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Computational Design of Self-Assembling Peptide Chassis Materials
for Synthetic Cells†

Yutao Ma,a Rohan Kapoor,a Bineet Sharma,b‡ Allen P. Liubcde and Andrew L. Ferguson∗a

Giant lipid vesicles have been used extensively as a synthetic cell model to recapitulate various life-
like processes, including in vitro protein synthesis, DNA replication, and cytoskeleton organization.
Cell-sized lipid vesicles are mechanically fragile in nature and prone to rupture due to osmotic stress,
which limits their usability. Recently, peptide vesicles have been introduced as an alternative chassis
material for synthetic cells that are more robust and stable than lipid vesicles, and can withstand harsh
conditions including pH, thermal, and osmotic variations. In this work, we combine coarse-grained
molecular simulation, enhanced sampling free energy calculations, Gaussian process regression, and
Bayesian optimization to construct an active learning screening for diblock amphiphilic elastin-like
polypeptides capable of forming thermodynamically stable vesicular structures suitable for the self-
assembly of synthetic peptide vesicles. Our computational screen identifies a number of promising
sequences that form peptidic vesicles with high thermodynamic stabilities relative to isolated peptides
in bulk solvent on the order of 10-15 kBT per amino acid residue.

1 Introduction
Synthetic cells are engineered biological or polymeric membranes
that mimic one or many functions of a biological cell. They have
a wide range of applications, ranging from fundamental knowl-
edge such as the origin of life to applied nanotechnology such as
smart drug delivery and biosensors.1,2 Generally speaking, there
are two routes to manufacture synthetic cells: the “top-down”
approach and the “bottom-up” approach.3 The former approach
mainly focuses on simplifying existing living cells to obtain mini-
mal cells, while the latter approach tries to synthesize artificial
cells by assembling from nonliving building blocks.3 Recently,
the bottom-up approach has drawn substantial research inter-
est.4,5 Lipids have been the natural and most widely used build-
ing blocks for synthetic cells6 due to the similarity of lipid bilay-
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ers (liposomes) to natural biological membranes2. However, cell-
sized lipid vesicles are mechanically fragile and sensitive to chem-
ical stress (e.g., oxidation) and osmotic pressure7,8. Opportuni-
ties exist to explore alternative and more robust chassis materials
for synthetic cell membranes. Polymerosomes constructed from
diblock copolymers were one of the earliest non-lipid building
blocks demonstrated as synthetic vesicles9 and novel molecules
with improved materials properties exploiting new synthetic poly-
mers continue to be developed10. A drawback of polymerosomes
is that they are typically constituted from artificial monomers that
can have limited biocompatibility and therefore compromise the
integration of the synthetic cell with other components of the bi-
ological milieu.

Elastin-like polypeptides (ELPs) have recently been demon-
strated as a structurally robust and biocompatible chassis ma-
terial for synthetic cells11,12 that can form ∼50 nm diameter
unilamellar vesicles13 and can be templated to form giant vesi-
cles with diameters in excess of 50 µm14. ELPs are synthetic
biopolymers that share structural characteristics with intrinsically
disordered proteins such as tropoelastin. The general motif of
ELP polymers is a pentapeptide repeat (V PGXG)n, where V is va-
line, P is proline, G is glycine and X can be any guest residue
except proline. ELPs are intrinsically disordered polymers that
exhibit temperature-triggered phase transition: below a lower
critical solution temperature (LCST) the ELP adopts a random
coil configuration, while above the LCST the ELP undergoes and
ordering transition into β -spiral secondary structures constituted
of type II β -turns15,16. The guest residue X has a strong in-
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fluence upon the LCST, where the LCST typically decreases as
the hydrophobicity of the guest residue increases; proline cannot
be used as a guest residue as it compromises the LCST behav-
ior15,17,18. Amphiphilic diblock and multiblock ELPs have drawn
particular interest because their temperature-dependent ordering
and self-assembly behavior can be manipulated by controlling the
guest residues in each block. Micelles are the most common self-
assembled structures from amphiphilic diblock ELPs, where the
hydrophobic block has the lower LCST Tlo and the hydrophilic
block has the higher LCST Thi. At Tlo < T < Thi, the hydrophobic
blocks associate with each other to form the core of the micelles
while the hydrophilic blocks form the corona.19 However, sev-
eral recent experiments have indicated that amphiphilic diblock
and triblock ELPs could self-assemble into large vesicular struc-
tures that are stable under extreme conditions such as extreme pH
or temperature20. For example, Vogele et al. have utilized glass
bead method to direct a diblock ELP with glutamic acid as the
hydrophilic guest residue and phenylalanine as the hydrophobic
guest residue to form giant vesicles11. Schreiber et al. compared
the vesicular structures formed by two kinds of diblock ELPs with
the same lengths but different guest residues and concluded that
guest residue composition could be a key factor in modulating
the vesicle stability21. Frank et al. demonstrated the formation of
giant ELP vesicles by using solvent evaporation method22. Very
recently, we demonstrated the production of giant (>50 µm) vesi-
cles from amphiphilic ELP diblocks using emulsion transfer tech-
niques14.

The vast number of potential amphiphilic ELP diblock se-
quences means that principled means are required to efficiently
traverse and optimize within this design space. Consider the
space defined by the sequence (V PGX1G)m(V PGX2G)n, where X1

is one of twelve hydrophilic amino acid residues (except pro-
line) categorized under the Kyte-Doolittle hydropathy scale23

{G,T,S,W,Y,H,E,Q,D,N,K,R}, X2 is one of seven hydrophobic
residues {I,V,L,F,C,M,A}, and the degree of the hydrophilic m
and hydrophobic n repeats can vary over the range 5-100, this
defines a design space of 12× 7× 96× 96 = 774,144 possible se-
quences. The engineering of amphiphilic diblock ELPs for vesi-
cle formation is generally conducted using chemical intuition to
specify the identity of the guest residues and the lengths of the
hydrophilic and hydrophobic blocks. Opportunities exist to sys-
tematize and accelerate this search using data-driven and model-
guided approaches to efficiently identify sequences capable of
forming stable vesicle structures and simultaneously develop fun-
damental understanding and design rules linking the ELP se-
quence to the emergent vesicle stability. Machine learning tech-
niques such as kernel regression,24,25 support vector machines
(SVM),26 and artificial neural networks,27 have provided use-
ful tools for the prediction of chemical or physical properties of
soft materials and the discovery of novel materials with specific
functionalities. For example, Leslie et al. proposed a string ker-
nel based on a tree data structure to perform SVM classification
of proteins for several benchmark tasks.28 Lee et al. used SVMs
to identify and discover new membrane-active and antimicrobial
α-helical peptides.29 Zhou et al. used Gaussian process regres-
sion model with custom kernel to predict the antimicrobial abili-

ties of various pentadecapeptides.24 Lei et al. built a deep learn-
ing framework based on convolutional neural networks to pre-
dict peptide-protein interactions.30 Mohr et al. trained a regular-
ized autoencoder to embed small organic molecules onto a latent
space and perform Bayesian optimization over the latent space to
discover molecules capable of permeating cardiolipin-containing
membranes.31 In general, machine learning techniques are pow-
erful tools that can assist the discovery of novel functional mate-
rials by learning predictive or generative models from computa-
tional and/or experimental data.

In this work, we propose a high-throughput screening proto-
col that combines coarse-grained molecular dynamics simulation,
enhanced sampling free energy calculations, Gaussian process re-
gression (GPR), and Bayesian optimization (BO) to discover opti-
mal peptides from a library of diblock amphiphilic ELPs that could
form vesicular structures with high thermodynamic stability. Our
screening efficiently identifies high-performing ELP sequences as
good candidates for the formation of stable synthetic cell mem-
branes, furnishes a predictive model linking ELP sequence to ther-
modynamic stability and provides a filtration of the vast ELP de-
sign space to identify the top candidates for experimental testing.
Our computational screen is approximately 15× faster than ex-
perimental assessment of the ELP candidates, presenting a rela-
tively higher throughput means to prospectively identify the top
performing candidates for future experimental testing. The high-
throughput screening protocol can be straightforwardly extended
to the design of multiblock ELPs32 or ELP conjugates with other
biopolymers such as collagen-like polypeptides33,34. More gener-
ally, the approach can be applied to the design and optimization
of polypeptide sequences with other desired structural or func-
tional properties measured by computational and/or experimen-
tal assays.

2 Methods

2.1 Molecular Modeling of ELP Vesicles

The objective of our molecular modeling calculations is to furnish
computational estimates for the thermodynamic stability of vesi-
cles formed from diblock amphiphilic ELPs. We assume that the
vesicles are pre-assembled using experimental techniques such as
solvent evaporation22,35 or emulsion transfer14. An entire vesicle
with a diameter of microns or more12,14 is extremely expensive to
simulate in its entirety. Instead we focus on a zoomed-in region of
the vesicle wall that can be accurately approximated as a planar
bilayer and simulated by classical molecular dynamics (Figure 1).

All-atom representations of ELP molecules
(V PGX1G)m(V PGX2G)n were constructed using PyMol36

and then coarse grained using the Martini force field version
2.237. We employ a coarse-grained modeling approach in order
to allow us to reach the length scales necessary to model a
substantial patch of the bilayer wall and the time scales needed
to converge the free energy calculations (see Section 2.2) by
which we estimate bilayer stability. A limitation of the Martini
force field is that it requires the secondary structure of each
region of a protein to be specified at the start of the simulation.
As such, changes in secondary structure cannot be modeled over
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(VPGX1G)m(VPGX2G)n

Fig. 1 Illustration of an amphiphilic diblock ELP molecule (left) and
bilayer vesicle (right). The hydrophobic block is shown in red and the
hydrophilic block is shown in blue. The bilayer wall is locally well ap-
proximated as a planar sheet (inset). (V PGX1G)m(V PGX2G)n denotes the
sequence of a generic amphiphilic diblock ELP, where X1 is a hydrophilic
guest amino acid residue, X2 is a hydrophobic guest amino acid residue,
and m and n are the degree of hydrophilic block and hydrophobic repeats.

the course of the simulation, although changes in the tertiary
structure are, within this approximation, accurately treated38.
For each system we assume that the LCST of the hydrophobic
block Tlo lies below the ambient temperature T and therefore
model the secondary structure of this block as a β -turn, whereas
the LCST of the hydrophilic block Thi lies above the ambient
temperature and is therefore modeled as a random coil15,16. The
precise LCSTs of various ELPs are not precisely known, so we
simply conduct all of our calculations at T = 300 K and P = 1
bar under these secondary structure assumptions. This carries
the benefit of enabling us to compute thermodynamic stabilities
at a consistent thermodynamic state point without requiring
knowledge of the LCSTs but is a significant assumption that
we are impelled to make due to the absence of comprehensive
LCST data for all ELP sequences and the secondary structure
limitations of the Martini model. Although we do not do so here,
we suggest two possible strategies to relax this assumption. First,
one may consider employing all-atom simulations to estimate the
LCSTs and then use this information to conduct simulations at
Tlo < T < Thi. The computational burden to do so is quite high,
but would lead to a more accurate coarse-grained simulation
protocol. Second, one could consider employing an alternative
coarse-grained model that does not require specification of
secondary structure such as the SIRAH force field39,40. In the
present work, we assume that the trends in the thermodynamic
stabilities calculated under our simplifying assumptions still serve
as a useful ranking and filtration of ELP sequences predicted
to form stable vesicles. As discussed below, post hoc validation
of our screen is provided by its identification of a top-ranked
candidate that has been experimentally demonstrated form
stable vesicles with lifetime of several hours.

We model an approximately 81 nm2 patch of the vesicle wall
by constructing a 10×10 grid of fully extended amphiphilic di-
block ELP chains separated in x and y directions by 0.9 nm to
create the upper leaflet and another 10×10 grid of ELP chains
to create the lower leaflet. The ELP chains in the lower leaflet
were flipped upside down so that the hydrophobic blocks of these

(a) (b) (c)

16 nm

9 nm 9 nm

57 nm8 nm

Fig. 2 Illustration of (a) initial bilayer, (b) bilayer after energy minimiza-
tion and (c) relaxed bilayer after NPT production run. The dark blue
beads represent hydrophilic blocks, the red beads represent hydropho-
bic blocks, the light blue beads are coarse-grained water, and the green
beads are negatively-charged monovalent ions. The dimension of the
bilayer after NPT production run is also marked.

two layers lie adjacent to one another to form the hydrophobic
core of the bilayer sandwich. We then solvated the bilayer patch
comprising the 200 ELP chains by adding non-polarizable Mar-
tini water molecules41 at a density of 1 g cm-3 up to a distance
of 34.5 nm above and 10 nm below the x-y plane of the bilayer.
When creating topology, we set the solvent-exposed N-terminus
to be positively charged (corresponding to VAL-NH3

+) and the
C-terminus buried within the solvent-excluded hydrophobic core
of the bilayer to be neutral (corresponding to GLY-COOH).42 Ion-
ization states of amino acid sidechains were specified with the
most prevalent protonation state at pH 7. All guest residues
in the hydrophobic X2 position are electrically neutral. A sub-
set of those in the hydrophilic X1 position adopt charged states:
{E : (−1), D : (−1), K : (+1), R : (+1)}. Where necessary, a num-
ber of monovalent Martini counterions, employing Qa beads for
Cl- ions and Qd beads for Na+ ions, were randomly inserted into
the water region as necessary in order to maintain charge neu-
trality. This initial state of the system exists in a 9× 9× 67 nm3

box with periodic boundary conditions applied in all three dimen-
sions. The z-dimension of the box was chosen to be sufficiently
large to provide an initial linear separation of 44.5 nm between
the upper and lower leaflets of the bilayer through the periodic
wall in z, thereby effectively eliminating direct interactions be-
tween periodic images of the bilayer, minimizing any artifacts as-
sociated with the periodic boundary conditions. and enabling us
to conduct the chain extraction free energy calculations detailed
in Section 2.2. An illustration of the initial bilayer setup is pre-
sented in Figure 2a.

After setting up the initial bilayer, we first ran steepest de-
scent energy minimization to eliminate forces in excess of 1000
kJ mol-1 nm-1 (Figure 2b), followed by assignment of initial atom
velocities from a Maxwell-Boltzmann distribution at 300 K, then
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a 10 ns NVT equilibration simulation at 300 K followed by a 10
ns NPT equilibration simulation at 300 K and 1 bar to allow re-
laxation of the extended ELPs. Finally, we performed 200 ns
NPT production runs at 300 K and 1 bar after which the energy,
temperature, pressure, and structure all attained stable values
allowing the bilayer to attain its equilibrium configuration and
place the system into a relaxed state for the enhanced sampling
free energy calculations (Figure 2c). Specifically, we checked
that energy, temperature and pressure all fluctuate around sta-
ble values and the density profiles of the solvent and bilayer
no longer changed during the 200 ns simulation. For all simu-
lations, the temperature was controlled by a stochastic velocity
re-scaling thermostat with a time constant of 1 ps.43 For NPT
equilibration runs we employed a Berendsen barostat44 with a
time constant of 12 ps and a compressibility of 3× 10−4 bar-1.
For the NPT production runs we used a Parrinello-Rahman baro-
stat45 with a time constant of 12 ps and a compressibility of
3× 10−4 bar-1. In all cases we employed semi-isotropic pres-
sure coupling, which was isotropic in x and y directions (in-plane
of bilayer) but decoupled from z (normal to bilayer). The step
size for all simulations was set to 20 fs and equations of motion
were integrated using the leap-frog scheme46. Lennard-Jones in-
teractions were smoothly shifted to zero at a cutoff of 1.1 nm.
Electrostatics were treated using the reaction field method with
εrf = ∞ and εr = 15, as appropriate for the non-polarizable wa-
ter model.41 All molecular dynamics simulations were performed
using the Gromacs 2019 simulation suite.47 Calculations were
performed on 10 × 2.40 GHz Intel Xeon Gold 6148 CPU cores
and one NVIDIA TITAN V GPU, achieving execution speeds of
∼4.2 µs per day. Simulation trajectories were visualized using
VMD48. The input files required to perform each stage of the
simulations are provided in the Github repository available at
https://github.com/tommayutao/ELP-Screening.

2.2 Enhanced Sampling Free Energy Calculations of ELP
Vesicle Stability

We measure the thermodynamic stability of the vesicle formed by
a particular ELP by using enhanced sampling free energy calcu-
lations to estimate the free energy change ∆G for insertion of a
single ELP molecule into the bilayer (Figure 3). Thermodynami-
cally, this calculation measures the reversible free energy change
associated with the association process (N−1)+1 
 N, where in
the present case N = 200 ELP chains constitute the assembled bi-
layer. Physically, it measures the free energy change to introduce
a single ELP from bulk solvent into the bilayer. Since our objec-
tive is to maximize the thermodynamic stability of the ELP vesicle,
we wish to identify ELP sequences that make the free energy cost
of this insertion process as favorable (i.e., large and negative)
as possible. We assume that the free energy difference for the
extraction of a single molecule is a good proxy measure for the
thermodynamic stability of the bilayer and, by extension, entire
vesicle. Lemkul and Bevan have performed molecular dynamics
simulation to determine the PMF of extracting constituent pep-
tide from Alzheimer’s amyloid protofibril to assess the stabilities
of these fibrils.49 Sevgen et al. used similar technique to estimate

−Δ𝐺

Δ𝐺

Fig. 3 Illustration of the free energy of association ∆G that is equal and
opposite to the free energy of dissociation (−∆G). The single ELP chain
extracted from the bilayer is highlighted in solid color and the remaining
199 chains constituting the bilayer are made transparent. Solvent and
counterions are omitted for clarity.

the stability of micelles formed by block copolymers composed of
oligo(ethylene sulfide) and poly(ethylene glycol) blocks.50

We estimate ∆G by computing the potential of mean force
(PMF) of the dissociation process N → (N − 1) + 1 along a
reversible pathway connecting the associated and dissociated
states. Since the path is reversible, it is of course possible to
also compute this quantity along the association pathway, but it is
more challenging to construct a path to efficiently insert and relax
the incoming peptide within the bilayer than to extract a peptide
from a pre-assembled bilayer. The free energy difference between
the start and end of this path provides an estimate of ∆G.

Due to the possible existence of many local free energy minima
that the system could be trapped in, enhanced sampling tech-
niques are usually used to facilitate sufficient sampling of all rel-
evant configurations to ensure good estimate of free energy pro-
file.51 There exist many techniques to perform enhanced sam-
pling, including metadynamics,52 adaptive biasing force53 and
umbrella sampling.54 Trajectories produced by enhanced sam-
pling methods that introduce artificial biasing forces to help the
system escape local free energy minima must be post-processed to
obtain unbiased estimates of the PMF, and various analysis tech-
niques such as Multistate Bennett Acceptance Ratio (MBAR)55

and Weighted Histogram Analysis Method (WHAM)56–58 have
been proposed to perform that task. In this work, we use a combi-
nation of umbrella sampling and WHAM to estimate the unbiased
PMF.

After creating and equilibrating the ELP bilayer as detailed in
Section 2.1, we randomly chose a peptide chain from the upper
bilayer for extraction. We extract the chain to effect the dissocia-
tion process N→ (N−1)+1 by constructing a reversible pathway
through a space spanned by the two collective variables zhead and
ztail (Figure 4a). zhead is the z-component of the displacement from
the center of mass (COM) of the bilayer to the COM of hydrophilic
block of chosen chain and ztail is the z-component of displacement
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from the COM of the bilayer to the COM of hydrophobic block
of the chosen chain. The pulling process was divided into three
stages (Figure 4b).

In stage I, the lower hydrophobic block of the chain is pulled
upwards into the upper hydrophilic components of the bilayer.
This pathway is generated by constructing a set of overlapping
umbrella potentials in (zhead, ztail) space in which zhead = 4.81
nm is fixed to its initial value using a harmonic spring and ztail

= [1.21, 5.57] nm is subjected to harmonic restraints with pro-
gressively increasing z values in each successive umbrella win-
dow to chart a vertical path in (zhead, ztail) space. (The precise
value of zhead and range of ztail depends on the sequence in ques-
tion, so here and below we report representative values for the
(V PGY G)5(V PGCG)4 sequence.) The free energy change associ-
ated with the first stage is large and positive due primarily to a
large unfavorable enthalpy associated with moving the hydropho-
bic block of the chain from a hydrophobic to a hydrophilic envi-
ronment.

In stage II, the chain is extracted from the upper hydrophilic
portion of the bilayer into the bulk solvent. We achieve this by lay-
ing down a set of umbrella windows with progressively increasing
values of zhead = [4.86, 11.86] nm and ztail = [5.48, 12.48] nm
that move in lock step to chart out a diagonal path in (zhead, ztail)
space. After much trial-and-improvement, we found that extract-
ing the chain from the bilayer in a collapsed configuration – as
opposed to simpler approaches of, for example, just pulling on
the chain COM or pulling first the head and then the tail – helps
prevent snagging of the pulled chain on loops formed by other
chains in the bilayer, avoid strong hysteresis effects associated
with overextension and rapid relaxation as the chain tail exits
the bilayer, and achieve good equilibration and overlap between
successive umbrella windows. The free energy change associated
with the second stage is also large and positive due primarily to
the loss of favorable enthalpic interactions between the extracted
chain and the other chains in the bilayer. We ensure that the chain
is removed sufficiently far from the top of the bilayer that we ob-
serve a plateau in the free energy profile indicating the pulled
chain is sufficiently far from the bilayer that there are no longer
any direct interactions and it can be approximated to exist in bulk
solvent. A sufficiently large z-dimension of the simulation box is
critical to enable us to reach this regime before the pulled chain
begins interacting with the opposing leaflet of the bilayer through
the periodic boundary.

In stage III, the hydrophobic tail is fixed in place and the hy-
drophilic head pulled away from it to extend the chain out in bulk
solvent. We achieve this by constructing a horizontal pathway of
umbrella windows in (zhead, ztail) space wherein in each window
ztail = 12.47 nm is held at the same value taken on at the end of
the second stage and zhead = [11.86, 15.85] nm is subjected to
harmonic restraints with progressively increasing z values in each
successive umbrella window. The purpose of the last stage is to
allow the peptide chain to relax to its equilibrium chain length in
bulk solvent and we terminate this stage after we observe a lo-
cal minimum in the free energy profile. The free energy change
associated with chain relaxation in the third stage is small and
negative.

1

COM of bilayer

COM of 
hydrophilic block

𝑧head

COM of 
hydrophobic 
block 𝑧tail

𝑧head

𝑧tail

I

III

II

(a)

(b)

Fig. 4 Illustration of umbrella sampling collective variables and construc-
tion of the reversible pulling pathway. (a) Definition of zhead and ztail. (b)
Schematic illustration of the three components of the reversible pulling
pathway in (zhead, ztail) space over which the PMF is constructed.

We employed 144, 145, and 28 equally spaced umbrella win-
dows in each of stages I, II, and III, respectively, where the values
of zhead and ztail in each window were subjected to harmonic re-
straints of the form,

W ({zhead,ztail};{z∗head,z
∗
tail})

=
1
2

khead(zhead− z∗head)
2 +

1
2

ktail(ztail− z∗tail)
2, (1)

where {z∗head,z
∗
tail} are the centers for the harmonic potential and

{khead,ktail} are the harmonic spring constants. We employed
spring constants in the range khead = [1000, 12,000] kJ mol-1

nm-2 and ktail = [1000, 20,000] kJ mol-1 nm-2. We fine-tuned the
spacing between adjacent umbrella windows and the strength of
harmonic constraints to ensure good overlaps of histograms from
each umbrella sampling simulation. Stiffer springs were typically
required within the bilayer (stage I and early stage II) relative to
bulk solvent (later stage II and stage III) in order to achieve con-
verged sampling around the centers of the harmonic potential.

Initial configurations for each umbrella window were gener-
ated by non-equilibrium pulling simulations conducted as follows.
In stage I, spring constants of khead = ktail = 15,000 kJ mol-1

nm-2 were applied to a chain initially embedded in the bilayer
and the harmonic center z∗head was fixed at the starting value of
zhead. z∗tail was gradually increased from the starting value with a
rate of 5×10−5 nm ps-1 until it reached z∗head. In stage II pulling,
both spring constants were set to 20,000 kJ mol-1 nm-2 and both
harmonic centers were increased from their starting values with
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Fig. 5 Active learning cycle for data-driven identification of ELP sequences capable of assembling thermodynamically stable vesicles. (a) The ELP
design space comprises the 168 diblock amphiphilic ELPs of the form (V PGX1G)m(V PGX2G)n, where X1 is one of twelve hydrophilic amino acid residues
(except proline) {G,T,S,W,Y,H,E,Q,D,N,K,R}, X2 is one of seven hydrophobic residues {I,V,L,F,C,M,A}, m = 5, and n = {4,5}. (b) Enhanced
sampling free energy calculations are conducted to compute the association free energy yi = ∆Gi of a candidate ELP sequence xi defined by the
parameters {X i

1,X
i
2,mi,ni}. (c) All ELP sequences simulated to date define the training data D1:t = {(x1,y1), . . . ,(xt ,yt)} over which we train a GPR

model ŷ = f̂ (x) to predict the association free energies of ELP candidates outside the training set. The green dots represent the training points, the
black line the GPR predicted mean, and the blue shading the GPR predicted standard deviation (i.e., uncertainty) in the mean prediction. For visual
convenience, the GPR model ŷ = f̂ (x) is represented over a 1D projection into the highest variance direction within the sequence space calculated
by multidimensional scaling 59 based on the Jukes-Cantor distance between biological sequences. 60. As such, the plot represents a projection of the
multidimensional response surface and the topography of the surface should not be over-interpreted within this low-dimensional projection. (d) The
GPR model is interrogated by a BO acquisition function known as the expected improvement EI(x) that prioritizes the unsampled ELP candidates
within the design space most likely to possess high values of our objective function (i.e., minimize ∆G(x)). The red line indicates EI(x) within the 1D
projection and we have indicated by a purple star the location of the top performing unsampled candidate (xt+1 = argmaxEI(x)). The active learning
cycle is closed by identifying this candidate xt+1 and subjecting it to the next round of enhanced sampling free energy calculations to compute yt+1,
retrain the GPR model over the augmented training set D1:t+1 = D1:t+1 ∪{(xt+1,yt+1)}, and perform a new round of BO to identify the next top
performing ELP sequence. The iterative loop is terminated when the GPR model ceases to improve after multiple consecutive rounds indicating that
we have fitted an accurate model over the full design space and/or we cease to see improvements in the top performing candidate identified in multiple
consecutive rounds.

a rate of 5× 10−5 nm ps-1 until the chain left the upper layer.
In stage III pulling, both spring constants were set to 5000 kJ
mol-1 nm-2. z∗tail was kept fixed at the starting value of ztail and
z∗head was increased from the starting value with a rate of 5×10−5

nm ps-1 for 80 ns. In all pulling simulations, temperature was
controlled by stochastic velocity re-scaling and pressure was con-
trolled by Parrinello-Rahman barostat. For each umbrella win-
dow centered on (z∗head, z∗tail), the configuration along the non-
equilibrium pulling path closest in (zhead, ztail) was selected as the
initial configuration.

In each umbrella sampling simulation, we first performed 40
ns NPT equilibration with stochastic velocity re-scaling thermo-
stat and Berendsen barostat followed by a 100 ns production
run with stochastic velocity re-scaling thermostat and Parrinello-
Rahman barostat. All other simulation parameters were specified
as detailed above. Simulations were performed using Gromacs

201947 and the WHAM analysis was conducted using the pro-
gram developed in Grossfield Lab61 to reconstruct the unbiased
PMF in (zhead, ztail) collective variable space.

The free energy of association ∆G is taken as the difference be-
tween the global free energy minimum when the peptide chain
is embedded in the bilayer within stage I and the local minimum
free energy of the chain in bulk solvent within stage III. Uncertain-
ties in ∆G were estimated by five-fold block averaging. We also
note that the chain in bulk solvent is still harmonically restrained
in the z-dimension and we can analytically estimate the free en-
ergy change associated with the release of these constraints and
the COM translational entropy gain associated with the chain ex-
ploring the free volume accessible to it at a standard concentra-
tion of 1 mol L-1.62–64 To do this, we assume an effective har-
monic constraint on zCOM, the z-component of the displacement
from the COM of bilayer to the COM of the entire pulled chain,
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when the pulled chain exists in bulk solvent. We estimate the
spring constant Kr of the effective harmonic restraint by collecting
histograms of zCOM from the equilibrated portions of all umbrella
sampling windows within bulk solvent, fit Gaussian distributions
to each of these histograms, estimate the spring constants from
the standard deviations of a Gaussian fit, and take the mean as
our estimate of Kr. We then use the analytical correction arising
from the ratio of the partition functions in the constrained and
unconstrained states to estimate free energy change associated
with the translational entropy loss associated with the imposition
of this constraint62,

∆Gt = Gsolvent,restrained−Gsolvent,free

= kBT ln

 V
1
3
f(

2πkBT
Kr

) 1
2

 ,
(2)

where V f = 1660 Å
3

is the molecular volume accessible to peptide
monomer at a standard concentration of 1 mol L-1 62. The full
expression for ∆G then becomes,

∆G = Gbilayer−Gsolvent,restrained +(Gsolvent,restrained−Gsolvent,free)

= min(Gstage I)−min(Gstage III)+∆Gt.
(3)

For the ELP diblock sequences explored in this work, the transla-
tional entropy correction lies in the range ∆Gt = [2.57, 2.60] kBT ,
constituting both a small and approximately constant correction
to the overall free energy of association. Nevertheless, it is de-
sirable to perform this correction to account for sequence-specific
differences in the particular values of the harmonic restraining
potentials applied in stage III of our protocol and calculate free
energy changes relative to a well-defined reference state.

Evaluation of ∆G for a single ELP candidate requires a total of
approximately 30 GPU-h by running in parallel on 8 × NVIDIA
RTX 2080 Ti GPU cards.

2.3 Active Learning Optimization of ∆G

Having characterized the association free energy ∆G of single pep-
tide chain into the vesicle bilayer, we want to minimize this ∆G
(i.e., making it as negative as possible) with respect to the ELP
sequence so as to maximize the stability of vesicle. This can be
viewed as a black-box optimization problem of an unknown func-
tional mapping y = f (x), where the target output is the associa-
tion free energy y = ∆G(x) and the ELP sequence x is controlled
by specifying the two guest residues and the lengths of the hy-
drophilic and hydrophobic blocks {X1,X2,m,n}. The unknown
function can only be probed by running free energy calculations
to compute ∆Gi for a particular ELP sequence xi. Since the de-
sign space of (V PGX1G)m(V PGX2G)n ELPs is finite, we could in
principle solve the optimization by brute force evaluation of ∆G
for all candidate molecules. The high computational cost of the
enhanced sampling free energy calculations makes this approach
highly inefficient, and superior approaches rely on active learning
(a.k.a., sequential learning, optimal experimental design) to per-

form principled identification of the most promising candidates to
prioritize for computational screening.31,65–70 As we will show,
after sampling sufficiently many candidates in the design space
we can construct a surrogate model that is capable of accurately
predicting the association free energy for unsampled candidates
within the design space. We solve our optimization problem using
a combination of Gaussian process regression (GPR) to construct
data-driven surrogate models ŷ = f̂ (x) and Bayesian optimization
(BO) to interrogate these models to identify the next most promis-
ing candidate to simulate65. A schematic overview of the active
learning pipeline is shown in Figure 5.

2.3.1 Gaussian Process Regression

Active learning employs data-driven surrogate models ŷ = f̂ (x)
that are most commonly parameterized using Gaussian process
regression that naturally furnishes estimates of both the mean
and uncertainties in the model predictions that are inputs to
subsequent Bayesian optimal selection of the most promising
next candidate for testing65,71,72. The fundamental assumption
of GPR model is that the target function f (x) is the realiza-
tion of a Gaussian process over its inputs x with assumed zero
mean and covariance function given by a kernel K that acts over
pairs of inputs. (A non-zero mean prior ν(x) can straightfor-
wardly be incorporated by pretreating the data with the trans-
formation y(x) ← y(x)− ν(x).72) That is, given a set of inputs
X = {x1, ..,xn}, the family of possible regression models fitting the
data ~f = { f (x1), f (x2), ..., f (xn)} follow a multivariate Gaussian
distribution ~f ∼N (~0,K(X ,X)), where K(X ,X) is the n× n Gram
matrix whose components are K(xi,x j) (i.e., the value of kernel
function evaluated at data points xi and x j). Now, given a set of
training data D = {(x1,y1), ...,(xn,yn)}where each yi = f (xi)+εi is
a noisy observation of f (xi) and εi are assumed to be independent
Gaussian noises following N (0,σ2

i ), we obtain the joint distribu-
tion of~y at the n training points and the target function values ~f ∗

at m testing points X∗ = {x∗1, ...,x∗m},[
~y
~f ∗

]
∼N

(
~0,

[
K(X ,X)+Σ K(X∗,X)T

K(X∗,X) K(X∗,X∗)

])
, (4)

where Σ = diag(σ2
1 , ...,σ

2
n ) are the estimated variances in the ob-

servations. The posterior predictive distribution of ~f ∗ given the
training data is then,

~f ∗|D ,X∗ ∼N
(
~µ,cov(~f ∗)

)
, (5)

where ~µ and cov(~f ∗) are given by,

~µ = K(X∗,X)[K(X ,X)+Σ]−1~y, (6)

cov(~f ∗) = K(X∗,X∗)−K(X∗,X)[K(X ,X)+Σ]−1K(X∗,X)T . (7)

Usually, the kernel function contains some parameters ~θ , and
these parameters are optimized by maximizing the log-likelihood
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of training data73,

l(D ;~θ) = log p(~y|X ;~θ)

=−1
2
~yT [K(X ,X ;~θ)+Σ]−1~y− 1

2
log |K(X ,X ;~θ)+Σ|− n

2
log2π.

(8)
The key component in any GPR model is the choice of kernel

function K.65,74 Valid kernels must be positive semi-definite to
assure that for any set of inputs X = {x1, ...,xn}, the Gram ma-
trix K(X ,X) is positive semi-definite.72 Moreover, in our case the
inputs are amino acid strings, so we need kernels that operate
on string data. Many string kernels have been proposed for pep-
tide and protein data. For example, the Hamming distance kernel
measures the number of positions containing the same amino acid

residue within a pair of equal length strings, and the Levenshtein
kernel is based on the minimal number of insertions, deletions,
and replacements necessary to convert one string into another.75

The weighted degree kernel76 goes beyond single positions to
compute similarity based on the co-occurrences of k-mers at cor-
responding positions within two equal length sequences. In our
application, the size of the hydrophilic and hydrophobic blocks
of the ELP can vary so it is vital that we employ a kernel ca-
pable of operating between strings of different lengths. In this
work, we choose to adopt the generic string kernel of Giguère et
al.25, which defines the distance between two amino acid strings
x = (x1, . . . ,x|x|) and x′ = (x′1, . . . ,x

′
|x′|) with, potentially unequal,

lengths |x| and |x′| as,

K(x,x′;L,σp,σc) =
L

∑
l=1

|x|−l

∑
i=0

|x′|−l

∑
j=0

exp

(
− (i− j)2

2σ2
p

)
exp

−
∣∣∣∣∣∣ΨΨΨl (xi+1, . . . ,xi+l)−ΨΨΨ

l
(

x′j+1, . . . ,x
′
j+l

)∣∣∣∣∣∣2
2σ2

c

, (9)

where ΨΨΨ
l (x1, . . . ,xl) = (ΨΨΨ(x1), . . . ,ΨΨΨ(xl)) and ΨΨΨ(xi) is an embed-

ding function that maps the identity of the particular amino acid
residue xi to a d-dimensional vector of properties. In the present
case, we choose this embedding to be the corresponding row of
the BLOSUM62 substitution matrix77. Mathematically, the string
kernel compares each contiguous substring of length l = 1 . . .L in
sequence x to each contiguous substring of equal length in se-
quence x′, where distance is defined as the product of two Gaus-
sians, one measuring the similarity of the substring ΨΨΨ embeddings
and the other applying a decay based on the relative shift of the
starting position of the two substrings. The three parameters of
the kernel are the maximum substring length L, the bandwidth
of the ΨΨΨ-embedding Gaussian σc, and the bandwidth of the shift
Gaussian σp. Physically, the kernel can be conceived of as mea-
suring a position weighted similarity of all possible l-grams within
the two sequences up to some maximum l-gram length L. Pleas-
ingly, the string kernel can be viewed as a generalization of a
number of existing kernels that are special cases of a particular
choice of parameters25, including the Hamming distance (L = 1,
σp→ 0, σc→ 0) and radial basis function (RBF) (L→∞, σp→ 0).
In this work, we optimize the kernel parameters on-the-fly dur-
ing each training round by maximizing the log-likelihood of the
training data (Eqn. 8).

2.3.2 Bayesian Optimization

The GPR surrogate model ŷi = f̂ (xi) furnishes a prediction for the
true performance yi = ∆Gi of candidate ELP sequences xi that
have not yet been simulated. Having fitted this model within a
particular round of active learning, we now pass its predictions
to a BO step that employs a so-called acquisition function u(x|D)

to define the relative prioritization of each unsampled candidate
within the search space65. Since we have a finitely enumerable
design space and calculation of the acquisition function is compu-
tationally inexpensive, we can exhaustively compute the acquisi-
tion function for all candidates that have not yet been sampled.

A number of choices of acquisition function are possible, but in
this work we adopt the popular expected improvement (EI).65,78

Intuitively, this function ranks candidates according to their like-
lihood to outperform the current best candidate in the training
data based on the predicted GPR mean and uncertainties. As
such, this choice of acquisition function naturally optimizes under
uncertainty, balances “exploit” (promoting candidates with large
GPR predicted means) and “explore” (promoting candidates with
large GPR predicted uncertainties) strategies, and can be used to
perform principled interpolation and extrapolation within the de-
sign space. Mathematically, the EI for our minimization objective
is defined as65,

EI(x|D) = E[max( f †−ξ − f̂ (x),0)]

= ( f †−µ(x)−ξ )Φ

(
f †−ξ −µ(x)

σ(x)

)
+σ(x)φ

(
f †−ξ −µ(x)

σ(x)

)
(10)

where ŷ = f̂ (x) is the GPR prediction of y = ∆G following the pos-
terior predictive distribution at x (Eqn. 5) with mean µ(x) and
standard deviation σ(x). D is the training data comprising all
simulated data points collected to date. f † = miny∈D (y) is the
minimum target function in the training data D . Φ and φ are,
respectively, the cumulative distribution function and probability
density function of the standard normal distribution. ξ is a hy-
perparameter controlling the exploration-exploitation trade-off:
higher values of ξ tend to favor regions in input space with high
posterior uncertainty σ(x) while lower values of ξ tends to fa-
vor input space with lower posterior mean µ(x)65,79. We chose
ξ = 0.01 as a standard recommended default value65. An intu-
itive way of interpreting Eqn. 10 is that it represents the expected
degree of improvement relative to the current best minimum:
max( f † − ξ − f̂ ,0) is equal to the reduction ( f † − ξ − f̂ ) only if
f̂ < ( f †−ξ ). The candidate with the greatest expected amount of
reduction then becomes the next one to consider since we focus
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on minimizing the target function.
At each iteration of Bayesian optimization, we trained a GPR

model based on the currently explored peptides D1:t . Then, for all
the unexplored peptides, we compute the GPR posterior predic-
tions of ∆G (Eqn. 5) and evaluate the acquisition function (Eqn.
10). Then we select one single peptide with the maximum acqui-
sition function value as the next peptide to explore. Approaches
exist to perform batched sampling of multiple simultaneous can-
didates in each BO round in order to maximize utilization of
screening resources80,81. In the present case, our enhanced sam-
pling free energy calculations for each candidate are themselves
embarrassingly parallel and so we maximize computational re-
source usage in sampling a single new candidate. We track round-
to-round performance of the GPR/BO screening loop by monitor-
ing the coefficient of determination R2 of GPR models during the
fitting process by leave-one-out cross validation (LOO-CV), the
Bhattacharyya distance between posterior Gaussian distributions
(Eqn. 5) returned by successive GPR models82, and the objective
function value f † = miny∈D (y) of the best candidate discovered
to date. When we observe convergence in all three of these met-
rics we can surmise that the GPR model has ceased to improve
with additional data collection and the optimization may then be
terminated83. The terminal GPR is then applied globally to the
candidate design space to predictively rank all candidates’ perfor-
mance. A summary of the GPR/BO iteration process is provided
in Algorithm 1.

Algorithm 1 Bayesian Optimization

Initialize Training data D0
while R2 or Bhattacharyya distance or f † do not plateau do

Build GPR model based on D0:t−1
Find xt = argmaxu(x|D0:t−1)
Evaluate the (noisy) target function yt = f (xt)+ εt
Augment training data D0:t = D0:t−1∪{(xt ,yt)}

end while
Output x∗ with minimum target function value in D0,1,2...

3 Results

3.1 Computational High-Throughput Screening of ELPs

We define our ELP design space as the 12 × 7 × 2 = 168 candi-
date diblock amphiphilic ELPs of the form (V PGX1G)5(V PGX2G)n,
where X1 is one of twelve hydrophilic amino acid residues (ex-
cept proline) categorized under the Kyte-Doolittle hydropathy
scale23 {G,T,S,W,Y,H,E,Q,D,N,K,R}, X2 is one of seven hy-
drophobic residues {I,V,L,F,C,M,A}, and n = 4,5. We choose
n≈m since most experimental work on ELP vesicles tend to focus
on nearly equally-sized hydrophilic and hydrophobic blocks.12,22

Experimentally, longer ELP chains are generally used. For ex-
ample, Schreiber et al.12 have tested diblock ELPs with (n + m)
= 70. Due to the longer equilibration times required for longer
chains and the rapid increase in simulation box volume with chain
length, we employ shorter chains with nearly equal number of
hydrophilic and hydrophobic blocks to keep the ratio between
hydrophilic and hydrophobic blocks similar to experiments, and
hypothesize that the trends of ∆G that we see for shorter chains

reflect the trends of ∆G for longer ones typically considered in
experiments.

The primary objective of this work is to discover amphiphilic
diblock ELPs to maximize the thermodynamic stability of pep-
tidic vesicles as novel chassis for synthetic cells. We assume that
the vesicles are fabricated by a templated assembly mechanism
such as solvent evaporation22,35 or emulsion transfer14. Since
we assume the vesicles are produced by directed assembly we
need not program the molecules or environmental conditions to
spontaneously self-assemble into a vesicle. Our only optimization
criterion is to maximize the thermodynamic stability of peptides
within the vesicle bilayer relative to an isolated peptide in bulk
solvent. A deficiency of our approach is that we do not explicitly
consider the relative thermodynamic stability of competing aggre-
gates (e.g., micelles, sheets, gels). It is conceivable that alterna-
tive states not considered in our analysis may be more thermody-
namically stable, but our motivating rationale is that placing the
vesicle into a deep thermodynamic free energy well maximizes its
lifetime by minimizing their propensity to disaggregate or transi-
tion into any alternative assembled structures due to both ther-
modynamic stabilization and kinetic trapping. As post hoc valida-
tion of this strategy, we find that one of the top performing (i.e.,
maximally thermodynamically stable) ELP sequences discovered
by our screening is experimentally known and, even for such a
short sequence, has been shown to form stable vesicles with life-
times of several hours, with longer variants anticipated to form
vesicles with lifetimes of months12.

We commenced our active learning screening by generating an
initial set of 20 ELP sequences over the design space to serve as
the initial training data for the GPR/BO models and pursued the
active learning strategy described in Section 2 interleaving suc-
cessive rounds of enhanced sampling free energy calculations,
Gaussian process regression, and Bayesian optimization (Figure
5). We present in Table S1 in the ESI† an accounting of the full
active learning screening showing the round in which each ELP
candidate xi was sampled, its computed value of yi = ∆Gi from
enhanced sampling free energy calculations, and the predictions
ŷi = f̂ (xi) of the terminal GPR model.

We present in Figure 6 an illustrative PMF for one particu-
lar ELP sequence (V PGY G)5(V PGCG)4. In Figure 6a we show
our estimate of the 2D unbiased PMF G(zhead,ztail) computed by
WHAM56–58,61. For ease of visualization, in Figure 6b we present
a 1D projection G(zCOM) of the unbiased landscape into the
center-of-mass displacement of the full ELP from the bilayer mid-
plane58. As expected, the value of PMF gradually rises when the
chain is pulled from the bilayer out to the bulk solvent. Upon ex-
tension of the chain in bulk solvent, the PMF shows a weak relax-
ation as the chain is extended to its equilibrium length and then
rises again as it is further extended. The ∆G value for this spe-
cific ELP sequence is calculated according to Equation 3, which,
measured on a per amino acid residue basis, is ∆G = (-10.3±0.4)
kBT where uncertainties are estimated by five-fold block averag-
ing. We note that the total free energy change is dominated by
the first two stages of the umbrella sampling pathway (pulling
the chain into the upper hydrophilic layer, extraction of the chain
into bulk solvent), with the third stage (chain relaxation in bulk
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solvent) contributing less than 5% to the overall free energy for
all ELP candidates considered within our screen. This suggests
that the computational burden of the screen may be attenuated
by omitting stage III of the umbrella sampling protocol without
substantial loss of accuracy. Since the computational cost is dom-
inated by the umbrella sampling calculations within the bilayer
that require closely spaced umbrella windows, this would provide
a modest computational savings of ∼4%.

In Figure 7 we illustrate our monitoring of the round-to-
round performance of the GPR model over the course of the
active learning screening by tracking the GPR coefficient of de-
termination R2 under leave-one-out cross validation (LOO-CV),
the Bhattacharyya distance between GPR posterior in successive
rounds82, and the cumulative minimum ∆G . We observe conver-
gence of all three metrics after approximately six active learning
rounds (i.e., after screening 20 + 6 = 26 ELP candidates) indicat-
ing that the trained GPR model is accurately predicting the per-
formance of novel candidates, its posterior distribution has stabi-
lized, and that we are no longer identifying new top performing
candidates in our screen. These observations suggest that the 26
candidates over which we trained the GPR model are sufficiently
representative in spanning the molecular design space that the
model is not substantially changing upon the addition of more
training points and that it can make quite accurate predictions
over the remaining candidates within the space. We confirm that
we have indeed reached convergence and the GPR model is no
longer improving with successive training data by running our
screening out to ten active learning rounds (i.e., 30 candidates,
∼18% of the 168-molecule design space) at which point we ter-
minate the screen.

We present the top 10 ELP candidates identified by our active
learning screening in Table 1. A full accounting of the ∆G val-
ues predicted by the terminal GPR model is provided in Table
S1 in the ESI†. Our screening has identified a number of diverse
ELP sequences capable of forming vesicle bilayers with large ther-
modynamic stabilities amounting to ∆G = 10-15 kBT per amino
acid residue. As illustrated in the table, we see no clear pattern
in the hydrophobicity and hydrophilicity scores of the two guest
residues in the top performing candidates. This appears to in-
dicate the absence of simple single-residue design principles for
amphiphilic diblock ELPs and that the active learning screening
has uncovered more subtle multibody design rules for the engi-
neering of vesicle thermostability. As an encouraging post hoc
validation of our active learning screening and choice of objective
function, our screening discovered as the fourth-ranked candidate
the (V PGHG)5(V PGLG)4 sequence that has been experimentally
demonstrated by Schreiber et al. to form stable vesicles with life-
time of several hours12. The remaining sequences have not, to
our knowledge, been previously experimentally investigated. In-
terestingly, our screening quite strongly favors histidine as the
guest residue in the hydrophilic block although we see more di-
versity in the residue identity in the hydrophobic block. Possess-
ing ∆G per residue values 0.2-1.5 kBT lower than the experimen-
tally demonstrated (V PGHG)5(V PGLG)4 sequence, we propose
that these candidates may represent particularly interesting op-
portunities for future experimental testing and the assembly of

ultrastable peptidic vesicles. For computational tractability this
study has focused on relatively short 45-50 residue peptides, but
we conjecture that the rank ordering of the measured thermosta-
bilities will be preserved upon moving to the ∼350-residue pep-
tides frequently employed in experiment.

4 Discussions and Conclusions
Elastin-like polypeptides are promising candidates that could
serve an alternative chassis materials for synthetic cells that
are more mechanically and chemically robust than constructs
based on lipid membranes while maintaining biocompatibil-
ity7,8,11,12,84. Peptidic vesicles formed by these building blocks
could resemble the structure and functionality of living cells, thus
making them suitable for a wide range of applications such as
fundamental understanding of cellular activities85 or smart drug
delivery.2 In this work, we report an active learning computa-
tional screen to discover diblock amphiphilic ELPs that could form
stable peptidic vesicles. Our approach uses molecular simula-
tion to obtain a quantitative measurement of the stability of the
pre-assembled vesicle, and then employs Bayesian optimization
to discover the promising diblock ELPs that maximize this sta-
bility. The optimization procedure converges after 10 iterations
in which we computationally explore 30 ELP sequences corre-
sponding to ∼18% of the 168-molecule design space at a cost of
∼900 GPU-h of computation. Our screening identifies a number
of high performing ELPs capable of forming highly stable vesicles
and also identifies as our fourth-ranked candidate an previously
known sequence that has been experimentally demonstrated to
form vesicles with stabilities of multiple hours12. Longer variants
of these peptides with repeat lengths more in line with what is fre-
quently explored in experiment are anticipated to be capable of
forming vesicles with lifetimes of months12. It is our immediate
plan to subject the top ranked ELP sequences identified by this
computational screen to experimental testing. We also propose
to experimentally assay a number of predicted lower performing
sequences as controls to test our use of ∆G as a computational
measure of vesicle stability and experimentally validate the com-
putational screening.

In future work, we would expand the search space to longer
chains. Experimentally, the diblock ELPs usually contain dozens
of hydrophobic and hydrophilic blocks that enable relatively thick
vesicles to be formed.11,12,21,22 These larger vesicles structurally
resemble the compartments of biological cells1 and enable encap-
sulation of interesting bioactivities, such as compartmentalized
peptide synthesis11. Besides diblock ELPs, triblock ELPs with hy-
drophilic blocks on two ends and hydrophobic blocks in the mid-
dle have also been experimentally explored to form vesicles.32

Therefore, in future work it would be interesting to expand the
search space to include larger diblock and triblock ELPs. It would
also be interesting to consider other thermodynamic state points
in temperature, pressure, and salt concentration to determine the
degree to which the ELP rank ordering computed in this work is
transferably preserved under other conditions relevant to the in-
tended deployment environments for these vesicles. Although in
principle the generic string kernel25 could operate on amino acid
sequences with very different lengths, the evaluation of kernel
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(a) (b)

Fig. 6 Illustrative PMF for (V PGY G)5(V PGCG)4. The hydrophilic (V PGY G)5 is shown in blue and the hydrophobic (V PGCG)4 block in red. The
bilayer is made transparent to highlight the opaque pulled chain. Solvent and ions are not shown for clarity. (a) Two-dimensional unbiased PMF in the
umbrella sampling collective variables G(zhead,ztail). (b) One-dimensional projection of the unbiased PMF G(zCOM) onto the center-of-mass displacement
of the ELP from the bilayer midplane. The black, green and red dashed lines demarcate the three stages of the umbrella sampling pathway illustrated
in Figure 4.

  

(a) (b) (c)

Fig. 7 Performance of the GPR models over the course of the active learning screening. (a) Coefficient of determination R2 measured by leave-one-out
cross validation (LOO-CV). (b) Bhattacharyya distance between the posterior of successive GPR models in round i and (i+ 1). (c) Top performing
ELP candidate selected by maximizing the acquisition function in each particular round (points) and the cumulative top performer identified in any
round so far (line). Error bars represent standard errors in ∆G estimated by five-fold block averaging.

could become computationally expensive as the sequence lengths
grow.25 It might be helpful to first train an encoded representa-
tion, such as variational autoencoder66 or doc2vec model,86,87 to
embed all peptides onto an Euclidean space and perform Bayesian
optimization over this embedding. The GPR model in this case
would consist of kernel functions defined in the embedded space,
such as radial basis kernel or Matérn kernel,73 that are less com-
putationally expensive to evaluate. Another potential challenge
is that the umbrella sampling simulations might become ineffi-
cient in larger systems due to the slower relaxation of the longer
chains. Thus, it would be interesting to explore alternative en-

hanced sampling techniques, such as metadynamics52 or adap-
tive biasing force53 with the potential for improved sampling ef-
ficiencies. We also propose that our active learning screening
approach can be generically extended to other applications in
biopolymer and biomolecular design where it is necessary to nav-
igate large sequence spaces by coupling the GPR/BO approach to
alternative computational and/or experimental measures of per-
formance such as protein-ligand binding free energy88 or antimi-
crobial activity89,90.
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Table 1 Top 10 candidates identified by active learning computational screen along with their computed ∆G value, round of discovery in the active
learning screen, and hydropathy score of the X1 and X2 guest residues under the Kyte-Doolittle hydropathy scale 23. The abbreviation (X1)m(X2)n
stands for (V PGX1G)m(V PGX2G)n. Uncertainties in ∆G are estimated by five-fold block averaging.

ELP sequence
Computed ∆G

per residue (kBT) Discovery Iteration
Hydropathy score

of X1

Hydropathy score
of X2 Previously known?

H5V5 −14.9±0.2 2 -3.2 4.2 No
H5F4 −14.2±0.2 5 -3.2 2.8 No
H5V4 −13.5±0.1 3 -3.2 4.2 No
H5L4 −13.3±0.3 0 -3.2 3.8 Reference 12
H5F5 −12.6±0.1 6 -3.2 2.8 No
H5L5 −11.5±0.4 1 -3.2 3.8 No
H5C4 −11.3±0.1 4 -3.2 2.5 No
Y5F4 −11.2±0.1 0 -1.3 2.8 No
H5A4 −10.5±0.2 7 -3.2 1.8 No
Y5I4 −10.4±0.3 0 -1.3 4.5 No

Author Contributions
Y.M., A.P.L., and A.L.F. conceived the study. Y.M. and R.K. con-
ducted the calculations. Y.M. and A.L.F. analyzed the data. Y.M.
and A.L.F. wrote the paper. Y.M., B.S., A.P.L., and A.L.F. edited
and critically revised the paper.

Conflicts of interest
A.L.F. is a co-founder and consultant of Evozyne, Inc. and a
co-author of US Patent Application 16/887,710, US Provisional
Patent Applications 62/853,919, 62/900,420, and 63/314,898
and International Patent Applications PCT/US2020/035206 and
PCT/US2020/050466.

Acknowledgements
This work is supported by the National Science Foundation under
Grant Nos. DMR-1939534 (A.P.L.) and DMR-1939463 (A.L.F.).
This work was completed in part with resources provided by the
University of Chicago Research Computing Center. We gratefully
acknowledge computing time on the University of Chicago high-
performance GPU-based cyberinfrastructure supported by the Na-
tional Science Foundation under Grant No. DMR-1828629.

Notes and references
1 P. Stano, Life, 2018, 9, 3.
2 Y. Elani, R. V. Law and O. Ces, Therapeutic Delivery, 2015, 6,

541–543.
3 C. Xu, S. Hu and X. Chen, Materials Today, 2016, 19, 516–

532.
4 I. Ivanov, S. L. Castellanos, S. Balasbas, L. Otrin, N. Marušič,
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