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The fatigue life of near-alpha titanium alloys in service can be reduced by the
presence of clusters of alpha phase with similar c-axis orientations, known as
micro-textured regions (MTRs) or macrozones. MTRs provide a local envi-
ronment that facilitates initiation and growth of subsurface cracks. Models
exist for the prediction of fatigue crack growth rate, taking into account both
dwell time and microtextured region parameters, such as size; however, to
date, only 2-dimensional measurements have been used as inputs to this
inherently 3-dimensional problem. In the present work, the MTR regions are
assumed to have the shape of prolate spheroids, and the major and minor axis
lengths are measured in cross-section. Then, the 3D size and shape distribu-
tions are estimated using the expectation maximization and the Cruz-Orive
spheroid unfolding algorithm. The magnitude of uncertainty in the unfolding
results and implications for fatigue life models for Ti-6Al-4V are discussed.

INTRODUCTION

In cold dwell fatigue, growth rates of small cracks
are faster in regions of strong local crystallographic
texture,’ resulting in a significant debit in part life.?
In near alpha-titanium alloys, regions can exist
within the microstructure where there are zones of
grains with similar crystallographic orientations,
known as micro-textured regions (MTRs) or macro-
zones. They range in size from 100 ym to 10,000 ym,
and have been linked to faceted fracture surface
morphology.>*°A key component of The presence of
MTRs are a result of the processing history of the
alloy.®

MTRs within Ti-6V-4Al alloys have been exten-
sively studied leading to a general consensus on
what characteristics of MTRs affect crack growth
rate. Experiments have shown that these hexagonal
close-packed (HCP) o grain regions’ influence on
crack growth rate can vary, depending on how
densely packed these regions are and how closely
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the c-axis direction is oriented along the axis of
applied stress.! The mechanism by which such
cracks are formed has also been studied at length,
and has been developed largely upon Stroh’s model
of a pileup of dislocations at the boundary of an
MTR that has its basal plane nearly orthogonal to
the loading axis.” Although additional physics are
required for a complete description of the dwell
fatigue phenomenon, the model is frequently refer-
enced in the dwell fatigue literature, and has
provided important, foundational insights into the
failure mechanism.®~'° A key component of accurate
life prediction includes transferring the physics of
the crack growth mechanism into models, and
incorporating the most influential attributes of
MTRs into such models.

Pilchak developed a model to shed more light on
the likelihood of dwell fatigue failure based on the
type of loading.!! An enhancement to this model
predicts material life as a function of MTR size,
grouping density, and c-axis inclination with
respect to the loading direction.'?

The focus of the current work is to understand
how much influence 3-dimensional (3D) MTR size
has on the predicted dwell fatigue life of Ti-6Al-4V.
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Prior work has been based exclusively on 2-dimen-
sional (2D) MTR size measurements collected using
electron back-scatter diffraction (EBSD). The pre-
sent work intends to shed light on whether applying
stereology to obtain estimates for the major princi-
pal semi-axis (MAPSA) of prolate spheroid-shaped
MTRs in 3D would create a different result in
predicted fatigue life than using the MAPSA lengths
of ellipse-shaped MTRs obtained from direct cross-
section measurements in 2D, as is the current norm.
It should be noted that the present study is purely
numerical, since only a comparison between the
measurement techniques is needed.

Two stereological approaches, (1) unfolding (UF)
and (2) maximum likelihood (ML) via expectation
maximization (EM), are used to make estimates of
MAPSA lengths in 3D, from 2D data.'®'% As this is
an extreme value problem, we compare the two
stereological approaches to assess the degree to
which the methodology matters.

The ellipse measurements obtained from a single
section of the bulk material consist of random
sections of the 3D parent MTRs. As a result, many
of the 2D ellipses within the Dataset will originate
from intersections of spheroids, where the section is
not coincident with the MIPSA of the spheroid. Such
an ellipse would have a smaller MIPSA length in 2D
than its parent spheroid. Our hypothesis is that the
estimation methods will predict longer MIPSA
lengths and thus shorter fatigue lives compared to
the 2D distribution.

What follows is an explanation of the two
approaches employed to estimate 3D size distribu-
tions. Next, the methods used to create size estima-
tions of the MTRs in 3D are described. Finally, the
lengths are used in a fatigue life model. The results
of the study are then shown and discussed.

MATERIALS AND METHODS
Obtaining MTR Measurements

The elliptical dimensions of the MTRs were
obtained from a near alpha-titanium alloy, Ti-6Al-
4V. The alloy was sectioned in order to analyze the
microstructure using EBSD. A combination of the
EBSD data and the software DREAM.3D enabled
the quantification of 678,963 MTR minor and major
principal axis (MAPA) lengths.'” More information
on the criteria chosen to identify MTRs are
described in Ref. 3.

Because the specific shape of these regions in 3D
can be irregular and distorted due to processing
history, it is assumed that the MTRs have the
general shape of a prolate spheroid. Simplifying the
geometry is also helpful for modeling purposes. A
single section of this spheroid would produce an
ellipse (excluding the instance where it is sliced
coincident with the minor semi-axis, which would
produce a circle).
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Unfolding (UF)

UF is a stereological technique used to estimate
the true, or 3D, size distribution of particles within
a body based on a size distribution of the particles
from a 2D or 1D section of the body.'® Since its
inception, the numerical approach to UF has been
improved upon and modified for different particle
geometries. The most frequently assessed situation
involves determination of spherical particle size
distributions from observations of circular
sections.?

Another approach to stereological sampling is to
take three perpendicular sections of a specimen and,
using geometric relationships, infer the 3D shape of
the feature. Such an approach is referred to as the
tri-sector method.?° This method is less biased than
the dissector method. However, both the dissector
and tri-sector approaches are time- and resource-
intensive, as many sections must be prepared and
characterized. Furthermore, they are destructive to
the body being studied. Prior to such techniques, it
was clear to mathematicians that the ability to
make size estimations of 3D particles from 2D
measurements, or to unfold data, from a wider
variety of shapes using one section, would be very
valuable.

Wicksell was the first to develop an approach to
estimating the size—shape distributions of spheroi-
dal particles (3D spheroids) from their ellipsoidal
measurements (2D ellipses) using one section. He
first did so with spheroidal particles spread
throughout a matrix, later expanding the algorithm
to include prolate and oblate spheroids.?"?? Follow-
ing Wicksell, others began to improve upon his
approach and to apply it to specific cases including
Cruz-Orive in his work published roughly 50 years
later.?

In the present work, the 2D MTR data is assumed
to be ellipsoidal and therefore prolate spheroidal in
shape in 3D.!' These attributes about our data
pointed to the work of Cruz-Orive, who developed a
set of equations that can perform UF for oblate or
prolate spheroids, given a frequency distribution of
MIPSA and minor principal semi-axis (MIPSA)
lengths determined by a section of the material.

The output of Cruz-Orive’s algorithm, shown in
Eq. 1, is a multi-variate histogram of the MIPSA
and the eccentricity of the parent spheroids:'®

sk
gij = (ﬁ/A)Zzpi’a*fa,ﬁ*qﬁJ’(ivj:m) (1)

a=1 p=j

where p* and ¢#/ represent the elements of the size
and shape adjustment factors, respectively, and £, s
represents the bivariate histogram (m,y?) where m
is the MIPSA of an ellipse and y2 = 1 — (m/M)? is
the unfitness shape component of that ellipse,
where M is the largest measured MIPSA length of
all the ellipses. The bar over 1,10 denotes the
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Fig. 1. Form of macrozones, or micro-textured regions (MTRs), with
a relationships to region in size—shape space. The macrozones are
assumed to be ellipsoidal in two dimensions; m represents the
MIPSA length of a macrozones, normalized to the largest value
within the experimentally measured set, while the other random
variable, y?, is the unfitness shape component of the ellipse. The
colors of the inverse pole figures within the macrozones outlines are
for visual appeal only. They do not represent the structure of MTRs in
the figure (Color figure online).

selected bin ranges of I and j which, in this case, are
from 1 to 10. The random variable ranges are
{0<m <B} and {0,< =y2<1} where B is the
largest MIPSA value measured in the Dataset.
The variables, s and %, represent the total number
of bins of the input histogram for the size and shape
components, respectively. The value of each vari-
able is set by the user. H represents the overall
mean caliper diameter and A = B/s. To simplify the
analysis, the MIPSA values are normalized, making
B equal to 1 and the m value unfitness. For more
details on the algorithm, the reader is referred to
the source paper.'® The relationship between y2, m,
and particle morphology is illustrated in Fig. 1.

Once all the elements of the g; matrix are
calculated, a distribution such as that shown in
Fig. 2(a and d) is produced. This figure is a
reproduction of Cruz-Orive’s synthetic input distri-
bution (Fig. 2a and d) and the UF output (Fig. 2b
and e) using Python. Both rows in the figure repre-
sent the same data viewed from different directions.
For the UF histogram, the random variables are
labeled x2 and b. These correspond to the unfitness
shape component of a 3D MTR and its MIPSA
length, respectively. Furthermore, the shape com-
ponent, x? = 1 — (2)2, where a is the MIPSA of the
spheroid. Given the type of data available and the
inferred shape of MTRs, Cruz-Orive’s method of UF
has been applied. It is from the UF histogram that
an MTR’s MIPSA can be back-calculated, with the
expectation that the estimated value more accu-
rately represents the MTR in 3D.

A major drawback of Cruz-Orive’s method is that
it is ill-conditioned, meaning that very small
changes in the input values can result in large
changes in the outputs. This could be due to the
complexity of the adjustment factors. Other than
editing the formula itself, one can account for the
formula’s sensitivity by zeroing-out negative bins in
the output, which have no physical meaning.

Ultimately, the problem of 3D size estimation is
one of estimating the parameters of a “hidden”
distribution that describes the observable 2D ellipse
data. Therefore, the ML via EM was used as an
alternative method to compare with the UF method.

First, the eccentricity of each MTR was calculated
using its MIPSA and the largest MIPSA length of
the Dataset. The values were then binned to create
a bivariate histogram, which is subsequently nor-
malized by the sum of the bin frequencies. The input
of the algorithm is a bivariate histogram; therefore,
the experimental data were binned in such a way
that they created a bivariate histogram. The Freed-
man-Diconis rule was considered to determine the
number of bins for each variable.?* Using the rule,
the number of recommended bins was 2113 and 147
for m and y2, respectively. Together, this would
create a bivariate histogram of (2113 x 147) 310,611
bins. The approximate number of points per cell
would be 678,995 points divided by 310,611 bins,
resulting in 2.18 points per bin. This value is too
small, considering that the purpose of binning is to
obtain a general shape of the distribution of data.
Another rule-of-thumb for selecting the number of
bins for a Dataset is that the average number of
data per interval should be greater than the number
of intervals. Thus, for the current study, a constant
grid size of 20 x 20 was selected. The effect of bin
sizing was not investigated in the present study,
and was held constant for all of the calculations.

The input histogram data, provided in Cruz-
Orive’s paper, was replicated and passed into the
UF function, in order to validate the implementa-
tion of the code. Figure 2a and b shows the
replicated input and corresponding output of Cruz-
Orive’s algorithm, respectively. Visually, the inputs
and outputs from the coded function, and that
shown in Fig. 1 in Cruz-Orive’s paper, are in very
good agreement.'® Before applying the method to
the experimental data, however, it was important to
understand how the algorithm performed when the
input data did not exactly resemble the synthetic
input data supplied by Cruz-Orive. This was done
by subsampling the data from a distribution shaped
like Cruz-Orive’s input distribution.

A sample of values, equal to a predetermined
subsample size, was taken, binned, and passed into
the UF function. This process was repeated for
various amounts of subsample sizes. The result of
the test was a continuously decreasing residual sum
as the number of input samples was increased. This
represents how the UF histogram predictions get
closer to the known solution as the input sample
size approaches that of the known input.

All the histograms shown in the paper and
created with Cruz-Orive’s UF function are plotted
with any negative bin values set to zero. Although
the inputs to Cruz-Orive’s UF function (f,p) are
positive, the adjustment factors can make certain
bins in the output (g;;) negative.
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Fig. 2. Bivariate histograms of synthetic ellipse and prolate spheroid eccentricities (y? and x?) and MIPSA lengths (m and b). Two viewpoints are
shown for each histogram: (a) and (d) the synthetically generated ellipse data, (b) and (e) the estimated size of prolate spheroids using UF, (c)
and (f) the estimated size of prolate spheroids using expectation maximization; the grid size of the histograms is 10 x 10.

Expectation Maximization (EM)

EM employs an iterative optimization technique
to determine the parameters of the likelihood
function, given a set of observed random variable
measurements. In the literature, it is often referred
to as the unobservable aspect of an observable set of
data. Determining the function is useful for pre-
dicting the chance that a random variable will take
a particular value in the range of possible values. In
maximizing the likelihood, one searches the func-
tion parameter space for values that most accu-
rately describe the measured data. An explanation
of the EM process and practical examples of appli-
cations can be found in Ref. 25.

ML provides a way to estimate the unknown or
“missing” function parameters most likely to pro-
duce a set of experimental data points. The method
can be applied to cases where it is expected that
multiple distribution functions are responsible for
the observed data.?® If taking the integral of a
likelihood function is intractable, EM can be used to
estimate the parameters of the function. When
employing EM, it is helpful to select an appropriate
likelihood distribution function if there is prior
knowledge about the shape of the distribution.

One of the earliest implementations of estimating
the likelihood function from incomplete data was by
Hartley in 1958. He developed an improved method-
ology of calculating the underlying parameters of a
Dataset (i.e., calculating the ML parameters) with
missing data).?” Later, Dempster et al. followed up
Hartley’s work by providing the derivation for
applying ML to cases when data were missing from
a Dataset via EM.?® Techniques for smoothing the
estimation from EM were developed to account for
some issues of regular EM which can give “noisy” or
“spiky” estimates of the unknown space.

More recently, Baaske et al. studied the estima-
tion of the parameters of a function that described
the distribution of spheroids using ML after UF.1?
The distribution, however, is based on a bivariate
histogram which is not the most realistic represen-
tation of the size-shape distribution of prolate
spheroidal-shaped features within a matrix. Studies
have shown that the size distribution of MTRs in a
near-alpha titanium alloy is not normally dis-
tributed. Rather, the distribution is skewed, with
smaller major axis and minor axis lengths occurring
more frequently than larger ones.?

Unlike Baaske et al., Chan and Qin developed an
algorithm for applying EM in a non-parametric
way.'® They first considered the case of estimating
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the likelihood of a spheroidal distribution using a
mixture of 1D, 2D, and 3D data about the spheroidal
features. The use of EM helped to overcome the
problem of sampling bias and indirect measure-
ments that can come from obtaining lower dimen-
sional measurements from 3D spheroids. Later, in
the same work, the authors expand the EM
approach to the case of ellipsoidal measurements.
This expanded approach is derived from the distri-
bution function describing the size—shape frequency
of prolate ellipsoids in a material developed origi-
nally by Cruz-Orive.'®

Different from Cruz-Orive’s UF approach, how-
ever, the inputs of the Chan and Qin EM algorithm
are the individual occurrence probabilities associ-
ated with each ellipse measurement. Their EM
approach takes the experimental eccentricities and
MIPSA lengths as inputs and returns, a probability
for each point representing the frequency of observ-
ing a given eccentrici‘gy and MIPSA length from a
3D prolate spheroid.'® With each iteration of the
EM process, the probability of each ellipse is
“adjusted” to more closely reflect that of the 3D
size—shape distribution of its parent spheroid. This
set of probabilities, along with the corresponding
MIPSA lengths and eccentricities, are used to create
a discrete distribution where the random variables
(MIPSA length and eccentricity) are assigned their
newly calculated probabilities. From this distribu-
tion, an arbitrarily sized sample of MIPSA lengths
and eccentricities can be obtained, and subse-
quently used to back-calculate MIPSA lengths. For
the remainder of the current work, any reference to
the EM algorithm will refer specifically to the
approach developed by Chan and Qin, unless other-
wise stated.

One drawback of the algorithm, however, is that
it is memory-intensive when there are a large
number of inputs to run. This is because the
expectation and maximization steps contain multi-
ple summations using non-trivial functions, making
for-loops impractical in terms of script run-time.
Converting the formulas into vectors, then sum-
ming across the vectors, reduces run-time to rea-
sonable levels. However, this approach requires
that the data points be held in the system’s random
access memory (RAM). The amount of values is on
the order of 4.6E11 (or 678,9632) which can require
hundreds of gigabytes of memory. Please see, for the
functional form of the E and M steps, as well as a
more detailed explanation of the algorithm.'®

The largest number of experimental data points
that could be run from the total of 678,963 was
400,000; roughly 60% of the data. Therefore,
400,000 data points are uniformly sampled without
replacement from the full set of measurements. The
subsample included the highest and lowest experi-
mental value from the total Dataset. To run the
400,000 data points, a virtual machine hosted by
Google’s Cloud computing service was used. The

virtual machine had an Intel M1 processor with 3.75
Tb of RAM and a hard drive disk with 7 Tb of
storage space.

Prior to the current work, the EM algorithm
proposed by Chan and Qin had not been pro-
grammed, nor tested.?’ The present implementation
of the algorithm was tested using the synthetic
Dataset proposed by Cruz-Orive in Ref. 13. The
result of the test is shown in Fig. 2c¢ and f). The
results compare favorably to Fig. 2b and e, which
are the known UF histograms of the synthetic
outputs. The residual sum of bin heights between
the two histograms was 0.4198 with 200,000 sam-
ples of Cruz-Orive’s synthetic input histogram.

Sampling from the Distributions

First, the experimental data are binned into a 20
x 20-celled bivariate histogram. One variable, the
MIPSA value (m), is taken directly from the mea-
surements. The eccentricity (y?) is calculated from
the MIPSA and largest MIPSA (M) value of the
Dataset.

Next, the bivariate histogram of 2D data is passed
into the UF function, resulting in a histogram
showing the estimated frequencies of 3D prolate
spheroid size—shape classes in the material. The
same bivariate histogram of 2D data is passed into
the EM function to produce another estimate of the
3D prolate spheroid size—shape distribution. The
three histograms can be plotted: one representing
the size and shape distributions of the 2D MTR
section measurements, one the UF estimates, and
the third the EM estimates. Figure 5 displays each
of the histograms for the experimental data.

From here, the Numpy random sampling function
is employed to sample m and y? values from the UF
and EM histograms. The sampled MIPSA lengths
and shape parameters from each distribution type
are used to back-calculate the MIPSA lengths.
These lengths, from the 2D measurements, are
assigned from the experimental measurements.
Each MIPSA length is multiplied by 2 to obtain its
MAPA length.

Crack Growth Model

The crack growth rate was modeled using:

da — yy) * d_a + oy x by % d_a 2
“ dN cyc o " dt dwell' ( )

dN (1

where y; is the indicator function, which is used to
determine if the characteristics of a given MTR
meet the user defined criteria necessary for it to
contribute to accelerated crack growth during dwell
fatigue.'> The dwell time per cycle in seconds is
represented by ¢;,. The first rate term ((‘}T‘{,)Cyc is the
cyclic small crack growth contribution. Expanded, it
has the following form



da > c
— =e“AK",
(dN cyc

where C and n are crack growth constants and AK is
the range in stress intensity factor during the cycle,
ie., AK = K,;,ux — Kin. For an embedded crack in an
infinite body, the stress intensity factor K has the
form

K=2/n)xox/nxa,

where ¢ is the applied stress level and a is the crack
size. In order to model the small crack growth
behavior, an intrinsic crack length parameter, agy,
is introduced. Therefore, AK in the cyclic term has
the form

AK = (2/7) * (Omax — Omin) * /7 * (@ + agg),

where 0, and o,,;, are the maximum and mini-
mum stress levels applied on the material during
one cycle, respectively. Due to agy, the effective AK
increases when the crack is small, but merges with
the AK for a long crack when a is significantly
larger than agp. The second rate term, (&) is the
small crack growth contribution due to dwell time,
and is given by

da c
- — eCd KM ,
( dt )dwell e

where C; and ng are dwell fatigue crack growth
parameters and K., is the maximum stress inten-
sity factor in the cycle. Once again, introducing the
parameter agpq to account for small crack growth
behavior in active MTRs under dwell fatigue, K4
has the following form for an embedded crack in an
infinite body
Koax = (2/7'5) * Omax * 4/ TU* (a + aEH,d),

where agg 4 is the intrinsic crack length parameter
associated with the dwell fatigue loading. The y;
parameter is crucial to incorporating MTR features
into the model. With the inclination angle and
grouping the density information, it is able to
account for anisotropy of the HCP alpha phase
where the hardest grains are those with a c-axis
parallel to the loading direction and the softest
grains are those with a c-axis perpendicular to the
loading direction.® Grouping density quantifies the
concentration of similarly oriented alpha grains
within an MTR. Pilchak et al. give more details on
how grouping density (or density) is calculated from
an EBS image in Ref. 30. However, the crack growth
model does not incorporate the path of the crack
because correlations to the growth rate and crack
path have not been found.!

Prior to incorporating data into the crack growth
model, two steps are required. First, grouping
density values were sampled from a log-normal
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distribution with a mean and standard deviation of
—1.90975 and 0.30897, respectively.'?> Second, c-
axis inclination values were generated by sampling
from a mixture of two log-normal distributions
truncated to range from 0 to 90°.'> The mean and
standard deviation for one of the distributions was
4.22733 and 0.334652, respectively. The second
distribution in the mixture distribution had a mean
of 3.55245 and standard deviation of 0.726819.

Next, the chi function, y;, is constructed using a
combination of MAPA lengths, grouping densities,
and c-axis inclinations. The bottom half of Fig. 3
shows an example of how these data are used to
determine the size and activity of the MTRs. MAPA
lengths are represented as horizontal lines. The
previously calculated MAPA lengths are set as the
lengths of the MTRs. Each length is paired with a
grouping density and c-axis inclination. During the
yr function construction process, a value is ran-
domly selected from the distributions of the c-axis
orientation and grouping density variables. A two-
state plot is then generated, which represents a
crack growing through one MTR (state 1), leaving
the MTR, and then entering another (state 2). The
lefthand side of Fig. 4 shows this information
graphically. For the model, it is assumed that a
growing crack is propagating through MTRs at all
times. However, not every MTR is active, so growth
through inactive MTRs represents the crack grow-
ing through a region of the matrix that does not
contribute to accelerated crack growth.

If the c-axis inclination is below 30° , with respect
to the loading axis and the grouping density above
0.2, then the MTR is considered active, the indicator
function value, y; becomes 1, and the dwell time
effect on crack growth is applied.'> With y; con-
structed, it can be substituted into the crack growth
model in Eq. 2. It is important to note that the
illustration on the left side of Fig. 4 simplifies the
path of the crack into a straight line. In reality, a
propagating crack would not follow such an ideal
path. The model compensates for this, however,
through the semi-random alignment of active and
inactive MTRs.

To calculate the progression of crack growth in
the present study, a cycle-by-cycle crack length
increment approach was used. The increment in
crack length per cycle is given by:

da=(1-y) x eCx
2 n
<* (Omax — Omin) * /T * (@ —i—aEH)) * dN
v
+yr *tp x eClx

2 ntd
<E*amax* n*(a+aEH7d)> *dN.
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Fig. 3. Method to compare the macrozones size quantification approaches.
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5 Iterations Per Estimation Type

Fig. 4. How the crack growth model plots as curves the crack length, a, against the number of cycles, N.

Equation 3 is used to generate the data of crack
length, a, versus number of cycles, N. An illustra-
tion of the way the model incorporates data is shown
in the top-right portion of Fig. 4. The bottom-right
portion of the figure shows an implementation of the
model constructing 5 iterations of growth curves
from each estimation type. In the present study, two
cases of the model were implemented.

In the first case, the y; table and every model
parameter (C, n, agg, Cq4, ng, agoq) are held

constant at a deterministic value, that has been
selected randomly from the appropriate multivari-
ate normal distributions described below. Here, only
the MAPA lengths are updated with each curve.
Sampling in this way allows the isolation of the
influence of MTR size on dwell fatigue life
distribution.

In the second case, the MTR microstructure and
the crack growth parameters were considered as
random variables in the calculation of each curve. A
set of values for C, n, and agy have been sampled



from a multivariate normal distribution, with
means —27.5287, 3.8578, and 4.07E-5, respectively.
The co-variance was set to

C n QEH
C 0.338
n —0.0957 0.0275

agg —8518E -6 2288E -6 2.7729E — 10

A set of values is also sampled for each of the
parameters Cy, ng, and agn g from a multivariate
normal distribution, with means —33.8262, 4.0576,
and 2.64E-4, respectively. The co-variance of the
values is

Cq ng QEHd
Cy 0.0042
ng 0.0073 0.0127

aggqg —4904E -6 —8477E—-6 b5.66E—9

These mean and co-variance values were deter-
mined by running multiple small crack growth tests
on Ti-6Al-4V fatigue specimens. A model was fit to
the small crack growth data to determine the
statistics on the model parameters. Note that the
means and co-variance distribution parameters
used are the same among all the varying length
cases. Thus, the exact numerical values used should
not influence the final crack growth comparison
between the 2D, 3D, and EM estimation types,
which is one key aim of the current work. Lengths
for a given estimation type are also sampled from
the appropriate distributions. Values for grouping
density and c-axis inclination are also sampled and
assigned to the lengths to build a y; table.

In both cases, dN is set to 1 so that each iteration
represents 1 cycle. The initial length of the crack
was set to 5.4E-6 m (or 5.4 um) which is half the
average alpha particle size in the alloy (half because
the initial crack length is measured from the center
of the alpha particle).! Also, the dwell time, ¢, is set
to 118 s. With each iteration, the code also checks if
the maximum stress intensity factor, K., is
greater than a critical value, set as 60 MPa /m. If
it is not, the process repeats. If it is, the process
ends.

The crack growth calculation is repeated for each
method of MTR size quantification, i.e., a set of a
versus N curves is generated for each histogram
(2D, UF-based 3D estimation, and EM-based 3D
estimation). The final result is a distribution of
fatigue life which is informed by the MTR
parameters.

RESULTS

Bi-Variate Histograms of MTR Data

The 2D, UF, and EM distributions for the exper-
imental data are shown in Fig. 5. Figure 5(a) shows
the bivariate distribution of the more than 600,000
experimental 2D ellipse measurements. As shown,

James, John, Jha, Pilchak, Arroyave, and Payton

the shape of the histogram is very different than
that of Cruz-Orive’s synthetic input Dataset (cf.
Fig. 2(a and d)).

The histogram data show that each estimation
type has a slightly different size distribution of both
larger and smaller MTRs. However, the histograms
share a similar shape when observed on the MIPSA
direction or margin. In each, the largest number of
MTRs are small in length fraction (i.e., contained
within the m or & bin ranges of 0.0-0.05). Bin
heights taper off significantly in the 0.05-0.1 range,
and continue to decrease rapidly as bin ranges
approach 1. The shape indicates that a very large
fraction of the data consist of smaller MTRs.

A major difference between the histograms is the
gradient in eccentricities (y? and x?). The histogram
displaying experimental data (Fig. 5a and d) has a
significant number of eccentricities ranging from 0
to 1in the m fraction size range of 0.0-0.05. The EM
histogram preserves some of this distribution, but
does not predict significant bin heights at smaller
eccentricities.

According to the Z-axis heights, it is clear that the
UF predictions (Fig. 5b and e) have the least spread
over the b-x? space. Prior to plotting the histograms,
the bin heights have been normalized. Because
fewer bins occupy cells outside the front right corner
of the space (0.0-0.1 b, 0.7-1 x2), the fraction of sizes
contained within it are higher than the 2D and EM
histograms. The zeroing-out of bins could be con-
tributing to the added weight (or increased bin
height) of non-zero bins. The ill-conditioning of the
Cruz-Orive method makes it less robust than the
EM approach for making size predictions.

CDFs of Lengths

The cumulative distributions of MTR lengths
sampled from each histogram are plotted in Fig. 6.
The MIPSA lengths and eccentricities are simulta-
neously sampled from the appropriate bivariate
size—shape distributions in Fig. 5. MIPSA lengths
are back-calculated using the MIPSA lengths and
eccentricity values, and plotted in Fig. 6b. For each
data source, the spread of points in size are a direct
result of the bin heights in the corresponding
histograms.

Of the three data sources, the UF points are the
most sparse in terms of size or shape variation. In
each subplot of Fig. 6, most of the UF data appear as
discrete bands and are not as “continuous” as the
2D or EM data. The lack of variation is a direct
result of having fewer bins to select from during the
sampling process. Likewise, fewer bins are a result
of negative bins being zeroed-out after UF is
applied. The sensitivity of the Cruz-Orive algorithm
is not able to handle the non-ideal, experimental
data well. Outputs of the model fluctuate signifi-
cantly if they stray even slightly from the ideal,
synthetic input Dataset.
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Fig. 5. Bivariate histograms of MTR eccentricities (y? and x2) and MIPSA lengths (m and b). Two viewpoints are shown for each histogram: (a)
and (d) the experimentally measured MTR data, (b) and (e) the estimated size of MTRs in 3D using UF, (c) and (f) the estimated size of MTRs in

3D using EM; the grid size of the histograms is 20 x 20.

Figure 6a and b shows the principal semi-axis
dimensions of the MTRs. Here, the right tails of the
UF and EM estimation types are less populated
than the 2D experimental data. This means that the
EM and UF methods predict fewer MTRs with
principal semi-axis lengths greater than ~ 500 (~
1027) ym compared to the 2D data. The data show
that 2D experimental measurements can suggest a
greater number of large MTRs in the material than
there actually are.

Dwell Fatigue Life Distributions

Figures 7 and 8 summarize the predictions of the
number of cycles at failure for each of the three
methods. Figure 7 displays a case where only the
MTR lengths vary but the crack growth parameters
are considered to be deterministic. Figure 8, on the
other hand, displays the case where the MTR
lengths, the y; function, and all the parameters of
the crack growth model are considered as random
variables for a given estimation type. Both Figs. 7
and 8 plot the life at fracture in the form of a
cumulative distribution.

The distribution in life predicted by each estima-
tion type is different. In the first case, where the
crack growth parameters are held constant and only
the MTR lengths vary (Fig. 7), the 2D and EM
estimation types predict similar minimum -cycle
lives. The UF Dataset, however, predicts a mini-
mum number of cycles that is more than 2,000
cycles less than both the 2D and EM datasets. For

the second case, which is a more realistic scenario,
where both the MTR lengths and the crack growth
parameters are random variables (Fig. 8), there are
differences in the median life by the three estima-
tion methods. The difference between the three
estimation methods decreases in the upper and
lower tails of the distributions. Note that the
implementation of the model stops the crack from
continuing to grow after 400,000 cycles, but the
vertical accumulation of points on the high cycle
edge of Fig. 8 shows that more cycles could have
been achieved.

BO0.1 lines are shown for each of the data sources
in both Figs. 7 and 8, as well as the respective inset
boxes of the figures. The B0.1 life, or book life, is a
statistic used to report the minimum life of a
component.?! The inset boxes emphasize the differ-
ence in book life in the lower tail of the distribu-
tions. In addition to the B0.1 statistic, the B0.01 and
B0.001 statistics are tabulated for both cases in
Tables I and II. The B0.1, B0.01, and B0.001 book
lives represent the one-thousandth, one-hundredth,
and the tenth lowest value of one-million values,
respectively. In Table I, in which only the MTR
lengths vary, the 2D and EM datasets begin to
converge to a similar minimum, while the UF
Dataset reaches a lower number of cycles limit than
the 2D and EM datasets. In Table II, however, the
number of cycles between all three MTR size
datasets seem to converge as the B statistic values
approach the left tail of the distribution.
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Fig. 6. (a) MAPSAs, (b) MIPSAs, and (c) eccentricities generated by the three estimation types (2D, UF, and EM); the values of UF and EM are

from a sample of 400,000 points of their respective histograms.

Overall, however, the slight differences in cycle
lives show that the extra cost associated with
obtaining the 3D distribution is minor compared to
the return of increased precision. The effect of the
estimation method is more apparent for the first
case, in which the crack growth parameters were
held constant and only the MTR size was considered
a random variable (Fig. 7). For the case in which
both the MTR microstructure and the small crack
growth parameters are random variables, the dif-
ference in the lower tail of life distribution by the
three methods is not significant.

DISCUSSION

According to the BO0.1 statistics in the present
work, the order of least to greatest life is UF, EM,
and then 2D (Fig. 7). In Fig. 8, UF predicts the least
life, followed by EM, and then 2D in terms of the

B.01 statistic. The difference in lives by the three
methods is not significant for this case. The book life
order in both plots has a direct correlation with the
MTR size lengths. If two sets of consecutive MTR
lengths have the same activation per MTR, the set
with larger lengths will cause the crack to grow
faster compared to the other set. This is because the
crack will spend more time in active MTRs. The
order of the cycle lives also corresponds with the
distribution of MIPSA lengths in Fig. 6b. Here, the
UF distribution predicts a greater number of larger
MTRs in the size space compared to the 2D and EM
distributions. Interestingly, the EM distribution
predicts smaller MTRs compared to 2D at the
beginning and end of the distribution. However, it
predicts larger MTRs for a significant portion of the
distribution space between the tails.
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parameters are held constant with each point. Vertical lines are drawn at the B0.1 life value.

The extreme instances of many consecutively long
and active MTRs (shortest lives) and many consec-
utively short and active MTRs (longest lives) are
displayed in both Figs. 7 and 8. The clearest
influence of these distributions on crack growth is
shown in Fig. 7. The ranges of achievable cycles
between each estimation type exist between a
minimum of about 20,000 and 65,000 cycles. When
compared to Fig. 8, the influence of the y; function
and parameters on fatigue life can be seen, given
that the cycle life range for this set of points is
between roughly 5,000 and a user-defined maxi-
mum of 400,000 cycles. When all the MTR charac-
teristics are allowed to vary, the range of achievable
cycle lives greatly increases. With more parameters
varying, there are lower minimums as well as
higher maximums, compared to the length isolation
case of Fig. 7.

Like in Fig. 7, points found near the left edge of
Fig. 8 are important to analyze because they
represent the shortest life spans of the part. They
are the result of a crack growing through a greater
number of active MTRs with larger MAPA lengths,
causing the crack to grow faster than normal in a
given amount of time. In the deterministic case
shown in Fig. 7, the 2D and EM B.01 statistics

predict considerably more cycles than the UF B.01
statistic. In the case where the crack growth
parameters vary, shown in Fig. 8, the predictions
of the three B.01 statistics are much closer. How-
ever, the 3D estimation approaches (UF and EM)
predict shorter B0.1 book lives than the experimen-
tal 2D data, by at least 280 cycles. Because the
differences in B.01 book life are not substantial for
the case where the parameters vary, the differences
are not expected to be substantial in practice.

One limitation encountered in the present study
was that some MTR lengths captured experimen-
tally approached the step size of the EBS scan.
Therefore, measurements with a minor principal
axis (2 * m) smaller than 5 ym were removed before
conducting the study. Doing so would allow the
results to resemble reality more closely. This size
filter reduced the data from 678,995 to 678,963
measurements.

Optimizing the code for increased speed created
another barrier to calculation, in that a large
amount of RAM was required to calculate probabil-
ities over the entire Dataset. To overcome this
challenge, the experimental data were down-sam-
pled to 400,000 points before applying the EM
algorithm. To capture a representative sample, a
uniform sampling scheme without replacement was
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Table I. Important number of cycle statistics for the case in which the grouping densities, c-axis
inclinations, and small crack growth parameters are held constant and only the MTR lengths are
considered as a random variable

Data source B0.001 Cycles B0.01 Cycles B0.1 Cycles Median
2D 24,289 24,298 24,588 45,606
UF 21,636 21,661 21,707 33,120
EM 24,330 24,338 24,586 40,066

Table II. Important number of cycle statistics for the case in which the grouping densities, c-axis
inclinations, small crack growth parameters, and MTR lengths are considered as random variables

Data source B0.001 Cycles B0.01 Cycles B0.1 Cycles Median
2D 18,352 19,654 21,230 40,570
UF 18,072 19,403 20,754 32,838
EM 18,020 19,450 20,948 39,253
applied. Fortunately, the extremes of the lengths CONCLUSION

(min and max) were captured in the subsample and

over 58% of the experimental data were used. A comparison of the fatigue life prediction

between three different approaches to quantifying
the dimensions of MTRs within Ti-6Al-4V is pre-
sented. The following are the major conclusions:
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e Stereological correction produces systematic
shifts in the size, eccentricity, and semi-axis
length distributions of the MTRs. The largest
influence is observed toward the smaller, more
elliptical side of the spheroid distribution.

e While the Cruz-Orive UF algorithm and Chan
and Qin EM estimation histograms predict
fatigue life similarly when MTR principal axis
lengths, grouping densities, and c-axis inclina-
tions are all randomly sampled, the EM method
should be used due to numerical stability rela-
tive to Cruz-Orive’s UF algorithm.

e The 3D sizes of MTRs (EM and UF) result in a
smaller reduction in predicted fatigue life than
the 2D measurements of MTRs measured with
EBS. Also, when variability in crack growth
behavior is accounted for, by treating the crack
growth parameters as random variables, the
differences between the three estimation meth-
ods decreases substantially compared to a deter-
ministic case, especially in the lower tail of the
life distribution.

Future work should analyze the assumption of
whether prolate spheroids are the best description
of the shape of an MTR, and whether biases exist in
the observation of MTR orientation, which could
have a significant effect on stereological results. The
size and shape of MTRs can vary somewhat with the
parameters used to identify them from EBS data. In
particular, the edges of the features are not always
clearly defined, and the actual shapes are not
necessarily rotationally symmetric along the pri-
mary axes, as is the case with a prolate spheroid. In
some circumstances, where the flow path during
deformation processing of the material is curved
(not typical of the MTRs in the present work), the
globally convex assumption employed in the algo-
rithms in the present work may not be valid,
because it is possible that the MTR may also exhibit
curvature.
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