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Abstract—Composable infrastructure holds the promise of
accelerating the pace of academic research and discovery by
enabling researchers to tailor the resources of a machine (e.g.,
GPUgs, storage, NICs), on-demand, to address application needs.
We were first introduced to composable infrastructure in 2018,
and at the same time, there was growing demand among our
College of Engineering faculty for GPU systems for data science,
artificial intelligence / machine learning / deep learning, and
visualization. Many purchased their own individual desktop or
deskside systems, a few pursued more costly cloud and HPC
solutions, and others looked to the College or campus computer
center for GPU resources which, at the time, were scarce. After
surveying the diverse needs of our faculty and studying product
offerings by a few nascent startups in the composable
infrastructure sector, we applied for and received a grant from the
National Science Foundation in November 2019 to purchase a
mid-scale system, configured to our specifications, for use by
faculty and students for research and research training.

This paper describes our composable infrastructure solution
and implementation for our academic community. Given how
modern workflows are progressively moving to containers and
cloud frameworks (using Kubernetes) and to programming
notebooks (primarily Jupyter), both for ease of use and for
ensuring reproducible experiments, we initially adapted these
tools for our system. We have since made it simpler to use our
system, and now provide our users with a public facing
JupyterHub server. We also added an expansion chassis to our
system to enable composable co-location, which is a shared central
architecture in which our researchers can insert and integrate
specialized resources (GPUs, accelerators, networking cards, etc.)
needed for their research.

In February 2020, installation of our system was finalized and
made operational and we began providing access to faculty in the
College of Engineering. Now, two years later, it is used by over 40
faculty and students plus some external collaborators for research
and research training. Their use cases and experiences are briefly
described in this paper. Composable infrastructure has proven to
be a useful computational system for workload variability, uneven
applications, and modern workflows in academic environments.

Keywords—composable  infrastructure, deep  learning,
visualization, resource management, workload management, user
workflow, composable co-location, infrastructure as code

I. INTRODUCTION

Upon being introduced to composable infrastructure [13] in
2018, we saw tremendous potential to College of Engineering
faculty who are pursuing fundamental science and engineering
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research and research training in deep learning (data mining and
data analytics, computer vision, natural language processing,
artificial  intelligence, machine learning), visualization
(simulation, rendering, visual analytics, video streaming, image
processing), and a combination of deep learning and
visualization (e.g., when data is so large that it cannot be easily
visualized, then deep learning is used to extract features of
interest to be visualized).

There was growing demand among faculty for GPU
systems, many purchased their own individual desktop or
deskside systems that required power, maintenance and support,
a few pursued more costly cloud and HPC solutions, and others
looked to the College or campus computer center for GPU
resources which, at the time, were scarce. We recognized that
composable infrastructure’s scalability and agility would
provide benefits for on-premise computation over traditional
cloud platforms and clusters that are rigid, overprovisioned and
expensive. It would address the needs of our academic
researchers with a sandboxed environment to discover and
assess new techniques and approaches to solving problems
while simultaneously providing secure environments for
sensitive research.

Major cyberinfrastructure (CI) projects realize the benefit
and expressive power of Infrastructure as Code, where the user
(administrator, CI researcher or data scientist) describes the
required hardware and configuration, not through a portal and
series of panels (web-based gateways) but through code and
APIs running inside a programming notebook (primarily in
Python within Jupyter). Projects such as Nautilus (PRP/UCSD)
[1], Chameleon [2] and FABRIC [3] are doing this at different
levels. Nautilus is a hypercluster that runs Big Data applications
supporting Jupyter Notebooks. Chameleon provides bare-metal
nodes that can be provisioned and configured through Python to
build reproducible experiments. Similarly, FABRIC lets a user
build virtual machines with specific requirements (in terms of
SSD, NIC and GPU) that are passed through from the host
machine to a virtual machine.

In 2019, after surveying the diverse needs of our faculty and
studying product offerings by a few nascent startups in the
composable infrastructure sector, we applied for and received a
grant from the National Science Foundation to purchase a mid-
scale system, configured to our specifications, for use by faculty
and students for research and research training. We purchased a
system that we named COMPaaS DLV — COMposable Platform
as a Service Instrument for Deep Learning & Visualization [15].
It was delivered in November 2019 and access was provided to
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faculty in February 2020. Two years later, it is now used by 40
research faculty and students in four College of Engineering
departments and some external collaborators.

II. COMPAAS ARCHITECTURE

Composable infrastructure is not standardized; different
companies (e.g., Liqid, GigalO, HPE, Fungible, etc.) use
different fabric technologies and have different models of
composable. In 2018-2019, there were very few companies to
choose from, but our solution was guided by the diverse needs
of data-intensive scientific research and research training in
academia, not the needs of commercial companies or data
centers, and flexibility was key. We went with the Liqid
solution, described here.

“As traditional computing environments falter under the
demands of Al-centric, dynamic applications driving economic
expansion, Liqid’s innovation in composable infrastructure
provides a comprehensive platform to optimize and efficiently
architect data centers to address the evolving requirements of a
data-rich world,” said Sumit Puri, Liqid CEO [4]. Liqid’s
composable infrastructure solution supports multi-tenant
orchestrations (VM, containers), bare-metal, analytics, and
Attificial Intelligence/Machine Learning (AI/ML), providing
the flexibility to dynamically adjust requirements and scale
(storage, GPUs and other accelerators, and 100Gbps and
specialty NICs).

COMPaaS replaces a traditional unified environment with
agile (modular and extensible) pools of CPUs, GPUs, storage
and networking, interconnected with a high-bandwidth
configurable fabric (PCI-express, or PCle). It reduces the
essence of a server to bare-metal elements — compute, GPU,
storage and networking — that form a fluid pool of resources that
can be uniquely configured and appropriately sized to run
multiple applications simultaneously.

The COMPaasS system is:

o Highly flexible. Computer components are treated as
pools of resources. Each application defines what
resources it needs and the infrastructure composes, or
combines, them on the fly. Bare-metal servers are

provisioned ‘right sized” and resized as needed.

e Scalable. As more infrastructure is added, it is auto-
integrated with existing infrastructure and becomes part
of the pool of capacity, supporting composable co-

location of academic resources.

o High throughput. Its components are interconnected with
a high-speed internal fabric. Big Data moves quickly
among CPU, GPU, networking and storage at optimum

speed with little to no bottlenecks.

COMPaaS (Figure 1) was designed and built in collaboration
with Liqid and Dell (who provided the compute nodes and top-
of-rack network management switches). It consists of two 42U
racks with a total of 24 compute nodes (Dell servers) with PCle
HBA interfaces connected to a PCle infrastructure (switches and
enclosures). The enclosures host PCle composable devices: 64
high-end Nvidia GPUs (32x V100 and 32x T4), 153TB of
NVMe SSDs, 6TB of nonvolatile Intel Optane memory, and 16
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100Gbps network interfaces. The two classes of GPUs were
selected as a balance between cost and application requirements:
large GPUs (V100) are used for training workloads and smaller
GPUs (T4) are mostly used for inference tasks and for
development and testing. Each rack is a separate composable
infrastructure consisting of multiple edge PCle fabric switches
interconnected to a PCle fabric management switch. The
enclosures hosting the devices along with the compute nodes are
connected to the edge switches.
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Fig. 1. COMPaaS Hardware Racks

III. RESOURCE MANAGEMENT

COMPaaS came with Liqid’s resource management layer
that consisted of a proprietary point-and-click graphical user
interface (GUI) and REST API (Figure 2). A REST API (also
known as RESTful API) is an application programming
interface that conforms to the constraints of REST architectural
style and allows for interaction with web services. These
services enable an infrastructure engineer using the GUI to
combine PCle-connected resources from an available pool,
configure the PCle fabric switch, and connect the composable
elements. While this approach maintains system security, the
user interface is time consuming to use and difficult to deploy to
our end users — data scientists and computer science researchers
—who lack knowledge of the underlying hardware.
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Fig. 2. Composable Infrastructure (Liqid)

Given that science workflows can be quite diverse, it was our
goal to implement a solution to enable our users to dynamically
reconfigure, on demand, their own application-specific machine
resources. To ensure adoption, we wanted to seamlessly
integrate our solution with their scientific workflows. Modern
workflows are progressively moving to containers and cloud
frameworks (using Kubemnetes) and to programming notebooks
(primarily Jupyter), both for ease of use and for ensuring
reproducible experiments. We succeeded in reducing the
complexity and making operations more manageable by using
Jupyter Notebooks to manage infrastructure, applications and
visualizations. Recently, we expanded our system with a public-
facing JupyterHub server providing all users with the ability to
enter through a Jupyter instance. It will soon become the only
way to access the system; ie., users will not use external
terminal access with ssh.

Our solution entailed our development of a management
layer that abstracts Liqid’s REST API [16]. This higher-level
layer provides Python support for the composition and
management of pool resources. Once a machine is composed
with the specified resources, we use MaaS.io (Metal as a
Service) [6] to provision, commission, and deploy servers, either
as bare-metal instances (custom OS images) or as container
environments (using Kubemnetes). MaaS.io is used for node
management and operating system deployment. Ubuntu and
CentOS distributions are provided with custom GRUB options
to hot-plug composable elements within a running OS. Hot-plug
capabilities in modern systems enable system engineers to
reconfigure the capabilities of a machine (GPUs, storage, NICs),
on-demand, from application specifications. Dell, working with
Liqid, provides BIOS integration to facilitate these features.
Dynamically, we can programmatically unplug components
from one compute node (as long as the device is not in use) and
plug it into another compute node using low-level fabric APIs
(reconfiguration using PCle switches) to achieve a Software
Defined Infrastructure.

IV. WORKLOAD MANAGEMENT

COMPaaS did not come with any Liqid-supported
workload/application management tools, so we implemented a
software layer to handle it. Using Containerd and the Nvidia
GPU operator, we implemented Kubemetes as the container
orchestrator for GPU workloads. Kubernetes provides a
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responsive software-driven deployment architecture that
increases flexibility in running and moving jobs across different
hardware configurations quickly. By layering Kubernetes over
composable hardware, we enabled our users to create
containerized applications with reproducible hardware and
software.

Specific GPUs can be inventoried, reused, or tested against,
to reduce and understand variability between application runs.
Kubemetes is ephemeral in nature, an environment that
inherently supports self-healing, auto-scalability and resource
monitoring. The fluidity of composable infrastructure resources
balances well with the Kubernetes model of execution. Within
our Kubernetes deployment, we utilize several services that
support application execution: reverse proxy (Traefik), load
balancing (Metall.B), monitoring (Prometheus), and Kubernetes
networking (services, ingress). Storage is provided through local
NVMe persistent drives for applications requiring high-speed
storage or through a NFS (Network File System) to access large,
remote data storage at slower rates or when users prefer to
directly connect to their IDE (integrated development
environment) for development. The required Kubernetes pod
description file (YAML syntax) requests GPU, networking and
storage resources. From this request, we extract a user’s
composable requirements and make API calls to the resource
management layer requesting that these devices be added to a
node. These hardware changes can be quickly updated for
applications by restarting the Kubernetes deployments.

V. USER WORKFLOW

Once Kubernetes pods (or deployments) are running, our
researchers then launch a JupyterLab Notebook from inside their
container (Figure 3). JupyterL.ab enables researchers to put code,
documentation and visualizations into a single computational
notebook and then run their code on a remote server through a
web interface. They use this instance of Jupyterlab to access
COMPaaS’s resources, exposed externally using Traefik, to
execute their code and applications. Such notebooks can be
shared and reproduced. JupyterLab is the current version of
Jupyter offering a modern experience, with file management,
multi-windows, and interactive layout.

We now provide JupyterHub as the frontend where each user
receives a dedicated Jupyter instance. The Hub runs on a
powerful server, part of our 2021 COMPaaS hardware
expansion, providing secure, web-based, public facing access to
the infrastructure All backend APIs (MaaS.io, composable
hardware, and monitoring) can be packaged into Python
modules and pre-loaded into JupyterLab Notebooks. This work
demonstrates the potential for a user to “program’ a machine and
‘program’ an experiment as code using notebooks that are
persistent and can be shared.
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Fig. 3. COMPaaS User Workflow

VI. COMPOSABLE CO-LOCATION

On-premise hardware is still required for many applications,
such as robotics and visualization, that require specialized
resources. As familiarity with composable infrastructure grows,
the idea of using composable co-location instead of traditional
servers co-located in racks is promising. By composable co-
location, we mean the integration of emerging hardware needs
without changing the existing core infrastructure.

The ability for departments and researchers to provide and
quickly add (co-locate) only those resources required by their
applications — GPUs (or other accelerators), specialized
networking, etc. — to a shared central composable infrastructure
system is far more cost effective than buying desktop or
deskside systems that need maintenance and support (often
wasting the time of graduate students and/or department I T staff,
without building persistent institutional knowledge).

In 2020, we began implementing a GPUoE (GPU over
Ethernet) prototype. Using a GPU expansion chassis connected
to compute nodes over Ethernet, we were able to compose
remote GPUs into our existing composable infrastructure. Our
APIs developed for composable infrastructure have been
extended to support these remote GPUs.

In 2021, we enhanced COMPaaS with a public-facing
JupyterHub server, a modermn PCle fabric and a supporting
expansion chassis, thereby making composable co-location
available to our users (Figure 4). Researchers can now co-locate
their own accelerators or compute nodes with COMPaaS. The
JupyterHub server provides secure web-based access to
resources while supporting their experiments.
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Fig. 4. 2021 Expansion Supporting Composable Co-location

VII. USE CASES

The infrastructure needs of science and engineering research
and education are varied. This is exemplified in a recent
anecdote by Larry Smarr, UCSD Distinguished Professor: “It all
started while UC San Diego computer science and engineering
professor Larry Smarr was waiting for coffee in the ‘Bear’
courtyard at the Jacobs School of Engineering a little more than
three years ago. While standing in line, Smarr overheard a
student say, ‘I can't get a job interview if I haven’t run
TensorFlow on a GPU on a real problem’ [5]. Smarr’s PRP
research platform [1], developed at UCSD, would later be
leveraged to support data-science classes on real-world
problems. We envision a similar path for COMPaaS at our
institution.

COMPaaS users — faculty from four College of Engineering
departments (Computer Science, Civil, Materials &
Environmental Engineering, Mechanical and Industrial
Engineering, and Electrical and Computer Engineering) —
primarily run applications that are GPU-centric for compute,
with significant variability in storage and networking around
their data requirements.

Computer Science. Applications primarily focus on
security, data science, computer vision and Machine Learning
(ML). Security projects explore the complexity of modern web
applications and the intricacies of security mechanisms that
often result in flaws that expose users to significant security and
privacy threats. These projects try to develop methods and tools
that enable users to understand and more effectively manage
retrospective privacy in the context of modern, long-lived,
online archives. Composable resources were used to develop
Natural Language Processing (NLP)-based domain-specific
classifiers that identified data practices stated in privacy
policies. Adherence of corresponding applications were then
adjusted based on this ground truth [14].

Data-science applications have an intuitive framework that
integrates state-of-the-art Al technologies with applications,
workflows, smart visualizations and collaboration services to
help users access, share, explore and analyze their data, whether
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local or remote, come to conclusions, and make decisions with
greater speed, accuracy, comprehensiveness and confidence.
One such project is developing and advancing tools that identify
image data in biomedical literature to locate beneficial, targeted
publications [7]. This work involves training image classifiers,
integrating classifiers into labeling pipelines, designing retrieval
user interfaces, and identifying related visual representations.

Computer vision projects include semantic segregation and
3D human pose estimation. Researchers are developing a novel
network architecture, termed DependencyNet (dependency
network), for semantic segmentation [8]. They also achieved
experimental results that demonstrate an effective approach for
3D human pose estimation [9]. Over the past two years, they
found COMPaaS to be consistently stable and efficient, with
result output as expected, and the group’s models achieved state-
of-the-art performance on their respective benchmarks.

ML applications include frameworks for many complex
real-world reinforcement learning problems, such as the
coordination of autonomous vehicles, network packet delivery,
and distributed logistics.

Civi, Materials & Environmental Engineering.
Applications focus on simulation and modeling. Researchers run
data-driven models on high-performance computers to develop
an accurate and general neural network ML model that uses
crystallographic data to study patterns of synthesizability [10].
They also perform simulations of mass transport in alloys and
ceramics. COMPaaS has been performing 1.5-10 times faster
than comparable infrastructures they are familiar with.
Additionally, they found our use of Jupyter Notebooks to be a
significant asset.

Mechanical and Industrial Engineering. Researchers use
COMPaaS for three research projects: feature extraction in fluid
flow using a Convolutional Neural Network (CNN), column
height detection in metallic nanoparticles using a CNN [11];
and, electric vehicle battery state-of-charge estimation using
different ML methods [12].

Electrical and Computer Engineering. Researchers
recently started running mathematical models of ML algorithms
and training language models using long-short term memory
(LSTMs).

VIII. CONCLUSIONS

Composable infrastructure enables academic researchers to
accelerate the pace of research and discovery by providing them
with an on-premise centralized resource and the ability to
quickly deploy bare metal or containers with appropriately sized
resources, as required.

COMPaaS is a cost-effective, mid-scale, agile resource for
College of Engineering faculty. It can serve as an “on ramp”
where codes are first developed and optimized before being
scaled and ported to more costly cloud and large HPC
environments. It has proven to be a useful tool for workload
variability, uneven applications, and modern workflows in
academic environments. Also, with our introduction of
composable co-location, faculty can now add additional
specialized components without having to purchase separate on-
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premise systems. These factors are very important in an
academic environment.

COMPaaS’s two-rack composable infrastructure system has
demonstrated that it is appropriately sized for a multi-
department university college. Additional racks can be added
based on a college’s size and anticipated number of users. For a
single department, one rack would likely provide sufficient
composable resources to support a broad range of applications.
At the time of writing, our infrastructure is fully utilized in terms
of GPU, and we are onboarding several new users each week.
Our 2021 expansion system is representative of what would be
appropriate for a small research lab.

Our Kubernetes orchestration and Jupyter Notebook
implementations enable our users to get started quickly and to
fully utilize COMPaaS. Without COMPaaS, researchers would
continue to utilize desktop or deskside systems that are typically
supported and maintained by student researchers who are also
trying to do research. COMPaaS enables faculty and student
researchers to quickly come to task with dedicated resources that
are scaled to their applications. Using containers, multiple
researchers can work on the same application in parallel. The
skills learned developing codes on composable infrastructure
enable users to build scalable applications faster, with
knowledge that transfers directly to industry problems.
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