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Abstract—Payment channel networks (PCNs) are proposed
to improve the cryptocurrency scalability by settling off-chain
transactions. However, a significant barrier is that a PCN user
must solicit sufficient capital owned by the counterparty on its
channel (i.e., inbound liquidity) to receive payments. To alleviate
this inbound liquidity problem, Channel Liquidity Marketplaces
(CLMs), e.g., Bitcoin’s Lightning Pool, have been introduced, such
that users can buy and sell inbound liquidity by trading crypto
capital commitment in PCNs. Existing CLMs lack good incentive
mechanisms that can attract more user participation. To fulfill
this void, we design Cumulonimbus, an incentive mechanism for
trading crypto capital commitment, which satisfies truthfulness,
individual rationality, budget balance, and computational effi-
ciency. Particularly, Cumulonimbus considers two unique features
of crypto capital commitment, referred to as demand indivisi-
bility and supply divisibility. Extensive simulations demonstrate
that Cumulonimbus achieves higher satisfaction ratio, liquidity
utilization, and social welfare compared with a state-of-the-art
CLM mechanism Lightning Pool [18].

Index Terms—Cryptocurrency, payment channel network, in-
centive mechanism, blockchain

I. INTRODUCTION

The past decade has seen a blooming of cryptocurren-
cies [20], e.g., Bitcoin [17] and Ethereum [4]. However,
cryptocurrencies cannot scale for wide-spread use, due to
high overhead and storage requirement [14]. Payment channel
networks (PCNs), e.g., Bitcoin’s Lightning Network [19] and
Ethereum’s Raiden Network [7], have been proposed to tackle
the scalability issues [19]. However, a significant barrier in
PCNs is that a user can receive payments only if there is
sufficient capital owned by the counterparty (i.e., the other user
on its channel), which is referred to as the inbound liquidity [18].
Therefore, inbound liquidity is essential as it directly determines
the success of payments, which is the ultimate purpose of PCNs.
Fig. 1 illustrates the importance of inbound liquidity.

On the one hand, the liquidity takers who desire inbound
liquidity need to convince others to open channels to them
and to deposit crypto capital on their channels. On the other
hand, the liquidity makers who own crypto capital seek to
provide inbound liquidity for profit. To enable the liquidity
takers and makers to publish their liquidity demand and supply
information, researchers have developed various applications
and systems for trading crypto capital commitment [15, 16,
18, 22, 23]. This new paradigm is commonly referred to as
channel liquidity marketplace (CLM).
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(a) Without inbound liquidity (b) With inbound liquidity
Fig. 1. Illustration for inbound liquidity. In the left, two values between two
nodes represent the capital distribution. Although C owns 8B+5B+4B = 17B,
C’s inbound liquidity from the counterparties (i.e., A, C, and D) is 0. Thus,
C cannot receive payments from any other user. In the right, C has an
inbound liquidity of 10B from B by creating a payment channel. Now C
can receive payments from A, B, D, and E. For example, C can receive 3B
along E → D → B → C. The values in the brackets represent the capital
distribution after C receives 3B from E.

Unfortunately, the existing works only scratch the surface
by either requiring voluntary participation without considering
the design of incentive mechanisms or neglecting some critical
properties of incentive mechanisms. When participating in
a CLM, the liquidity makers must lock their capital in
the channels for a certain time period. Since the value of
cryptocurrencies fluctuates dramatically, the time value of
money (TVM) concept in financial management also applies
to cryptocurrencies, or might contribute more according to
the historic volatility. Therefore, a liquidity maker would not
be interested in participating in a CLM, unless it receives a
satisfying reward to compensate its TVM consumption. Without
adequate liquidity maker participation, it is impossible for the
liquidity takers to solicit sufficient inbound liquidity, which is
essential to the success of PCNs.

At first glance, crypto capital commitment seems to resemble
the conventional capital commitment, e.g., bond. However, there
are two important differentiating features, which make the
design of incentive mechanisms for crypto capital commitment
more complex. The first feature is the demand indivisibility,
due to the fact that a liquidity taker’s demand should be either
fully provided by one liquidity maker or none. This is because
inbound liquidity separated on multiple channels does not help
a liquidity taker receive sufficient large payments. The second
feature is the supply divisibility, because a liquidity maker
can split and deposit its crypto capital on multiple channels to
fulfill multiple liquidity takers. Due to these reasons, incentive
mechanisms for conventional goods or financial resources
cannot be applied to crypto capital commitment.

In this paper, we design an incentive mechanisms to motivate
both the liquidity takers and makers to participate in CLMs,
which allows them to buy and sell inbound liquidity by trading



crypto capital commitment in PCNs. The main contributions
of this paper are:

• To the best of our knowledge, we are the first to design
an incentive mechanism for trading crypto capital com-
mitment with the consideration of demand indivisibility
and supply divisibility.

• We design an incentive mechanism Cumulonimbus,
which guarantees that a liquidity taker’s demand is either
fully supplied by a liquidity maker or none, but a liquidity
maker’s supply can fulfill multiple liquidity takers.

• We rigorously prove that Cumulonimbus satisfies truth-
fulness, individual rationality, budget balance, and com-
putational efficiency.

The remainder of the paper is organized as follows. In Section II,
we provide a brief literature review of the related work. In
Section III, we present the background in PCNs, formally
describe the system model and incentive mechanism model,
and give the necessary assumptions. In Section IV, we design
an incentive mechanism Cumulonimbus and conduct detailed
theoretical analysis. In Section V, we evaluate the performance
of Cumulonimbus by comparing it with a state-of-art CLM.
In Section VI, we conclude this paper.

II. RELATED WORK

Up to now, there are only limited efforts on the design
of incentive mechanisms for crypto capital commitment in
PCNs. Realizing the great potential benefit, some PCN power
users have provided channel liquidity services, e.g., Bitrefill’s
Thor [10], Y’alls [12], LNBig [6], and ln2me [5]. These
services promise to provide inbound liquidity by opening
channels to the liquidity takers and deposit crypto capital
on the channels. Nevertheless, there is only a single liquidity
maker (the liquidity service provider itself) who determines and
charges a posted price. The Celar Network [15] has designed
a liquidity backing auction with a single liquidity maker,
which utilizes Vickrey–Clarke–Groves (VCG) to determine
the winning liquidity takers and payments. However, all these
works do not involve adequate liquidity maker participation,
which makes it impossible for the liquidity takers to solicit
sufficient inbound liquidity,

ZmnSCPxj [23] has proposed a channel liquidity marketplace
(CLM), where both the liquidity makers and takers can
participate in trading crypto capital commitment. However,
it focuses only on the protocol and smart contract design,
instead of the incentive mechanism design. Recently, Lightning
Lab [16] has released a CLM called Lightning Pool [18], which
is implemented as a sealed-bid frequent batched uniform price
double auction. Lightning Pool adopts a greedy algorithm to
match the liquidity takers and makers, but does not consider
truthfulness, individual rationality, or budget balance. Therefore,
all the existing works either do not consider the design of
incentive mechanisms or have neglected some critical properties
of incentive mechanisms. In this paper, we design an incentive
mechanism to motivate both the liquidity takers and makers to
participate in CLMs to buy and sell inbound liquidity, while

considering the unique features of crypto capital commitment,
i.e., the demand indivisibility and supply divisibility.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present an overview of the channel
liquidity marketplace system, describe the incentive mechanism
model, and give the desired properties.

A. Background and System Overview

Cryptocurrencies have suffered from the large overhead
of global consensus and security assurance, which largely
limits their applications in real-world scenarios. To tackle
the scalability issues, PCNs (e.g., Bitcoin Lightning [8]
and Ethereum Raiden [7]) have been proposed to offer off-
chain settlement of transactions with minimal involvement of
expensive blockchain operations. To send and receive payments
in a PCN, a user must open a payment channel to another
PCN user. Two users establish a payment channel by each
depositing a certain amount of capital into a joint account and
adding this transaction to the blockchain. Once the payment
channel has been opened, a user is able to send payments, if
it owns sufficient capital on its channel.

Inbound Liquidity. Unfortunately, it is not guaranteed that
a user can receive payments by opening a payment channel.
There has to be sufficient capital owned by the counterparty (i.e.,
the other user on its channel). Such crypto capital commitment
allocated by the counterparty is typically referred to as inbound
liquidity. Because a user must convince other users to open
channels to it and to allocate crypto capital commitment towards
it, the inbound liquidity problem remains a significant barrier
to the success of PCNs.

B. Channel Liquidity Marketplace

The adoption of channel liquidity marketplace (CLM) is one
way to mitigate the inbound liquidity problem. A CLM, e,g.,
Bitcoin Lightning Pool [16], is a marketplace that enables
participants to buy and sell inbound liquidity by trading
crypto capital commitment. In general, there are two roles
of participants defined as follows.

Definition 1 (Liquidity Taker). A Liquidity Taker is a partici-
pant who wants to receive payments and is willing to pay for
inbound liquidity.

Definition 2 (Liquidity Maker). A Liquidity Maker is a
participant who owns capital and is willing to sell inbound
liquidity for profit.

We consider a CLM consisting of an auctioneer, a set T =
{T1, T2, . . . , Ti, . . . , Tn} of n liquidity takers and a set M =
{M1,M2, . . . ,Mj , . . . ,Mm} of m liquidity makers. The non-
trusted auctioneer designs incentive mechanisms to achieve
desired economic properties, determines the winning takers and
makers, and calculate their payments. The inbound liquidity
is assumed to be homogeneous, which means that there is no
preference for the takers using inbound liquidity from different
makers. Note that this model can be easily extended to the
heterogeneous case by rating the inbound liquidity quality of



TABLE I
MAIN NOTATIONS

Notation Meaning
T set of liquidity takers (buyers)
M set of liquidity makers (sellers)
Tw winning set of buyers
Mw winning set of sellers
di buyer Ti’s liquidity demand amount
bi buyer Ti’s bid for di units of liquidity
vbi buyer Ti’s valuation for di units of liquidity
pbi payment for buyer Ti for di units of liquidity
ub
i utility for buyer Ti

sj seller Mj ’s liquidity supply amount
aj seller Mj ’s ask for one unit of liquidity
vsj seller Mj ’s valuation for one unit of liquidity
psj payment to seller Mj for one unit of liquidity
us
j utility for seller Mj

xij binary variable indicating if Mj sells di units to Ti

each maker, such that a taker can specify its preference to
solicit inbound liquidity from certain makers. Since a liquidity
taker needs inbound liquidity to receive payments, it cannot
receive sufficient large payments, if the inbound liquidity is
separated on multiple channels. Therefore, a liquidity taker’s
demand should be either fully provided by one liquidity maker
or none, referred to as demand indivisibility. Meanwhile, a
liquidity maker’s supply can be provided to multiple liquidity
takers, since it can split and deposit its capital on multiple
channels, referred to as supply divisibility.

C. Incentive Mechanism Model

We aim to design an incentive mechanism that allows both
liquidity takers and makers to buy and sell inbound liquidity
by trading capital commitment, while considering demand
indivisibility and supply divisibility. In the incentive mechanism,
the makers are sellers, and the takers are buyers. Throughout
the rest of this paper, we use the terminology of maker and
seller, taker and buyer interchangeably. Each buyer Ti requests
an inbound liquidity demand of di units and holds a private
valuation vbi ≥ 0 for buying di units and a bid bi ≥ 0 as the
maximum amount that it would pay for di units. Each seller
Mj provides an inbound liquidity supply of sj units and holds
a private valuation vsj ≥ 0 for selling one unit and an ask
aj ≥ 0 as the minimum amount that it would sell one unit.

The incentive mechanism works as follows: after collecting
the bids and asks privately from all buyers and sellers, the
incentive mechanism decides the allocation for each buyer and
seller. We use a binary variable xij to represent whether a
buyer Ti’s demand is fulfilled by a seller Mj , defined as:

xij =

{
1, if Mj sells di units of liquidity to Ti,

0, otherwise.
(1)

The incentive mechanism also computes the payment for
each buyer and seller. A winning buyer Ti pays pbi for
buying di units of inbound liquidity, and a winning seller
Mj receives psj for selling one unit of inbound liquidity.
The total payment for seller Mj is psj

∑
Ti∈T xijdi. Because

a seller’s sold liquidity cannot exceed its supply, we have∑
Ti∈T xijdi ≤ sj ,∀Mj ∈ M. Due to demand indivisibility,

we have
∑

Ti∈T xij ≤ 1, ∀Ti ∈ T . The utility of a buyer Ti

is defined as follows:

ub
i =

{
vbi − pbi , if Ti wins,
0, otherwise.

(2)

The utility of a seller Mj is defined as follows:

us
j = (psj − vsj )

∑
Ti∈T

xijdi, (3)

D. Desired Properties

There are several desired properties for an incentive mecha-
nism to satisfy:

• Truthfulness: an incentive mechanism is truthful if each
buyer or seller obtains the highest utility by biding its
true valuation of the resource.

• Individual Rationality: an incentive mechanism is individ-
ually rational if all buyers and sellers have non-negative
utilities by revealing their true valuations.

• Budget Balance: an incentive mechanism is budget bal-
anced if the auctioneer’s profit is nonnegative, i.e., the
difference between the payments charged from buyers and
paid to sellers is nonnegative.

• Computational Efficiency: an incentive mechanism is
computationally efficient if it can be conducted within
polynomial time.

IV. AN INCENTIVE MECHANISM FOR CRYPTO CAPITAL
COMMITMENT IN CHANNEL LIQUIDITY MARKETPLACE

In this section, we design and analyze Cumulonimbus, an
incentive mechanism for crypto capital commitment in payment
channel networks. We first provide the high-level overview and
intuition behind Cumulonimbus, and then follow the design
goals that are outlined in Section III-D to provide a detailed
incentive mechanism description.

A. Overview

Cumulonimbus consists of two stages: the winner selection
stage and the pricing stage. The winner selection stage applies
a linear-program-based mechanism, which introduces a virtual
buyer to intensify the competition on the buyer side and
guarantee budget balance. It first determines the winning buyers,
and then determines the winning sellers. In the pricing stage,
the incentive mechanism finds the Vickrey–Clarke–Groves
(VCG) [9] payment for each winning buyer and seller to
guarantee truthfulness. We present the detailed incentive
mechanism in the following subsections.

B. Social Welfare Maximization

To motivate the participation of both buyers and sellers, we
focus on maximizing the social welfare, i.e., the summation
of the payoff of the auctioneer and the utilities of all the
buyers and sellers. If all the buyers and sellers bid truthfully,



Algorithm 1: Cumulonimbus-Buyer Selection
Input: a buyer set T , a seller set M, and a virtual buyer

Tq

Output: a winning buyer set Tw
1 bq ←∞; dq ← max{sj |Mj ∈M}; Tw ← ∅;
2 Tq ← the virtual buyer associated with bq and dq;
3 Solve linear program P̂ (T ∪ {Tq},M);
4 for (Ti,Mj) ∈ T ×M do
5 if x̂ij = 1 then Tw ← Tw ∪ {Ti};
6 end
7 return Tw

the maximal social welfare W (T ,M) can be solved by the
following integer program P (T ,M):

maximize W (T ,M) =
∑
Ti∈T

∑
Mj∈M

(bi − ajdi)xij (4)

s.t. xij ∈ {0, 1},∀Ti ∈ T ,∀Mj ∈M, (5)

0 ≤
∑

Mj∈M
xij ≤ 1,∀Ti ∈ T , (6)

0 ≤
∑
Ti∈T

xijdi ≤ sj ,∀Mj ∈M. (7)

The first constraint represents that Ti either buys di units of
liquidity from Mj or none. The second constraint represents
demand indivisibility, such that Ti can buy liquidity from
at most one seller. The third constraint represents supply
divisibility, such that a seller’s sold liquidity cannot exceed its
supply. The social welfare maximization problem P (T ,M)
can be proven NP-hard by reducing the demand matching
problem, which has been proved NP-hard [21].

Theorem 1. The social welfare maximization problem
P (T ,M) is NP-hard.

In order to design a computationally efficient mechanism, we
can only resort P (T ,M) to its linear relaxation formulation
P̂ (T ,M), where x̂i,j is a fractional variable that represents
the percentage of Ti’s demand fulfilled by Mj :

maximize Ŵ (T ,M) =
∑
Ti∈T

∑
Mj∈M

(bi − ajdi)x̂ij (8)

s.t. 0 ≤ x̂ij ≤ 1,∀Ti ∈ T ,∀Mj ∈M, (9)

0 ≤
∑

Mj∈M
x̂ij ≤ 1,∀Ti ∈ T , (10)

0 ≤
∑
Ti∈T

x̂ijdi ≤ sj ,∀Mj ∈M. (11)

C. Incentive Mechanism Design

In this section, we describe the details of Cumulonimbus,
which are illustrated in Algorithms 1, 2, 3, and 4.

Cumulonimbus-Buyer Selection (Algorithm 1) determines
the winning buyers. In order to guarantee budget balance, Algo-
rithm 1 introduces a virtual buyer to intensify the competition
on the buyer side. The intuition behind the virtual buyer is to
create imbalances between the supply availability and demand
requirement [13]. Therefore, a virtual buyer Tq should have the

Algorithm 2: Cumulonimbus-Seller Selection
Input: a winning buyer set Tw, and a seller set M
Output: a winning seller set Mw

1 Solve linear program P̂ (Tw,M);
2 Mw ← ∅; Tw ← ∅;
3 for (Ti,Mj) ∈ T ×M do
4 if x̂ij = 1 thenMw ←Mw ∪{Mj}; Tw ← Tw ∪{Ti};
5 end
6 return Mw

Algorithm 3: Cumulonimbus-Buyer Pricing
Input: a buyer set T , a seller set M, and a winning

buyer set Tw
Output: the payments for all buyers

1 for Ti ∈ T do pbi ← 0 ;
2 for Ti ∈ Tw do
3 Solve linear program P̂ (T ∪ {Tq}\{Ti},M);
4 pbi ← bi−Ŵ ∗(T ∪{Tq},M)+Ŵ ∗(T ∪{Tq}\{Ti},M);
5 end
6 return (pb1, . . . , p

b
i , . . . , p

b
n)

largest demand and an unlimited bid, such that it can always
occupy the largest liquidity supply. Specifically, we set Tq’s bid
as ∞ and set Tq’s demand as dq = max{sj |Mj ∈M}, which
is the largest seller supply (Lines 1 to 2). Then, Algorithm 1
solves the linear program P̂ (T ∪ {Tq},M) with the virtual
buyer Tq , the buyer set T , and the seller setM (Line 3). In the
solution of P̂ (T ∪ {Tq},M), if a buyer Ti’s liquidity demand
is fulfilled by exactly one seller, i.e., ∃Mj ∈M, x̂ij = 1, then
Ti wins (Line 5). Algorithm 1 generates the winning buyer
set Tw by checking x̂i,j for each Ti ∈ T and Mj ∈M.

Cumulonimbus-Seller Selection (Algorithm 2) determines
the winning sellers, similarly as Algorithm 1. The main
difference is that Algorithm 2 determines the winning sellers
by solving the linear program P̂ (Tw,M) with the winning
buyer set Tw and the seller set M (Line 1). In the solution of
P̂ (Tw,M), if a seller Mj’s liquidity supply can fully satisfy
any buyer, i.e., ∃Ti ∈ T , x̂ij = 1, then Mj wins.

Cumulonimbus-Buyer Pricing (Algorithm 3) determines
the payments for all the buyers. In order to guarantee truthful-
ness, Algorithm 3 computes the VCG [9] payment for each
buyer. The intuition behind VCG is to charge each winning
buyer how much its participation hurts the others. Thus, for each
winning buyer Ti ∈ Tw, Algorithm 3 solves the linear program
P̂ (T ∪{Tq}\{Ti},M) with the virtual buyer Tq , the buyer set
T excluding Ti, and the seller set M (Line 3). The difference
between Ŵ (T ∪{Tq}\{Ti},M) and Ŵ (T ∪{Tq},M)−bi is
the payment for a winning buyer Ti (Line 4). A losing buyer’s
payment is 0 (Line 1).

Cumulonimbus-Seller Pricing (Algorithm 4) computes
the sellers’ payments, similarly as Algorithm 3. The main
difference is that, for each winning buyer Mj ∈Mw, it solves
the linear program P̂ (Tw,M\{Mj}) with the winning buyer



Algorithm 4: Cumulonimbus-Seller Pricing
Input: a winning buyer set Tw, a seller set M, and a

winning buyer set Tw
Output: the payments for all sellers

1 for Mj ∈M do psi ← 0 ;
2 for Mj ∈Mw do
3 Solve linear program P̂ (Tw,M\{Mj});

4 psj ←
aj

∑
Ti∈T

dix̂ij+Ŵ∗(Tw,M)−Ŵ∗(Tw,M\{Mj})∑
Ti∈T

dix̂ij
;

5 end
6 return (ps1, . . . , p

s
j , . . . , p

m
n )

set Tw and the seller set M excluding Mj (Line 3).

D. Analysis

We prove that Cumulonimbus satisfies the desired properties
introduced in Section III-D.

Theorem 2. Cumulonimbus satisfies truthfulness, individual
rationality, budget balance, and computational efficiency for
both buyers and sellers.

We prove Theorem 2 by the following lemmas.

Lemma 1. Cumulonimbus is truthful for buyers.

Proof. We prove that each buyer obtains the highest utility
by biding its true valuation of the liquidity. Assume there
exists a buyer Ti, whose utility is higher when bidding
b′i 6= vbi . Let u∗bi and u′

b
i denote Ti’s utilities, and let

Ŵ ∗(T ∪{Tq},M) and Ŵ ′(T ∪{Tq},M) denote the solutions
of P̂ (T ∪{Tq},M), when Ti bids vbi and b′i, respectively. Since
pbi = vbi−Ŵ (T ∪{Tq},M)+Ŵ (T ∪{Tq}\{Ti},M), we have
ub
i = vbi − pbi = Ŵ (T ∪ {Tq},M)− Ŵ (T ∪ {Tq}\{Ti},M)

according to Equation (2). Since u∗bi < u′
b
i , we have Ŵ ∗(T ∪

{Tq},M)− Ŵ ∗(T ∪{Tq}\{Ti},M) < Ŵ ′(T ∪{Tq},M)−
Ŵ ∗(T ∪{Tq}\{Ti},M). Thus, Ŵ ∗(T ∪{Tq},M) < Ŵ ′(T ∪
{Tq},M). This contradicts that Ŵ ∗(T ∪ {Tq},M) is the
optimal solution that maximizes Ŵ (T ∪ {Tq},M). Therefore,
if a buyer bids the true valuation of the liquidity, its utility
will not be less than that when it lies. �

Lemma 2. Cumulonimbus is individually rational for buyers.

Proof. Assume that each buyer Ti bids truthfully, i.e., bi = vbi .
For each winning buyer Ti, its payment is pbi = vbi − Ŵ (T ∪
{Tq},M)+Ŵ (T ∪{Tq}\{Ti},M). According to Equation (2),
we have ub

i = vbi − pbi = Ŵ (T ∪ {Tq},M) ≥ 0 − Ŵ (T ∪
{Tq}\{Ti},M). Therefore, ub

i ≥ 0, for all winning buyers.
For a losing buyer, ub

i = 0. Thus, ub
i ≥ 0. Cumulonimbus is

individually rational for all buyers. �

Lemma 3. Cumulonimbus is truthful for sellers.

Lemma 4. Cumulonimbus is individually rational for sellers.

Lemmas 3 and 4 can be proved similarly as Lemmas 1 and
2. It is trivial to prove the computational efficiency. We focus
on proving budget balance in the following.

Lemma 5. Cumulonimbus is budget balanced.

Proof. We first consider the buyer side and calculate a
lower bound on the payments charged from the buyers.
Let a[k] denote the seller’s ask bid for the k-th lowest
liquidity unit. Thus, the lower bound of all buyer payments
is a[

∑
Ti∈Tw

di+dq ]

∑
Ti∈Tw di. Then, we consider the seller

side and calculate an upper bound on the payments paid
to the sellers. Because the highest price is no more than
a[

∑
Ti∈Tw

di], the upper bound is a[∑Ti∈Tw
di]

∑
Ti∈Tw di. Since

a[
∑

Ti∈Tw
di+dq ] ≥ a[

∑
Ti∈Tw

di], the difference between the
payments charged from buyers and paid to sellers is nonnega-
tive. Thus, Cumulonimbus is budget balanced. �

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Cumulonim-
bus. As we surveyed in Section II, there is no existing truthful
incentive mechanism designed for crypto capital commitment.
Therefore, we demonstrate the effectiveness of Cumulonimbus
by comparing it to Lightning Pool [18], a state-of-the-art
channel liquidity marketplace (CLM) mechanism. Lightning
Pool adopts a greedy matching algorithm to select liquidity
takers and makers and adopts a uniform pricing rule.

A. Environment Setup

We use the liquidity demand information from the Bitcoin
Lightning Network [8], which is the most widely used real-
world PCN. In particular, we crawled a snapshot topology
of the Lightning Network on September 6, 2021. To crawl
the Lightning Network, we ran the Bitcoin Core daemon
(bitcoind) [1], built a c-lightning [3] node on mainnet, and
connected it to an existing Lightning node, which is the
Bitstamp’s Lightning Network node [2]. The network consists
of 15, 413 nodes and 65, 505 channels. We use the liquidity
supply information from the Bitcoin [11], which is the most
widely used real-world blockchain-based cryptocurrency.

B. Performance Metrics

We use the following metrics for performance evaluation:
• Liquidity utilization: The total of liquidity allocated from

liquidity makers to liquidity takers.
• Satisfaction ratio: The percentage of liquidity takers

whose inbound liquidity demands are fully satisfied.
• Social welfare: The summation of the auctioneer’s payoff

and all the participants’ utilities.

C. Evaluation of Cumulonimbus
Fig. 2 shows the impact of the number of liquidity makers

on the liquidity utilizations, satisfaction ratios, and social
welfares of Cumulonimbus and Lightning Pool. The number
of liquidity takers is 100 and the number of liquidity makers
varies from 10 to 50 with an increment of 10. It can be observed
that Cumulonimbus outperforms Lightning Pool due to its
demand indivisibility and supply divisibility guarantees. We
can witness the growing gap between Cumulonimbus and
Lightning Pool, which indicates that the greedy allocation
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Fig. 2. Impact of number of liquidity makers on Cumulonimbus and Lightning Pool.
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Fig. 3. Impact of number of liquidity takers on Cumulonimbus and Lightning Pool.

without considering the demand indivisibility and supply divis-
ibility decreases the satisfaction ratio and liquidity utilization
significantly. Cumulonimbus outperforms Lightning Pool due
to its maximization on social welfare. Lightning Pool gives a
lower social welfare, because it applies a uniform pricing rule.

Fig. 3 shows the impact of the number of liquidity takers
on the liquidity utilizations, satisfaction ratios, and social
welfares of Cumulonimbus and Lightning Pool. The number
of liquidity makers is 50 and the number of liquidity takers
varies from 50 to 250 with an increment of 50. In Fig. 3(b), we
can observe that both mechanisms have dropping satisfaction
ratios with more liquidity takers, because the liquidity makers
cannot provide sufficient supply to satisfy all the liquidity takers.
Fig. 3(a) shows that Lightning Pool gives a lower liquidity
utilization, because it adopts greedy allocation without consid-
ering demand indivisibility and supply divisibility. Fig. 3(c)
indicates that Cumulonimbus outperforms Lightning Pool,
because Cumulonimbus aims to maximize social welfare.

VI. CONCLUSION

In this paper, we designed an incentive mechanism Cu-
mulonimbus for crypto capital commitment in PCNs, which
motivates participants to sell and buy inbound liquidity, while
guaranteeing demand indivisibility and supply divisibility. We
analyzed Cumulonimbus and proved that it satisfies truthful-
ness, individual rationality, budget balance, and computational
efficiency. Extensive simulations demonstrated that Cumu-
lonimbus achieved outstanding satisfaction ratio, liquidity
utilization, and social welfare compared to a state-of-the-art
mechanism Lightning Pool.
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