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a b s t r a c t 

Pose guided person image generation means to generate a photo-realistic person image conditioned on 

an input person image and a desired pose. This task requires spatial manipulation of the source image 

according to the target pose. However, convolutional neural networks (CNNs) are inherently limited to ge- 

ometric transformations due to the fixed geometric structures in their building modules, i.e., convolution, 

pooling and unpooling, which cannot handle large motion and occlusions caused by large pose trans- 

form. This paper introduces a novel two-stream context-aware appearance transfer network to address 

these challenges. It is a three-stage architecture consisting of a source stream and a target stream. Each 

stage features an appearance transfer module, a multi-scale context module and two-stream feature fu- 

sion modules. The appearance transfer module handles large motion by finding the dense correspondence 

between the two-stream feature maps and then transferring the appearance information from the source 

stream to the target stream. The multi-scale context module handles occlusion via contextual modeling, 

which is achieved by atrous convolutions of different sampling rates. Both quantitative and qualitative 

results indicate the proposed network can effectively handle challenging cases of large pose transform 

while retaining the appearance details. Compared with state-of-the-art approaches, it achieves compara- 

ble or superior performance using much fewer parameters while being significantly faster. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Pose guided person image generation aims to transform a per- 

on image from a source pose to a target pose while retaining the 

ppearance details. It serves as a fundamental tool for several prac- 

ical applications such as image editing, video generation and data 

ugmentation for person re-identification and action recognition 

1–3] . This task is very challenging especially in case of large mo- 

ion, occlusion and complex texture. 

Convolutional neural networks (CNNs) [4] and their variants 

5,6] , trained in an adversarial fashion [7] , have been widely used 

or image generation and translation [8–12] . However, since CNNs 

re composed of spatially local and translation equivariant oper- 

tors, i.e., convolution, pooling and unpooling, they do not have 

n explicit mechanism to handle articulated body deformation. 

o resolve this difficult issue, two strategies have been adopted 
∗ Corresponding author. 

E-mail addresses: cshen26@uic.edu (C. Shen), wang5035@purdue.edu (P. Wang), 

angw@uic.edu (W. Tang). 
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n prior person image generation approaches, i.e., parametric ge- 

metric transformation and nonparametric dense flow. For exam- 

le, Siarohin et al. [13] apply an affine transformation to the fea- 

ures of each body part region to deal with pixel-to-pixel misalign- 

ent caused by the pose difference. However, it cannot handle oc- 

lusion or out-of-plane rotation well. Some methods [14,15] pre- 

ict the dense flow field between the source and target images 

nd apply it to warp the feature maps. However, since the flow 

s predicted via a CNN, it cannot account for large or non-local 

otion. 

Large motion and occlusion still remain the two greatest chal- 

enges in person image generation. In addition, recent approaches 

ave to use a very deep network, i.e., consisting of nine sophis- 

icated blocks [2,16] to handle these difficulties. This unavoidably 

ncreases the model size and computational complexity. 

This paper introduces a novel two-stream context-aware ap- 

earance transfer network to explicitly address the aforementioned 

hallenges. As illustrated in Fig. 2 , the network is a three-stage ar- 

hitecture consisting of a source stream and a target stream. The 

wo streams respectively take as input the source pose and im- 

ge, and the target pose. Each stage consists of a novel appearance 

ransfer module, a multi-scale context module and two-stream fea- 

ure fusion modules. 

https://doi.org/10.1016/j.patcog.2021.108451
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108451&domain=pdf
mailto:cshen26@uic.edu
mailto:wang5035@purdue.edu
mailto:tangw@uic.edu
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The appearance transfer module is designed to address the dif- 

culty of large motion . It finds the dense correspondence be- 

ween the two-stream feature maps and then transfers the appear- 

nce information from the source stream to the target stream. Un- 

ike the parametric geometric transformation or the nonparametric 

ow field, our appearance transfer module is inspired by the self- 

ttention [17] and performs a query-and-transfer procedure. But 

ifferent with the self-attention, the queries, keys and values in 

ur module have explicit semantic meaning, and they are specially 

esigned for pose-guided appearance transfer. Specifically, the fea- 

ure vector at each spatial location in the target stream is taken as 

 query to match the key feature vectors in the source stream so 

hat the corresponding appearance values in the source stream can 

e transferred to the desired location in the target stream. 

The multi-scale context module is designed to address the dif- 

culty of occlusion . Occlusion makes some visible content in the 

arget image invisible in the source image. To help the target 

tream recover occluded pixels, it is necessary to give the network 

ccess to rich context and even a global view of the scene. For ex- 

mple, when an arm of a person is occluded, we can imagine what 

t looks like by checking the other arm of this person. When both 

rms are occluded, we need to understand the high-level clothing 

tyle, e.g., a suit or a set of sportswear, to reconstruct the miss- 

ng information. This line of analysis motivates us to build a multi- 

cale context module based on the atrous spatial pyramid pool- 

ng (ASPP) [18] , which was originally designed for image segmen- 

ation [19,20] . It aggregates multi-scale context via atrous convo- 

utions with different sampling rates. Finally, the two-stream fea- 

ure fusion modules allow local information exchange between the 

wo streams to supplement the non-local appearance transfer and 

ulti-scale context modeling. 

Ablation study indicates that the proposed approach can effec- 

ively handle large pose transform, and improve the quality of the 

enerated person images. Experimental results on two benchmark 

atasets, i.e., Market-1501 [21] and DeepFashion [22] , show that 

ompared with state-of-the-art methods, our approach achieves 

omparable or superior performance with a much smaller model 

ize and a significantly higher inference speed. An SSIM-FPS- 

arameters trade-off plot on the DeepFashion dataset is shown in 

ig. 1 . 

The contributions of this paper are summarized below. 

• We introduce a novel two-stream context-aware appearance 

transfer network for efficient person image generation. It pro- 

gressively transfers the appearance from the source stream to 

the target stream guided by their dense spatial correspondence 

and multi-scale context. 
• The proposed appearance transfer module is the first of its 

kind to use the target stream to query and transfer the source 

stream. It effectively handles the difficulty of large motion. 
• The proposed multi-scale context module is the first attempt 

to apply atrous convolutions for contextual modeling in per- 

son image generation. Multi-scale context helps the network re- 

cover occluded pixels. 
• Compared with state-of-the-art methods, our network achieves 

comparable or superior performance using much fewer param- 

eters while being significantly faster. We also show our network 

has a great advantage when large pose transform occurs. 

. Related work 

.1. Image generation 

Image generation is a basic task in computer vision. Most re- 

ently, Generative Adversarial Networks [7] based methods have 

een widely used for synthesizing realistic images and achieved 
2 
ood performance in various tasks, i.e., image-to-image translation 

8,11,23–25] , text-to-image translation [26–28] and image in paint- 

ng [29,30] . Most image-to-image translation models are based on 

onditional Generative Adversarial Networks(CGANs) [12] because 

t can achieved remarkable success in pixel-wise aligned image 

eneration problems. However, pixel-wise alignment is not suitable 

or pose transfer due to the pose deformation. 

The CocosNet introduced by Zhang et al. [31] is very related 

o our appearance transfer module. It translates the image via the 

ense correspondence between conditioned input and a given style 

xemplar, and the correspondence map is computed in a simi- 

ar way as ours. However, our approach differs from CocosNet in 

everal aspects. First, CocosNet is inspired by the correspondence 

ayer proposed in Zhang et al. [32] and uses the correspondence 

ap to warp the exemplar image. By contrast, our network is in- 

pired by the self-attention mechanism [17] ; it maintains two fea- 

ure streams and employs the correspondence map to progres- 

ively transfer the appearance information from the source feature 

tream to the target feature stream. The different sources of in- 

piration also make the calculations of the correspondence map 

efore the softmax normalization different: cosine similarity be- 

ween two feature vectors with mean removed in Zhang et al. 

32] versus inner product between unnormalized feature vectors 

n the self-attention. Second, CocosNet injects the warped exem- 

lar image into the translation network through positional normal- 

zation and spatially-variant denormalization (SPADE) [33] to pro- 

uce the translated image. By contrast, we directly feed the fea- 

ure map from the target stream into the decoder to generate our 

nal results. Third, CocosNet has only one correspondence learning 

odule to warp the exemplar image while we find it beneficial to 

tack multiple appearance transfer modules to progressively trans- 

er the appearance information from the source stream to the tar- 

et stream. In addition, our network includes a multi-scale context 

odule, which is the first attempt to apply atrous convolutions for 

ontextual modeling in person image generation. 

.2. Person image generation 

The task of pose guided person image generation was first in- 

roduced by Ma et al. [34] . Their two-stage network first generates 

 coarse target image and then refines it in an adversarial way. Ma 

t al. [35] disentangle the foreground, background and pose infor- 

ation, and then manipulate them to get the desired pose. The 

ontrollability of the generation process is improved, but the qual- 

ty of the generated image is reduced. Esser et al. [36] combine 

AE [37] and U-Net [8] to distinguish the appearance and pose of 

 person image. However, it is difficult to represent the appearance 

eatures as a low-dimension underlying code, which unavoidably 

oses information. Siarohin et al. [13] introduce deformable skip 

onnections to transform the texture spatially. It uses a set of local 

ffine transformations to decompose the overall articulated body 

eformation. However, it cannot handle occlusion or out-of-plane 

otation well. The pose attention transfer network (PATN) [2] con- 

ists of an image stream and a pose stream, and it uses an atten- 

ion mask to enhance the feature maps. However, it only processes 

eatures locally, and there is no explicit geometric manipulation or 

ppearance transfer of the source image. 

Most recently, Tang et al. [38] propose a cycle-in-cycle GAN, 

hich is a cross-modal framework exploring joint exploitation of 

he keypoints and the image data in an interactive manner. Ren 

t al. [39] introduce a differentiable global-flow local-attention 

ramework to reassemble the inputs at the feature level. Men et al. 

40] propose the attribute-decomposed GAN, which means to em- 

ed human attributes into the latent space as independent codes 

nd thus achieve flexible and continuous control of attributes via 

ixing and interpolation operations in explicit style representa- 
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Fig. 1. Comparison with recent state-of-the-art approaches on the DeepFashion dataset. Our approach (purple) achieves superior quality, and is much more efficient. The 

results of PATN [2] and XingGAN [16] are reproduced by us. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 2. An overview of the proposed network architecture. It is a three-stage architecture consisting of two streams. The target and source streams respectively take as 

input the target pose, and the source pose and image, and pass them through convolutional encoders. Each stage is a context-aware appearance transfer block (CAT-block). 

It consists of an appearance transfer module, a multi-scale context module and two-stream feature fusion modules. The target feature map from the last CAT-block passes 

through a convolutional decoder to generate a new person image with the same appearance as the source image but in the target pose. 
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ions. Huang et al. [41] introduce an appearance-aware pose styl- 

zer, which generates human images by coupling the target pose 

ith the conditioned person appearance progressively. Lathuiliere 

t al. [42] employ the local attention mechanism to select rele- 

ant information from multi-source human images for human im- 

ge generation. RATE-Net [43] leverages an additional texture en- 

ancing module to extract appearance information from the source 

mage and estimate a fine-grained residual texture map. This helps 

efine the coarse estimation from the pose transfer module. Gao 

t al. [44] propose a portrait photo recapture system with two 

odules that complement each other from both intra-part and 

nter-part perspectives to easily transform their portraits to the de- 

ired posture. 

The work most related to ours is the XingGAN recently in- 

roduced by Tang et al. [16] . It uses the self-attention to achieve 

idirectional non-local communication between features of source 
3 
nd target poses and features of the source image. Our approach 

s different from XingGAN. We find the dense spatial correspon- 

ence between the source stream and target stream (like flow- 

ased methods) to transfer the appearance information from the 

ource image to the target image. It is a unidirectional process with 

xplicit semantic meaning and well aligned with the task of per- 

on image generation. By contrast, XingGAN iteratively updates the 

hape and appearance embeddings in a non-local manner. It does 

ot compute the correspondence between the source image/pose 

nd the target one, nor does it perform any explicit appearance 

ransfer between them. In addition, we model multi-scale context, 

hich XingGAN ignores. Since our network is explicitly designed 

o handle large motion and occlusion, it not only generates higher- 

uality person images in case of large pose transform but also has 

 much smaller model size and a significantly higher inference 

peed. 
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Several approaches adopt DensePose [45] , 3D pose [46] , or hu- 

an parsing [47] to generate person images since they contain 

ore information, e.g., the body part segmentation or depth. How- 

ver, the keypoint-based pose representation is much cheaper to 

btain and more flexible. Therefore, we prefer to use a keypoint- 

ased representation. 

.3. Self-attention 

The self-attention [4 8,4 9] was first introduced for natural lan- 

uage processing. It calculates the response of a certain posi- 

ion in the sequence by paying attention to all positions in the 

ame sequence. Vaswan et al. [17] prove that the machine transla- 

ion model could obtain the state-of-the-art results using the self- 

ttention. Parmar et al. [50] introduce an image transformer model 

hat adds the self-attention to an automatic regression model for 

mage generation. Wang et al. [51] formulate the self-attention as 

 non-local operation to model the spatial-temporal dependencies 

n video sequences. Liu et al. [52] propose a Dual Self-Attention 

ith Co-Attention networks to model the internal dependencies 

f both the spatial and sequential structure respectively by using 

he self-attention mechanism. Wei et al. [53] propose an attention- 

ased model (called position-aware self-attention) as well as a 

ell-designed self-attentional context fusion layer within a neu- 

al network architecture, to explore the positional information of 

n input sequence for capturing the latent relations among tokens. 

hang et al. [54] propose a self-attention GAN enforcing the gen- 

rator to gradually consider non-local relationships in the feature 

pace. It can learn to find long-range dependencies within internal 

epresentations of images. 

Although our appearance transfer module is inspired by the 

elf-attention, they are significantly different. The queries, keys and 

alues in our network are specially designed for pose-guided ap- 

earance transfer, and they are semantically different. By contrast, 

hese items in the self-attention are obtained from the same in- 

ut. As a result, the self-attention models the non-local relations 

ithin a single feature map while our network finds the spatial 

orrespondence between the source stream and the target stream 

o perform appearance transfer. 

. Our approach 

.1. Overview 

As illustrated in Fig. 2 , our network is a three-stage architecture 

onsisting of two streams. The input of the target stream is the 

arget pose P t . The input of the source stream is the concatenation 

f the source pose P s and the source image I s . Both source and

arget poses are represented as keypoint heatmaps. The output of 

he network is a generated target image I t containing the same 

erson as the source image I s but in the target pose P t . 

The network first uses two encoders to produce initial feature 

aps for the two streams. Each encoder consists of two down- 

ampling convolutional layers, and they do not share weights. The 

nitial source features contain both appearance and structure in- 

ormation while the initial target features contain only structure 

nformation. Then, a cascade of three context-aware appearance 

ransfer blocks (CAT-blocks) progressively transfer the appearance 

rom the source stream to the target stream guided by the struc- 

ure information and multi-scale context. All CAT-blocks have the 

ame architecture but do not share weights. Finally, the target fea- 

ure map from the last CAT-block passes through a decoder to gen- 

rate the target image. The decoder consists of two deconvolu- 

ional layers. We will detail the CAT-block in Section 3.2 and the 

oss function in Section 3.3 . 
4 
.2. Context-aware appearance transfer block 

As shown in Fig. 2 , a context-aware appearance transfer block 

CAT-block) takes as input the two-stream feature maps F s ∈ 

 
C×H×W and F t ∈ R 

C×H×W obtained from the previous block or the 

ncoder and outputs their updated feature maps F ′ s ∈ R 
C×H×W and 

 
′ 
t ∈ R 

C×H×W . Here C, H and W respectively denote the channels, 

eight and width of a feature map, and the subscripts s and t re- 

pectively indicate the source and target streams. A CAT-block con- 

ists of an appearance transfer module, a multi-scale context mod- 

le and two-stream feature fusion modules, which are detailed be- 

ow. Unless otherwise specified, the kernel size of a convolutional 

ayer is set to 3 × 3 . 

Appearance transfer module The pipeline of an appearance trans- 

er module is illustrated in Fig. 3 . We first pass the two-stream 

eature maps F s and F t through convolutions and reshape the re- 

ults as S ∈ R 
C×HW and T ∈ R 

C×HW , respectively. Then we feed them

nto 1 × 1 convolution layers (implemented as matrix multiplica- 

ions) to produce three matrices K ∈ R 
C̄ ×HW , V ∈ R 

ˆ C ×HW and Q ∈
 
C̄ ×HW : 

 = W k S (1) 

 = W v S (2) 

 = W q T (3) 

here W k , W q ∈ R 
C̄ ×C , W v ∈ R 

ˆ C ×C are learnable weight matrices. 

e set C̄ = C/ 8 , ˆ C = C/ 2 for memory efficiency, and it does not

ause a significant performance drop. Each column of K , V or Q 

s a key , a value or a query respectively. Our appearance transfer 

odule means to match (target) queries to the (source) keys and 

hen use the correspondence to transfer the relevant (source) val- 

es from the source stream to the target stream. 

To achieve this goal, we first obtain a correspondence map D ∈ 

 
H W ×H W by applying a softmax normalization to each row of Q 

T K : 

 i j = 

exp ( Q 
T 
i 
K j ) 

∑ HW 

j=1 exp ( Q 
T 
i 
K j ) 

(4) 

here D i j is the (i, j) th element of D , Q i is the i th column of Q , K j 

s the jth column of K . D i j is a soft correspondence score between

he i th query, i.e., the i th position in the target feature map, and

he jth key, i.e., the jth position in the source feature map. We 

an interpret the i th row of D as a probability distribution of each 

ey matching the i th query. The correspondence map serves as the 

asis of appearance transfer. 

Then we retrieve the value for the i th query as a linear combi- 

ation of the columns of V weighted by the i th row of D . A matrix

 o ∈ R 
C× ˆ C is multiplied to the retrieved values to increase their 

imension: 

 = W o VD 
T (5) 

here A ∈ R 
C×HW is the appearance information to be transferred 

rom the source stream to the target stream. During the query- 

nd-transfer process, the source appearance is aligned with the tar- 

et pose. Since the alignment is non-local, our appearance transfer 

odule can handle large motion. 

After a scaled residual connection A 
′ = σA + T ( σ is a learnable

calar) and a subsequent convolutional layer, the appearance trans- 

er module outputs a feature map whose shape is C × H ×W . 

Multi-scale context module Not all content of the target image 

an be found in the source image because of occlusion. To help the 

arget stream recover occluded pixels, it is necessary to give the 

etwork access to richer context and even a global view of both 

treams. 
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Fig. 3. Illustration of the proposed appearance transfer module. It calculates the correspondence between the feature vector at each location in the target stream and the 

feature vector at each location in the source stream. Then the correspondence is used to transfer the appearance information from the source stream to the target stream. 

Fig. 4. Illustration of the multi-scale context module. 
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To this end, we build a multi-scale context module based on 

he atrous spatial pyramid pooling (ASPP) [18] widely used in im- 

ge segmentation. Its pipeline is illustrated in Fig. 4 . We first con- 

atenate the two-stream feature maps F s and F t , and pass them 

hrough several parallel atrous convolutions with different sam- 

ling rates r = 1, 2, 4, 8, respectively: 

 r = AstrousConv r ( Concat (F s , F t )) (6) 

here AstrousConv r is the atrous convolution with a sampling rate 

. Then we concatenate the output feature maps enriched with dif- 

erent scales of context { H r } and pass them through a convolu- 

ional layer. 

 = Conv ( Concat ({ H r } ) (7) 

here H ∈ R 
C×H×W is the output of the multi-scale context mod- 

le. 

Two-stream feature fusion modules As shown in Fig. 2 , the fea- 

ures in the target stream are updated by fusing the features in 

he source stream, the transferred appearance and multi-scale con- 

ext. The features in the source stream are updated by fusing the 

ew target features. We find that a simple fusion module com- 

osed of a concatenation operation and a subsequent convolutional 
5 
ayer (output channels set to C) works well. The two-stream fea- 

ure fusion modules are important as they allow local information 

xchange between the two streams, which supplements the non- 

ocal appearance transfer and multi-scale context modeling. 

.3. Loss function 

The full loss function is: 

 = arg min 
G 

max 
D 

αg L GAN + α1 L 1 + αp L p (8) 

here L GAN , L 1 and L p respectively denote the adversarial loss, the 

 1 -norm loss and the perceptual loss, and αg , α1 and αp repre- 

ent their respective weights. L 1 calculates the � 1 -norm distance 

etween the generated image I t and the ground truth target image 

 gt : � 1 = || I gt − I t || 1 . The perceptual loss L p has been widely used

or image generation and translation [9,10,13,36] as it helps gener- 

te more realistic and smoother images. It is defined as: 

 p = 

1 

W ρH ρC ρ
|| φρ(I gt ) − φρ(I t ) || 1 (9) 

here φρ is the output of the conv1_2 layer from the VGG-19 

odel [55] pretrained on ImageNet [56] , and W ρ, H ρ, C ρ are the
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idth, height and depth of φρ , respectively. We adopt the adver- 

arial loss introduced in Zhu et al. [2] . It consists of an appearance

iscriminator and a shape discriminator to determine the possibil- 

ty that the generated image contains the same person in the in- 

ut image and the degree to which the generated image is aligned 

ith the target pose. 

. Experiment 

Datasets We use two challenging person image datasets: 

arket-1501 [21] and DeepFashion [22] . The resolution of images 

n DeepFashion is higher ( 256 × 256 ) than that in Market-1501 

 128 × 64 ). We employ OpenPose [58] to detect human body joints. 

oth the source and target poses consist of an 18-channel heatmap 

ncoding the positions of 18 human body joints. There are 263,632 

airs of training images in Market-1501, and 101,966 pairs in Deep- 

ashion. Their testing sets contain 12,0 0 0 pairs and 8570 pairs, 

espectively. Note the person identities of the training set do not 

verlap with those of the testing set. 

Evaluation metrics We follow [2,13,34] and adopt Structure Sim- 

larity (SSIM) [59] , Inception Score (IS) [60] , and their masked ver- 

ions, i.e., Mask-SSIM and Mask-IS, as the evaluation metrics. We 

lso use other common metrics such as Learned Perceptual Image 

atch Similarity (LPIPS) [61] and Fréchet Inception Distance (FID) 

62] . LPIPS and FID calculate the perceptual distance between the 

enerated images and ground truth images in the feature space 
Fig. 5. Qualitative compari

6 
.r.t. each pair of samples and the global distribution, respectively. 

oreover, we adopt the PCKh score proposed in Zhu et al. [2] to 

ssess the shape consistency. 

Implementation details Our method is implemented in PyTorch 

sing two NVIDIA GeForce RTX 2080 Ti GPUs. The Adam optimizer 

63] is adopted to train the proposed model for around 90k it- 

rations with β1 = 0 . 5 , β2 = 0 . 999 . The learning rate is fixed as

.0 0 01 in the first 60k iterations and then linearly decayed to 0 

n the last 30k iterations. We use 3 CAT-blocks in the generator for 

oth datasets. For the hyper-parameters, ( αg , α1 , αp ) are set as (5, 

, 1) for DeepFashion and (5, 4, 4) for Market-1501, respectively. 

nstance normalization [64] is applied for both datasets. The batch 

ize is set as 7 for DeepFashion and 32 for Market-1501. Dropout 

65] is only used in the CAT-blocks, and the dropout rate is set 

o 0.5. Leaky ReLU [66] is applied after every convolution or nor- 

alization layer in the discriminators, and its negative slope coef- 

cient is set to 0.2. 

.1. Comparison with state-of-the-art methods 

Quantitative and qualitative results We compare the proposed 

etwork with several state-of-the-art methods such as DPIG [35] , 

Unet [36] , Deform [13] , PATN [2] , BTF [57] , C2GAN [38] , ADG [40] ,

ingGAN [16] and APS [41] . Table 1 shows the quantitative results 

easured by SSIM, IS, Mask-SSIM, Mask-IS, and PCKh metrics. Our 

etwork achieves the best performance under most metrics on the 
son on Market-1501. 
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Fig. 6. Qualitative comparison on DeepFashion. 

Fig. 7. We use PyTorch Profiler to obtain the GPU running time ( μs) of each operation in a CAT-block, a XingGAN-block and a PATB. The PATB is a building block of 

PATN. The results are collected on the same image from DeepFashion. Conv2d, BN, Mul, Cat, Matmul, Pooling, and Upsampling represent convolution, batch normalization, 

multiplication, concatenation, matrix multiplication, average pooling and bi-linear upsampling, respectively. 
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realistic. 
wo datasets. Figs. 5 and 6 show that the appearance or texture 

enerated by the proposed method is more consistent and appeal- 

ng than the others. 

User study We conducted user study with 30 volunteers to give 

n instant judgment (real/fake) about each image within a sec- 

nd. R2G means the percentage of real images rated as gener- 
7 
ted w.r.t. all real images. G2R means the percentage of gener- 

ted images rated as real w.r.t. all generated images. Our R2G 

nd G2R scores are respectively 42.32 and 75.68. By contrast, 

he two scores of PATN are respectively 32.23 and 63.47. These 

esults indicate the images generated by our network are more 
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Fig. 8. Ablation study of our network on Market-1501. Columns 1 and 2: input and ground truth output and their pose maps. Columns 3–5: ablation study on the number 

of CAT-blocks of our full network. Columns 6–8: ablation study on effectiveness of the appearance transfer module (AT) and the multi-scale context module (MC). 

Table 1 

Quantitative results on Market-1501 and DeepFashion. ( ∗) denotes the results reproduced by us using the code released by the authors. For SSIM, IS, Mask-SSIM, Mash-IS 

and PCKh, higher values indicate better performance. For FID and LPIPS, lower values indicate better performance. 

Method #Blocks Market-1501 DeepFashion 

SSIM IS Mask-SSIM Mask-IS PCKh FID LPIPS SSIM IS PCKh FID LPIPS 

DPIG [35] – 0.099 3.483 0.614 3.491 – – – 0.614 3.228 – – –

VUNet [36] – 0.266 2.965 0.793 3.549 0.92 21.214 0.321 0.763 3.440 0.93 23.836 0.264 

Deform [13] – 0.290 3.185 0.805 3.502 – 29.035 0.299 0.756 3.439 – 26.283 0 . 233 

PATN [2] 9 0.311 3.323 0.811 3.773 0.94 – – 0.773 3.209 0.96 – –

BFT [57] – – – – – – – – 0.767 3.220 – – –

C2GAN [38] – 0.282 3.349 0.811 3.510 – – – – – – – –

ADG [40] – – – – – – – – 0.772 3.364 – – –

APS [41] – 0.312 3.132 0.808 3.729 0.94 – – 0.775 3.295 0.96 – –

XingGAN [16] 9 0.313 3 . 506 0.816 3.872 0.93 – – 0 . 778 3 . 476 0.95 – –

PATN ∗ [2] 9 0.301 3.344 0.805 3.773 0.94 22.657 0.319 0.767 3.209 0.96 21.563 0.249 

XingGAN ∗ [16] 9 0.305 3.425 0.806 3 . 883 0.93 22.307 0.302 0.762 3.209 0.95 33.414 0.282 

Ours 3 0 . 322 3.318 0 . 816 3.780 0 . 94 20 . 455 0 . 298 0.773 3.216 0 . 96 19 . 628 0.251 

Real Data – 1.000 3.890 1.000 3.706 1.00 4.854 0.000 1.000 4.053 1.00 7.785 0.000 

8 
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Fig. 9. Results obtained on cases of large pose transform. The scaled cosine distances between source and target poses are greater than 0.7. 

t

a

t

t

f

P

W

v

o  

W

X

t

T

f

t

s

n

e

b

X

c

o

Comparison of model sizes and inference speeds Table 3 reports 

he GPU running time of a single block, the encoder, the decoder, 

nd the whole network of our approah, PATN and XingGAN ob- 

ained via Pytorch Profiler. We can see our single block is slower 

han those of PATN and XingGAN. But our overall network is the 

astest because it contains only 3 blocks instead of 9 blocks in 

ATN and XingGAN, and our encoder and decoder are the fastest. 

e also measure the overall inference speeds of these networks 

ia timer functions (put before and after the networks) instead 

f the profiling tool. The results are shown in Table 2 and Fig. 1 .

e can see that our network is significantly faster than PATN and 

ingGAN, and its model size is much smaller. It is worth noting 
9 
he inference speeds of all networks in Table 3 measured by Py- 

orch Profiler are slower than those in Table 2 measured via timer 

unctions through all other settings are the same. This is because 

he profiling tool brings extra overhead; GPU running time mea- 

ured via timer functions more accurately reflects the speed of a 

etwork in practice. 

Fig. 7 provides detailed comparison of running time cost by 

ach operation in a CAT-block, a XingGAN-block, and a PATB (a 

lock of PATN). It indicates a CAT-block is slower than a PATB and a 

ingGAN-block mainly because it spends more time on computing 

onvolution and matrix multiplication. The convolution is the core 

peration in our multi-scale context module to access rich context 
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Fig. 10. Visualization of correspondence map in each CAT-block. 

Table 2 

Comparison of model sizes and inference speeds on DeepFashion. ( ∗) denotes the 
results reproduced by us using the code released by the authors. 

Method #Parameters Speed 

PG2 [34] 437.09 M 10.36 fps 

Deform [13] 82.08 M 17.74 fps 

VUNet [36] 139.36 M 29.37 fps 

PATN ∗ [2] 41.36 M 57.38 fps 

XingGAN ∗ [16] 44.85 M 46.59 fps 

Ours 29.13 M 104.89 fps 

Table 3 

We use Pytorch Profiler to obtain the GPU running time ( μs) comparison among 

a single block, the encoder, the decoder and the whole network of PATN, XingGAN 

and our approach. The results are collected on the same image from DeepFashion. 

“The First Block” means we obtain the GPU running time of the first building block 

of a network, i.e., a CAT-block, a XingGAN-block or a PATB. Note the profiling tool 

brings extra overhead and increases the running time. 

Methods The first block Encoder Decoder Overall 

PATN 2777.46 5902.48 3288.63 38631.67 

XingGAN 3312.99 3522.05 10320.68 51124.76 

Ours 5384.73 3262.31 2555.53 24213.10 
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10 
nd even a global view of the scene to address the difficulty of 

cclusion; the matrix multiplication is the core operation in our 

ppearance transfer module to calculate the correspondence map 

etween the source and target streams. However, our model only 

ses 3 CAT-blocks while XingGAN and PATN both use 9 blocks. 

verall, our model uses fewer parameters and runs much faster 

han XingGAN and PATN. 

.2. Ablation study 

In this section, we perform ablation studies to analyze the im- 

act of each component in our model on performance. We conduct 

xtensive ablation studies on Market-1501 datasets to evaluate dif- 

erent components of our network. 

Effect of each module The results of the ablation study are 

hown in Table 4 . The SSIM score compares the first-order and 

econd-order statistics between patches in two images to measure 

heir local structure similarity. The IS score uses a pre-trained im- 

ge classifier to evaluate the quality of a generated image from 

he semantic perspective. It is worth noting the Mask-IS scores of 

ll four methods in this table are higher than that of the ground 

ruth. This means all these methods perform as well as the ground 

ruth under this metric, and the Mask-IS scores have been satu- 
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Fig. 11. Columns 1 and 3: the output target person images. Columns 2 and 4: the input person images. After selecting the shoulder location of the target feature map, we 

visualize which part of the source feature map is involved in the appearance transfer according to the correspondence map of the first CAT-block. 
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ated. Thus, we will focus on the performance comparison under 

he other three metrics below. 

The AT module consistently improves the baseline under all 

hree unsaturated metrics, i.e., SSIM, IS and Mask-SSIM. This means 

he AT module helps generate more realistic images from both the 

tructure and semantic perspectives, thanks to its capability to find 
11 
he dense correspondence between the source and target feature 

aps, and transfer the appearance information from the source 

tream to the target stream. The MC module increases the IS score 

f the baseline significantly. This means it helps generate images 

ore like persons due to the multi-scale context modeling. Mean- 

hile, it achieves comparable performance with the baseline un- 
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Table 4 

Ablation study on the appearance transfer (AT) module and the multi-scale context 

(MC) module. The highest score and the second highest score under each metric 

are highlighted. Note the Mask-IS scores of all four methods are higher than that 

of the ground truth real data. This means all these methods perform as well as the 

ground truth under this metric, and the Mask-IS scores have been saturated. 

Method Market-1501 

SSIM IS Mask-SSIM Mask-IS 

Baseline 0.308 3.245 0.803 3.783 

+ AT 0.315 3.301 0.811 3.775 

+ MC 0.307 3 . 370 0.810 3.751 

+ AT + MC 0 . 322 3.318 0 . 816 3.780 

Real Data 1.000 3.890 1.000 3.706 

Table 5 

Ablation study on the number of CAT-blocks. 

#CAT-blocks Market-1501 

SSIM IS Mask-SSIM Mask-IS 

1 0.281 3 . 879 0.798 3.676 

3 0 . 322 3.318 0 . 816 3 . 780 

5 0.317 3.285 0.815 3.757 
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Table 6 

Experiments on three subsets of testing cases obtained by setting different thresh- 

olds of scaled cosine distances between the source and target poses. The higher the 

threshold, the larger the pose transform. SSIM scores are reported. The baseline is 

constructed by removing the appearance transfer module and multi-scale context 

module from our network. 

Threshold 0.7 0.5 0.3 

Baseline 0.243 0.273 0.296 

PATN [2] 0.234 0.261 0.276 

XingGAN [16] 0.256 0.282 0.298 

Ours 0 . 263 0 . 294 0 . 314 

n
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er the SSIM metric and better performance under the Mask-SSIM 

etric. Our full model combines the AT module and MC module. 

t consistently outperforms the baseline under all three unsatu- 

ated metrics, and achieves the overall best performance among 

ll methods. Concretely, the SSIM, IS and Mask-SSIM scores of the 

aseline are increased from 0.308, 3.245 and 0.803 to 0.322, 3.318 

nd 0.816, respectively. 

Fig. 8 shows qualitative comparison of these ablation models. 

e have the following observations. (1) Compared with the base- 

ine, the AT module alone helps generate cleaner images and more 

onsistent appearance with the target, but it does not improve ob- 

iously on texture generation. (2) Compared with the baseline, the 

C module alone helps generate more detailed texture, but some- 

imes too much texture is generated. (3) The full model combines 

he advantages of the AT module and the MC module, and avoids 

heir respective limitations. Overall, it generates images with the 

ost realistic texture and the most consistent foreground and 

ackground appearance with the target. 

In addition, as we will show in Section 4.3 , our full model 

chieves significant improvement over the baseline and state-of- 

rt methods in the challenging scenario of large pose transform. 

Effect of the number of CAT-blocks To further analyze the gener- 

tion process, we conduct experiments by setting the number of 

AT-blocks to 1, 3, 5, respectively. Quantitative and qualitative re- 

ults are respectively shown in Table 5 and Fig. 8 . We observe that

he proposed generator works best and efficiently when it consists 

f 3 CAT-blocks. Increasing or decreasing the number of CAT-blocks 

ay result in slightly worse quantitative and qualitative perfor- 

ance. Based on these observations and the visualization of cor- 

espondence maps in three blocks in Fig. 10 , we find our network 

an achieve the pose transfer progressively. When there is only 

ne CAT-block, the network starts to learn the correspondence be- 

ween the source and target, but the network has not established 

 complete correspondence. This is why the results with only one 

AT-block network are not good enough. The correspondences of 

ore regions are learned in the second CAT-block, where these re- 

ions finish the appearance transfer procedure. In the third block, 

he correspondences of only fewer features need to be established 

or appearance transfer. In sum, 3 CAT-blocks enable the generator 

o transfer the necessary appearance information from the source 

tream to the target stream to generate the desired person image. 

owever, it is worth noting that using 5 CAT-blocks still generates 

igh-quality images, but the number of parameters increases sig- 
12 
ificantly, and the inference is much slower. Therefore, we have 

sed 3 CAT-blocks as the default setting in all experiments. 

.3. Experiment on large pose transform 

This experiment means to verify whether the proposed ap- 

roach can effectively handle large pose transform. It is the ma- 

or challenge in the task of person image generation because it 

auses large motion and severe occlusions. We measure the degree 

f pose transform by calculating the cosine distance between the 

ource and target pose vectors. It is defined as 1 − u T v / (‖ u ‖ 2 ‖ v ‖ 2 )
or two vectors u and v . Among all testing cases in the Market- 

501 dataset, the maximum distance is 0.9623, and the minimum 

istance is 0.141. We linearly scale all distances so that the scaled 

aximum and minimum distances are 1 and 0, respectively. Then 

e create three subsets of testing cases by setting thresholds of 

he scaled distance to be 0.3, 0.5, 0.7, respectively. Note the higher 

he threshold, the larger the pose transform. The SSIM scores ob- 

ained by different approaches are shown in Table 6 . Qualitative re- 

ults are shown in Fig. 9 . We observe that the proposed networks 

chieves the best performance on cases of large pose transform. 

.4. Visualization of the correspondence map 

Fig. 10 visualizes the correspondence map in each CAT-block. 

e can interpret the i th row of a correspondence map as a prob- 

bility distribution of each element in the source feature map 

atching the i th element in the target feature map. To gain 

ore insights about how the proposed appearance transfer mod- 

le works, we visualize which areas of the source feature map are 

nvolved to produce a feature vector in the target feature map in 

ig. 11 . We identify the location in the target feature map corre- 

ponding to a shoulder and visualize which part of the source fea- 

ure map the network is paying attention to by reshaping the cor- 

esponding row in the correspondence map of the first CAT-block. 

s visualized in the attention maps in Fig. 11 , the areas of the 

ource feature map that are involved in the appearance transfer 

elong to the same semantic part as the selected target location. 

his visualization experiment verifies that our proposed method 

an find meaningful correspondences between the source stream 

nd target stream (like flow-based methods) to transfer the ap- 

earance information from the source image to the target image. 

.5. Failure cases analysis 

Fig. 12 illustrates failure cases obtained by our method. We also 

nclude images generated by some states of the art. Our results are 

mperfect in some significant challenging scenarios. For example, 

n the first two rows of Fig. 12 , the target poses miss a few body

oints in the lower body, which makes all models confusing. As a 

esult, the output images miss some texture details in the corre- 

ponding areas. The case in the third row is tough because the 

ose transform is large and the source image lacks texture infor- 

ation in the man’s backpack. So the bag in the output image con- 
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Fig. 12. Failure cases on Market-1501. 
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ains mixed color artifacts. In the last row, the umbrella is occluded 

n the source image, making the generation of it in the target im- 

ge difficult and causing some artifacts. 

. Conclusion 

This paper introduces a novel two-stream context-aware ap- 

earance transfer network for person image generation. It fea- 

ures an appearance transfer module to handle large motion and a 

ulti-scale context module to handle occlusion. Experimental re- 

ults show that our network is both effective and efficient. It has a 

reat advantage on cases of large pose transform. 
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