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Abstract—Composable infrastructure holds the promise of 

accelerating the pace of academic research and discovery by 

enabling researchers to tailor the resources of a machine (e.g., 

GPUs, storage, NICs), on-demand, to address application needs. 

We were first introduced to composable infrastructure in 2018, 

and at the same time, there was growing demand among our 

College of Engineering faculty for GPU systems for data science, 

artificial intelligence / machine learning / deep learning, and 

visualization. Many purchased their own individual desktop or 

deskside systems, a few pursued more costly cloud and HPC 

solutions, and others looked to the College or campus computer 

center for GPU resources which, at the time, were scarce. After 

surveying the diverse needs of our faculty and studying product 

offerings by a few nascent startups in the composable 

infrastructure sector, we applied for and received a grant from the 

National Science Foundation in November 2019 to purchase a 

mid-scale system, configured to our specifications, for use by 

faculty and students for research and research training. 

This paper describes our composable infrastructure solution 

and implementation for our academic community. Given how 

modern workflows are progressively moving to containers and 

cloud frameworks (using Kubernetes) and to programming 

notebooks (primarily Jupyter), both for ease of use and for 

ensuring reproducible experiments, we initially adapted these 

tools for our system. We have since made it simpler to use our 

system, and now provide our users with a public facing 

JupyterHub server. We also added an expansion chassis to our 

system to enable composable co-location, which is a shared central 

architecture in which our researchers can insert and integrate 

specialized resources (GPUs, accelerators, networking cards, etc.) 

needed for their research. 

In February 2020, installation of our system was finalized and 

made operational and we began providing access to faculty in the 

College of Engineering. Now, two years later, it is used by over 40 

faculty and students plus some external collaborators for research 

and research training. Their use cases and experiences are briefly 

described in this paper. Composable infrastructure has proven to 

be a useful computational system for workload variability, uneven 

applications, and modern workflows in academic environments. 

Keywords—composable infrastructure, deep _ learning, 
visualization, resource management, workload management, user 

workflow, composable co-location, infrastructure as code 

I. INTRODUCTION 

Upon being introduced to composable infrastructure [13] in 

2018, we saw tremendous potential to College of Engineering 
faculty who are pursuing fundamental science and engineering 
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research and research training in deep learning (data mining and 

data analytics, computer vision, natural language processing, 
artificial intelligence, machine learning), visualization 
(simulation, rendering, visual analytics, video streaming, image 

processing), and a combination of deep learning and 
visualization (e.g., When data is so large that it cannot be easily 
visualized, then deep learning is used to extract features of 

interest to be visualized). 

There was growing demand among faculty for GPU 

systems; many purchased their own individual desktop or 
deskside systems that required power, maintenance and support, 

a few pursued more costly cloud and HPC solutions, and others 
looked to the College or campus computer center for GPU 

resources which, at the time, were scarce. We recognized that 
composable infrastructure’s scalability and agility would 

provide benefits for on-premise computation over traditional 
cloud platforms and clusters that are rigid, overprovisioned and 

expensive. It would address the needs of our academic 
researchers with a sandboxed environment to discover and 

assess new techniques and approaches to solving problems 
while simultaneously providing secure environments for 

sensitive research. 

Major cyberinfrastructure (CI) projects realize the benefit 

and expressive power of Infrastructure as Code, where the user 
(administrator, CI researcher or data scientist) describes the 

required hardware and configuration, not through a portal and 
series of panels (web-based gateways) but through code and 

APIs running inside a programming notebook (primarily in 
Python within Jupyter). Projects such as Nautilus (PRP/UCSD) 

[1], Chameleon [2] and FABRIC [3] are doing this at different 

levels. Nautilus is a hypercluster that runs Big Data applications 
supporting Jupyter Notebooks. Chameleon provides bare-metal 

nodes that can be provisioned and configured through Python to 
build reproducible experiments. Similarly, FABRIC lets a user 

build virtual machines with specific requirements (in terms of 
SSD, NIC and GPU) that are passed through from the host 

machine to a virtual machine. 

In 2019, after surveying the diverse needs of our faculty and 

studying product offerings by a few nascent startups in the 
composable infrastructure sector, we applied for and received a 

grant from the National Science Foundation to purchase a mid- 
scale system, configured to our specifications, for use by faculty 

and students for research and research training. We purchased a 
system that we named COMPaaS DLV — COMposable Platform 

as a Service Instrument for Deep Learning & Visualization [15]. 
It was delivered in November 2019 and access was provided to 
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faculty in February 2020. Two years later, it is now used by 40 
research faculty and students in four College of Engineering 

departments and some external collaborators. 

II. COMPAAS ARCHITECTURE 

Composable infrastructure is not standardized; different 
companies (e.g., Liqid, GigalO, HPE, Fungible, etc.) use 

different fabric technologies and have different models of 

composable. In 2018-2019, there were very few companies to 
choose from, but our solution was guided by the diverse needs 

of data-intensive scientific research and research training in 
academia, not the needs of commercial companies or data 

centers, and flexibility was key. We went with the Liqid 
solution, described here. 

“As traditional computing environments falter under the 
demands of Al-centric, dynamic applications driving economic 

expansion, Liqid’s innovation in composable infrastructure 
provides a comprehensive platform to optimize and efficiently 

architect data centers to address the evolving requirements of a 
data-rich world,” said Sumit Puri, Ligid CEO [4]. Liqid’s 

composable infrastructure solution supports multi-tenant 
orchestrations (VM, containers), bare-metal, analytics, and 

Artificial Intelligence/Machine Learning (AI/ML), providing 
the flexibility to dynamically adjust requirements and scale 

(storage, GPUs and other accelerators, and 100Gbps and 

specialty NICs). 

COMPaaS replaces a traditional unified environment with 
agile (modular and extensible) pools of CPUs, GPUs, storage 

and networking, interconnected with a high-bandwidth 
configurable fabric (PCI-express, or PCIe). It reduces the 

essence of a server to bare-metal elements — compute, GPU, 
storage and networking — that form a fluid pool of resources that 

can be uniquely configured and appropriately sized to run 

multiple applications simultaneously. 

The COMPaaS system is: 

e Highly flexible. Computer components are treated as 

pools of resources. Each application defines what 

resources it needs and the infrastructure composes, or 
combines, them on the fly. Bare-metal servers are 

provisioned ‘right sized’ and resized as needed. 

e Scalable. As more infrastructure is added, it is auto- 

integrated with existing infrastructure and becomes part 
of the pool of capacity, supporting composable co- 

location of academic resources. 

e High throughput. Its components are interconnected with 

a high-speed internal fabric. Big Data moves quickly 
among CPU, GPU, networking and storage at optimum 

speed with little to no bottlenecks. 

COMPaaS (Figure 1) was designed and built in collaboration 

with Liqid and Dell (who provided the compute nodes and top- 
of-rack network management switches). It consists of two 42U 

racks with a total of 24 compute nodes (Dell servers) with PCIe 
HBA interfaces connected to a PCIe infrastructure (switches and 

enclosures). The enclosures host PCIe composable devices: 64 
high-end Nvidia GPUs (32x V100 and 32x T4), 153TB of 

NVMe SSDs, 6TB of nonvolatile Intel Optane memory, and 16 
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100Gbps network interfaces. The two classes of GPUs were 
selected as a balance between cost and application requirements: 

large GPUs (V100) are used for training workloads and smaller 
GPUs (T4) are mostly used for inference tasks and for 

development and testing. Each rack is a separate composable 
infrastructure consisting of multiple edge PCIe fabric switches 

interconnected to a PCIe fabric management switch. The 
enclosures hosting the devices along with the compute nodes are 

connected to the edge switches. 

  
Fig. 1. COMPaaS Hardware Racks 

II]. RESOURCE MANAGEMENT 

COMPaaS came with Liqid’s resource management layer 
that consisted of a proprietary point-and-click graphical user 

interface (GUI) and REST API (Figure 2). A REST API (also 
known as RESTful API) is an application programming 

interface that conforms to the constraints of REST architectural 
style and allows for interaction with web services. These 

services enable an infrastructure engineer using the GUI to 
combine PCIe-connected resources from an available pool, 

configure the PCIe fabric switch, and connect the composable 
elements. While this approach maintains system security, the 

user interface is time consuming to use and difficult to deploy to 
our end users — data scientists and computer science researchers 

— who lack knowledge of the underlying hardware.
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Fig. 2. Composable Infrastructure (Liqid) 

Given that science workflows can be quite diverse, it was our 

goal to implement a solution to enable our users to dynamically 
reconfigure, on demand, their own application-specific machine 

resources. To ensure adoption, we wanted to seamlessly 
integrate our solution with their scientific workflows. Modern 

workflows are progressively moving to containers and cloud 
frameworks (using Kubemetes) and to programming notebooks 

(primarily Jupyter), both for ease of use and for ensuring 
reproducible experiments. We succeeded in reducing the 

complexity and making operations more manageable by using 
Jupyter Notebooks to manage infrastructure, applications and 
visualizations. Recently, we expanded our system with a public- 

facing JupyterHub server providing all users with the ability to 
enter through a Jupyter instance. It will soon become the only 
way to access the system; 1¢., users will not use external 

terminal access with ssh. 

Our solution entailed our development of a management 

layer that abstracts Liqid’s REST API [16]. This higher-level 
layer provides Python support for the composition and 

management of pool resources. Once a machine is composed 
with the specified resources, we use MaaS.io (Metal as a 

Service) [6] to provision, commission, and deploy servers, either 
as bare-metal instances (custom OS images) or as container 

environments (using Kubemetes). MaaS.io is used for node 
management and operating system deployment. Ubuntu and 

CentOS distributions are provided with custom GRUB options 
to hot-plug composable elements within a running OS. Hot-plug 

capabilities in modern systems enable system engineers to 

reconfigure the capabilities of a machine (GPUs, storage, NICs), 
on-demand, from application specifications. Dell, working with 

Liqid, provides BIOS integration to facilitate these features. 
Dynamically, we can programmatically unplug components 

from one compute node (as long as the device is not in use) and 
plug it into another compute node using low-level fabric APIs 

(reconfiguration using PCIe switches) to achieve a Software 

Defined Infrastructure. 

IV. WORKLOAD MANAGEMENT 

COMPaaS did not come with any Liqid-supported 
workload/application management tools, so we implemented a 

software layer to handle it. Using Containerd and the Nvidia 
GPU operator, we implemented Kubemetes as the container 

orchestrator for GPU workloads. Kubernetes provides a 
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responsive software-driven deployment architecture that 
increases flexibility in running and moving jobs across different 

hardware configurations quickly. By layering Kubernetes over 
composable hardware, we enabled our users to create 

containerized applications with reproducible hardware and 

software. 

Specific GPUs can be inventoried, reused, or tested against, 

to reduce and understand variability between application runs. 
Kubernetes is ephemeral in nature, an environment that 
inherently supports self-healing, auto-scalability and resource 

monitoring. The fluidity of composable infrastructure resources 
balances well with the Kubernetes model of execution. Within 

our Kubernetes deployment, we utilize several services that 
support application execution: reverse proxy (Traefik), load 

balancing (MetalLB), monitoring (Prometheus), and Kubernetes 
networking (services, ingress). Storage is provided through local 

NVMe persistent drives for applications requiring high-speed 
storage or through a NFS (Network File System) to access large, 

remote data storage at slower rates or when users prefer to 
directly connect to their IDE (integrated development 

environment) for development. The required Kubernetes pod 
description file (YAML syntax) requests GPU, networking and 

storage resources. From this request, we extract a user’s 
composable requirements and make API calls to the resource 

management layer requesting that these devices be added to a 
node. These hardware changes can be quickly updated for 

applications by restarting the Kubernetes deployments. 

V. USER WORKFLOW 

Once Kubernetes pods (or deployments) are running, our 

researchers then launch a JupyterLab Notebook from inside their 
container (Figure 3). JupyterLab enables researchers to put code, 

documentation and visualizations into a single computational 
notebook and then run their code on a remote server through a 

web interface. They use this instance of JupyterLab to access 
COMPaaS’s resources, exposed externally using Traefik, to 

execute their code and applications. Such notebooks can be 

shared and reproduced. JupyterLab is the current version of 
Jupyter offering a modern experience, with file management, 

multi-windows, and interactive layout. 

We now provide JupyterHub as the frontend where each user 
receives a dedicated Jupyter instance. The Hub runs on a 

powerful server, part of our 2021 COMPaaS hardware 
expansion, providing secure, web-based, public facing access to 
the infrastructure All backend APIs (MaaS.io, composable 

hardware, and monitoring) can be packaged into Python 
modules and pre-loaded into JupyterLab Notebooks. This work 

demonstrates the potential for a user to ‘program’ a machine and 
‘program’ an experiment as code using notebooks that are 

persistent and can be shared.
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Fig. 3. COMPaaS User Workflow 

VI. COMPOSABLE CO-LOCATION 

On-premise hardware is still required for many applications, 

such as robotics and visualization, that require specialized 
resources. As familiarity with composable infrastructure grows, 

the idea of using composable co-location instead of traditional 
servers co-located in racks is promising. By composable co- 

location, we mean the integration of emerging hardware needs 

without changing the existing core infrastructure. 

The ability for departments and researchers to provide and 
quickly add (co-locate) only those resources required by their 

applications — GPUs (or other accelerators), specialized 
networking, etc. — to a shared central composable infrastructure 

system is far more cost effective than buying desktop or 
deskside systems that need maintenance and support (often 
wasting the time of graduate students and/or department IT staff, 

without building persistent institutional knowledge). 

In 2020, we began implementing a GPUoE (GPU over 
Ethernet) prototype. Using a GPU expansion chassis connected 

to compute nodes over Ethernet, we were able to compose 
remote GPUs into our existing composable infrastructure. Our 

APIs developed for composable infrastructure have been 

extended to support these remote GPUs. 

In 2021, we enhanced COMPaaS with a public-facing 
JupyterHub server, a modern PCIe fabric and a supporting 

expansion chassis, thereby making composable co-location 
available to our users (Figure 4). Researchers can now co-locate 

their own accelerators or compute nodes with COMPaaS. The 
JupyterHub server provides secure web-based access to 

resources while supporting their experiments. 
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Fig. 4. 2021 Expansion Supporting Composable Co-location 

VII. USE CASES 

The infrastructure needs of science and engineering research 
and education are varied. This is exemplified in a recent 

anecdote by Larry Smarr, UCSD Distinguished Professor: “Tt all 
started while UC San Diego computer science and engineering 

professor Larry Smarr was waiting for coffee in the ‘Bear’ 
courtyard at the Jacobs School of Engineering a little more than 

three years ago. While standing in line, Smarr overheard a 
student say, ‘I can't get a job interview if I haven’t run 

TensorFlow on a GPU on a real problem”” [5]. Smarr’s PRP 

research platform [1], developed at UCSD, would later be 
leveraged to support data-science classes on real-world 

problems. We envision a similar path for COMPaaS at our 

institution. 

COMPaaS users — faculty from four College of Engineering 
departments (Computer Science, Civil, Materials & 

Environmental Engineering, Mechanical and Industrial 
Engineering, and Electrical and Computer Engineering) — 

primarily run applications that are GPU-centric for compute, 
with significant variability in storage and networking around 

their data requirements. 

Computer Science. Applications primarily focus on 

security, data science, computer vision and Machine Learning 
(ML). Security projects explore the complexity of modern web 

applications and the intricacies of security mechanisms that 
often result in flaws that expose users to significant security and 

privacy threats. These projects try to develop methods and tools 
that enable users to understand and more effectively manage 

retrospective privacy in the context of modern, long-lived, 
online archives. Composable resources were used to develop 

Natural Language Processing (NLP)-based domain-specific 
classifiers that identified data practices stated in privacy 

policies. Adherence of corresponding applications were then 

adjusted based on this ground truth [14]. 

Data-science applications have an intuitive framework that 
integrates state-of-the-art AI technologies with applications, 

workflows, smart visualizations and collaboration services to 
help users access, share, explore and analyze their data, whether 
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local or remote, come to conclusions, and make decisions with 
greater speed, accuracy, comprehensiveness and confidence. 

One such project is developing and advancing tools that identify 
image data in biomedical literature to locate beneficial, targeted 

publications [7]. This work involves training image classifiers, 
integrating classifiers into labeling pipelines, designing retrieval 

user interfaces, and identifying related visual representations. 

Computer vision projects include semantic segregation and 

3D human pose estimation. Researchers are developing a novel 
network architecture, termed DependencyNet (dependency 

network), for semantic segmentation [8]. They also achieved 
experimental results that demonstrate an effective approach for 

3D human pose estimation [9]. Over the past two years, they 
found COMPaaS to be consistently stable and efficient, with 

result output as expected, and the group’s models achieved state- 

of-the-art performance on their respective benchmarks. 

ML applications include frameworks for many complex 
real-world reinforcement learning problems, such as the 

coordination of autonomous vehicles, network packet delivery, 

and distributed logistics. 

Civil, Materials & Environmental Engineering. 
Applications focus on simulation and modeling. Researchers run 

data-driven models on high-performance computers to develop 
an accurate and general neural network ML model that uses 

crystallographic data to study patterns of synthesizability [10]. 
They also perform simulations of mass transport in alloys and 

ceramics. COMPaaS has been performing 1.5-10 times faster 
than comparable infrastructures they are familiar with. 

Additionally, they found our use of Jupyter Notebooks to be a 

significant asset. 

Mechanical and Industrial Engineering. Researchers use 

COMPaaS for three research projects: feature extraction in fluid 
flow using a Convolutional Neural Network (CNN), column 

height detection in metallic nanoparticles using a CNN [11]; 
and, electric vehicle battery state-of-charge estimation using 

different ML methods [12]. 

Electrical and Computer Engineering. Researchers 
recently started running mathematical models of ML algorithms 
and traming language models using long-short term memory 

(LSTMs). 

VIII. CONCLUSIONS 

Composable infrastructure enables academic researchers to 

accelerate the pace of research and discovery by providing them 
with an on-premise centralized resource and the ability to 

quickly deploy bare metal or containers with appropriately sized 

resources, as required. 

COMPaaS is a cost-effective, mid-scale, agile resource for 
College of Engineering faculty. It can serve as an “on ramp” 

where codes are first developed and optimized before being 
scaled and ported to more costly cloud and large HPC 

environments. It has proven to be a useful tool for workload 
variability, uneven applications, and modern workflows in 

academic environments. Also, with our introduction of 
composable co-location, faculty can now add additional 

specialized components without having to purchase separate on- 
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premise systems. These factors are very important in an 

academic environment. 

COMPaaS’s two-rack composable infrastructure system has 
demonstrated that it is appropriately sized for a multi- 

department university college. Additional racks can be added 
based on a college’s size and anticipated number of users. For a 

single department, one rack would likely provide sufficient 
composable resources to support a broad range of applications. 

At the time of writing, our infrastructure is fully utilized in terms 
of GPU, and we are onboarding several new users each week. 

Our 2021 expansion system is representative of what would be 

appropriate for a small research lab. 

Our Kubernetes orchestration and Jupyter Notebook 
implementations enable our users to get started quickly and to 

fully utilize COMPaaS. Without COMPaaS, researchers would 
continue to utilize desktop or deskside systems that are typically 

supported and maintained by student researchers who are also 
trying to do research. COMPaaS enables faculty and student 

researchers to quickly come to task with dedicated resources that 
are scaled to their applications. Using containers, multiple 

researchers can work on the same application in parallel. The 
skills learned developing codes on composable infrastructure 

enable users to build scalable applications faster, with 

knowledge that transfers directly to industry problems. 
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