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Abstract

Platinum(Il) poly-ynes, [-trans-Pt(PBu3z)-CC-Ph-CC-], (Poly-Pt-n, n = 13, 57 and 183),
display 10-fold lower transient absorption (TA) due to the triplet excited state compared to a
molecular complex (Pt-2) with the same structure as the polymer repeat unit. Power-dependent
transient absorption and phosphorescence studies carried out with dilute solutions of Poly-Pt-n
and Pt-2 reveal that the diminished transient absorption in the polymers is due to intrachain triplet-
triplet annihilation (t-tA) on polymer chains that feature two or more triplet excitons. Monte Carlo
dynamics simulations suggest that the t-tA occurs as a result of rapid exciton migration along the
Pt poly-yne chains.
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TEXT

Platinum poly-ynes have garnered considerable interest over the past several decades owing
to their fascinating fundamental properties as well as their potential for application in non-linear
optics and organic electronics.® These polymers are conveniently synthesized according to an
approach that was first reported by Hagihara, involving the polymerization of Pt(PR3)Cl> with a
bis-terminal acetylene in the presence of amine base and Cu(I) catalyst.”!° Platinum poly-ynes
are thermally and air-stable, soluble in organic solvents, and they display optical properties
characteristic of m-conjugated polymers: namely strong near-UV and visible absorption and

photoluminescence.!!



One particularly interesting aspect of platinum poly-ynes is that, because of the heavy atom
Pt, there is a significant spin-orbit coupling that makes population of the triplet excited state very
efficient, and the polymers often feature room-temperature phosphorescence.!' In addition, the
triplet state usually has a relatively long lifetime (1 — 20 us) and it gives rise to a characteristic
triplet-triplet absorption (triplet TA) in the mid-visible region.>!! The combination of extended
n-conjugation and triplet TA makes platinum poly-ynes attractive chromophores for optical pulse
limiting via non-linear absorption.!?"!® Optical pulse limiting involves the non-linear absorption
of light in intense laser pulses due to several mechanisms, including but not limited to
instantaneous multiphoton absorption, absorption by excited or charged states produced by
photoexcitation (reverse saturable absorption), optical lensing due to changes in refractive index,
and scattering processes.!”"!8 Optical pulse limiting finds practical application in optical sensor and
eye protection materials and devices.!*?° The general concept of optical limiting is to reduce or
limit the effective energy in an optical pulse, thereby protecting an optical element or system that
is exposed to an intense pulse.'® Platinum poly-yne materials give rise to optical limiting by a
combination of non-linear absorption processes, including instantaneous 2-photon absorption and
multiphoton absorption due to the strong, long-lifetime triplet TA. The instantaneous 2-photon
absorption is useful for the optical limiting of ultrashort pulses (< 1 ps); however, long pulse (10
ns or longer) limiting requires a strong and long-lived triplet TA.!>?! Many molecular platinum
acetylides have been carefully assessed for their ability to limit ultrashort and nanosecond pulses
and some have displayed outstanding limiting properties. !¢ 3

In previous work, we noted an unusual feature characteristic of platinum poly-ynes, namely
that their triplet TA is attenuated relative to that of molecular platinum acetylides with a similar

4

structure.>** We hypothesized that this effect might be due to a process of triplet-triplet



annihilation (t-tA) that occurs on individual platinum poly-yne chains, which limits the triplet
population that can be obtained under saturating laser-pulse excitation. This effect, although
fundamentally interesting, could also affect the optical pulse limiting performance of platinum
poly-ynes, since their ability to limit long laser pulses is directly proportional to the triplet
population that can be produced in a saturating optical pulse.

Here we report a study of the triplet-triplet absorption of a series of platinum poly-ynes of
varying degrees of polymerization (Poly-Pt-n) and compare it with a molecular platinum acetylide
complex (Pt-2) that features the same molecular structure as the repeat units in Poly-Pt-n (Scheme
1). The results show that the triplet TA intensity of the polymers is dramatically lower compared
to that of the molecular complex Pt-2 under identical ground state chromophore concentration and
pulse excitation conditions. The results are consistent with the occurrence of rapid t-tA that occurs
on individual Poly-Pt-n chains. Excitation power dependence studies reveal that at saturation the
triplet TA of Poly-Pt-n is consistent with ~1 triplet exciton per 10 repeat units. Monte Carlo
dynamics simulations are consistent with t-tA occurring on a timescale of 100 ps — 30 ns. The

implications of these findings on the application of platinum poly-ynes in optical pulse limiting is

considered.
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Poly-Pt-n polymers and Pt-2 were prepared as previously described and the detailed
characterization is provided in the supporting information (SI). The molecular weight of Poly-Pt-

n was controlled by the addition of ethynylbenzene as an end-capping reagent and/or control of



reaction conditions.>>?® The molecular weights of Poly-Pt-n were determined by solution gel
permeation chromatography (Fig. S13). Three samples of Poly-Pt-n with M, values of 9,300 Da,
41,600 Da, and 132,700 Da were obtained with polydispersity B =~2, as expected for step-growth
polymerization. By using the molecular weight of the [-Pt(PBu3),-CC-CsH4-CC-] repeat units, the
number-average degree of polymerization (DP) for the three samples was estimated as DP = 13,
57, and 183. All of the photophysical and laser measurements described herein were carried out
with relatively dilute solutions in tetrahydrofuran (THF), with monomer or repeat unit
concentrations ~10 uM range. THF is a good solvent for the polymers, thus in dilute solution the
polymers exist as unaggregated, molecularly dissolved chains.

Poly-Pt-n polymers and Pt-2 display strong absorption in the near-UV region, with the
polymers’ absorption red-shifted by approximately 20 nm relative to Pt-2 (Fig. 1a). As reported
previously,?”-3? these materials display moderately efficient phosphorescence with Amax =~520 nm
(Fig. la, see Table S1 for phosphorescence yields and lifetimes). The absorption and
phosphorescence arise from w,n* transitions localized on the phenylene ethynylene units. The
phosphorescence energy is approximately the same for the molecular and polymer chromophores;
this has been previously attributed to the fact that the m,n* triplet exciton is spatially localized on
one or two repeat units in the polymers, so there is little stabilization that occurs due to the
increased m—conjugation in the polymers.*°

Nanosecond-microsecond transient absorption spectroscopy was carried out on the materials
using a 355 nm excitation. As reported previously, Pt-2 exhibits a moderately strong transient
absorption with Amax = ~650 nm (Fig. 1b).3! The transient absorption is due to absorption of the
triplet excited state (triplet TA); consistent with this assignment, the triplet TA decays with a

lifetime of ~20 us. Interestingly, when the transient absorption is measured for any of the Poly-



Pt-n samples with the same conditions (same laser pulse energy, same ground state absorption),
the triplet TA is similar in shape and wavelength, but it is considerably weaker. For example, as
shown in Fig. lc, the triplet TA of Poly-Pt-13 is approximately 10-fold weaker in absolute
intensity compared to the triplet TA of Pt-2 obtained under the exact same conditions (355 nm
excitation, 35.7 mJ/cm™ fluence, matched O.D. samples at 355 nm). Similar results were obtained
for the Poly-Pt-n samples with longer chain lengths (see Fig. S14).

To probe the origin of the difference in triplet TA intensity for the molecular and polymer
chromophores, we carried out a laser power (fluence) dependence study. Figure 2 shows how the
triplet TA (AO.D. at 100 ns after laser excitation, A = 355 nm) varies with laser fluence for Pt-2
and the three Poly-Pt-n samples. For these samples, the ground state absorption at the excitation
wavelength (355 nm) was identical. For Pt-2, the triplet TA increases nearly linearly to 20 mJ-
cm? and then it increases less with increasing power until it saturates at ca. AA = 0.09 above 40
mJ-cm? fluence. By contrast, the triplet TA of Poly-Pt-n is non-linear at very low fluence (< 1
mJ-cm) and the signal is saturated for energy > 15 mJ-cm™. At saturation, the AO.D. signals for
Poly-Pt-n are more than 10-fold weaker compared to Pt-2. The different behavior of Poly-Pt-n
compared to Pt-2 indicates that at saturation the concentration of triplet excitons is at least 10-fold
less for the polymer samples. We conclude that for the polymer samples, the triplet exciton

concentration is limited due to rapid intrachain t-tA.
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Figure 1. (a) Absorption and phosphorescence spectra of Pt-2 and Poly-Pt-n in THF solution.
Transient absorption spectra of (b) Pt-2 and (c) Poly-Pt-13 on microsecond timescale in THF
solution. Sample concentrations: Pt-2 = 8.2 uM; Poly-Pt-13 = 14 uM in terms of repeat unit.
Excitation at 355 nm (5 ns pulse, 35.7 mJ-cm™ fluence), samples had matched O.D. of 0.58 at 355

nm at 355 nm.
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Figure 2. Laser power dependence study in THF solution. AO.D. (100 ns delay) at 650 nm vs laser
fluence for Pt-2 and Poly-Pt-n, the inset shows the zoomed-in 0-10 mJ/cm? region. Sample
concentrations: Pt-2 = 8.2 uM; Poly-Pt-n = 14 uM in terms of repeat unit. Excitation at 355 nm,
samples have matched O.D. of 0.58 at 355 nm.

In order to gain insight into the mechanism and dynamics of the intrachain t-tA process, Monte
Carlo simulations were carried out to compute the time evolution of the triplet population on
individual chains that feature 2 or more triplet excitons. The details of the simulations are provided
in the SI. Briefly, polymer chains with different lengths (10 — 120 repeat units) were prepared
with N; triplets where N; = mp, where m = polymer chain length and pxis the triplet density. The
triplets migrate along the chains in a 1D random walk (steps), and when 2 triplets occupy the same
repeat unit they annihilate. Technically, t-tA produces a singlet exciton, but since singlet to triplet
intersystem crossing is very rapid in platinum poly-ynes,*? annihilation is approximated to produce
one triplet exciton. Figure 3 summarizes the results of the simulations. In these plots, the x-axis

(bottom) represents the number of exciton hopping steps and the y-axis represents the triplet



population, which is proportional to the experimental triplet TA intensity. The top x-axis is scaled
in time, which is based on a 27.2 ps step time increment which was experimentally determined in
previous work.>* The simulation results reveal several important features: 1) Under all conditions
examined, the triplet population decays to < 10% of the initial value within 1000 steps, which
corresponds to ~30 ns; 2) For a fixed initial exciton density, the triplet decay due to t-tA is faster
for shorter polymer chains; 3) The exciton decay accelerates with increasing density pr, which

corresponds experimentally to increasing laser pulse energy.
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Figure 3. Simulated triplet intensity versus the number of hopping events (steps). Simulations
were done by maintaining a fixed polymer chain length of m = 50 and varying the initial triplet
exciton density (a), or by maintaining a fixed initial triplet density of p; = 0.10 and varying the

polymer chain length (b).



2
1.0 - 32 mJ/icm

— |RF
— Pt2
Poly-Pt-13

Poly-Pt-57
0.5+ Poly-Pt-183
0.04 24 mJlcm’ -

(e i)

0.5-

19 mJicm®

- O
o o

0.5-

0.0
1.0 -

Normalized Intensity

12 mJicm’

4 mJdlem’

0.5+

0 ‘ 20 ' 4I0 6I0 ' 8l0 . 100
Time (ns)

Figure 4. Phosphorescence dynamics of Pt-2 and Poly-Pt-n in THF solution. Sample
concentrations: Pt-2 = 9.3 uM; Poly-Pt-n = 16 uM in terms of repeat unit. Excitation at 355 nm,
samples have matched O.D. at 355 nm of 0.66, laser fluence: 4 mJ/cm? to 32 mJ/cm?. In each

panel, the black plot represents the instrument response function (IRF).



Since phosphorescence intensity is a sensitive probe of the triplet exciton population, we used
time resolved emission to experimentally monitor the triplet dynamics. Figure 4 compares the
emission dynamics for Pt-2 and the Poly-Pt-n samples monitored in time following 355 nm pulsed
excitation (10 ns FWHM) with varying laser fluence. Here it is seen that for all laser fluence
values, the emission of the molecule Pt-2 rises during the laser pulse and remains relatively
constant for times > 100 ns, consistent with the 20 us lifetime. By contrast, the emission transients
for the Poly-Pt-n samples show a pronounced fast decay that occurs during the excitation pulse
and continues for some time following the pulse, ultimately settling into a signal that persists for
> 100 ns. Inspection of the data in Fig. 4 reveals the following trends: 1) The amplitude of the fast
decay phase relative to the long-lived component increases with increasing laser pulse fluence; 2)
The amplitude of the fast phase relative to the long-lived component is greater for the higher MW
samples (Poly-Pt-n, n = 57, 183) compared to the shortest polymer Poly-Pt-13; 3) The overall
decay dynamics for all the polymers become faster at higher laser fluence. These trends in the
emission dynamics, although qualitative, are fully consistent with the simulations which indicate
that the annihilation will lead to a more rapid triplet population decay at higher triplet density
(higher laser fluence). Experiments were performed with femtosecond TA spectroscopy in an
attempt to better resolve the triplet population dynamics. However, unfortunately these
experiments failed to detect the t-tA process since the accessible pulse fluences are ~10,000-fold
lower compared to those accessible under the nanosecond excitation (see SI for comparison).

Interestingly, the data in Fig. 2 show that at saturation the triplet exciton population is ~10
times lower for Poly-Pt-13 compared to Pt-2. Assuming that the absorptivity of the triplet exciton
is comparable for the polymer and molecular triplet states, this suggests that at saturation the

polymers support a triplet exciton density of ~ 0.1 triplets per repeat unit. For optical limiting
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applications, this difference means that the platinum poly-ynes would be ~10-fold less effective at
long-pulse limiting, other factors being equal.

The current study provides very clear evidence that t-tA occurs on a relatively rapid time scale
in platinum poly-ynes. This result is not surprising in view of previous experiments which reveal
that intrachain triplet diffusion in platinum poly-ynes is relatively rapid.**-** The findings are also
consistent with previous studies demonstrating that singlet and triplet exciton annihilation are
important processes in conjugated polymers and must be accounted for when modeling their

performance under conditions of high optical pulse excitation.>>3®

Associated Content
Supporting Information
The Supporting Information is available free of charge on the ACS Publication website at

http://pubs.acs.org/. Experimental details, NMR spectra, GPC data, photophysical properties

measurements, simulations details and photon concentration calculations.
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