMemory declines rapidly in the absence
of noise-correction due to accumulated errors in the map.

5. Conclusions

We introduced Environment Predictive Coding, a self-
supervised approach to learn environment-level represen-
tations for embodied agents. By training on video walk-
throughs generated by other agents, our model learns to in-
fer missing content through a zone-prediction task. When
transferred to multiple downstream embodied agent tasks,
the resulting embeddings lead to better performance and
sample efficiency compared to the current practice of trans-
ferring only image-level representations. In future work, we
plan to extend our idea for goal-driven tasks like PointNav
and ObjectNav.
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Appendix

A. Zone generation

As discussed in the main paper, we generate zones by
first clustering frames in the video based on their geomet-
ric overlap. Here, we provide details on how this overlap
is estimated. First, we project pixels in the image to 3D
point-clouds using the camera intrinsics and the agent pose.
Let D;, p; be the depth map and agent pose for frame ¢ in
the video. The agent’s pose in frame 7 can be expressed
as p; = (R;,t;), with R;, t; representing the agent’s cam-
era rotation and translation in the world coordinates. Let
K € R3*3 be the intrinsic camera matrix, which is as-
sumed to be provided for each video. We then project each
pixel x;; in the depth map D); to the 3D point cloud as fol-
lows:

R;
wij = 0

tl] Koy, Ve {18} )

where S; is the total number of pixels in D;. By doing this
operation for each pixel, we can obtain the point-cloud W;
corresponding to the depth map D;. To compute the geo-
metric overlap between two frames ¢ and j, we estimate the
overlap in their point-clouds W; and W;. Specifically, for
each point w; € W;, we retrieve the nearest neighbor from
w; € Wj and check whether the pairwise distance in 3D
space is within a threshold 7: |jw; — wj|l2 < 7. If this
condition is satisfied, then a match exists for w;. Then, we


https://storage.googleapis.com/gibson_material/Agreement%20GDS%2006-04-18.pdf
https://storage.googleapis.com/gibson_material/Agreement%20GDS%2006-04-18.pdf

define the overlap fraction ¢)(D;, D;) the fraction of points
in W; which have a match in W;. This overlap fraction is
computed pairwise between all frames in the video, and hi-
erarchical agglomerative clustering is performed using this
similarity measure.

B. Task details

For the object coverage task, to determine if an object is
covered, we check if it is within 3m of the agent, present in
the agent’s field of view, and if it is not occluded [47]. We
use a shaped reward function:

Ry =0; — 041 4+ 0.02(Cy — Cy—1), (6)

where O;, C; are the number of object categories and 2D
grid-cells visited by time ¢ (similar to [17]).

C. Scene memory transformer

We provide more details about individual components of
the Scene Memory Transformer [17]. As discussed in the
main paper, the SMT model consists of a scene memory for
storing the visual features {x; }!_, and agent poses {p; }!_,
seen during an episode. The environment encoder uses self-
attention on the scene memory to generate a richer set of
environment embeddings {e;}!_;. The policy decoder at-
tends to the environment embeddings using the inputs 0,1,
which consist of the visual feature x, and agent pose p at
time ¢t + 1. The outputs of the policy decoder are used to
sample an action a;4; and estimate the value v;4;. Next,
we discuss the details of the individual components.

SCENE MEMORY It stores the visual features derived
from the input images and the agent poses at each time-
step. Motivated by the ideas from [51], we use mid-level
features derived from various pre-trained CNNs for each in-
put modality. In this work, we consider two input modali-
ties: RGB, and depth. For RGB inputs, we extract features
from the pre-trained models in the max-coverage set pro-
posed in [51]. These include surface normals, keypoints,
semantic segmentation, and 2.5D segmentation. For depth
inputs, we extract features from pre-trained models that pre-
dict surface normals and keypoints from depth [67]. For
simplicity, we assume that the ground-truth pose is available
to the agent in the form of (z¢, y¢, 2, 0¢) at each time-step,
where 0; is the agent heading. While this can be relaxed
by following ideas from state-of-the-art approaches to Neu-
ral SLAM [8, 45], we reserve this for future work as it is
orthogonal to our primary contributions.

ATTENTION MECHANISM Following the notations
from [58], we define the attention mechanism used in the
environment encoder and policy decoder. Given two inputs
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X € RmXde gnd Y € R™2 %4y the attention mechanism
attends to Y using X as follows:

KT
Attn(X,Y) = softmax(QX Y ) %% @)

Vdy

where Qx € Randk,Ky S Rn2Xdk7Vy € Rnzxdy
are the queries, keys, and values computed from X and
Y as follows: Qx = XW9, Ky = YWF, and Vy =
YWY, W2 W+ W? are learned weight matrices. The
multi-headed version of Attn generates multiple sets of
queries, keys, and values to obtain the attended context
C e R™m xd,l,'

MHAttn(X,Y) = FC([Atn" (X, Y)]EL)).  (8)

We use the transformer implementation from Py-
Torch [43]. Here, the multi-headed attention block builds on
top of MHALttn by using residual connections, LayerNorm
(LN) and fully connected (FC) layers to further encode the
inputs.

MHAttnBlock(X,Y) = LN(MLP(H) + H) (9)
where H = LN(MHAttn(X,Y) + X), and MLP has 2
FC layers with ReLU activations. The environment encoder
performs self-attention between the features stored in the
scene memory to obtain the environment encoding E.

E = EnvironmentEncoder(M) = MHAttnBlock(M, M).
(10)
The policy decoder attends to the environment encodings

E using the current observation ¢, p;.

PolicyDecoder([x¢, p;], E) = MHAttnBlock(FC([z¢, p4]), E)
Y
We transform the pose vectors {p;}?_; from the scene
memory relative to the current agent pose p; as this allows
the agent to maintain an egocentric view of past inputs [17].

D. Hyperparameters

We detail the list of hyperparameter choices for different
tasks and models in Tab. 5. For SMT (Video), we randomly
sample 40 consecutive frames in the video and predict the
final 15 frames from the initial 25 frames (based on Dense
Predictive Coding [28]). For EPC, we randomly mask out
4 zones in the video and predict them from the remaining
video. The hyperparameters are selected based on valida-
tion performance on the downstream tasks.



RL Optimization

Optimizer Adam
Learning rate 0.00025 - 0.001
# parallel actors 64
PPO mini-batches 2
PPO epochs 2
PPO clip param 0.2
Value loss coefficient 0.5
Entropy coefficient 0.01
Advantage estimation GAE
Normalized advantage? Yes
Training episode length 1000
GRU history length 128
# training steps (in millions) 15
RNN hyperparameters
Hidden size 128
RNN type LSTM
Num recurrent layers 2
SMT hyperparameters
Hidden size 128
Scene memory length 500
# attention heads 8
# encoder layers 1
# decoder layers 1

Occupancy memory hyperparameters

Action space range

48m x 48m

# global action sampling interval 25

Reward scaling factors for different tasks

Task

Reward scale

Area coverage
Flee
Object coverage

0.3
1.0
1.0

Self-supervised learning optimization

Optimizer
Learning rate
Video batch size
Temperature (7)

Adam
0.0001
20
0.1

Table 5: Hyperparameters for training our RL and self-supervised learning models.

E. Downstream task performance vs. time

We show the downstream task performance as a function
of time in Fig. 6. We evaluate each model with 3 different
random seeds and report the mean and the 95% confidence
interval in the plots.
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F. Sample efficiency curves on Gibson

We plot the Gibson validation performance as a function
of training experience in Fig. 7. EPC achieves better sam-
ple efficiency through environment-level pre-training when
compared to the image-level pre-training baseline SMT
(MidLevel).
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Figure 6: We highlight the downstream task performance as a function of episode time on both Matterport3D and Gibson.
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Figure 7: Sample efficiency on Gibson val split. Our environment-level pre-training leads to 4-8 x training sample efficiency when

compared to SOTA image-level pre-training.

G. Complete analysis of noise robustness in
downstream tasks

In Tab. 3 from the main paper, we compared the noise
robustness of top three approaches on MP3D. Here, we
present the complete set of results for all methods on Gib-
son and MP3D in Tab. 6.

H. OccupancyMemory performance on Flee

OccupancyMemory relies on a global policy that sam-
ples a spatial goal location for navigation. A local naviga-
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tion policy [60] then executes a series of low-level actions
to reach that goal. Our qualitative analyses indicate that the
global policy overfit to large MP3D environments. It often
samples far away exploration targets, relying on the local
navigator to explore the spaces along the sampled direction.
However, this strategy fails in the small Gibson-S environ-
ments (typically a single room). Selecting far away targets
results in the local navigator oscillating in place trying to
exit a single-room environment. This does not affect area
coverage much because it suffices to stand in the middle of
a small room and look at all sides.



Matterport3D

Area coverage (m?) Flee (m) Object cov. (#cat.)
Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D.P
Reactive (scratch) 68.0+1.3 65.8+ 1.4 65.7+ 1.5 5.1+0.3 53+0.2 534+02 62£00 6.0+£00 6.0+0.0
RNN (scratch) 79.0 £ 2.0 74.0 £ 0.8 73.4+1.3 5.940.0 59+0.3 6.0+02 6.0£00 59+00 5940.0
SMT (scratch) 104.8+2.2 101.6 0.9 99.2+2.9 6.9+ 0.6 6.6 0.2 74+£02 70£02 68+01 6.7+0.1
SMT (MidLevel) 155.74+2.0 145.14+23 1342+18 106+03 10.6+06 108+04 7.6+02 73+01 73+02
SMT (Video) 141.24+45 129.2+2.1 1258+2.6 10.8+0.6 10.0+04 9.6+0.1 75+£01 74+£00 7.4+0.0
OccupancyMemory  155.6 1.4 86.6 + 2.2 86.2+24 1414+06 109£02 1024+03 78£01 58£00 58=%0.0
EPC 172.5+0.6 161.6+3.1 159.3+2.0 12.7+02 12.0+08 12.0+0.1 9.0+0.1 85+0.1 8.5+0.3

Gibson-S

Area coverage (m?) Flee (m) Object cov. (#cat.)
Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D.P
Reactive (scratch) 17.4+0.2 17.8+ 0.4 178 +£0.4 1.9+0.1 1.8+0.1 1.8+0.1 - - -
RNN (scratch) 20.6 + 0.4 21.5+0.3 21.6 +0.2 2.34+0.2 22+0.2 2.240.2 - - -
SMT (scratch) 23.0+0.7 23.5+04 23.4+04 3.3+£0.2 3.3£0.0 2.8+0.1 - - -
SMT (MidLevel) 29.1+0.1 30.8+04 30.8 £ 0.6 4.2+0.0 4.1+£0.0 3.4+0.0 - - -
SMT (Video) 28.8+ 04 30.8+04 30.7+04 4.0+0.0 3.94+0.0 3.44+0.1 - - -
OccupancyMemory  29.4+0.0 30.8£0.3 30.6 £0.2 2.8+0.0 3.1£0.0 3.0+£0.2 - - -
EPC 31.5+0.1 34.0+0.2 34.0+0.2 4.5+0.0 4.6 +0.2 4.4+0.1 - - -

Gibson-L

Area coverage (m?) Flee (m) Object cov. (#cat.)
Method NF N-D N-D,P NF N-D N-D,P NF N-D N-D,P
Reactive (scratch) 22.8 +0.6 22.44+0.2 22.44+0.2 2.5+0.3 2.6+0.4 2.6+0.4 - - -
RNN (scratch) 28.6 +0.3 279+ 24 28.2+2.5 2.84+0.4 2.7+04 2.84+04 - - -
SMT (scratch) 32.3+0.8 33.4+1.2 326+ 1.9 4.44+04 4.6 +0.2 4.4+0.1 - - -
SMT (MidLevel) 472+ 1.6 49.2+0.4 46.8 + 2.8 6.0+ 0.4 54+0.4 5.1+0.6 - - -
SMT (Video) 476+ 2.4 483+ 1.5 48.0+£ 1.0 6.5+0.4 6.0+0.3 4.8+04 - - -
OccupancyMemory  67.4 £0.9 56.8 £0.8 56.9 £0.8 70+£04 6.9+04 6.9+0.3 - - -
EPC 62.2+1.0 66.7 +1.5 64.2 +1.8 8.0+0.5 8.2+1.0 8.2+0.6 - - -

Table 6: Comparing robustness to sensor noise on downstream tasks in Gibson and Matterport3D. Note: NF denotes noise free sensing,
N-D denotes noisy depth (and noise-free pose), and N-D,P denotes noisy depth and pose.
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