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Abstract

This work establishes a reliable and accurate materials process-structure (PS) surrogate model that
maps an 18-dimensional process parameter input domain to a high dimensional space of single
and dual-phase microstructures. This was accomplished by employing the Materials Knowledge
Systems (MKS) framework (includes microstructure quantification via two-point statistics and
dimensionality reduction using principal components analysis) for the feature engineering of the
microstructures, and subsequently constructing a chained-artificial neural network (ANN) to learn
the complex nonlinear mappings between the high-dimensional input domain and the MKS-
derived low-dimensional representation of the corresponding microstructure space (includes both
homogeneous and heterogeneous microstructures). The benefits of this workflow are demonstrated
on a collection of ~10,000 final microstructures obtained from chemo-mechanical spinodal
decomposition phase-field simulations in the Mg>SixSni.x material system. Specifically, it is
shown that the complex phase-field process-structure relationships for the selected case study can

be captured in a robust model with only 742 fittable parameters.
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1. Introduction
Physics-based multiscale materials simulation tools [ 1-5] offer tremendous promise for the

optimal design of novel materials with enhanced properties. However, their high computational
cost hinders their broader adoption and usage by industry in practical materials design efforts [2,6].
Materials informatics tools [6—8] can potentially bridge this gap by training low-computational
cost process-structure-property (PSP) surrogate models of the expensive physics-based multiscale
materials simulations. Once trained!, the surrogate model can be used in place of the expensive
physics-based model for efficiently exploring material process design solutions. Among the
surrogate PSP models, the construction of process-structure (PS) models is often more difficult
than that of structure-property (SP) models due to the high-dimensionality of both the material
manufacturing processing paths and the resultant microstructures (note that SP linkages often map

microstructures to a single property value).

The PS model building efforts encounter two main challenges: (1) adequate microstructure
representation (i.e., the quantification of the salient features of the resultant microstructure) and
(2) ensuring sufficient expressivity of the model building approach (i.e., ability to capture the
highly nonlinear mappings involved) while avoiding overfits. Prior PS surrogate modeling
techniques have largely circumvented these challenges by limiting attention to purposefully
simplified mappings between process and structure [9—15]. For example, Sarkar et al. [9] recently
established a surrogate model for the process-structure mapping of ZrO-toughened Al,O3
ceramics subjected to sintering heat treatments. In this work, only the sinter time, sinter
temperature, ceramic sinter-aid content, and reinforcement addition content were used to predict
final sinter density and grain size. Here the process space is reduced to only four distinct variable
parameters and the microstructure representation is drastically reduced to two features. It is
noteworthy that this mapping function could be established successfully using a simple polynomial
regression. In another study, Tapia et al. [10] demonstrated the feasibility of using Gaussian
Process Regression (GPR) to model secondary particle nucleation and growth during heat
treatment of NiTi shape-memory alloys. The inputs to their GPR model included the temperature
and duration of heat treatment as well as the initial nickel composition, while the output was the
final nickel content in the metal matrix. Note that the use of a limited number of inputs and outputs

in both studies described above leads to their limited utility. This is not only because of the

! This usually incurs a one-time high computational cost.



relatively small input domains over which the surrogate models have been trained, but also because
they have filtered out much of the important morphological information in the microstructures.
Specifically, the rich details of the microstructure morphology cannot be accurately reconstructed

from the simple outputs predicted by these models.

Comprehensive but compact feature engineering that captures the many rich details of the
microstructure needs to be combined with expressive modeling strategies to address the PS model
building challenge described above. In this paper, we address this need by leveraging the feature
engineering of the Materials Knowledge Systems (MKS) [6,8,16] framework with a chained-
artificial neural network (ANN). The benefits of the MKS feature engineering have been
demonstrated in numerous prior PSP surrogate modeling efforts [8,11,12,17-19]. This approach
involves the computation of 2-point spatial correlations for the statistical quantification of the
microstructure, followed by principal component analysis (PCA) to obtain a low-dimensional
representation of the spatial correlations. In this work, we will employ chained ANNs to capture
the highly complex and nonlinear mappings between the high-dimensional process space and the
MKS-feature engineered microstructure space. Specifically, our goal is to train an ANN to first
identify the class of the output microstructure (i.e., as a single-phase or a two-phase
microstructure), and subsequently chain an additional ANN for the prediction of the two-phase
microstructures. The combination of the MKS framework with the high expressivity of the
chained-ANN is expected to result in efficient learning of the complex PS mappings. It will be
demonstrated that the proposed strategy produces robust PS models with a relatively low number

of fitting (trained) parameters.

We will demonstrate the benefits of this PS modeling strategy described above on a large
dataset aggregated from phase-field simulations. Our interest will be restricted to the prediction of
the quasi-equilibrium microstructures close to completion of the spinodal decomposition phase-
transformation (i.e., we will not consider the subsequent coarsening phenomena that typically
occurs at a drastically slower rate)?. We aim to consider a large number of user-specified inputs to
the commonly used phase-field models (these typically specify the initial conditions and the
physical parameters controlling microstructure evolution) as inputs to our surrogate models, while

the range of the output would cover all possible multi-phase microstructures in the selected

2 Surrogates can also be formulated to predict microstructure evolution (i.e., predict the microstructure at the next
time step based on known microstructures at previous time steps and known processing conditions) [8,11,17,30,31].



material system. Phase-field surrogate models covering such large input domains and output
ranges have not yet been demonstrated in prior literature and are highly desirable to support future

materials and process design efforts.

The application of machine learning approaches on phase-field datasets is indeed an active
area of research (e.g., [20-27]). A number of these studies have focused on microstructure
classification and optimization [20,21,26,27] as well as SP surrogates [22-25]. Here, we focus
specifically on the extraction of PS surrogates from phase-field simulation data. Much like the
earlier discussion, prior efforts on building phase-field PS surrogates has also been limited to
process and microstructure spaces of low complexity. For example, Farizhandi et al. [28]
developed an inverse process-structure surrogate via a deep neural network (DNN) to predict
phase-field simulation processing conditions from microstructure input. The simulation processing
conditions included only the chemical composition, temperature, and simulation duration.
Notably, due to the lack of microstructure feature engineering and the choice of model building
strategy, ~66,000,000 parameters were fit while training on 11,500 phase-field simulated
microstructures. As another example, Herman et al. [29] created a phase-field-informed surrogate
model to predict microstructure morphologies of physical vapor deposition (PVD) simulations.
The dataset for building this surrogate model was populated by varying the phase fraction and
deposition rate of the deposited material. Importantly, the MKS framework was utilized for
microstructure feature engineering and a polynomial chaos expansion was used to formulate the
PS surrogate. Herman et al. note that the PVD phase-field model was simplified by considering
only phase fraction and deposition rate. Similarly, Yabansu et al. [11] utilized the MKS framework
to predict the phase-field simulated microstructures during three-phase spinodal decomposition of
the Al-Ag-Cu system as a function of two process parameters (temperature and time) using a
simple polynomial regression. Alternatively, still using the MKS framework for feature
engineering, Hu et al. [30] and Montes et al. [31] developed PS surrogates using recurrent neural
networks (RNN) to learn the spinodal decomposition microstructural evolution of a binary alloy.
The RNNs built in these studies utilized ~150,000 model-fit parameters trained on 5,000
microstructure evolution sequences. For the previously reported phase-field PS surrogates built
using ANNSs [28,30,31], the number of model-fit parameters utilized is significantly larger than

the number of training datapoints; this can potentially result in overfitting of the model.



Our goal in this paper is to dramatically expand the dimensionality and sizes of the input
domains and output ranges of the surrogate models trained on phase-field simulations. This will
be accomplished by leveraging the inherent strengths of both the MKS framework (for feature
engineering) and ANNSs (high model expressivity), while utilizing a relatively small number of
fittable model parameters. Specifically, we will establish PS surrogates trained on phase-field
simulations in the Mg>SixSni.x material system for which a suitable dataset has been aggregated
and shared in a public repository known as the Open Phase-field Microstructure Database (OPMD)
[32,33]. The dataset covers a total of eighteen simulation inputs (i.e., thermodynamic, kinetic,
elastic, and physical parameters) and the corresponding output microstructure space. Notably, the
phase-field simulated microstructures contained in this database exhibit extremely large diversity
in phase volume fractions as well as size and shape distributions of the constituent phase regions.
In prior work using this dataset, Kunselman et al. [26,27] demonstrated the utility of semi-
supervised and unsupervised classification techniques to automatically detect different classes of
two-phase microstructures with high confidence. In another study [34], a multimodal machine
learning approach was applied to predict selected characteristics of the phase-field simulated final
microstructures (such as min/max composition and phase area fractions) while using as inputs both
the phase-field simulation inputs and output microstructures. While these studies on the OPMD
demonstrate the potential of modern machine learning strategies applied to understanding complex
microstructure spaces, they do not establish low-computational cost surrogates needed to support
materials innovation. The proposed combination of the MKS framework with a chained-ANN
allows the formulation of robust PS surrogates, with relatively few model fit parameters, which
successfully capture the complex mappings between the 18-dimensional process space and its

corresponding, much higher dimensional, microstructure space.

2. Background
2.1 Microstructure Quantification

As already stated, the MKS framework will be utilized in this work for the low-dimensional
representation of the microstructure. This approach utilizes (1) 2-point spatial correlations for
rigorous statistical quantification of the microstructure, and (2) PCA for their reduced-order

representations. This framework starts with a digital representation of the microstructure as a



multi-dimensional array m? where h indexes the material local state, s indexes spatial bins (i.e.,
pixels or voxels) [7,35,36], and the value of m” reflects the volume fraction of material local state
h present in the spatial bin s. The material local state can be defined to include any attributes
needed to describe the physical properties of the material at the scale of the spatial bins. Often, the
material local state is used to denote attributes such as phase identifiers, chemical compositions,

and lattice orientations. Microstructure statistics capturing important morphological information

can be computed as 2-point spatial correlations, f;**', reflecting the joint probability of finding
material local states h and h’ separated by a vector indexed by r. Mathematically, these are

expressed as (assuming the microstructure exhibits periodic boundary conditions) [37]

h o h'
hh' _ ZSES Mg Mgty

fr c(S)

where S and c(S) denote the set of all spatial bins in the microstructure and the cardinality of S,

(1)

respectively. The sets of spatial correlations where h=h' and h # h' are known as
autocorrelations and cross correlations, respectively. A single set of spatial correlations for fixed
h and i’ will have the same dimensionality (i.e., same number of spatial statistics) as the original
microstructure m?. One can compute n” sets of spatial correlations, where 7 is the number of local
states considered. Niezgoda et al. [37] have shown that only (n-1) sets of these are independent.
For a two-phase microstructure, a single auto correlation is adequate to capture all the independent

2-point spatial correlations.

The number of microstructure statistics tend to be far too many for practical surrogate
model building and PCA has been shown to be quite effective in producing data-driven low-
dimensional features from collections of computed spatial correlations [11,17,38]. PCA performs
a distance-preserving rotational transformation that maximizes the capture of variance in the
minimum number of terms for a given dataset (in the present context, this refers to a collection of
spatial correlations computed on an ensemble of microstructures). The transformed axes are known
as PC basis and the transformed data coordinates are referred to as PC scores. PCA has been found
to offer many advantages in building PSP surrogates for a broad range of materials design
applications. First, it captures the salient microstructure information in a small number of PC
scores, ordered by relative importance (i.e., how much variation they capture). Second, it allows

for an easy reconstruction of the 2-point spatial correlations up to a truncation error; this error can



be reduced by including more PC scores. Additionally, methods to reconstruct microstructures
from the 2-point spatial correlations have already been discussed [39-42]. Third, these protocols
have been found to be applicable across a broad range of material classes and length scales
[6,11,13,18,19,38], supporting systematic integration of materials knowledge extracted from

diverse applications in multiscale materials design efforts.

2.2 Surrogate PSP Model

Reduced-order PSP models can be built using a variety of surrogate model building
strategies (e.g., [9—11,13,17,19,24,28-31]). ANNs are particularly attractive for capturing the
highly complex nonlinear mappings present in materials phenomena. The most basic ANN
architectures connect the input to the output using multilayer perceptrons (MLPs) in a fully
connected feedforward network. A single perceptron (see the callout in Fig. 1) applies a linear
transformation on the inputs, followed by a nonlinear activation function (e.g., ReLU, sigmoid,
tanh) [43]. The fittable model parameters (principally, the weights and biases) are tuned through
backpropagation in which prediction error, defined by a loss function, is minimized via stochastic
gradient descent [44]. The total number of fittable parameters, P, in an MLP can be computed as

L
P = zl=1nl (n_y+1) (2)
where L is the total number of layers (excluding the input layer) and n; is the number of nodes in

layer .

One drawback of ANNSs is that they are prone to overfitting, especially in problems with a
small training dataset (e.g., more fittable parameters compared to the number of training data
points). A common practice is to partition the full dataset randomly into a training set and a test
set such that they both exhibit similar output value distributions. Once the test set is identified, it
is not exposed to the training process in any manner. Additionally, a small portion of the training
set is often set aside for validation, which is aimed at mitigating model overfit. Model parameter
fitting is performed using the training set and the validation set is used to determine
hyperparameters such as model architecture or to implement early stopping strategies during the

minimization of the loss function. Note that the test set is used exclusively to measure model



accuracy only after all model training/tuning is complete, ensuring an unbiased estimate of the

model accuracy on previously unseen data.

Input Layer Hidden Layers Output Layer

Figure 1. Schematic of a fully connected MLP for a single output mapping. The callout shows a
single perceptron as a weighted linear combination of all inputs to the node with a bias, followed

by the application of a nonlinear activation function.

An ANN can be designed to serve either as a classifier (predicts discrete classes) or a
regressor (predicts continuous real values). Different error metrics are needed for these different
applications. Classification model accuracy can be assessed using precision (P), recall (R), and

f1-scores, defined as

P = e 3
" TP+ FP ®3)
R = i 4
TP+ FN Q)
1—2PR 5
fl= PTR (5)

where TP is the count of true-positive predictions, FP is the count of false-positive predictions,
and FN is the count of false-negative predictions. As model accuracy increases, all three metrics

(P, R and f1) approach unity.

Regression model accuracy can be quantified using normalized mean absolute error

nMAE) defined as
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nMAE = -
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(6)

where y' and ¥ denote, respectively, the true output (i.e., ground-truth) and the predicted model

output for the i" datapoint, and N is the total number of test samples.

3. Spinodal Decomposition Process-Structure Surrogate
3.1 The OPMD Dataset

The OPMD [32] is a collection of consistently computed phase-field microstructures of the
Mg>SixSnix thermoelectric alloy during isothermal annealing. The Mg>SixSni.x pseudo-binary
material system is an important thermoelectric alternative to the common, environmentally
harmful, thermoelectric materials in current use (e.g., PbTe, BixTes, and skutterudites) [45-47].
This material system is well known for its miscibility gap in which spinodal decomposition
(spontaneous phase separation) is chemically favorable. Such solid-state reactions are also
influenced by the interfacial and elastic energy contributions to the bulk free energy of the system.
While phase separation is promoted by chemical driving forces, the elastic driving forces often
suppress the miscibility gap and promote phase dissolution or homogenization [45]. These
competing driving forces (chemical and elastic) can be modelled in a fully parameterized elasto-
chemical phase-field simulation in which the effect of the various physical parameters on
Mg>SixSni.x microstructure can be studied. The derivation and use of the phase-field modeling for

the spinodal decomposition in Mg>SixSnix have been discussed extensively by Attari et al. [33].

Currently, the OPMD contains 10,000 phase-field produced microstructure evolution
(presented as time-series) simulations along with all of the relevant values of the input parameters
involved. More specifically, these simulations utilize a total of eighteen input parameters
describing the thermodynamic, kinetic, elastic, and physical properties of the Mg>SixSni.x material
system. The ranges for these input parameters are summarized in Table 1. The CALPHAD
parameters for Mg>SixSnix solid solution (°a’%,°bs%,a*%) and for the liquid phase (°a'™,
Oplia, 1ty describe the interactions between the constituents beyond the ideal mixtures. These
parameters were used to estimate the molar Gibbs free energy of mixing for the pseudo-binary

system, which was used as an input to the phase-field simulations. The kinetic parameters shown



Mg,Sn Mg,Sn Mg,Sn
61192 C g2 C g2

in Table 1 control the mass diffusion rates, while the elastic constants ( , 7%, Gy,

Mgzsl Mgzsl Mgzsl
Cll > ClZ > C44

) control the elastic driving forces. The range for the Stress-Free
Transformation Strain (SFTS) was estimated using both calculated and experimental lattice
parameters in the literature for Mg>Sn and Mg>Si. The ranges for the molar volumes of Mg>Sn and
Mg>Si were based on cell volume calculations and experimental measurements, and the alloy
composition was sampled in the range 0.3 < x < 0.5 to ensure that the phase-field simulations
were executed within the chemically unstable miscibility gap for the Mg>SixSni system at 720°C

[33,45].

The simulation cell (384x384 voxels and 350x350 nm in dimension) was initialized with random
noise surrounding the initial composition (defined by the Si stoichiometry, x) and each simulation
was executed with an isothermal temperature of 720 °C. At each time step of the simulation, the
microstructure is defined as a two-dimensional spatial field of size 384x384 describing the Si
stoichiometry (expressed in the range 0 to 1) at each pixel. We extracted only the microstructure
images corresponding to the 15,000" time step® of the phase-field simulations. The ensemble of
the extracted microstructures exhibited a large amount of morphological variation (see Fig. 2),
indicating a highly nonlinear mapping with the 18-dimensional input domain. It is seen that the
simulation output exhibited single-phase, two-phase, and three-phase microstructures. The single-
phase microstructures are those that did not phase separate by the 15,000 timestep in the phase-
field simulations. The two-phase microstructures represent the cases where the parent phase
(Mg2SixSni— solid solution) fully decomposed into two distinct phases (Mg>Si and Mg>Sn) and
the three-phase microstructures represent the cases where the parent phase only partially separated

by the 15,000" timestep.

3 The 15,000™ time step corresponded to fully decomposed microstructures for most of the simulations. However,
the phase separation was sluggish in a few cases and produced three-phase microstructures. As noted later, the small
number of three-phase microstructures found in the extracted dataset were excluded from the study. Therefore, the
microstructures obtained at the 15,000™ time step served as the final microstructures for our study.
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Table 1: Summary of the ranges of the phase-field simulation parameters for the dataset used in

this work. “ss” and “liq” denote Mg>SixSni-x solid solution and liquid phases, respectively. SFTS

denotes Stress-Free Transformation Strain [33].

Parameter Unit Lower Bound  Upper Bound
0qss J mol~? 6824.89 20474.69
0pss Jmol~1K~1 3.67 11.02
CALPHAD ‘'@ J mol~? -5208.34 -1736.11
Parameters  0gliq J mol~? 43550.19 130650.57
Oplia Jmol~1K~1 -86.03 -28.68
Lglia ] mol~t 3314.80 9944 .41
o Interface mobility (M) m?s~1]7t  1072°/(RT) 10~'8/(RT)
Kinetic . .
Parameters (gr%dlent energy coefficient Jm-2 20%10-26 2.0 x 10-2*
n
SFTS (e7) - -0.02 0.02
10" GPa 68.30 83.71
croesn Gpa 17.68 39.79
Elasticity - -Mgysn Gpa 16.03 41.94
Parameters
Mg,Si
€17 Gpa 114.07 126.00
Mg,S
ch9st Gpa 19.56 26.00
cpoes Gpa 33.32 58.20
Molar Volume (V;9*")  m3mol™?  473x1075 6.38 x 1075
Physical i
Patameters  Molar Volume (V#92) - m®mol™'  3.95x 107  533x 1075
Alloy composition (x) mol 0.3 0.5

11
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Figure 2. Example microstructures from the OPMD dataset where each column corresponds to A)
cuboidal Mg>Si nanoprecipitates, B) spherical Mg>Si nanoprecipitates, C) intertwined Mg>Si and

Mg>Sn grains, D) partially decomposed Mg>SixSni-., and E) miscellaneous microstructures

3.2 Segmentation of Simulated Microstructures

The phase-field model outputs spatial field (384x384) predictions for the Si stoichiometric
factor over the entire simulated region. Although the phase-field predicted Si stoichiometry
exhibits values in the continuous range of (0,1), the histograms showed only one, two or three
strong peaks suggesting that the predicted microstructures indeed belong to the three classes of
microstructures (i.e., single-, dual-, or triple-phase) mentioned earlier. In order to apply the
microstructure quantification framework presented in Section 2.1, each pixel in each phase-field

predicted spatial field needs to be labelled with one of the three possible phase labels (i.e., Mg>Sn,

12



Mg>SixSni.y, and Mg>Si). This process (illustrated in Fig. 3 using examples from all three classes
of predicted microstructures seen in the OPMD), where a continuous range is quantized, is
generally referred to as segmentation and was performed via histogram analysis and Otsu
thresholding [48]. When only one peak is observed, all pixels in the microstructure were classified
as Mg>SixSni solid solution. When two peaks were present, Otsu thresholding was applied to
classify each pixel as either Mg>Sn or Mg>Si. Likewise, when three peaks were present, Otsu multi-

thresholding was utilized for labelling the Mg>SixSnj.x, and Mg>Si pixels.

Si Stoichiometric Factor

Figure 3. Examples of segmentation of phase-field predicted microstructures: (a) homogeneous
microstructure, (b) two-phase microstructure, and (c) three-phase microstructure. For each
example, the top row shows the simulated microstructures, the middle row presents the histograms
of the Si stoichiometric factor with dotted lines showing the thresholding limits, and the bottom

row displays the segmented microstructures.

It was determined that the OPMD dataset, at the selected evolution stage (15,000" time
step), consisted of roughly 80% non-decomposed homogeneous samples, 14% fully decomposed
two-phase samples, and 4% partially decomposed three-phase samples. The other 2% of the

samples consisted primarily of physically unrealizable artifacts caused by simulation numerical
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errors; these samples were removed from the dataset. We are interested in predicting the final
microstructure of the phase field simulation; thus, the partially decomposed samples were also

removed from the dataset.

33 Microstructure Quantification

The MKS framework was utilized for the quantification of the segmented two-phase
microstructures. As already mentioned, the homogeneous (i.e., single phase) microstructures do
not exhibit any morphological features. Note that each pixel in a segmented two-phase
microstructure was assigned to one of the two possible local states: Mg>Sn and MgySi. As
discussed in Section 2.1, only a single autocorrelation is required to capture all non-redundant 2-
point spatial correlations for the two-phase microstructure [37]. In this work, the (MgSn-Mg>Sn)
autocorrelation, denoted simply as f,., is used. Fig. 4 shows examples of the computed
autocorrelation maps for selected microstructures. The most prominent feature in each
autocorrelation map is the central peak corresponding to r = 0 (i.e., fy), which represents the
volume fraction of the MgxSn phase. Further morphological insights are found in the other
autocorrelation peaks and valleys. For example, the autocorrelation patterns in examples 4(a) and
4(b) reflect the overall alignment of their respective morphological features; microstructures 4(a)
and 4(b) are seen to have preferential Mg>Sn (black phase) continuity along the diagonal direction
and the horizontal and vertical directions, respectively. Meanwhile, the autocorrelation for
microstructure 4(c) does not indicate any strong preferential directions in the alignment of the

Mg>Sn phase.
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Figure 4. Mg>Sn — Mg>Sn autocorrelations (bottom) for example two-phase microstructures (top).
Microstructure examples include (a) intertwined Mg:>Si and Mg>Sn grains, (b) ordered cuboidal
Mg>Si nanoprecipitates, and (c) unordered spherical Mg>Si nanoprecipitates. The value of the
central peak in each map reflects the volume fraction of Mg:Sn in the corresponding

microstructure.

Each autocorrelation map in Fig. 4 contains 147,456 microstructure statistics (the same as
the number of pixels in each simulated microstructure). We use PCA to produce a low-dimensional
representation of this feature vector. The set of 1,365 two-phase microstructures was partitioned
into a 85%/15% train/test split and PCA was performed on the autocorrelations in the training set
(1,155 samples in total) using the scikit-learn package [49]. Over 99% of the dataset variance was
captured in the first 5 PC scores and confirms the PCA analysis performed by Kunselman et al.
[26] on a portion of the OPMD dataset. Fig. 5 shows reconstructed autocorrelations for an example
microstructure using an increasing number of PC scores. It is seen that the reconstructed
autocorrelation with 5 PC scores begins to closely resemble the original Mg:Sn — MgzSn
autocorrelation and that further addition of PC scores does not greatly improve the accuracy of the
reconstruction. Most samples in the dataset followed this trend and had diminishing returns on

reconstruction accuracy past PC5.
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PC1to PC2 PC1to PC3 PC1to PC4
PC1 to PC5 PC1 to PC6 PC1 to PC7 PC1 to PC8

Figure 5. (a) A two-phase microstructure and its MgSn — Mg>Sn autocorrelation. (b)
Reconstructed autocorrelations using different subsets of truncated PC representations. As an
example, the PC1 to PC8 reconstruction signifies that the autocorrelation was reconstructed with

only the first eight PC scores.

The truncated PC representations produced a significant dimensionality reduction (from
147,456 spatial correlations to 5 PC scores) while still capturing most of the original information.
A visualization of the distribution of the training set microstructures in the space of the first two
PC scores is shown in Fig. 6. Each data point represents the autocorrelation of a single
microstructure represented by its first two PC scores. Example microstructures are shown to
demonstrate that the low-dimensional PC representations capture the salient morphological trends
in the microstructure ensemble. Note that the figure only depicts the representations in the first
two PC scores, while we have used five PC scores to represent the microstructures in this work.
Consistent with prior applications [11,18], increases in PC1 were found to be highly correlated
with increases in the Mg>Sn volume fraction. Additionally, it was observed that PC2 correlated
well with Mg»Si precipitate size. Interestingly, microstructures exhibiting intertwined Mg>Sn and
Mg>Si grains were found on the far-left side of the plot, while those with separated Mg>Si
precipitates were to the right. These results attest the ability of the MKS framework in providing

16



meaningful low-dimensional salient features for the quantitative representation of the

microstructures.

While the protocols described above (microstructure = autocorrelation = PC scores)
clearly capture large amounts of spatial information, they do represent a lossy filter. Higher-order
spatial statistics (e.g., local grain shapes) are not included in the autocorrelation maps, and PCA
truncation ensures that only the features capturing the highest dataset variance remain. As such, a
predictive model built to learn the relationship between simulation input parameters and truncated
PC scores would not be able to reproduce exact microstructure instantiations. Rather, the model
would reproduce statistically similar microstructure autocorrelations which describe important

spatial features (e.g., precipitate size and spacing).

PC2
=)

PCl1

Figure 6. Representation of the training set of two-phase microstructures (green dots) in the first
two PC scores. Several two-phase microstructures (Mg>Sn and Mg:Si are shown purple and
vellow, respectively) are overlayed directly above their location in PC space. While the first five
PC scores are used for model building, much of the dataset morphological variation is captured

in the first two components.

3.4  Surrogate Model Building

The chained-ANN surrogate model built in this work consists of two MLPs (implemented

with PyTorch [50]), as shown in Fig. 7. Each MLP was constructed with the same
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train/validate/test split as described in Section 2.2 and the model hyperparameters for both MLPs
were determined via heuristic refinement. The chained-ANN takes as input the phase-field
simulation parameters (see Table 1), each of which has been mean centered and scaled to unit
variance across all the samples in the training dataset to improve model training [51]. The
transformed inputs were first fed to the MLP classifier, which distinguishes between sets of
simulation parameters that result in homogeneous and heterogeneous microstructures. A predicted
homogeneous microstructure is taken to be a solid solution of Mg>SixSni.x, and no further analysis
is performed. When the MLP classifier predicts a heterogeneous microstructure, the inputs are
passed to the MLP regressor to predict the first five PC scores of microstructure autocorrelations.
The PC scores are then used to reconstruct truncated autocorrelation maps (referred to as ML-

predicted truncated autocorrelations) and corresponding microstructure instances.

As noted earlier, each ML-predicted truncated autocorrelation is expected to correspond to
arelatively large set of microstructure instances, which exhibit similar two-point statistics [39,40].
At this point, it is important to recognize and understand the differences between microstructure
instantiations and their representation using n-point spatial correlations; microstructure
instantiations represent example microstructures that could have been sampled by an underlying
process that defines the microstructure from its n-point spatial correlations. This underlying
stochastic process is completely described by the full set of n-point spatial correlations, of which
the autocorrelation maps constitute a first-order approximation. As such, the framework of spatial
correlations offers a more accurate and meaningful representation of the microstructure, while any
single instantiation should only be treated as a possible sampled microstructure. For this reason,
spatial correlations of the microstructure should be the preferred choice for the representation of

the microstructure in PSP models used to drive materials development efforts [6].

In this work, we present example instantiations corresponding to the ML-predicted
truncated autocorrelation maps, produced via an efficient Gaussian Random Field (GRF) generator
[40]. Due to the stochastic nature of this procedure, these are unlikely to match the phase-field
predicted microstructures. Nevertheless, it is instructive to examine what spatial features of the
phase-field predicted microstructures are indeed captured in the first five PC scores used in the

ML-predicted truncated autocorrelation maps.
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Figure 7. A schematic showing the chained-ANN process-structure surrogate model developed in
this work. The chained-ANN model (inside the dashed box) contains both the classification model
(orange) and the regression model (green). Microstructure information extracted from the model

outputs are shown in yellow.

3.4.1 Classification MLP

The ideal loss function was found to be Binary Cross Entropy (BCE) loss [52], common
for models with binary outputs (in our case, zero and one correspond to homogeneous and
heterogeneous microstructures, respectively). The BCE loss function was minimized with the
AdamW gradient descent optimizer [53] with an initial learning rate of 0.001 and a weight decay
of le-2. The ideal model size, corresponding to the smallest number of parameters (see Eq. 2) with
the highest accuracy, was found to be a single hidden layer with five nodes, containing only 101
fittable parameters. Larger models (either in depth or layer width) tended to aggressively overfit
and produce worse overall validation set performance. The ReLU activation function [43] was
used on the hidden layer, and the sigmoid activation function [43] applied to the output layer to

ensure that the predicted values lie between zero and one. The network learning rate was governed
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via the 1cycle learning rate policy [54], which briefly increased the learning rate before decreasing
to a rate much lower than the originally prescribed value of 0.001. The 1cycle learning rate helped
the model converge quickly (see Fig. 8), performed well over a wide range of total training epochs,
and improved model stability (i.e., more consistent results across multiple training attempts). The

ideal ratio of model performance to training time was achieved with fifty training epochs.

After model training was complete, the predicted values were rounded to the nearest
integer (0.5 thresholding) and the classification accuracy was quantified using the precision, recall,
and f1-score (see Egs. 3-5). Because the rounding threshold used to binarize the classifier output
is an essential model parameter, a sensitivity analysis was performed to determine the ideal
thresholding value. The sensitivity analysis showed that deviation from 0.5 resulted in slightly
worse f1-score measurements; however, this decrease in model performance was minor over the
range of 0.2-0.8, likely due to the inherent symmetric bias from the sigmoid activation function

toward zero and one.

As the classification MLP is the first predictive network in the chained-ANN, the
classification error is propagated through to the regression network and into the autocorrelation
reconstructions; thus, it is particularly important that the classification model be as accurate as
possible before chaining it with the MLP regressor. Because the OPMD dataset consists of
primarily homogenous microstructures, the model accuracy is naturally weighted towards the
classification accuracy of homogeneous samples. This weighted prediction accuracy can be seen
clearly in Table 2 where the training and testing dataset classifications are presented categorically
in a confusion matrix. Also evident in Table 2 is the ratio of homogeneous and heterogeneous
samples contained in each dataset partition. Roughly 15% of the samples in both the training and
testing datasets are from decomposed simulations. The precision, recall, and f1-score for both
homogeneous and heterogeneous classifications are summarized in Table 3 for the training and
test dataset partitions. The homogeneous classification is highly accurate with a test set f1-score
of 0.996. Similarly, the heterogeneous classification is highly accurate with a test set f1-score of

0.976.
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Figure 8. Learning curves containing training and validation loss for the classification MLP.

Table 2. Classification confusion matrix for both the training and testing dataset partitions.

Training Dataset
Predicted Homogeneous Predicted Heterogeneous

True Homogeneous 6909 23
True Heterogeneous 34 1121
Testing Dataset
Predicted Homogeneous Predicted Heterogeneous
True Homogeneous 1216 2
True Heterogeneous 8 202

Table 3. The average precision, recall, and fl-score for the constructed classification model for

both homogeneous and heterogeneous (see Egs. 3-5).

Homogeneous Classification

Precision Recall f1-Score
Train Set 0.995 0.997 0.996
Test Set 0.993 0.998 0.996
Heterogeneous Classification
Precision Recall f1-Score
Train Set 0.980 0.971 0.975
Test Set 0.990 0.962 0.976
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3.4.2 Regression MLP

The regression model outputs (i.e., the first five PC scores) were scaled to lie between the
values of -1.0 and 1.0 to facilitate model training [51]. The Huber loss function [52], which is less
sensitive to outliers, was found to give the best results. The loss function was minimized with the
AdamW optimizer with a learning rate of 5e-4 and a weight decay of 5e-3. The GELU activation
function and batch normalization were utilized in each hidden layer [43,55]. The number and size
of the hidden layers were varied to determine the ideal model architecture. It was found that three
hidden layers with twelve nodes each (corresponding to 641 fittable parameters) produced the ideal
regression model for our case study. The network learning rate, similar to the classification MLP,
was governed by the 1cycle learning rate policy and helped the regression model converge quickly
to a local optimum (see Fig. 9). The ideal number of training epochs, resulting in the lowest

validation loss, was determined to be two hundred.

After model training was completed, the predicted scaled PC scores were converted back
to their original domains and model prediction accuracy was calculated using Eq. 6. The nMAE
(see Eq. 6) for each PC score is reported in Table 4. The nMAE increases for higher PC scores, as
expected, because higher PC scores (associated with lower variance PC basis) tend to capture more
noise [56]. This is also seen in the parity plots in Fig. 10 where the higher PC scores become less
accurate in both training and test dataset partitions and, by PCS5, the predictions have poor
correlation to the true values. While the higher PC score predictions are less accurate, they also
hold less importance, as the PC scores are organized by their ability to capture the dataset variance.
Autocorrelation reconstructions from the predicted PC scores will depend mostly on the more

accurate (PC1-PC3) scores, while the less accurate scores will have a much smaller impact.
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Figure 9. Learning curves containing training and validation loss for the regression MLP.

Table 4. Reported nMAE (see Eq. 6) and standard deviations for the predicted PC scores for the

train and test dataset partitions.

nMAE
PC1 PC2 PC3 PC4 PC5
Train Set  0.086 + 0.111  0.175 £0.165 0.310 £ 0.292 0.483 + 0.437 0.790 + 0.875
Test Set  0.108 £ 0.227  0.213 £ 0.204 0.351 £0.292  0.561 £ 0.509  0.996 + 1.393
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Figure 10. Parity plots of the MLP Regressor PC score predictions for the train (red) and test

(blue) dataset partitions. The R? values are given for each parity plot.
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Final model accuracy was determined by quantifying the difference between the ML-
predicted truncated autocorrelations (¥) and the autocorrelations of the corresponding phase-field

predicted microstructures (y) as

— jzl&l(y]iv— 7)° -

where N is the total number of autocorrelation features. The test set RMSE is presented in Fig. 11
as a frequency plot along with three example microstructures specifically selected to demonstrate
the range of model accuracy. Samples (a) and (b) correspond to minimum and near-mean RMSE.
It is seen that the ML-predicted truncated autocorrelations for these samples are qualitatively very
similar to the truncated autocorrelations of the corresponding phase-field predicted
microstructures. Sample (c) represents one of the test set outliers with high reconstruction error,
and clearly does not adequately represent the corresponding truncated autocorrelation of the phase-
field predicted microstructure. The relatively high error associated with this, and other outliers is
attributed to being substantially distant from the training data points (in the PC space). Specifically,
for sample (c), the PC3 value was substantially outside of the range of PC3 values in the training
set. Similar observations were made for the other test set outliers exhibiting higher RMSE values.
As with all applications of ML, the goal is to construct a model that is well generalizable to unseen
data; however, ML models typically excel at data interpolation and normally perform worse at
extrapolating outside of the range of training set. As such, the reconstruction outliers, which were
determined to exist outside of the training set PC space, can be attributed to the MLP regressor’s
inaptitude for extrapolation. This points to the need for improved design of training sets for ML
models to promote more generalizable models. Notwithstanding, all three ML-predicted truncated
autocorrelations adequately captured Mg>Sn volume fraction (i.e., fy). The absolute volume
fraction errors for samples (a), (b) and (c) were 0.25, 1.17, and 4.11 wt.% Mg>Sn, respectively.
The mean absolute error in volume fraction predictions for the whole test set was 1.06 wt.%

Mngn.

While the differences between the ML-predicted truncated autocorrelations and the
truncated autocorrelations of the phase-field predicted microstructures for samples (a) and (b) are
minimal, we see that the ML-predicted truncated autocorrelations lack the long-range order present

in their respective original autocorrelations. This is a consequence of PCA truncation. To visualize
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the deficiencies of the ML-predicted truncated autocorrelations, the recently developed [40] GRF
microstructure generator was employed on each of the ML-predicted truncated autocorrelation
maps in Fig. 11. While only a single generated microstructure instance for each sample is shown,
we produced a multitude of microstructures for each autocorrelation map. It was observed that the
generated instantiations captured certain aspects of each microstructure very well (such as the
phase volume fractions and the general size distribution of precipitates). Notably, Mg>Sn phase
volume fraction and Mg>Si precipitate size are the two features which were readily expressed in
PC1 and PC2, respectively (See Fig. 6). However, the generated microstructures do not capture
well the shapes of the individual precipitates. This is because local shape descriptors are generally
found in higher-order spatial correlations [40]. Furthermore, the GRF generator used in this study
is known to be implicitly biased toward the generation of microstructures with semi-continuous
features due to its inherent Gaussian assumptions. To address these issues, the overall strategy
described here can be extended in future studies to include higher-order spatial correlations.
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Figure 11. RMSE probability density for the test set ML-predicted truncated autocorrelations
(top). The original, truncated, and predicted (reconstructed from predicted PC scores)
autocorrelations for samples with (a) minimum reconstruction error, (b) near-mean
reconstruction error, and (c) maximum reconstruction error (bottom). The example GRF

generated microstructures were produced using the ML-predicted truncated autocorrelations.

3.4.3 Chained-ANN Surrogate Model

The trained classification and regression MLPs were chained as depicted in Fig. 7. The
chained-ANN process-structure surrogate model accuracy was measured over the test dataset
partition. If the classification model were perfect, meaning all samples in the test dataset partition
were correctly classified, then the chained-ANN surrogate model would exhibit the same
regression accuracy as the individual regression MLP. However, in the chained-ANN, the
classification error is propagated to the regressor and contributes to the final error of the ML-
predicted truncated autocorrelations. The classification model incorrectly labeled 0.62% of the
homogeneous samples as heterogeneous and 5.94% of the heterogeneous samples as
homogeneous. Nearly one in twenty heterogeneous microstructure producing simulation inputs
were labeled as homogeneous and weren’t included in the subsequent PC score predictions.
Equivalently, nearly one in two-hundred homogeneous microstructure producing simulation inputs

were labeled as heterogeneous and their PC scores were predicted by the regressor MLP.

The false heterogeneous samples become clearly evident in some of the PC score prediction
parity plots shown in Fig. 12 (circled in red where identifiable as a single group). Because the
regression MLP was trained solely on heterogeneous samples, the false heterogeneous
classifications contribute significantly to the overall model error. The nMAE values provided in
Table 4 reflect the loss of accuracy due to the low classification error from the false heterogeneous
samples as well as the four omitted true heterogeneous samples. Since PC4 and PC5 capture more
of the autocorrelation noise, the contribution from the classification error is fairly minimal to their
predictions (see Fig. 12 and Table 5). As with the reconstruction outliers discussed in Section
3.4.2, we see that the regression MLP is attempting to assign interpolated PC scores to the
homogeneous samples, which were clearly and purposefully outside of the regression MLP

training set, rather than extrapolating to their true values. This is expected and is a result of the
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chained-ANN design decisions made in this work. As classification error decreases, the overall
chained-ANN prediction error will converge to the same error seen with the regression MLP in

Table 4.
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Figure 12. Parity plots of the chained-ANN PS surrogate model PC score predictions for the test
dataset partitions. Homogeneous samples which were incorrectly classified as heterogeneous are

circled in red where visible.

Table 5. Reported nMAE (see Eq. 5) and standard deviations for the predicted PC scores of the
test dataset partition as measured with the MLP Regressor and the chained-ANN PS surrogate

model

nMAE
PC1 PC2 PC3 PC4 PC5

MLP Regressor  0.108 £ 0.227  0.213 £ 0.204 0.351 £0.292 0.561 £ 0.509 0.996 + 1.393
Chained-ANN 0.266 £ 0965  0.273 +0.483 0.389 +0.418 0.657+0.642 0.907 £+ 1.188

Although there is aggregated error from the classification model in the chained-ANN
output, the surrogate model obtained using this framework remains a promising opportunity for
the acceleration of the computationally expensive phase-field simulations. The chained-ANN
surrogate model can determine heterogeneity and predict a final Mg>Sn- Mg>Sn autocorrelation in
only 65 milliseconds (3.5 GHz Dual-Core Intel Core i7), while the phase-field simulation takes
roughly 2.5 hours (2.4 GHz Quad-Core Intel Core 15) to produce a single simulated microstructure
instantiation (representing a computational efficiency increase of five orders of magnitude). The
benefit of the autocorrelation surrogate model output, as noted previously, is that a host of
microstructures can be generated which are all statistically similar to the predicted microstructure
statistics rather than being limited to a single microstructure instantiation. Furthermore, the newly

developed surrogate model allows for quick prediction of phase separation based on simulation
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input parameters. The OPMD dataset consists of roughly 80% non-decomposed microstructures;
implying that roughly four in five sets of simulation inputs could be ignored when searching for
heterogeneous structures. The gained computational efficiency along with the ability to quickly
sift through homogeneous and heterogeneous producing simulation parameters allows for
exceptional opportunities for high-throughput explorations of the Mg>SixSnix microstructure
space. For example, with the goal of developing more efficient thermoelectric Mg>SixSnix
microstructures, the surrogate model can be used to efficiently explore a vast and high-dimensional
parameter space to identify which regions will produce heterogeneous microstructures. Further
work could be done to create an inverse mapping of the heterogeneous microstructure space
allowing for ideal process parameters to be identified before running the computationally

expensive phase-field simulations to obtain more detailed microstructure predictions.

4. Conclusions

A novel approach utilizing the MKS framework with a chained-ANN workflow is
presented for learning a complex, highly nonlinear, and high-dimensional process-structure
mapping from phase-field simulation data. This work offers a distinct new avenue for learning
increasingly complex process-structure relationships, while using very few model fitting
parameters. For the selected case study involving phase-field simulations of spinodal
decomposition in the Mg>SixSnix material system, the novel approach presented in this work
required only 742 model fitting parameters to map an 18-dimensional process space to its
corresponding microstructure space. The number of model parameters is not only significantly
smaller than the number of training samples (8,087 for the present study), but is several orders of
magnitude smaller than those for surrogate models reported in current literature for similar

datasets.

Specifically, the benefits of the proposed model building strategy have been demonstrated
on a publicly available dataset of Mg>SixSni.x spinodal decomposition phase-field simulations
which use eighteen unique input parameters to simulate microstructures from a highly diverse
microstructure space. The chained-ANN surrogate model differentiated between homogeneous
and heterogeneous producing simulation inputs with high accuracy and predicted two-phase spatial

autocorrelations with close agreement to the training data. We note here that the use of PCA
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truncation removed higher-order features from the autocorrelations used in model training and
limited the autocorrelation reconstruction accuracy considerably. Additional dimensionality
reduction techniques should be explored in future work to overcome this barrier. While the model
building strategies used in this case study are specific to the OPMD spinodal decomposition
dataset, the machine learning framework described herein opens new research avenues for an
unprecedented capture of complex process-structure mappings over very large high-dimensional

input and output spaces in a broad range of material systems.
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