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Abstract 

This work establishes a reliable and accurate materials process-structure (PS) surrogate model that 

maps an 18-dimensional process parameter input domain to a high dimensional space of single 

and dual-phase microstructures. This was accomplished by employing the Materials Knowledge 

Systems (MKS) framework (includes microstructure quantification via two-point statistics and 

dimensionality reduction using principal components analysis) for the feature engineering of the 

microstructures, and subsequently constructing a chained-artificial neural network (ANN) to learn 

the complex nonlinear mappings between the high-dimensional input domain and the MKS-

derived low-dimensional representation of the corresponding microstructure space (includes both 

homogeneous and heterogeneous microstructures). The benefits of this workflow are demonstrated 

on a collection of ~10,000 final microstructures obtained from chemo-mechanical spinodal 

decomposition phase-field simulations in the Mg2SixSn1-x material system. Specifically, it is 

shown that the complex phase-field process-structure relationships for the selected case study can 

be captured in a robust model with only 742 fittable parameters. 
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1. Introduction 
Physics-based multiscale materials simulation tools [1–5] offer tremendous promise for the 

optimal design of novel materials with enhanced properties. However, their high computational 

cost hinders their broader adoption and usage by industry in practical materials design efforts [2,6]. 

Materials informatics tools [6–8] can potentially bridge this gap by training low-computational 

cost process-structure-property (PSP) surrogate models of the expensive physics-based multiscale 

materials simulations. Once trained1, the surrogate model can be used in place of the expensive 

physics-based model for efficiently exploring material process design solutions. Among the 

surrogate PSP models, the construction of process-structure (PS) models is often more difficult 

than that of structure-property (SP) models due to the high-dimensionality of both the material 

manufacturing processing paths and the resultant microstructures (note that SP linkages often map 

microstructures to a single property value).  

The PS model building efforts encounter two main challenges: (1) adequate microstructure 

representation (i.e., the quantification of the salient features of the resultant microstructure) and 

(2) ensuring sufficient expressivity of the model building approach (i.e., ability to capture the 

highly nonlinear mappings involved) while avoiding overfits. Prior PS surrogate modeling 

techniques have largely circumvented these challenges by limiting attention to purposefully 

simplified mappings between process and structure [9–15]. For example, Sarkar et al. [9] recently 

established a surrogate model for the process-structure mapping of ZrO2-toughened Al2O3 

ceramics subjected to sintering heat treatments. In this work, only the sinter time, sinter 

temperature, ceramic sinter-aid content, and reinforcement addition content were used to predict 

final sinter density and grain size. Here the process space is reduced to only four distinct variable 

parameters and the microstructure representation is drastically reduced to two features. It is 

noteworthy that this mapping function could be established successfully using a simple polynomial 

regression. In another study, Tapia et al. [10] demonstrated the feasibility of using Gaussian 

Process Regression (GPR) to model secondary particle nucleation and growth during heat 

treatment of NiTi shape-memory alloys. The inputs to their GPR model included the temperature 

and duration of heat treatment as well as the initial nickel composition, while the output was the 

final nickel content in the metal matrix. Note that the use of a limited number of inputs and outputs 

in both studies described above leads to their limited utility. This is not only because of the 

 
1 This usually incurs a one-time high computational cost. 
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relatively small input domains over which the surrogate models have been trained, but also because 

they have filtered out much of the important morphological information in the microstructures. 

Specifically, the rich details of the microstructure morphology cannot be accurately reconstructed 

from the simple outputs predicted by these models.  

Comprehensive but compact feature engineering that captures the many rich details of the 

microstructure needs to be combined with expressive modeling strategies to address the PS model 

building challenge described above. In this paper, we address this need by leveraging the feature 

engineering of the Materials Knowledge Systems (MKS) [6,8,16] framework with a chained-

artificial neural network (ANN). The benefits of the MKS feature engineering have been 

demonstrated in numerous prior PSP surrogate modeling efforts [8,11,12,17–19]. This approach 

involves the computation of 2-point spatial correlations for the statistical quantification of the 

microstructure, followed by principal component analysis (PCA) to obtain a low-dimensional 

representation of the spatial correlations. In this work, we will employ chained ANNs to capture 

the highly complex and nonlinear mappings between the high-dimensional process space and the 

MKS-feature engineered microstructure space. Specifically, our goal is to train an ANN to first 

identify the class of the output microstructure (i.e., as a single-phase or a two-phase 

microstructure), and subsequently chain an additional ANN for the prediction of the two-phase 

microstructures. The combination of the MKS framework with the high expressivity of the 

chained-ANN is expected to result in efficient learning of the complex PS mappings. It will be 

demonstrated that the proposed strategy produces robust PS models with a relatively low number 

of fitting (trained) parameters. 

We will demonstrate the benefits of this PS modeling strategy described above on a large 

dataset aggregated from phase-field simulations. Our interest will be restricted to the prediction of 

the quasi-equilibrium microstructures close to completion of the spinodal decomposition phase-

transformation (i.e., we will not consider the subsequent coarsening phenomena that typically 

occurs at a drastically slower rate)2. We aim to consider a large number of user-specified inputs to 

the commonly used phase-field models (these typically specify the initial conditions and the 

physical parameters controlling microstructure evolution) as inputs to our surrogate models, while 

the range of the output would cover all possible multi-phase microstructures in the selected 

 
2 Surrogates can also be formulated to predict microstructure evolution (i.e., predict the microstructure at the next 
time step based on known microstructures at previous time steps and known processing conditions) [8,11,17,30,31]. 
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material system. Phase-field surrogate models covering such large input domains and output 

ranges have not yet been demonstrated in prior literature and are highly desirable to support future 

materials and process design efforts.  

The application of machine learning approaches on phase-field datasets is indeed an active 

area of research (e.g., [20–27]). A number of these studies have focused on microstructure 

classification and optimization [20,21,26,27] as well as SP surrogates [22–25]. Here, we focus 

specifically on the extraction of PS surrogates from phase-field simulation data. Much like the 

earlier discussion, prior efforts on building phase-field PS surrogates has also been limited to 

process and microstructure spaces of low complexity. For example, Farizhandi et al. [28] 

developed an inverse process-structure surrogate via a deep neural network (DNN) to predict 

phase-field simulation processing conditions from microstructure input. The simulation processing 

conditions included only the chemical composition, temperature, and simulation duration. 

Notably, due to the lack of microstructure feature engineering and the choice of model building 

strategy, ~66,000,000 parameters were fit while training on 11,500 phase-field simulated 

microstructures. As another example, Herman et al. [29] created a phase-field-informed surrogate 

model to predict microstructure morphologies of physical vapor deposition (PVD) simulations. 

The dataset for building this surrogate model was populated by varying the phase fraction and 

deposition rate of the deposited material. Importantly, the MKS framework was utilized for 

microstructure feature engineering and a polynomial chaos expansion was used to formulate the 

PS surrogate. Herman et al. note that the PVD phase-field model was simplified by considering 

only phase fraction and deposition rate. Similarly, Yabansu et al. [11] utilized the MKS framework 

to predict the phase-field simulated microstructures during three-phase spinodal decomposition of 

the Al-Ag-Cu system as a function of two process parameters (temperature and time) using a 

simple polynomial regression. Alternatively, still using the MKS framework for feature 

engineering, Hu et al. [30] and Montes et al. [31] developed PS surrogates using recurrent neural 

networks (RNN) to learn the spinodal decomposition microstructural evolution of a binary alloy. 

The RNNs built in these studies utilized ~150,000 model-fit parameters trained on 5,000 

microstructure evolution sequences. For the previously reported phase-field PS surrogates built 

using ANNs [28,30,31], the number of model-fit parameters utilized is significantly larger than 

the number of training datapoints; this can potentially result in overfitting of the model.  
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Our goal in this paper is to dramatically expand the dimensionality and sizes of the input 

domains and output ranges of the surrogate models trained on phase-field simulations. This will 

be accomplished by leveraging the inherent strengths of both the MKS framework (for feature 

engineering) and ANNs (high model expressivity), while utilizing a relatively small number of 

fittable model parameters. Specifically, we will establish PS surrogates trained on phase-field 

simulations in the Mg2SixSn1-x material system for which a suitable dataset has been aggregated 

and shared in a public repository known as the Open Phase-field Microstructure Database (OPMD) 

[32,33]. The dataset covers a total of eighteen simulation inputs (i.e., thermodynamic, kinetic, 

elastic, and physical parameters) and the corresponding output microstructure space. Notably, the 

phase-field simulated microstructures contained in this database exhibit extremely large diversity 

in phase volume fractions as well as size and shape distributions of the constituent phase regions. 

In prior work using this dataset, Kunselman et al. [26,27] demonstrated the utility of semi-

supervised and unsupervised classification techniques to automatically detect different classes of 

two-phase microstructures with high confidence. In another study [34], a multimodal machine 

learning approach was applied to predict selected characteristics of the phase-field simulated final 

microstructures (such as min/max composition and phase area fractions) while using as inputs both 

the phase-field simulation inputs and output microstructures. While these studies on the OPMD 

demonstrate the potential of modern machine learning strategies applied to understanding complex 

microstructure spaces, they do not establish low-computational cost surrogates needed to support 

materials innovation. The proposed combination of the MKS framework with a chained-ANN 

allows the formulation of robust PS surrogates, with relatively few model fit parameters, which 

successfully capture the complex mappings between the 18-dimensional process space and its 

corresponding, much higher dimensional, microstructure space. 

 

2.  Background 

2.1 Microstructure Quantification 

As already stated, the MKS framework will be utilized in this work for the low-dimensional 

representation of the microstructure. This approach utilizes (1) 2-point spatial correlations for 

rigorous statistical quantification of the microstructure, and (2) PCA for their reduced-order 

representations. This framework starts with a digital representation of the microstructure as a 
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multi-dimensional array 𝑚!
" where ℎ indexes the material local state, 𝑠 indexes spatial bins (i.e., 

pixels or voxels) [7,35,36], and the value of 𝑚!
" reflects the volume fraction of material local state 

ℎ present in the spatial bin 𝑠. The material local state can be defined to include any attributes 

needed to describe the physical properties of the material at the scale of the spatial bins. Often, the 

material local state is used to denote attributes such as phase identifiers, chemical compositions, 

and lattice orientations. Microstructure statistics capturing important morphological information 

can be computed as 2-point spatial correlations, 𝑓𝒓""
!, reflecting the joint probability of finding 

material local states ℎ and ℎ′ separated by a vector indexed by 𝒓. Mathematically, these are 

expressed as (assuming the microstructure exhibits periodic boundary conditions) [37] 

𝑓𝒓""
! =	

∑ 	𝑚!
"	𝑚!$𝒓

"!
𝒔	∈	(

𝑐(𝑆) 		 (1) 

where 𝑆 and 𝑐(𝑆) denote the set of all spatial bins in the microstructure and the cardinality of 𝑆, 

respectively. The sets of spatial correlations where ℎ = ℎ′ and ℎ ≠ ℎ′ are known as 

autocorrelations and cross correlations, respectively. A single set of spatial correlations for fixed 

h and h’ will have the same dimensionality (i.e., same number of spatial statistics) as the original 

microstructure 𝑚𝒔
". One can compute n2 sets of spatial correlations, where n is the number of local 

states considered. Niezgoda et al. [37] have shown that only (n-1) sets of these are independent. 

For a two-phase microstructure, a single auto correlation is adequate to capture all the independent 

2-point spatial correlations.  

The number of microstructure statistics tend to be far too many for practical surrogate 

model building and PCA has been shown to be quite effective in producing data-driven low-

dimensional features from collections of computed spatial correlations [11,17,38]. PCA performs 

a distance-preserving rotational transformation that maximizes the capture of variance in the 

minimum number of terms for a given dataset (in the present context, this refers to a collection of 

spatial correlations computed on an ensemble of microstructures). The transformed axes are known 

as PC basis and the transformed data coordinates are referred to as PC scores. PCA has been found 

to offer many advantages in building PSP surrogates for a broad range of materials design 

applications. First, it captures the salient microstructure information in a small number of PC 

scores, ordered by relative importance (i.e., how much variation they capture). Second, it allows 

for an easy reconstruction of the 2-point spatial correlations up to a truncation error; this error can 
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be reduced by including more PC scores. Additionally, methods to reconstruct microstructures 

from the 2-point spatial correlations have already been discussed [39–42]. Third, these protocols 

have been found to be applicable across a broad range of material classes and length scales 

[6,11,13,18,19,38], supporting systematic integration of materials knowledge extracted from 

diverse applications in multiscale materials design efforts. 

 

2.2 Surrogate PSP Model 

Reduced-order PSP models can be built using a variety of surrogate model building 

strategies (e.g., [9–11,13,17,19,24,28–31]). ANNs are particularly attractive for capturing the 

highly complex nonlinear mappings present in materials phenomena. The most basic ANN 

architectures connect the input to the output using multilayer perceptrons (MLPs) in a fully 

connected feedforward network. A single perceptron (see the callout in Fig. 1) applies a linear 

transformation on the inputs, followed by a nonlinear activation function (e.g., ReLU, sigmoid, 

tanh) [43]. The fittable model parameters (principally, the weights and biases) are tuned through 

backpropagation in which prediction error, defined by a loss function, is minimized via stochastic 

gradient descent [44]. The total number of fittable parameters, 𝑃, in an MLP can be computed as 

𝑃 = 	1 𝑛) 	(𝑛)*+ + 1)
,

)-+
	 (2) 

where 𝐿 is the total number of layers (excluding the input layer) and 𝑛) is the number of nodes in 

layer 𝑙.  

One drawback of ANNs is that they are prone to overfitting, especially in problems with a 

small training dataset (e.g., more fittable parameters compared to the number of training data 

points). A common practice is to partition the full dataset randomly into a training set and a test 

set such that they both exhibit similar output value distributions. Once the test set is identified, it 

is not exposed to the training process in any manner. Additionally, a small portion of the training 

set is often set aside for validation, which is aimed at mitigating model overfit. Model parameter 

fitting is performed using the training set and the validation set is used to determine 

hyperparameters such as model architecture or to implement early stopping strategies during the 

minimization of the loss function. Note that the test set is used exclusively to measure model 



 8 

accuracy only after all model training/tuning is complete, ensuring an unbiased estimate of the 

model accuracy on previously unseen data.  

 

Figure 1. Schematic of a fully connected MLP for a single output mapping. The callout shows a 

single perceptron as a weighted linear combination of all inputs to the node with a bias, followed 

by the application of a nonlinear activation function. 

 
An ANN can be designed to serve either as a classifier (predicts discrete classes) or a 

regressor (predicts continuous real values). Different error metrics are needed for these different 

applications. Classification model accuracy can be assessed using precision (𝑃), recall (𝑅), and 

𝑓1-scores, defined as 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (4) 

𝑓1 = 2
𝑃	𝑅
𝑃 + 𝑅 (5) 

where 𝑇𝑃 is the count of true-positive predictions, 𝐹𝑃 is the count of false-positive predictions, 

and 𝐹𝑁 is the count of false-negative predictions. As model accuracy increases, all three metrics 

(𝑃, 𝑅 and 𝑓1) approach unity.  

Regression model accuracy can be quantified using normalized mean absolute error 

𝑛𝑀𝐴𝐸) defined as 
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𝑛𝑀𝐴𝐸	 = 	
∑ A𝑦. −	𝑦D .A/
.-+

∑ |𝑦.|/
.-+

			 (6) 

where 𝑦. and 𝑦D . denote, respectively, the true output (i.e., ground-truth) and the predicted model 

output for the 𝑖th datapoint, and 𝑁 is the total number of test samples. 

 

3. Spinodal Decomposition Process-Structure Surrogate 

3.1  The OPMD Dataset 

The OPMD [32] is a collection of consistently computed phase-field microstructures of the 

Mg2SixSn1-x thermoelectric alloy during isothermal annealing. The Mg2SixSn1-x pseudo-binary 

material system is an important thermoelectric alternative to the common, environmentally 

harmful, thermoelectric materials in current use (e.g., PbTe, Bi2Te3, and skutterudites) [45–47]. 

This material system is well known for its miscibility gap in which spinodal decomposition 

(spontaneous phase separation) is chemically favorable. Such solid-state reactions are also 

influenced by the interfacial and elastic energy contributions to the bulk free energy of the system. 

While phase separation is promoted by chemical driving forces, the elastic driving forces often 

suppress the miscibility gap and promote phase dissolution or homogenization [45]. These 

competing driving forces (chemical and elastic) can be modelled in a fully parameterized elasto-

chemical phase-field simulation in which the effect of the various physical parameters on 

Mg2SixSn1-x microstructure can be studied. The derivation and use of the phase-field modeling for 

the spinodal decomposition in Mg2SixSn1-x have been discussed extensively by Attari et al. [33].  

Currently, the OPMD contains 10,000 phase-field produced microstructure evolution 

(presented as time-series) simulations along with all of the relevant values of the input parameters 

involved. More specifically, these simulations utilize a total of eighteen input parameters 

describing the thermodynamic, kinetic, elastic, and physical properties of the Mg2SixSn1-x material 

system. The ranges for these input parameters are summarized in Table 1. The CALPHAD 

parameters for Mg2SixSn1-x solid solution ( 𝑎	0 !!, 𝑏	0 !!, 𝑎	+ !!) and for the liquid phase ( 𝑎	0 ).1, 

𝑏	0 ).1 , 𝑎	+ ).1) describe the interactions between the constituents beyond the ideal mixtures. These 

parameters were used to estimate the molar Gibbs free energy of mixing for the pseudo-binary 

system, which was used as an input to the phase-field simulations. The kinetic parameters shown 
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in Table 1 control the mass diffusion rates, while the elastic constants (𝐶++
23"(4, 𝐶+5

23"(4, 𝐶66
23"(4, 

𝐶++
23"(., 𝐶+5

23"(., 𝐶66
23"(.) control the elastic driving forces. The range for the Stress-Free 

Transformation Strain (𝑆𝐹𝑇𝑆) was estimated using both calculated and experimental lattice 

parameters in the literature for Mg2Sn and Mg2Si. The ranges for the molar volumes of Mg2Sn and 

Mg2Si were based on cell volume calculations and experimental measurements, and the alloy 

composition was sampled in the range 0.3 ≤ 𝑥 ≤ 0.5 to ensure that the phase-field simulations 

were executed within the chemically unstable miscibility gap for the Mg2SixSn1-x system at 720°C 

[33,45]. 

The simulation cell (384x384 voxels and 350x350 nm in dimension) was initialized with random 

noise surrounding the initial composition (defined by the Si stoichiometry, 𝑥) and each simulation 

was executed with an isothermal temperature of 720 oC. At each time step of the simulation, the 

microstructure is defined as a two-dimensional spatial field of size 384×384 describing the Si 

stoichiometry (expressed in the range 0 to 1) at each pixel. We extracted only the microstructure 

images corresponding to the 15,000th time step3 of the phase-field simulations. The ensemble of 

the extracted microstructures exhibited a large amount of morphological variation (see Fig. 2), 

indicating a highly nonlinear mapping with the 18-dimensional input domain. It is seen that the 

simulation output exhibited single-phase, two-phase, and three-phase microstructures. The single-

phase microstructures are those that did not phase separate by the 15,000th timestep in the phase-

field simulations. The two-phase microstructures represent the cases where the parent phase 

(Mg2SixSn1−x solid solution) fully decomposed into two distinct phases (Mg2Si and Mg2Sn) and 

the three-phase microstructures represent the cases where the parent phase only partially separated 

by the 15,000th timestep. 

 

 

 

 

 
3 The 15,000th time step corresponded to fully decomposed microstructures for most of the simulations. However, 
the phase separation was sluggish in a few cases and produced three-phase microstructures. As noted later, the small 
number of three-phase microstructures found in the extracted dataset were excluded from the study. Therefore, the 
microstructures obtained at the 15,000th time step served as the final microstructures for our study. 
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Table 1: Summary of the ranges of the phase-field simulation parameters for the dataset used in 

this work. “ss” and “liq” denote Mg2SixSn1−x solid solution and liquid phases, respectively. SFTS 

denotes Stress-Free Transformation Strain [33]. 

 Parameter Unit Lower Bound Upper Bound 

CALPHAD 
Parameters 

	"𝑎## J	mol$% 6824.89 20474.69 
	"𝑏## J	mol$%	K$% 3.67 11.02 
	%𝑎## J	mol$% -5208.34 -1736.11 

	"𝑎&'( J	mol$% 43550.19 130650.57 

	"𝑏&'( J	mol$%	K$% -86.03 -28.68 

	%𝑎&'( J	mol$% 3314.80 9944.41 

Kinetic 
Parameters 

Interface mobility (M) m)	s$%	J$% 10$)"/(𝑅𝑇) 10$%*/(𝑅𝑇) 
Gradient energy coefficient 
(ϰ) J	m$) 2.0 × 10$)+ 2.0 × 10$), 

Elasticity 
Parameters 

SFTS (𝜖-) - -0.02 0.02 

𝐶%%
./!01 GPa 68.30 83.71 

𝐶%)
./!01 Gpa 17.68 39.79 

𝐶,,
./!01 Gpa 16.03 41.94 

𝐶%%
./!0' Gpa 114.07 126.00 

𝐶%)
./!0' Gpa 19.56 26.00 

𝐶,,
./!0' Gpa 33.32 58.20 

Physical 
Parameters 

Molar Volume 7𝑉2
./!019 m3	mol$% 4.73 × 10$4 6.38 × 10$4 

Molar Volume ?𝑉2
./!0'@ m3	mol$% 3.95 × 10$4 5.33 × 10$4 

Alloy composition (x) mol 0.3 0.5 
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Figure 2. Example microstructures from the OPMD dataset where each column corresponds to A) 

cuboidal Mg2Si nanoprecipitates, B) spherical Mg2Si nanoprecipitates, C) intertwined Mg2Si and 

Mg2Sn grains, D) partially decomposed Mg2SixSn1−x, and E) miscellaneous microstructures 

 

3.2  Segmentation of Simulated Microstructures 

 The phase-field model outputs spatial field (384×384) predictions for the Si stoichiometric 

factor over the entire simulated region. Although the phase-field predicted Si stoichiometry 

exhibits values in the continuous range of (0,1), the histograms showed only one, two or three 

strong peaks suggesting that the predicted microstructures indeed belong to the three classes of 

microstructures (i.e., single-, dual-, or triple-phase) mentioned earlier. In order to apply the 

microstructure quantification framework presented in Section 2.1, each pixel in each phase-field 

predicted spatial field needs to be labelled with one of the three possible phase labels (i.e., Mg2Sn, 
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Mg2SixSn1-x, and Mg2Si). This process (illustrated in Fig. 3 using examples from all three classes 

of predicted microstructures seen in the OPMD), where a continuous range is quantized, is 

generally referred to as segmentation and was performed via histogram analysis and Otsu 

thresholding [48]. When only one peak is observed, all pixels in the microstructure were classified 

as Mg2SixSn1-x solid solution. When two peaks were present, Otsu thresholding was applied to 

classify each pixel as either Mg2Sn or Mg2Si. Likewise, when three peaks were present, Otsu multi-

thresholding was utilized for labelling the Mg2SixSn1-x, and Mg2Si pixels. 

 

 

Figure 3. Examples of segmentation of phase-field predicted microstructures: (a) homogeneous 

microstructure, (b) two-phase microstructure, and (c) three-phase microstructure. For each 

example, the top row shows the simulated microstructures, the middle row presents the histograms 

of the Si stoichiometric factor with dotted lines showing the thresholding limits, and the bottom 

row displays the segmented microstructures. 

 
It was determined that the OPMD dataset, at the selected evolution stage (15,000th time 

step), consisted of roughly 80% non-decomposed homogeneous samples, 14% fully decomposed 

two-phase samples, and 4% partially decomposed three-phase samples. The other 2% of the 

samples consisted primarily of physically unrealizable artifacts caused by simulation numerical 
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errors; these samples were removed from the dataset. We are interested in predicting the final 

microstructure of the phase field simulation; thus, the partially decomposed samples were also 

removed from the dataset. 

 

3.3 Microstructure Quantification 

The MKS framework was utilized for the quantification of the segmented two-phase 

microstructures. As already mentioned, the homogeneous (i.e., single phase) microstructures do 

not exhibit any morphological features. Note that each pixel in a segmented two-phase 

microstructure was assigned to one of the two possible local states: Mg2Sn and Mg2Si. As 

discussed in Section 2.1, only a single autocorrelation is required to capture all non-redundant 2-

point spatial correlations for the two-phase microstructure [37]. In this work, the (Mg2Sn-Mg2Sn) 

autocorrelation, denoted simply as 𝑓𝒓, is used. Fig. 4 shows examples of the computed 

autocorrelation maps for selected microstructures. The most prominent feature in each 

autocorrelation map is the central peak corresponding to 𝒓 = 𝟎 (i.e., 𝑓𝟎), which represents the 

volume fraction of the Mg2Sn phase. Further morphological insights are found in the other 

autocorrelation peaks and valleys. For example, the autocorrelation patterns in examples 4(a) and 

4(b) reflect the overall alignment of their respective morphological features; microstructures 4(a) 

and 4(b) are seen to have preferential Mg2Sn (black phase) continuity along the diagonal direction 

and the horizontal and vertical directions, respectively. Meanwhile, the autocorrelation for 

microstructure 4(c) does not indicate any strong preferential directions in the alignment of the 

Mg2Sn phase.  
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Figure 4. Mg2Sn – Mg2Sn autocorrelations (bottom) for example two-phase microstructures (top). 

Microstructure examples include (a) intertwined Mg2Si and Mg2Sn grains, (b) ordered cuboidal 

Mg2Si nanoprecipitates, and (c) unordered spherical Mg2Si nanoprecipitates. The value of the 

central peak in each map reflects the volume fraction of Mg2Sn in the corresponding 

microstructure. 

 
Each autocorrelation map in Fig. 4 contains 147,456 microstructure statistics (the same as 

the number of pixels in each simulated microstructure). We use PCA to produce a low-dimensional 

representation of this feature vector. The set of 1,365 two-phase microstructures was partitioned 

into a 85%/15% train/test split and PCA was performed on the autocorrelations in the training set 

(1,155 samples in total) using the scikit-learn package [49]. Over 99% of the dataset variance was 

captured in the first 5 PC scores and confirms the PCA analysis performed by Kunselman et al. 

[26] on a portion of the OPMD dataset. Fig. 5 shows reconstructed autocorrelations for an example 

microstructure using an increasing number of PC scores. It is seen that the reconstructed 

autocorrelation with 5 PC scores begins to closely resemble the original Mg2Sn – Mg2Sn 

autocorrelation and that further addition of PC scores does not greatly improve the accuracy of the 

reconstruction. Most samples in the dataset followed this trend and had diminishing returns on 

reconstruction accuracy past PC5. 
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Figure 5. (a) A two-phase microstructure and its Mg2Sn – Mg2Sn autocorrelation. (b) 

Reconstructed autocorrelations using different subsets of truncated PC representations. As an 

example, the PC1 to PC8 reconstruction signifies that the autocorrelation was reconstructed with 

only the first eight PC scores. 

 
The truncated PC representations produced a significant dimensionality reduction (from 

147,456 spatial correlations to 5 PC scores) while still capturing most of the original information. 

A visualization of the distribution of the training set microstructures in the space of the first two 

PC scores is shown in Fig. 6. Each data point represents the autocorrelation of a single 

microstructure represented by its first two PC scores. Example microstructures are shown to 

demonstrate that the low-dimensional PC representations capture the salient morphological trends 

in the microstructure ensemble. Note that the figure only depicts the representations in the first 

two PC scores, while we have used five PC scores to represent the microstructures in this work. 

Consistent with prior applications [11,18], increases in PC1 were found to be highly correlated 

with increases in the Mg2Sn volume fraction. Additionally, it was observed that PC2 correlated 

well with Mg2Si precipitate size. Interestingly, microstructures exhibiting intertwined Mg2Sn and 

Mg2Si grains were found on the far-left side of the plot, while those with separated Mg2Si 

precipitates were to the right. These results attest the ability of the MKS framework in providing 
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meaningful low-dimensional salient features for the quantitative representation of the 

microstructures. 

While the protocols described above (microstructure à autocorrelation à PC scores) 

clearly capture large amounts of spatial information, they do represent a lossy filter. Higher-order 

spatial statistics (e.g., local grain shapes) are not included in the autocorrelation maps, and PCA 

truncation ensures that only the features capturing the highest dataset variance remain. As such, a 

predictive model built to learn the relationship between simulation input parameters and truncated 

PC scores would not be able to reproduce exact microstructure instantiations. Rather, the model 

would reproduce statistically similar microstructure autocorrelations which describe important 

spatial features (e.g., precipitate size and spacing). 

 

Figure 6. Representation of the training set of two-phase microstructures (green dots) in the first 

two PC scores. Several two-phase microstructures (Mg2Sn and Mg2Si are shown purple and 

yellow, respectively) are overlayed directly above their location in PC space. While the first five 

PC scores are used for model building, much of the dataset morphological variation is captured 

in the first two components. 

 
3.4 Surrogate Model Building 

 The chained-ANN surrogate model built in this work consists of two MLPs (implemented 

with PyTorch [50]), as shown in Fig. 7. Each MLP was constructed with the same 
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train/validate/test split as described in Section 2.2 and the model hyperparameters for both MLPs 

were determined via heuristic refinement. The chained-ANN takes as input the phase-field 

simulation parameters (see Table 1), each of which has been mean centered and scaled to unit 

variance across all the samples in the training dataset to improve model training [51]. The 

transformed inputs were first fed to the MLP classifier, which distinguishes between sets of 

simulation parameters that result in homogeneous and heterogeneous microstructures. A predicted 

homogeneous microstructure is taken to be a solid solution of Mg2SixSn1-x, and no further analysis 

is performed. When the MLP classifier predicts a heterogeneous microstructure, the inputs are 

passed to the MLP regressor to predict the first five PC scores of microstructure autocorrelations. 

The PC scores are then used to reconstruct truncated autocorrelation maps (referred to as ML-

predicted truncated autocorrelations) and corresponding microstructure instances.  

As noted earlier, each ML-predicted truncated autocorrelation is expected to correspond to 

a relatively large set of microstructure instances, which exhibit similar two-point statistics [39,40]. 

At this point, it is important to recognize and understand the differences between microstructure 

instantiations and their representation using n-point spatial correlations; microstructure 

instantiations represent example microstructures that could have been sampled by an underlying 

process that defines the microstructure from its n-point spatial correlations. This underlying 

stochastic process is completely described by the full set of n-point spatial correlations, of which 

the autocorrelation maps constitute a first-order approximation.  As such, the framework of spatial 

correlations offers a more accurate and meaningful representation of the microstructure, while any 

single instantiation should only be treated as a possible sampled microstructure. For this reason, 

spatial correlations of the microstructure should be the preferred choice for the representation of 

the microstructure in PSP models used to drive materials development efforts [6].   

In this work, we present example instantiations corresponding to the ML-predicted 

truncated autocorrelation maps, produced via an efficient Gaussian Random Field (GRF) generator 

[40]. Due to the stochastic nature of this procedure, these are unlikely to match the phase-field 

predicted microstructures. Nevertheless, it is instructive to examine what spatial features of the 

phase-field predicted microstructures are indeed captured in the first five PC scores used in the 

ML-predicted truncated autocorrelation maps. 
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Figure 7. A schematic showing the chained-ANN process-structure surrogate model developed in 

this work. The chained-ANN model (inside the dashed box) contains both the classification model 

(orange) and the regression model (green). Microstructure information extracted from the model 

outputs are shown in yellow. 

 
3.4.1 Classification MLP 

The ideal loss function was found to be Binary Cross Entropy (BCE) loss [52], common 

for models with binary outputs (in our case, zero and one correspond to homogeneous and 

heterogeneous microstructures, respectively). The BCE loss function was minimized with the 

AdamW gradient descent optimizer [53] with an initial learning rate of 0.001 and a weight decay 

of 1e-2. The ideal model size, corresponding to the smallest number of parameters (see Eq. 2) with 

the highest accuracy, was found to be a single hidden layer with five nodes, containing only 101 

fittable parameters. Larger models (either in depth or layer width) tended to aggressively overfit 

and produce worse overall validation set performance. The ReLU activation function [43] was 

used on the hidden layer, and the sigmoid activation function [43] applied to the output layer to 

ensure that the predicted values lie between zero and one. The network learning rate was governed 
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via the 1cycle learning rate policy [54], which briefly increased the learning rate before decreasing 

to a rate much lower than the originally prescribed value of 0.001. The 1cycle learning rate helped 

the model converge quickly (see Fig. 8), performed well over a wide range of total training epochs, 

and improved model stability (i.e., more consistent results across multiple training attempts). The 

ideal ratio of model performance to training time was achieved with fifty training epochs. 

 After model training was complete, the predicted values were rounded to the nearest 

integer (0.5 thresholding) and the classification accuracy was quantified using the precision, recall, 

and f1-score (see Eqs. 3-5). Because the rounding threshold used to binarize the classifier output 

is an essential model parameter, a sensitivity analysis was performed to determine the ideal 

thresholding value. The sensitivity analysis showed that deviation from 0.5 resulted in slightly 

worse f1-score measurements; however, this decrease in model performance was minor over the 

range of 0.2-0.8, likely due to the inherent symmetric bias from the sigmoid activation function 

toward zero and one. 

As the classification MLP is the first predictive network in the chained-ANN, the 

classification error is propagated through to the regression network and into the autocorrelation 

reconstructions; thus, it is particularly important that the classification model be as accurate as 

possible before chaining it with the MLP regressor. Because the OPMD dataset consists of 

primarily homogenous microstructures, the model accuracy is naturally weighted towards the 

classification accuracy of homogeneous samples. This weighted prediction accuracy can be seen 

clearly in Table 2 where the training and testing dataset classifications are presented categorically 

in a confusion matrix. Also evident in Table 2 is the ratio of homogeneous and heterogeneous 

samples contained in each dataset partition. Roughly 15% of the samples in both the training and 

testing datasets are from decomposed simulations. The precision, recall, and 𝑓1-score for both 

homogeneous and heterogeneous classifications are summarized in Table 3 for the training and 

test dataset partitions. The homogeneous classification is highly accurate with a test set 𝑓1-score 

of 0.996. Similarly, the heterogeneous classification is highly accurate with a test set 𝑓1-score of 

0.976. 
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Figure 8. Learning curves containing training and validation loss for the classification MLP. 

 

Table 2. Classification confusion matrix for both the training and testing dataset partitions. 

 Training Dataset 
 Predicted Homogeneous Predicted Heterogeneous 

True Homogeneous 6909 23 
True Heterogeneous 34 1121 

   
 Testing Dataset 
 Predicted Homogeneous Predicted Heterogeneous 

True Homogeneous 1216 2 
True Heterogeneous 8 202 

 

 
Table 3. The average precision, recall, and f1-score for the constructed classification model for 

both homogeneous and heterogeneous (see Eqs. 3-5). 

 Homogeneous Classification 
 Precision Recall f1-Score 

Train Set 0.995 0.997 0.996 
Test Set 0.993 0.998 0.996 
    
 Heterogeneous Classification 
 Precision Recall f1-Score 

Train Set 0.980 0.971 0.975 
Test Set 0.990 0.962 0.976 
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3.4.2 Regression MLP 

The regression model outputs (i.e., the first five PC scores) were scaled to lie between the 

values of -1.0 and 1.0 to facilitate model training [51]. The Huber loss function [52], which is less 

sensitive to outliers, was found to give the best results. The loss function was minimized with the 

AdamW optimizer with a learning rate of 5e-4 and a weight decay of 5e-3. The GELU activation 

function and batch normalization were utilized in each hidden layer [43,55]. The number and size 

of the hidden layers were varied to determine the ideal model architecture. It was found that three 

hidden layers with twelve nodes each (corresponding to 641 fittable parameters) produced the ideal 

regression model for our case study. The network learning rate, similar to the classification MLP, 

was governed by the 1cycle learning rate policy and helped the regression model converge quickly 

to a local optimum (see Fig. 9). The ideal number of training epochs, resulting in the lowest 

validation loss, was determined to be two hundred.  

After model training was completed, the predicted scaled PC scores were converted back 

to their original domains and model prediction accuracy was calculated using Eq. 6. The 𝑛𝑀𝐴𝐸 

(see Eq. 6) for each PC score is reported in Table 4. The 𝑛𝑀𝐴𝐸 increases for higher PC scores, as 

expected, because higher PC scores (associated with lower variance PC basis) tend to capture more 

noise [56]. This is also seen in the parity plots in Fig. 10 where the higher PC scores become less 

accurate in both training and test dataset partitions and, by PC5, the predictions have poor 

correlation to the true values. While the higher PC score predictions are less accurate, they also 

hold less importance, as the PC scores are organized by their ability to capture the dataset variance. 

Autocorrelation reconstructions from the predicted PC scores will depend mostly on the more 

accurate (PC1-PC3) scores, while the less accurate scores will have a much smaller impact. 
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Figure 9. Learning curves containing training and validation loss for the regression MLP. 

 

Table 4. Reported 𝑛𝑀𝐴𝐸 (see Eq. 6) and standard deviations for the predicted PC scores for the 

train and test dataset partitions. 

 𝑛𝑀𝐴𝐸 
 PC1 PC2 PC3 PC4 PC5 
Train Set 0.086 ± 0.111 0.175 ± 0.165 0.310 ± 0.292 0.483 ± 0.437 0.790 ± 0.875 
Test Set 0.108 ± 0.227 0.213 ± 0.204 0.351 ± 0.292 0.561 ± 0.509 0.996 ± 1.393 

 

 

Figure 10. Parity plots of the MLP Regressor PC score predictions for the train (red) and test 

(blue) dataset partitions. The R2 values are given for each parity plot. 
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Final model accuracy was determined by quantifying the difference between the ML-

predicted truncated autocorrelations (𝒚T) and the autocorrelations of the corresponding phase-field 

predicted microstructures (𝒚) as 

𝑅𝑀𝑆𝐸	 = U∑ (𝑦. −	𝑦D.)5/
.-+

𝑁
(7) 

where 𝑁 is the total number of autocorrelation features. The test set 𝑅𝑀𝑆𝐸 is presented in Fig. 11 

as a frequency plot along with three example microstructures specifically selected to demonstrate 

the range of model accuracy. Samples (a) and (b) correspond to minimum and near-mean 𝑅𝑀𝑆𝐸. 

It is seen that the ML-predicted truncated autocorrelations for these samples are qualitatively very 

similar to the truncated autocorrelations of the corresponding phase-field predicted 

microstructures. Sample (c) represents one of the test set outliers with high reconstruction error, 

and clearly does not adequately represent the corresponding truncated autocorrelation of the phase-

field predicted microstructure. The relatively high error associated with this, and other outliers is 

attributed to being substantially distant from the training data points (in the PC space). Specifically, 

for sample (c), the PC3 value was substantially outside of the range of PC3 values in the training 

set. Similar observations were made for the other test set outliers exhibiting higher RMSE values. 

As with all applications of ML, the goal is to construct a model that is well generalizable to unseen 

data; however, ML models typically excel at data interpolation and normally perform worse at 

extrapolating outside of the range of training set. As such, the reconstruction outliers, which were 

determined to exist outside of the training set PC space, can be attributed to the MLP regressor’s 

inaptitude for extrapolation. This points to the need for improved design of training sets for ML 

models to promote more generalizable models. Notwithstanding, all three ML-predicted truncated 

autocorrelations adequately captured Mg2Sn volume fraction (i.e., 𝑓𝟎). The absolute volume 

fraction errors for samples (a), (b) and (c) were 0.25, 1.17, and 4.11 wt.% Mg2Sn, respectively. 

The mean absolute error in volume fraction predictions for the whole test set was 1.06 wt.% 

Mg2Sn. 

While the differences between the ML-predicted truncated autocorrelations and the 

truncated autocorrelations of the phase-field predicted microstructures for samples (a) and (b) are 

minimal, we see that the ML-predicted truncated autocorrelations lack the long-range order present 

in their respective original autocorrelations. This is a consequence of PCA truncation. To visualize 
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the deficiencies of the ML-predicted truncated autocorrelations, the recently developed [40] GRF 

microstructure generator was employed on each of the ML-predicted truncated autocorrelation 

maps in Fig. 11. While only a single generated microstructure instance for each sample is shown, 

we produced a multitude of microstructures for each autocorrelation map. It was observed that the 

generated instantiations captured certain aspects of each microstructure very well (such as the 

phase volume fractions and the general size distribution of precipitates). Notably, Mg2Sn phase 

volume fraction and Mg2Si precipitate size are the two features which were readily expressed in 

PC1 and PC2, respectively (See Fig. 6). However, the generated microstructures do not capture 

well the shapes of the individual precipitates. This is because local shape descriptors are generally 

found in higher-order spatial correlations [40]. Furthermore, the GRF generator used in this study 

is known to be implicitly biased toward the generation of microstructures with semi-continuous 

features due to its inherent Gaussian assumptions. To address these issues, the overall strategy 

described here can be extended in future studies to include higher-order spatial correlations. 
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Figure 11. RMSE probability density for the test set ML-predicted truncated autocorrelations 

(top). The original, truncated, and predicted (reconstructed from predicted PC scores) 

autocorrelations for samples with (a) minimum reconstruction error, (b) near-mean 

reconstruction error, and (c) maximum reconstruction error (bottom). The example GRF 

generated microstructures were produced using the ML-predicted truncated autocorrelations. 

 

3.4.3 Chained-ANN Surrogate Model 

The trained classification and regression MLPs were chained as depicted in Fig. 7. The 

chained-ANN process-structure surrogate model accuracy was measured over the test dataset 

partition. If the classification model were perfect, meaning all samples in the test dataset partition 

were correctly classified, then the chained-ANN surrogate model would exhibit the same 

regression accuracy as the individual regression MLP. However, in the chained-ANN, the 

classification error is propagated to the regressor and contributes to the final error of the ML-

predicted truncated autocorrelations. The classification model incorrectly labeled 0.62% of the 

homogeneous samples as heterogeneous and 5.94% of the heterogeneous samples as 

homogeneous. Nearly one in twenty heterogeneous microstructure producing simulation inputs 

were labeled as homogeneous and weren’t included in the subsequent PC score predictions. 

Equivalently, nearly one in two-hundred homogeneous microstructure producing simulation inputs 

were labeled as heterogeneous and their PC scores were predicted by the regressor MLP. 

The false heterogeneous samples become clearly evident in some of the PC score prediction 

parity plots shown in Fig. 12 (circled in red where identifiable as a single group). Because the 

regression MLP was trained solely on heterogeneous samples, the false heterogeneous 

classifications contribute significantly to the overall model error. The 𝑛𝑀𝐴𝐸 values provided in 

Table 4 reflect the loss of accuracy due to the low classification error from the false heterogeneous 

samples as well as the four omitted true heterogeneous samples. Since PC4 and PC5 capture more 

of the autocorrelation noise, the contribution from the classification error is fairly minimal to their 

predictions (see Fig. 12 and Table 5). As with the reconstruction outliers discussed in Section 

3.4.2, we see that the regression MLP is attempting to assign interpolated PC scores to the 

homogeneous samples, which were clearly and purposefully outside of the regression MLP 

training set, rather than extrapolating to their true values. This is expected and is a result of the 
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chained-ANN design decisions made in this work. As classification error decreases, the overall 

chained-ANN prediction error will converge to the same error seen with the regression MLP in 

Table 4.  

 

Figure 12. Parity plots of the chained-ANN PS surrogate model PC score predictions for the test 

dataset partitions. Homogeneous samples which were incorrectly classified as heterogeneous are 

circled in red where visible. 

 

Table 5. Reported 𝑛𝑀𝐴𝐸 (see Eq. 5) and standard deviations for the predicted PC scores of the 

test dataset partition as measured with the MLP Regressor and the chained-ANN PS surrogate 

model 

 𝑛𝑀𝐴𝐸 
 PC1 PC2 PC3 PC4 PC5 
MLP Regressor 0.108 ± 0.227 0.213 ± 0.204 0.351 ± 0.292 0.561 ± 0.509 0.996 ± 1.393 
Chained-ANN 0.266 ± 0.965 0.273 ± 0.483 0.389 ± 0.418 0.657 ± 0.642 0.907 ± 1.188  
 

Although there is aggregated error from the classification model in the chained-ANN 

output, the surrogate model obtained using this framework remains a promising opportunity for 

the acceleration of the computationally expensive phase-field simulations. The chained-ANN 

surrogate model can determine heterogeneity and predict a final Mg2Sn- Mg2Sn autocorrelation in 

only 65 milliseconds (3.5 GHz Dual-Core Intel Core i7), while the phase-field simulation takes 

roughly 2.5 hours (2.4 GHz Quad-Core Intel Core i5) to produce a single simulated microstructure 

instantiation (representing a computational efficiency increase of five orders of magnitude). The 

benefit of the autocorrelation surrogate model output, as noted previously, is that a host of 

microstructures can be generated which are all statistically similar to the predicted microstructure 

statistics rather than being limited to a single microstructure instantiation. Furthermore, the newly 

developed surrogate model allows for quick prediction of phase separation based on simulation 
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input parameters. The OPMD dataset consists of roughly 80% non-decomposed microstructures; 

implying that roughly four in five sets of simulation inputs could be ignored when searching for 

heterogeneous structures. The gained computational efficiency along with the ability to quickly 

sift through homogeneous and heterogeneous producing simulation parameters allows for 

exceptional opportunities for high-throughput explorations of the Mg2SixSn1-x microstructure 

space. For example, with the goal of developing more efficient thermoelectric Mg2SixSn1-x 

microstructures, the surrogate model can be used to efficiently explore a vast and high-dimensional 

parameter space to identify which regions will produce heterogeneous microstructures. Further 

work could be done to create an inverse mapping of the heterogeneous microstructure space 

allowing for ideal process parameters to be identified before running the computationally 

expensive phase-field simulations to obtain more detailed microstructure predictions. 

 

4. Conclusions 

A novel approach utilizing the MKS framework with a chained-ANN workflow is 

presented for learning a complex, highly nonlinear, and high-dimensional process-structure 

mapping from phase-field simulation data. This work offers a distinct new avenue for learning 

increasingly complex process-structure relationships, while using very few model fitting 

parameters. For the selected case study involving phase-field simulations of spinodal 

decomposition in the Mg2SixSn1-x material system, the novel approach presented in this work 

required only 742 model fitting parameters to map an 18-dimensional process space to its 

corresponding microstructure space. The number of model parameters is not only significantly 

smaller than the number of training samples (8,087 for the present study), but is several orders of 

magnitude smaller than those for surrogate models reported in current literature for similar 

datasets.  

Specifically, the benefits of the proposed model building strategy have been demonstrated 

on a publicly available dataset of Mg2SixSn1-x spinodal decomposition phase-field simulations 

which use eighteen unique input parameters to simulate microstructures from a highly diverse 

microstructure space. The chained-ANN surrogate model differentiated between homogeneous 

and heterogeneous producing simulation inputs with high accuracy and predicted two-phase spatial 

autocorrelations with close agreement to the training data. We note here that the use of PCA 
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truncation removed higher-order features from the autocorrelations used in model training and 

limited the autocorrelation reconstruction accuracy considerably. Additional dimensionality 

reduction techniques should be explored in future work to overcome this barrier. While the model 

building strategies used in this case study are specific to the OPMD spinodal decomposition 

dataset, the machine learning framework described herein opens new research avenues for an 

unprecedented capture of complex process-structure mappings over very large high-dimensional 

input and output spaces in a broad range of material systems. 
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