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ABSTRACT

Pose guided person image generation means to generate a photo-realistic person image conditioned on
an input person image and a desired pose. This task requires spatial manipulation of the source image
according to the target pose. However, convolutional neural networks (CNNs) are inherently limited to ge-
ometric transformations due to the fixed geometric structures in their building modules, i.e., convolution,
pooling and unpooling, which cannot handle large motion and occlusions caused by large pose trans-
form. This paper introduces a novel two-stream context-aware appearance transfer network to address
these challenges. It is a three-stage architecture consisting of a source stream and a target stream. Each
stage features an appearance transfer module, a multi-scale context module and two-stream feature fu-
sion modules. The appearance transfer module handles large motion by finding the dense correspondence
between the two-stream feature maps and then transferring the appearance information from the source
stream to the target stream. The multi-scale context module handles occlusion via contextual modeling,
which is achieved by atrous convolutions of different sampling rates. Both quantitative and qualitative
results indicate the proposed network can effectively handle challenging cases of large pose transform
while retaining the appearance details. Compared with state-of-the-art approaches, it achieves compara-

ble or superior performance using much fewer parameters while being significantly faster.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Pose guided person image generation aims to transform a per-
son image from a source pose to a target pose while retaining the
appearance details. It serves as a fundamental tool for several prac-
tical applications such as image editing, video generation and data
augmentation for person re-identification and action recognition
[1-3]. This task is very challenging especially in case of large mo-
tion, occlusion and complex texture.

Convolutional neural networks (CNNs) [4] and their variants
[5,6], trained in an adversarial fashion [7], have been widely used
for image generation and translation [8-12]. However, since CNNs
are composed of spatially local and translation equivariant oper-
ators, i.e., convolution, pooling and unpooling, they do not have
an explicit mechanism to handle articulated body deformation.
To resolve this difficult issue, two strategies have been adopted
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in prior person image generation approaches, i.e., parametric ge-
ometric transformation and nonparametric dense flow. For exam-
ple, Siarohin et al. [13] apply an affine transformation to the fea-
tures of each body part region to deal with pixel-to-pixel misalign-
ment caused by the pose difference. However, it cannot handle oc-
clusion or out-of-plane rotation well. Some methods [14,15] pre-
dict the dense flow field between the source and target images
and apply it to warp the feature maps. However, since the flow
is predicted via a CNN, it cannot account for large or non-local
motion.

Large motion and occlusion still remain the two greatest chal-
lenges in person image generation. In addition, recent approaches
have to use a very deep network, i.e., consisting of nine sophis-
ticated blocks [2,16] to handle these difficulties. This unavoidably
increases the model size and computational complexity.

This paper introduces a novel two-stream context-aware ap-
pearance transfer network to explicitly address the aforementioned
challenges. As illustrated in Fig. 2, the network is a three-stage ar-
chitecture consisting of a source stream and a target stream. The
two streams respectively take as input the source pose and im-
age, and the target pose. Each stage consists of a novel appearance
transfer module, a multi-scale context module and two-stream fea-
ture fusion modules.
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The appearance transfer module is designed to address the dif-
ficulty of large meotion. It finds the dense correspondence be-
tween the two-stream feature maps and then transfers the appear-
ance information from the source stream to the target stream. Un-
like the parametric geometric transformation or the nonparametric
flow field, our appearance transfer module is inspired by the self-
attention [17] and performs a query-and-transfer procedure. But
different with the self-attention, the queries, keys and values in
our module have explicit semantic meaning, and they are specially
designed for pose-guided appearance transfer. Specifically, the fea-
ture vector at each spatial location in the target stream is taken as
a query to match the key feature vectors in the source stream so
that the corresponding appearance values in the source stream can
be transferred to the desired location in the target stream.

The multi-scale context module is designed to address the dif-
ficulty of occlusion. Occlusion makes some visible content in the
target image invisible in the source image. To help the target
stream recover occluded pixels, it is necessary to give the network
access to rich context and even a global view of the scene. For ex-
ample, when an arm of a person is occluded, we can imagine what
it looks like by checking the other arm of this person. When both
arms are occluded, we need to understand the high-level clothing
style, e.g., a suit or a set of sportswear, to reconstruct the miss-
ing information. This line of analysis motivates us to build a multi-
scale context module based on the atrous spatial pyramid pool-
ing (ASPP) [18], which was originally designed for image segmen-
tation [19,20]. It aggregates multi-scale context via atrous convo-
lutions with different sampling rates. Finally, the two-stream fea-
ture fusion modules allow local information exchange between the
two streams to supplement the non-local appearance transfer and
multi-scale context modeling.

Ablation study indicates that the proposed approach can effec-
tively handle large pose transform, and improve the quality of the
generated person images. Experimental results on two benchmark
datasets, i.e.,, Market-1501 [21] and DeepFashion [22], show that
compared with state-of-the-art methods, our approach achieves
comparable or superior performance with a much smaller model
size and a significantly higher inference speed. An SSIM-FPS-
Parameters trade-off plot on the DeepFashion dataset is shown in
Fig. 1.

The contributions of this paper are summarized below.

We introduce a novel two-stream context-aware appearance
transfer network for efficient person image generation. It pro-
gressively transfers the appearance from the source stream to
the target stream guided by their dense spatial correspondence
and multi-scale context.

The proposed appearance transfer module is the first of its
kind to use the target stream to query and transfer the source
stream. It effectively handles the difficulty of large motion.

The proposed multi-scale context module is the first attempt
to apply atrous convolutions for contextual modeling in per-
son image generation. Multi-scale context helps the network re-
cover occluded pixels.

Compared with state-of-the-art methods, our network achieves
comparable or superior performance using much fewer param-
eters while being significantly faster. We also show our network
has a great advantage when large pose transform occurs.

2. Related work
2.1. Image generation
Image generation is a basic task in computer vision. Most re-

cently, Generative Adversarial Networks [7]| based methods have
been widely used for synthesizing realistic images and achieved
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good performance in various tasks, i.e., image-to-image translation
[8,11,23-25], text-to-image translation [26-28] and image in paint-
ing [29,30]. Most image-to-image translation models are based on
Conditional Generative Adversarial Networks(CGANs) [12] because
it can achieved remarkable success in pixel-wise aligned image
generation problems. However, pixel-wise alignment is not suitable
for pose transfer due to the pose deformation.

The CocosNet introduced by Zhang et al. [31] is very related
to our appearance transfer module. It translates the image via the
dense correspondence between conditioned input and a given style
exemplar, and the correspondence map is computed in a simi-
lar way as ours. However, our approach differs from CocosNet in
several aspects. First, CocosNet is inspired by the correspondence
layer proposed in Zhang et al. [32] and uses the correspondence
map to warp the exemplar image. By contrast, our network is in-
spired by the self-attention mechanism [17]; it maintains two fea-
ture streams and employs the correspondence map to progres-
sively transfer the appearance information from the source feature
stream to the target feature stream. The different sources of in-
spiration also make the calculations of the correspondence map
before the softmax normalization different: cosine similarity be-
tween two feature vectors with mean removed in Zhang et al.
[32] versus inner product between unnormalized feature vectors
in the self-attention. Second, CocosNet injects the warped exem-
plar image into the translation network through positional normal-
ization and spatially-variant denormalization (SPADE) [33] to pro-
duce the translated image. By contrast, we directly feed the fea-
ture map from the target stream into the decoder to generate our
final results. Third, CocosNet has only one correspondence learning
module to warp the exemplar image while we find it beneficial to
stack multiple appearance transfer modules to progressively trans-
fer the appearance information from the source stream to the tar-
get stream. In addition, our network includes a multi-scale context
module, which is the first attempt to apply atrous convolutions for
contextual modeling in person image generation.

2.2. Person image generation

The task of pose guided person image generation was first in-
troduced by Ma et al. [34]. Their two-stage network first generates
a coarse target image and then refines it in an adversarial way. Ma
et al. [35] disentangle the foreground, background and pose infor-
mation, and then manipulate them to get the desired pose. The
controllability of the generation process is improved, but the qual-
ity of the generated image is reduced. Esser et al. [36] combine
VAE [37] and U-Net [8] to distinguish the appearance and pose of
a person image. However, it is difficult to represent the appearance
features as a low-dimension underlying code, which unavoidably
loses information. Siarohin et al. [13] introduce deformable skip
connections to transform the texture spatially. It uses a set of local
affine transformations to decompose the overall articulated body
deformation. However, it cannot handle occlusion or out-of-plane
rotation well. The pose attention transfer network (PATN) [2] con-
sists of an image stream and a pose stream, and it uses an atten-
tion mask to enhance the feature maps. However, it only processes
features locally, and there is no explicit geometric manipulation or
appearance transfer of the source image.

Most recently, Tang et al. [38] propose a cycle-in-cycle GAN,
which is a cross-modal framework exploring joint exploitation of
the keypoints and the image data in an interactive manner. Ren
et al. [39] introduce a differentiable global-flow local-attention
framework to reassemble the inputs at the feature level. Men et al.
[40] propose the attribute-decomposed GAN, which means to em-
bed human attributes into the latent space as independent codes
and thus achieve flexible and continuous control of attributes via
mixing and interpolation operations in explicit style representa-
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Fig. 1. Comparison with recent state-of-the-art approaches on the DeepFashion dataset. Our approach (purple) achieves superior quality, and is much more efficient. The
results of PATN [2] and XingGAN [16] are reproduced by us. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 2. An overview of the proposed network architecture. It is a three-stage architecture consisting of two streams. The target and source streams respectively take as
input the target pose, and the source pose and image, and pass them through convolutional encoders. Each stage is a context-aware appearance transfer block (CAT-block).
It consists of an appearance transfer module, a multi-scale context module and two-stream feature fusion modules. The target feature map from the last CAT-block passes
through a convolutional decoder to generate a new person image with the same appearance as the source image but in the target pose.

tions. Huang et al. [41] introduce an appearance-aware pose styl-
izer, which generates human images by coupling the target pose
with the conditioned person appearance progressively. Lathuiliere
et al. [42] employ the local attention mechanism to select rele-
vant information from multi-source human images for human im-
age generation. RATE-Net [43] leverages an additional texture en-
hancing module to extract appearance information from the source
image and estimate a fine-grained residual texture map. This helps
refine the coarse estimation from the pose transfer module. Gao
et al. [44] propose a portrait photo recapture system with two
modules that complement each other from both intra-part and
inter-part perspectives to easily transform their portraits to the de-
sired posture.

The work most related to ours is the XingGAN recently in-
troduced by Tang et al. [16]. It uses the self-attention to achieve
bidirectional non-local communication between features of source

and target poses and features of the source image. Our approach
is different from XingGAN. We find the dense spatial correspon-
dence between the source stream and target stream (like flow-
based methods) to transfer the appearance information from the
source image to the target image. It is a unidirectional process with
explicit semantic meaning and well aligned with the task of per-
son image generation. By contrast, XingGAN iteratively updates the
shape and appearance embeddings in a non-local manner. It does
not compute the correspondence between the source image/pose
and the target one, nor does it perform any explicit appearance
transfer between them. In addition, we model multi-scale context,
which XingGAN ignores. Since our network is explicitly designed
to handle large motion and occlusion, it not only generates higher-
quality person images in case of large pose transform but also has
a much smaller model size and a significantly higher inference
speed.
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Several approaches adopt DensePose [45], 3D pose [46], or hu-
man parsing [47] to generate person images since they contain
more information, e.g., the body part segmentation or depth. How-
ever, the keypoint-based pose representation is much cheaper to
obtain and more flexible. Therefore, we prefer to use a keypoint-
based representation.

2.3. Self-attention

The self-attention [48,49] was first introduced for natural lan-
guage processing. It calculates the response of a certain posi-
tion in the sequence by paying attention to all positions in the
same sequence. Vaswan et al. [17] prove that the machine transla-
tion model could obtain the state-of-the-art results using the self-
attention. Parmar et al. [50] introduce an image transformer model
that adds the self-attention to an automatic regression model for
image generation. Wang et al. [51] formulate the self-attention as
a non-local operation to model the spatial-temporal dependencies
in video sequences. Liu et al. [52] propose a Dual Self-Attention
with Co-Attention networks to model the internal dependencies
of both the spatial and sequential structure respectively by using
the self-attention mechanism. Wei et al. [53] propose an attention-
based model (called position-aware self-attention) as well as a
well-designed self-attentional context fusion layer within a neu-
ral network architecture, to explore the positional information of
an input sequence for capturing the latent relations among tokens.
Zhang et al. [54] propose a self-attention GAN enforcing the gen-
erator to gradually consider non-local relationships in the feature
space. It can learn to find long-range dependencies within internal
representations of images.

Although our appearance transfer module is inspired by the
self-attention, they are significantly different. The queries, keys and
values in our network are specially designed for pose-guided ap-
pearance transfer, and they are semantically different. By contrast,
these items in the self-attention are obtained from the same in-
put. As a result, the self-attention models the non-local relations
within a single feature map while our network finds the spatial
correspondence between the source stream and the target stream
to perform appearance transfer.

3. Our approach
3.1. Overview

As illustrated in Fig. 2, our network is a three-stage architecture
consisting of two streams. The input of the target stream is the
target pose P;. The input of the source stream is the concatenation
of the source pose Ps and the source image Is. Both source and
target poses are represented as keypoint heatmaps. The output of
the network is a generated target image I; containing the same
person as the source image Is but in the target pose P;.

The network first uses two encoders to produce initial feature
maps for the two streams. Each encoder consists of two down-
sampling convolutional layers, and they do not share weights. The
initial source features contain both appearance and structure in-
formation while the initial target features contain only structure
information. Then, a cascade of three context-aware appearance
transfer blocks (CAT-blocks) progressively transfer the appearance
from the source stream to the target stream guided by the struc-
ture information and multi-scale context. All CAT-blocks have the
same architecture but do not share weights. Finally, the target fea-
ture map from the last CAT-block passes through a decoder to gen-
erate the target image. The decoder consists of two deconvolu-
tional layers. We will detail the CAT-block in Section 3.2 and the
loss function in Section 3.3.
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3.2. Context-aware appearance transfer block

As shown in Fig. 2, a context-aware appearance transfer block
(CAT-block) takes as input the two-stream feature maps Fs e
REH<W and F, € ROH*W gbtained from the previous block or the
encoder and outputs their updated feature maps F, € R&H*W and
F, e R&H*W Here C, H and W respectively denote the channels,
height and width of a feature map, and the subscripts s and t re-
spectively indicate the source and target streams. A CAT-block con-
sists of an appearance transfer module, a multi-scale context mod-
ule and two-stream feature fusion modules, which are detailed be-
low. Unless otherwise specified, the kernel size of a convolutional
layer is set to 3 x 3.

Appearance transfer module The pipeline of an appearance trans-
fer module is illustrated in Fig. 3. We first pass the two-stream
feature maps Fs and F; through convolutions and reshape the re-
sults as S € R&HW and T € ROHW | respectively. Then we feed them
into 1 x 1 convolution layers (implemented as matrix multiplica-

tions) to produce three matrices K e ROHW v e ROHW and Q e
RCXHW:

K=W,S )]
V=W,S (2)
Q=W,T (3)

where W, W e REXC, W, € RE<C are learnable weight matrices.
We set C=C/8, € =C/2 for memory efficiency, and it does not
cause a significant performance drop. Each column of K, V or Q
is a key, a value or a query respectively. Our appearance transfer
module means to match (target) queries to the (source) keys and
then use the correspondence to transfer the relevant (source) val-
ues from the source stream to the target stream.

To achieve this goal, we first obtain a correspondence map D e
RHW>HW by applying a softmax normalization to each row of Q'K:

exp(QTK;
Dij = HWp(Ql ]T) (4)
=1 exp(Q/K;)
where Dj; is the (i, j)th element of D, Q; is the ith column of Q, K;
is the jth column of K. D;; is a soft correspondence score between
the ith query, i.e., the ith position in the target feature map, and
the jth key, i.e., the jth position in the source feature map. We
can interpret the ith row of D as a probability distribution of each
key matching the ith query. The correspondence map serves as the
basis of appearance transfer.

Then we retrieve the value for the ith query as a linear combi-
nation of the columns of V weighted by the ith row of D. A matrix
W, € RE<C is multiplied to the retrieved values to increase their
dimension:

A = W,VD’ (5)

where A € RO*HW js the appearance information to be transferred
from the source stream to the target stream. During the query-
and-transfer process, the source appearance is aligned with the tar-
get pose. Since the alignment is non-local, our appearance transfer
module can handle large motion.

After a scaled residual connection A’ = oA +T (o is a learnable
scalar) and a subsequent convolutional layer, the appearance trans-
fer module outputs a feature map whose shape is C x H x W.

Multi-scale context module Not all content of the target image
can be found in the source image because of occlusion. To help the
target stream recover occluded pixels, it is necessary to give the
network access to richer context and even a global view of both
streams.
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Fig. 3. Illustration of the proposed appearance transfer module. It calculates the correspondence between the feature vector at each location in the target stream and the
feature vector at each location in the source stream. Then the correspondence is used to transfer the appearance information from the source stream to the target stream.
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Fig. 4. Illustration of the multi-scale context module.

To this end, we build a multi-scale context module based on
the atrous spatial pyramid pooling (ASPP) [18] widely used in im-
age segmentation. Its pipeline is illustrated in Fig. 4. We first con-
catenate the two-stream feature maps Fs; and F;, and pass them
through several parallel atrous convolutions with different sam-
pling rates r = 1, 2, 4, 8, respectively:

H; = AstrousConv; (Concat(F;, F;)) (6)

where AstrousConv; is the atrous convolution with a sampling rate
r. Then we concatenate the output feature maps enriched with dif-
ferent scales of context {H;} and pass them through a convolu-
tional layer.

H = Conv(Concat({H,}) (7)

where H e R&H*W s the output of the multi-scale context mod-
ule.

Two-stream feature fusion modules As shown in Fig. 2, the fea-
tures in the target stream are updated by fusing the features in
the source stream, the transferred appearance and multi-scale con-
text. The features in the source stream are updated by fusing the
new target features. We find that a simple fusion module com-
posed of a concatenation operation and a subsequent convolutional

layer (output channels set to C) works well. The two-stream fea-
ture fusion modules are important as they allow local information
exchange between the two streams, which supplements the non-
local appearance transfer and multi-scale context modeling.

3.3. Loss function

The full loss function is:

L =arg mcin mgx oglean +01Lq + ozp[:p (8)

where Lgan, £1 and £p respectively denote the adversarial loss, the
¢1-norm loss and the perceptual loss, and o, o and o) repre-
sent their respective weights. £; calculates the ¢;-norm distance
between the generated image I; and the ground truth target image
Ig: ¢4 = ||Ig — I||1. The perceptual loss £, has been widely used
for image generation and translation [9,10,13,36] as it helps gener-
ate more realistic and smoother images. It is defined as:

1
Epzm||¢p(lgt)_¢p(lt)”1 (9)

where ¢, is the output of the convl_2 layer from the VGG-19
model [55] pretrained on ImageNet [56], and W,, H,,C, are the
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width, height and depth of ¢,, respectively. We adopt the adver-
sarial loss introduced in Zhu et al. [2]. It consists of an appearance
discriminator and a shape discriminator to determine the possibil-
ity that the generated image contains the same person in the in-
put image and the degree to which the generated image is aligned
with the target pose.

4. Experiment

Datasets We use two challenging person image datasets:
Market-1501 [21] and DeepFashion [22]. The resolution of images
in DeepFashion is higher (256 x 256) than that in Market-1501
(128 x 64). We employ OpenPose [58] to detect human body joints.
Both the source and target poses consist of an 18-channel heatmap
encoding the positions of 18 human body joints. There are 263,632
pairs of training images in Market-1501, and 101,966 pairs in Deep-
Fashion. Their testing sets contain 12,000 pairs and 8570 pairs,
respectively. Note the person identities of the training set do not
overlap with those of the testing set.

Evaluation metrics We follow [2,13,34] and adopt Structure Sim-
ilarity (SSIM) [59], Inception Score (IS) [60], and their masked ver-
sions, i.e.,, Mask-SSIM and Mask-IS, as the evaluation metrics. We
also use other common metrics such as Learned Perceptual Image
Patch Similarity (LPIPS) [61] and Fréchet Inception Distance (FID)
[62]. LPIPS and FID calculate the perceptual distance between the
generated images and ground truth images in the feature space

Target

XingGAN

3

~I
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w.r.t. each pair of samples and the global distribution, respectively.
Moreover, we adopt the PCKh score proposed in Zhu et al. [2] to
assess the shape consistency.

Implementation details Our method is implemented in PyTorch
using two NVIDIA GeForce RTX 2080 Ti GPUs. The Adam optimizer
[63] is adopted to train the proposed model for around 90k it-
erations with f; =0.5, B, =0.999. The learning rate is fixed as
0.0001 in the first 60k iterations and then linearly decayed to 0
in the last 30k iterations. We use 3 CAT-blocks in the generator for
both datasets. For the hyper-parameters, (o, o1, @p) are set as (5,
1, 1) for DeepFashion and (5, 4, 4) for Market-1501, respectively.
Instance normalization [64] is applied for both datasets. The batch
size is set as 7 for DeepFashion and 32 for Market-1501. Dropout
[65] is only used in the CAT-blocks, and the dropout rate is set
to 0.5. Leaky ReLU [66] is applied after every convolution or nor-
malization layer in the discriminators, and its negative slope coef-
ficient is set to 0.2.

4.1. Comparison with state-of-the-art methods

Quantitative and qualitative results We compare the proposed
network with several state-of-the-art methods such as DPIG [35],
VUnet [36], Deform [13], PATN [2], BTF [57], C2GAN [38], ADG [40],
XingGAN [16] and APS [41]. Table 1 shows the quantitative results
measured by SSIM, IS, Mask-SSIM, Mask-IS, and PCKh metrics. Our
network achieves the best performance under most metrics on the

PATN

-

K,
-l

Ours

Deform

P
-

Fig. 5. Qualitative comparison on Market-1501.
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Fig. 7. We use PyTorch Profiler to obtain the GPU running time (us) of each operation in a CAT-block, a XingGAN-block and a PATB. The PATB is a building block of
PATN. The results are collected on the same image from DeepFashion. Conv2d, BN, Mul, Cat, Matmul, Pooling, and Upsampling represent convolution, batch normalization,
multiplication, concatenation, matrix multiplication, average pooling and bi-linear upsampling, respectively.

two datasets. Figs. 5 and 6 show that the appearance or texture
generated by the proposed method is more consistent and appeal-
ing than the others.

User study We conducted user study with 30 volunteers to give
an instant judgment (real/fake) about each image within a sec-
ond. R2G means the percentage of real images rated as gener-

ated w.r.t. all real images. G2R means the percentage of gener-
ated images rated as real w.rt. all generated images. Our R2G
and G2R scores are respectively 42.32 and 75.68. By contrast,
the two scores of PATN are respectively 32.23 and 63.47. These
results indicate the images generated by our network are more
realistic.
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Source Target 1blk 3blks 5blks Baseline AT+ MC+

Baseline  Baseline

Fig. 8. Ablation study of our network on Market-1501. Columns 1 and 2: input and ground truth output and their pose maps. Columns 3-5: ablation study on the number
of CAT-blocks of our full network. Columns 6-8: ablation study on effectiveness of the appearance transfer module (AT) and the multi-scale context module (MC).

Table 1
Quantitative results on Market-1501 and DeepFashion. (x) denotes the results reproduced by us using the code released by the authors. For SSIM, IS, Mask-SSIM, Mash-IS
and PCKh, higher values indicate better performance. For FID and LPIPS, lower values indicate better performance.

Method #Blocks Market-1501 DeepFashion

SSIM IS Mask-SSIM Mask-IS PCKh FID LPIPS SSIM IS PCKh FID LPIPS
DPIG [35] - 0.099 3.483 0.614 3.491 - - - 0.614 3.228 - - -
VUNet [36] - 0.266 2.965 0.793 3.549 0.92 21.214 0.321 0.763 3.440 0.93 23.836 0.264
Deform [13] - 0.290 3.185 0.805 3.502 - 29.035 0.299 0.756 3.439 - 26.283 0.233
PATN [2] 9 0.311 3.323 0.811 3.773 0.94 - - 0.773 3.209 0.96 - -
BFT [57] - - - - - - - - 0.767 3.220 - - -
C2GAN [38] - 0.282 3.349 0.811 3.510 - - - - - - - -
ADG [40] - - - - - - - - 0.772 3.364 - - -
APS [41] - 0.312 3.132 0.808 3.729 0.94 - - 0.775 3.295 0.96 - -
XingGAN [16] 9 0.313 3.506 0.816 3.872 0.93 - - 0.778 3.476 0.95 - -
PATN* [2] 9 0.301 3.344 0.805 3.773 0.94 22.657 0.319 0.767 3.209 0.96 21.563 0.249
XingGAN* [16] 9 0.305 3.425 0.806 3.883 0.93 22.307 0.302 0.762 3.209 0.95 33414 0.282
Ours 3 0.322 3.318 0.816 3.780 0.94 20.455 0.298 0.773 3.216 0.96 19.628 0.251
Real Data - 1.000 3.890 1.000 3.706 1.00 4.854 0.000 1.000 4.053 1.00 7.785 0.000
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Fig. 9. Results obtained on cases of large pose transform. The scaled cosine distances between source and target poses are greater than 0.7.

Comparison of model sizes and inference speeds Table 3 reports
the GPU running time of a single block, the encoder, the decoder,
and the whole network of our approah, PATN and XingGAN ob-
tained via Pytorch Profiler. We can see our single block is slower
than those of PATN and XingGAN. But our overall network is the
fastest because it contains only 3 blocks instead of 9 blocks in
PATN and XingGAN, and our encoder and decoder are the fastest.
We also measure the overall inference speeds of these networks
via timer functions (put before and after the networks) instead
of the profiling tool. The results are shown in Table 2 and Fig. 1.
We can see that our network is significantly faster than PATN and
XingGAN, and its model size is much smaller. It is worth noting

the inference speeds of all networks in Table 3 measured by Py-
Torch Profiler are slower than those in Table 2 measured via timer
functions through all other settings are the same. This is because
the profiling tool brings extra overhead; GPU running time mea-
sured via timer functions more accurately reflects the speed of a
network in practice.

Fig. 7 provides detailed comparison of running time cost by
each operation in a CAT-block, a XingGAN-block, and a PATB (a
block of PATN). It indicates a CAT-block is slower than a PATB and a
XingGAN-block mainly because it spends more time on computing
convolution and matrix multiplication. The convolution is the core
operation in our multi-scale context module to access rich context
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Fig. 10. Visualization of correspondence map in each CAT-block.

Table 2
Comparison of model sizes and inference speeds on DeepFashion. (x) denotes the
results reproduced by us using the code released by the authors.

Method #Parameters Speed

PG2 [34] 437.09 M 10.36 fps
Deform [13] 82.08 M 17.74 fps
VUNet [36] 139.36 M 29.37 fps
PATN* [2] 4136 M 57.38 fps
XingGAN* [16] 44.85 M 46.59 fps
Ours 29.13 M 104.89 fps

Table 3

We use Pytorch Profiler to obtain the GPU running time (uxs) comparison among
a single block, the encoder, the decoder and the whole network of PATN, XingGAN
and our approach. The results are collected on the same image from DeepFashion.
“The First Block” means we obtain the GPU running time of the first building block
of a network, i.e., a CAT-block, a XingGAN-block or a PATB. Note the profiling tool
brings extra overhead and increases the running time.

Methods The first block Encoder Decoder Overall

PATN 2777.46 5902.48 3288.63 38631.67
XingGAN 3312.99 3522.05 10320.68 51124.76
Ours 5384.73 3262.31 2555.53 24213.10

and even a global view of the scene to address the difficulty of
occlusion; the matrix multiplication is the core operation in our
appearance transfer module to calculate the correspondence map
between the source and target streams. However, our model only
uses 3 CAT-blocks while XingGAN and PATN both use 9 blocks.
Overall, our model uses fewer parameters and runs much faster
than XingGAN and PATN.

4.2. Ablation study

In this section, we perform ablation studies to analyze the im-
pact of each component in our model on performance. We conduct
extensive ablation studies on Market-1501 datasets to evaluate dif-
ferent components of our network.

Effect of each module The results of the ablation study are
shown in Table 4. The SSIM score compares the first-order and
second-order statistics between patches in two images to measure
their local structure similarity. The IS score uses a pre-trained im-
age classifier to evaluate the quality of a generated image from
the semantic perspective. It is worth noting the Mask-IS scores of
all four methods in this table are higher than that of the ground
truth. This means all these methods perform as well as the ground
truth under this metric, and the Mask-IS scores have been satu-
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Fig. 11. Columns 1 and 3: the output target person images. Columns 2 and 4: the input person images. After selecting the shoulder location of the target feature map, we
visualize which part of the source feature map is involved in the appearance transfer according to the correspondence map of the first CAT-block.

rated. Thus, we will focus on the performance comparison under
the other three metrics below.

The AT module consistently improves the baseline under all
three unsaturated metrics, i.e., SSIM, IS and Mask-SSIM. This means
the AT module helps generate more realistic images from both the
structure and semantic perspectives, thanks to its capability to find

1

the dense correspondence between the source and target feature
maps, and transfer the appearance information from the source
stream to the target stream. The MC module increases the IS score
of the baseline significantly. This means it helps generate images
more like persons due to the multi-scale context modeling. Mean-
while, it achieves comparable performance with the baseline un-
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Table 4

Ablation study on the appearance transfer (AT) module and the multi-scale context
(MC) module. The highest score and the second highest score under each metric
are highlighted. Note the Mask-IS scores of all four methods are higher than that
of the ground truth real data. This means all these methods perform as well as the
ground truth under this metric, and the Mask-IS scores have been saturated.
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Table 6

Experiments on three subsets of testing cases obtained by setting different thresh-
olds of scaled cosine distances between the source and target poses. The higher the
threshold, the larger the pose transform. SSIM scores are reported. The baseline is
constructed by removing the appearance transfer module and multi-scale context
module from our network.

Method Market-1501 Threshold 0.7 0.5 03
SSIM IS Mask-SSIM Mask-IS Baseline 0.243 0.273 0.296
Baseline 0.308 3.245 0.803 3.783 ;?ZNGEI\]I (16] g;gg g;g; g;;g
+ AT 0315 3.301 0.811 3.775 Ourgs 0263 0.294 0314
+ MC 0.307 3.370 0.810 3.751 : : :
+ AT + MC 0.322 3.318 0.816 3.780
Real Data 1.000 3.890 1.000 3.706
nificantly, and the inference is much slower. Therefore, we have
Table 5 used 3 CAT-blocks as the default setting in all experiments.
Ablation study on the number of CAT-blocks.
4.3. Experiment on large pose transform
#CAT-blocks Market-1501
SSIM 1S Mask-SSIM Mask-IS This experiment means to verify whether the proposed ap-
1 0.281 3.879 0.798 3.676 proach can effectively handle large pose transform. It is the ma-
0.322 3.318 0.816 3.780 jor challenge in the task of person image generation because it
5 0.317 3.285 0.815 3.757

der the SSIM metric and better performance under the Mask-SSIM
metric. Our full model combines the AT module and MC module.
It consistently outperforms the baseline under all three unsatu-
rated metrics, and achieves the overall best performance among
all methods. Concretely, the SSIM, IS and Mask-SSIM scores of the
baseline are increased from 0.308, 3.245 and 0.803 to 0.322, 3.318
and 0.816, respectively.

Fig. 8 shows qualitative comparison of these ablation models.
We have the following observations. (1) Compared with the base-
line, the AT module alone helps generate cleaner images and more
consistent appearance with the target, but it does not improve ob-
viously on texture generation. (2) Compared with the baseline, the
MC module alone helps generate more detailed texture, but some-
times too much texture is generated. (3) The full model combines
the advantages of the AT module and the MC module, and avoids
their respective limitations. Overall, it generates images with the
most realistic texture and the most consistent foreground and
background appearance with the target.

In addition, as we will show in Section 4.3, our full model
achieves significant improvement over the baseline and state-of-
art methods in the challenging scenario of large pose transform.

Effect of the number of CAT-blocks To further analyze the gener-
ation process, we conduct experiments by setting the number of
CAT-blocks to 1, 3, 5, respectively. Quantitative and qualitative re-
sults are respectively shown in Table 5 and Fig. 8. We observe that
the proposed generator works best and efficiently when it consists
of 3 CAT-blocks. Increasing or decreasing the number of CAT-blocks
may result in slightly worse quantitative and qualitative perfor-
mance. Based on these observations and the visualization of cor-
respondence maps in three blocks in Fig. 10, we find our network
can achieve the pose transfer progressively. When there is only
one CAT-block, the network starts to learn the correspondence be-
tween the source and target, but the network has not established
a complete correspondence. This is why the results with only one
CAT-block network are not good enough. The correspondences of
more regions are learned in the second CAT-block, where these re-
gions finish the appearance transfer procedure. In the third block,
the correspondences of only fewer features need to be established
for appearance transfer. In sum, 3 CAT-blocks enable the generator
to transfer the necessary appearance information from the source
stream to the target stream to generate the desired person image.
However, it is worth noting that using 5 CAT-blocks still generates
high-quality images, but the number of parameters increases sig-
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causes large motion and severe occlusions. We measure the degree
of pose transform by calculating the cosine distance between the
source and target pose vectors. It is defined as 1 — ulv/(|lu||»||v||2)
for two vectors u and v. Among all testing cases in the Market-
1501 dataset, the maximum distance is 0.9623, and the minimum
distance is 0.141. We linearly scale all distances so that the scaled
maximum and minimum distances are 1 and 0, respectively. Then
we create three subsets of testing cases by setting thresholds of
the scaled distance to be 0.3, 0.5, 0.7, respectively. Note the higher
the threshold, the larger the pose transform. The SSIM scores ob-
tained by different approaches are shown in Table 6. Qualitative re-
sults are shown in Fig. 9. We observe that the proposed networks
achieves the best performance on cases of large pose transform.

4.4, Visualization of the correspondence map

Fig. 10 visualizes the correspondence map in each CAT-block.
We can interpret the ith row of a correspondence map as a prob-
ability distribution of each element in the source feature map
matching the ith element in the target feature map. To gain
more insights about how the proposed appearance transfer mod-
ule works, we visualize which areas of the source feature map are
involved to produce a feature vector in the target feature map in
Fig. 11. We identify the location in the target feature map corre-
sponding to a shoulder and visualize which part of the source fea-
ture map the network is paying attention to by reshaping the cor-
responding row in the correspondence map of the first CAT-block.
As visualized in the attention maps in Fig. 11, the areas of the
source feature map that are involved in the appearance transfer
belong to the same semantic part as the selected target location.
This visualization experiment verifies that our proposed method
can find meaningful correspondences between the source stream
and target stream (like flow-based methods) to transfer the ap-
pearance information from the source image to the target image.

4.5. Failure cases analysis

Fig. 12 illustrates failure cases obtained by our method. We also
include images generated by some states of the art. Our results are
imperfect in some significant challenging scenarios. For example,
in the first two rows of Fig. 12, the target poses miss a few body
joints in the lower body, which makes all models confusing. As a
result, the output images miss some texture details in the corre-
sponding areas. The case in the third row is tough because the
pose transform is large and the source image lacks texture infor-
mation in the man’s backpack. So the bag in the output image con-
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Fig. 12. Failure cases on Market-1501.

tains mixed color artifacts. In the last row, the umbrella is occluded
in the source image, making the generation of it in the target im-
age difficult and causing some artifacts.

5. Conclusion

This paper introduces a novel two-stream context-aware ap-
pearance transfer network for person image generation. It fea-
tures an appearance transfer module to handle large motion and a
multi-scale context module to handle occlusion. Experimental re-
sults show that our network is both effective and efficient. It has a
great advantage on cases of large pose transform.
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