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ABSTRACT

It often occurs in practice that only a small number of observations
are given for reconstructing past climate events in the field of
paleoclimatology. State-space models can overcome such scarcity
by giving priors to those hidden states to make them correlated to
one another. Inferring multiple events simultaneously from various
proxies to exploit their mutual dependency is another option. Here
we present a Gaussian process state-space model to reconstruct
both atmospheric CO; and sea surface temperature index from
boron isotope and planktonic §'80 proxies.
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1 INTRODUCTION

In the field of paleoclimatology, the limited resolution of available
proxy data often limits reconstruction of the past climate events
over ages. For instance, boron isotope (§'!B) proxy is directly corre-
lated to the atmospheric COg2, but has low resolution and is unevenly
spaced over ages [5, 7, 11]. The statistical learning that depends
only on the individual inference is vulnerable to outliers and often
inefficient to exploit information.
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One way is to give a more comprehensive prior on the past
climate events over ages, just as how state-space models do. Tra-
ditional state-space models such as the particle filter/smoother
[4, 14] often depend too much on the parametric transition models
that miss their nonstationary aspects and model misspecification.
Also, such models expect regularly spaced data over ages, which
is problematic if the data are too scarce to keep information after
rearranging the data regularly.

The Gaussian process state-space model (GPST) [6, 8] addresses
these limitations. Gaussian processes [23] are nonparametric thus
do not depend on parameters and can take the irregularly spaced
data without the rearrangement. That GPSTs do not require the
memoryless assumption is a bonus. [15] shows the reconstruction
of atomospheric CO; from §'!B by a GPST model.

Another way is to utilize the dependencies between a set of
closely related climate events that have proxies of plentiful ob-
servations, such as the sea surface temperature (SST) index [25]
for the atmospheric COj, for "borrowing" information from them
indirectly: note that raw SSTs themselves are not global parameters.

Here we extend the GPST model in [15] to consider both atmo-
spheric CO; and SST index simultaneously from two proxies, §'!B
and planktonic §'80. Section 2 describes the modeling in detail and
section 3 defines the data and how they are preprocessed. Section 4
shows the results and section 5 concludes the paper.

2 MODEL
We first define the following notations and symbols:
o T= (T(l),T(Z)): ages of the proxies.
-1 = Tl(:ll\)h: ages of 511B proxy observations.

- T® = Tl(i\)lzz ages of the planktonic 6130 proxy observa-
tions.
o X = (X(l),X(Z)): hidden paleoclimate events.
- x® = X(;I)\Il: atmospheric CO; at T.
- X® = x1) . ST indices at T.
Ny
oY= (Y(l), Y(Z)): observed proxies.
-y = Y(lfl)\h: 511B proxy observations.
_ v _ v(2)
Y( - Y1:N
Like the usual state-space models, our GPST model consists
of emission and transition models. The emission model for §1'B

is given as follows, as in [15]: here we define 7y (-|a, ) as the
generalized Student’s t-distribution [2] with a degree v and its

X planktonic §'80 proxy observations.
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location and scale parameters  and S, respectively.
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where ag, a1, az and a3 are the coefficient parameters and o is
a standard deviation. Note that these parameters are given core-
specifically.

The emission model for the planktonic §'30 proxies is defined
as follows:

p (¥ @

X7) =7 (Yﬁf)

bo + blxglz), %sz)

where by and b; are the coefficient parameters and s is a standard
deviation.

The most distinctive feature of the GPST model is that the tran-
sition model does not assume the memoryless property. Instead, it
is defined by the following Gaussian process:

P(XIT) = N (x’& KTT)

[ ppk® ) O
T paak? 52k + k@
where K(k) = K(k) is an abbreviation and &1, 82 > 0 and corre-
ij THTO) 1,02

lation —1 < p < 1 are the kernel hyperparameters. To control p,
we reparametrize it by p = tanh pg for another parameter py that
takes any real values. The above covariance matrix consists of the
following three kernels:

K© (u,v) = (1 + ‘/gtfg |u — U|) . e_\@fgl“_v‘

K(l) (u7 ’U) — ']% . e—Zle sin? (7 |u—v|/ry) + )’% . l{u:v} (4)

K® (u,0) = ’73 . g—2&f sin® (wlu—vl/ry) | A% o .
where n1, 172, &, &1, &2, A1, A are also the kernel hyperparameters.
Note that:

67 pbid, 0 _ 512K(r0) p6162 (0%
516 52 ® Kpp = {0) 27(0) ®)
po102 2 por&Krr 5 Kpp

S phi)

(0) (0) (2)
P16 Ky 8Ky, + Ky, ©
52K(0) 515 K(O) K(l) 0
= 1 11(0) Po1 2(0)12 4 [P @
po162K 8Ky 0 Ky

and the first term of (6) is obtained by removing some rows and
columns symmetrically from (5), thus Kt is a positive semi-definite
symmetric matrix to become a covariance matrix.

It is straightforward to show that (3) is consistently extendable,
i.e, for a query age pair ¢t = (#1, t2) and the associated hidden events
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x = (x1,x2), we have:

xX(M\| (6
x 0
p (X[t T) =N X(lg) 3 K1, T8
X2 0 (7)
Kre, 12
27(0) (1) (0)
A 51 K1t1,1t1 4('0])K1t1,1t1 ,0((()3)152K1tb2(%
2
p5152K2t2,1t1 52K2t2,2t2 + Kth,th

The motive of K11 comes from the following hierarchical prior
on X:

p (xf7)

N x(M E(l) 5% p815; o ©) ®)
x(2) E(z) "\ pb162 522 T
P ) = & () o

o) - (a2

Thus, each mean prior function 19 is assumed to follow a Gauss-
ian process with the zero mean function and periodic kernel [17]
and the hidden climate event X takes those mean prior functions to-
gether with the covariance function that is defined by a Kronecker
product of a scaling covariance matrix and Matérn covariance ma-
trix [9, 19, 27] with degree 3/2: note that a Gaussian process adopt-
ing Matérn kernel with degree v is connected to a particular form
of a continuous autoregressive (AR) model of order v + 0.5 [23],
which means that our model implicitly assumes an AR(2) model.

The idea of coupling multiple hidden events in the framework of
the Gaussian process with the Kronecker product is inspired by [1].
Regarding (8) and (9) as a likelihood and priors respectively and
marginalizing y out bring KT in (3).

The primary goal is to compute the posterior of X given T
and Y, p (X|T,Y) o< p(X|T)p (Y|X). Then it follows p (x|t,T,Y) =
[ pxIX, £, T)p(X|T,Y) dX.

Because our emission models (1) and (2) are not Gaussian, ex-
pressing p (X|T,Y) in a known form is not possible. Instead, we
consider a variational method. Let ¢ (X|©) be another Gaussian
distribution defined as below:

q(X|®) = N (X|p, %)
- N (x“)( ol z(l)) N (x@)( 42, z(z))

N; N,
= l_[ N (XS}) Hln,O'lzn) l_[ N (Xslz)
n=1 n=1

The learning procedure consists of tuning kernel hyperparame-

(10)

2
H2ns O-Zn)

ters and inferring the variational parameters ® = {u1,, aln}l’jil U
{u2n, az,l}ljil with the following evidence lower bound (ELBO) as

the objective function to maximize:

logp (Y|T) > L(©)

- f 4(XI8)logp (VX)X ~ Dgr (g (l@)p ()
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Figure 1: Core locations on map.

Note that:
Dy (g ¢-1©)]p (|T))

1 (o 1 g, 1
= 2tr (KTTZ) + 2}/ Koty + 5 log |KrT| 12

N; N, 1
- Zlogaln - Z logogn - 5 (N] +N2)
n=1 n=1
[ atxientogprixax
N;
=y /N (x5
n=1
N,
+ Z/N(Xg)
n=1

Consequently, the partial derivative of (12) and (13) with respect
to each variational parameter 6 is given as follows:

P aCiepem) = jur (K71 5
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where €x1, €xa ~;i.i.qa. N (0,1) and K is a large integer. Note that
the reparameterization trick [13] is applied to (15).
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Therefore, we have the following:
N; K

oL 1 0 (1)
% = E Z Z %logp (Yn Hin + O'1n€1k)
n=1k=1
N, K
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Because (13) is not a function of kernel hyperparameters, the
partial derivatives of L with respect to the kernel hyperparameters
are given as follows:

0L _ 0 et (qCl@)lIp (1)

39~ a9
1 _ _1 KT
= —tr K’T%‘ (Z + ny - KTT) K’I‘%‘
2 a9
Once the kernel hyperparameters and variational parameters are
learned, we can explicitly approximate the distribution of hidden
climate event x at a continuous query age ¢ as follows:

17)

p(x|t,T,Y)=/p(x|X, t,T)p (X|T,Y)dX

= /p (x|X,t,T) q(X|©)dX

(18)
= /p(xlx, £t T)N (X|p, %) dX
=N (7 .5 )
where:
B (x) = KyrKpppu
(19)

3 (x) = Kot - Kor K7k - KpboKah) Ky

3 DATA AND PREPROCESSING

For 5B data, we chose the cores ODP668 and ODP999 [5] as the
sources. Data overlapping over ages are replaced with their average.
Each 6!!B observation is standardized by y — (y — 20.5)/1.5. To
construct the emission model, we used the pairs of the standardized
proxy observations (51'B indices) and the associated published
atmospheric COz inferences (CO3 indices) after standardizing to
x — (x —300)/150.

Figure 2 gives core-specific patterns of the pairs, so their emission
models are given core-specifically. However, these models do not
reflect the uncertainty along with CO; indices. To resolve it, we
instead consider a generalized Student’s t-distribution that has the
mean and standard deviation functions of each emission model
in figure 2 as the location and scale parameters, just as (1). In the
reconstruction, we use the observations up to 800 kiloyears only,
i.e., 25 observations in ODP668 and 58 in ODP999. Core-specifically
learned parameters are given in figure 3.

For the planktonic §'80, we chose the core MD97-2140 [3] that
has the 202 observations up to 800 kiloyears. The observations
are constantly translated to fit to the planktonic §'80 stack [25]:
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Figure 2: Red and green stars are pairs of the published CO; indices and 5!!B indices of ODP668 and ODP999, respectively. The
shaded regions represent 95% confidence bands of the Gaussian emission models.

ag ay as as o
ODP668 0.6973 -0.3576 -1.1799 1.6880 0.0447
ODP999 2.5659 0.4296 -2.9984 2.4150 0.0704

Figure 3: A table of the inferred core-specific coefficients in (1).
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Figure 4: The planktonic 6130 stack (black curve) and the translated §'30 observations of MD97-2140 (red stars).

figure 4 visualizes the stack and records. The emission model of the that the model uncertainty is larger than those of §!!B because
planktonic 6130 proxy given SST index is derived from their pairs planktonic 580 is not a direct proxy of SST index whereas §'1B is of
of the above stack and the SST stack of [25], shown in figure 5. The atmospheric CO;. For the same reason of § 1B our emission model

inferred values are by = 0.0051, b; = —0.2831 and s = 0.2213. Note
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Figure 5: The SST index and planktonic §'80 stack (left) and the plots of their pairs (stars) on the emission model (right). The
shaded region indicates the 95% confidence band and the dashed line is the mean function.
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Figure 6: The reconstruction results of atmospheric CO; (above) and SST index (below) by GPST separately. In each case, the
shaded region indicates the 95% confidence bands of the inferred events, the black dashed line is the mean function, blue bars
represent the benchmark from the individual inference, and the red curve shows the “true” events.
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Figure 7: The reconstruction results of atmospheric CO; (top), SST index (middle) and their correlation (bottom) by the full

GPST.

of §180 is converted into a generalized Student’s t-distribution as
(2). Figure 1 gives the spatial information of those three cores.
Ages are rescaled by x — (x —263.1929)/229.2451. Unlike the
other kernel hyperparameters, periods r; and rz in (4) are both
set to 100 — 100/229.2451, as the ages are standardized, which
implies that the periods of atmospheric CO3 and SST events are 100
kiloyears. The values are restored from their standardized forms in

the final step.

4 RESULTS

To establish benchmarks, we first ran the Metropolis-Hastings al-
gorithm [10, 18, 20] on the planktonic §'80 proxy of MD97-2140 to
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get the 95% confidence intervals of the associated SST indices indi-
vidually by using (2) as the emission model only. For atmospheric
COg, the published confidence intervals in [5] are used. We also
have “true” atmospheric CO; and SST indices from the Antarctic
ice core records [12, 16, 21, 22, 24, 26] and from the Shakun’s stack,
respectively.

Figure 6 visualizes the GPST results that were obtained sepa-
rately, i.e., not assuming the correlation between CO; and SST
index, whereas figure 7 shows those by the full model in section 2.
The reconstructed SST indices of two models are similar to each
other and give tighter and more accurate inference than the indi-
vidual ones. The advantage of our GPST model in section 2 appears
in the reconstruction of atmospheric CO in figure 7: though §''B
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Figure 8: The tuned kernel hyperparameters over iteration. The last panel shows the average values of the absolute variational
parameters as indicators of the convergence of variational parameters over iterations

after 250 kiloyears are sparser than those before that moment, the
inferences are tighter and more accurate than those of figure 6. The
assumption that atmospheric CO; and SST index are correlated
brings such an advantage by “borrowing” the information from
the planktonic 580 proxy indirectly to the reconstruction of at-
mospheric CO2. How much information is brought from one to
another is roughly measured by the inferred correlation over ages
in the bottom panel of figure 7. The results are improved further
than the individual inference at 456.3 kiloyears that stems from
the apparent outlier of §!!B. Figure 8 shows that the kernel hyper-
parameters and variational parameters are converged after 20000
iterations of the gradient descent steps.

5 CONCLUSION

Our GPST model reconstructs both atmospheric CO; and SST index
by considering not only their proxies, §!!B and planktonic §'80, but
also their mutual dependency over ages which a Gaussian process
specifies. Emission models are defined by Generalized Student’s
t-distributions that reflect the uncertainty of published inference.
A variational inference approximates the intractable posterior dis-
tribution with a Gaussian distribution to make the inference at
arbitrary query ages explicitly. Both kernel hyperparameters and
variational parameters are optimized with the ELBO by a gradient
descent. Our model that deals with both climate events shows an
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advantage over one that treats each event separately. This is particu-
larly the case for CO3 where the associated 5B is of low resolution
after 250 kiloyears. This advantage stems from the information that
is borrowed from the dense planktonic §!80 proxy.

As discussed in [15], Gaussian process models themselves have
an innate disadvantage: they become intractable as the size of data
increases because matrix inversions are required in both learning
and inference. [28] deals with this drawback in the framework of
variational inference that considers pseudo-inputs and sufficient
statistics. Extending our model by adding that step is easy but not
applied here because we have only 285 observations. The extension
is, however, required after all to exploit more hidden climate events
and relevant proxy observations. Another problem rises as the
number of hidden climate events increases: the number of kernel
hyperparameters in our setting is quadratic to it. This would not
be problematic in practice because only events that are regarded as
correlated to one another are worth being coupled. Nevertheless,
our GPST model provides an effective and general way of taking
data that are spaced irregularly and treating transition models
nonparametrically. The MATLAB codes that we have run are in
https://github.com/eilion/GPST_CI2020.
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