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Monitoring the spatial and temporal course of opioid-related drug overdose mortality is
a key public health determinant. Despite previous studies exploring the evolution of
drug-related fatalities following the stay-at-home mandates during the COVID-19
pandemic, little is known about the spatiotemporal dynamics that mitigation efforts had
on overdose deaths. The purpose of this study was to describe the spatial and
temporal dynamics of overdose death relative risk using a 4-week interval over a span
of 5-months following the implementation of the COVID-19 lockdown in the city of
Chicago, lllinois. A Bayesian space time model was used to produce posterior risk
estimates and exceedance probabilities of opioid-related overdose deaths controlling
for measures of area level deprivation and stay-at-home mandates. We found that
area-level temporal risk and inequalities in drug overdose mortality increased
significantly in the initial months of the pandemic. We further found that a change in the
area level deprivation from the first to the fourth quintile increased the relative risk of a
drug overdose risk by 44.5%. The social distancing index measuring the proportion of
persons who stayed at home in each census block group was not associated with drug
overdose mortality. We conclude by highlighting the importance of contextualizing the
spatial and temporal risk in overdose mortality for implementing effective and safe
harm reduction strategies during a global pandemic.
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Variability in Opioid-Related Drug Overdoses, Social Distancing and Area Level Deprivation
During the COVID-19 Pandemic: A Bayesian Spatiotemporal Analysis

Monitoring the spatial and temporal course of opioid-related drug overdose mortality is a key public
health determinant. Despite previous studies exploring the evolution of drug-related fatalities
following the stay-at-home mandates during the COVID-19 pandemic, little is known about the
spatiotemporal dynamics that mitigation efforts had on overdose deaths. The purpose of this study was
to describe the spatial and temporal dynamics of overdose death relative risk using a 4-week interval
over a span of 5-months following the implementation of the COVID-19 lockdown in the city of
Chicago, Illinois. A Bayesian space time model was used to produce posterior risk estimates and
exceedance probabilities of opioid-related overdose deaths controlling for measures of area level
deprivation and stay-at-home mandates. We found that area-level temporal risk and inequalities in
drug overdose mortality increased significantly in the initial months of the pandemic. We further found
that a change in the area level deprivation from the first to the fourth quintile increased the relative risk
of a drug overdose risk by 44.5%. The social distancing index measuring the proportion of persons
who stayed at home in each census block group was not associated with drug overdose mortality. We
conclude by highlighting the importance of contextualizing the spatial and temporal risk in overdose
mortality for implementing effective and safe harm reduction strategies during a global pandemic.
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Introduction

Over the past decade, drug overdose fatalities began increasing at an alarming rate in the
United States [1]. Beginning in March 2020, the synergy created by the syndemic of COVID-19 and
opioid-related drug overdose deaths has resulted in a massive public health crisis both in the United
States and abroad. During the COVID-19 pandemic, for example, fatal opioid-related overdoses in
Cook County, Illinois, where the present study was conducted, increased by as much as 23.7%
following the implementation of a stay-at-home order on March 20, 2020 [2]. The mechanisms linking
COVID-19 to increases in drug overdose mortality are associated with the exacerbation of pre-existing
social and economic conditions in the wake of the pandemic that has affected individuals (e.g.,
depression, anxiety, boredom) [3], relationships (e.g., physical & social isolation) and communities
(e.g., job loss, unemployment, food and housing insecurity). As a result, socio-economic inequalities
in health, and specifically deaths attributable to drug use, have been magnified. Containment efforts
used to control the spread of transmission during COVID-19 and other pandemics have resulted in a
number of unintended consequences that have been shown to compromise mental and emotional health
[4] despite their effectiveness in curbing disease transmission. For example, past research
demonstrates the detrimental psychological effects of mandatory lockdowns associated with loss of
income and social connections [4, 5]. Those who are unable to work remotely and/or are living in
overcrowded, low-income neighborhoods continue to be disproportionately impacted by the COVID-
19 pandemic [6—10].

Drug overdose is one of the leading causes of death and poses a significant public health threat
on its own. A substantial body of research shows that drug overdoses have increased steadily from
year to year even before the onset of COVID-19. For example, between 2000 and 2014 the opioid-
related death rate increased by 200% in the United States [11]. Almost 47,000 persons in the United
States died of a drug overdose involving opioids in 2018, which is nine times higher than the number
of deaths attributed to opioids in 1999 [12, 13]. Nevertheless, research conducted in the early months

of the COVID-19 pandemic has demonstrated that drug use patterns and ultimately, overdose rates



shifted, creating what some have called, the “co-occurrence of two public health crises” [14]. Research
conducted at both national and state levels has shown increases in overdose deaths during the early
months of the pandemic [15-18] attributing the increases, in part, to the COVID-19 lockdown [19].
According to preliminary data from the Center for Disease Control, from October 2019 to September
2020 there was a 28.8% increase in overdose deaths in the United States. In Illinois this number was
even more pronounced at 32.6% [20, 21]. One study of opioid-related fatalities in Cook County during
the period spanning January 1, 2018 — October 6, 2020 found that average overdose deaths per week
were relatively stable prior to the pandemic but that there was a marked increase during the 11-week
stay-at-home order followed by a substantial decline [2]. An examination of N =470 adults who died
of a drug overdose in the State of Rhode Island and found that, compared to the same time frame the
previous year, mortality rates were higher among men, non-Hispanic Whites, unmarried individuals,
individuals using synthetic opioids and in residential settings [12]. In San Francisco, researchers found
an increased risk of drug-related harms, including death, during the implementation of social
distancing regulations among individuals requiring an emergency room visit following an opioid-
related injury [17]. The authors speculated that the increase was due to the lack of timely reversal
treatment measures, such as naloxone, the isolation of social distancing and/or less visibility of public
drug use or decreased home visitation because of reduced foot traffic. Demographic differences in
drug overdose have also been noted. Studies comparing overdose deaths before and during COVID-19
have found an increase for African Americans and males [14] but not Whites [22]. This is supported
by data from the Philadelphia Department of Public Health (2021) which shows black residents dying
of overdose at higher rates than whites as of June 2020. This disparity runs parallel to COVID-19
infection and hospitalization rates in susceptible neighborhoods [22].

The opioid overdose epidemic has complex social, biological, and behavioral causes including
but not limited to the proliferation of opioid prescribing to treat chronic pain, changes in the heroin and
illegally manufactured opioid synthetics markets, deindustrialization and concentrated poverty [13].

Lockdown measures implemented during COVID-19 have only added to this complexity by posing



additional challenges to an already over-burdened healthcare system. Consequently, the drug using
population has become more susceptible to drug relapse and overdose [14]. Due mostly to data
limitations, previous studies have assumed, but not tested, that the onset of extreme social distancing
measures such as the stay-at-home mandate contributed to observed increases in substance abuse and
addiction. Whereas existing research has played a critical role in revealing the public health
consequences of the COVID-19 policy response and their differential effects on individuals who use
drugs, the assumption that people were abiding by the stay-at-home mandates and/or that human
mobility is homogenous is untenable, infeasible, and does not hold empirically. Instead, several
individual- and community-based factors have been found to play an important role in effectuating
compliance [23, 24]. Some studies have found that lack of compliance is associated with being
unemployed [25], single motherhood, and being a member of a minoritized group [26]. A recent
review of research examining barriers to the implementation of social distancing measures
implemented during COVID-19 uncovered two categories of barriers: individual-
psychological/psychosocial and sociological phenomena, and shortcomings in governmental action or
communication. Specific psychological and psychosocial barriers revealed include avoiding stigma,
feelings of solidarity, perceived threat and value of the intervention, alignment of messaging and lived
experience, accounting for life circumstances and addressing social norms [27]. Government factors
included providing support for people to adhere to social distancing mandates, trust in government and
involving the community in both the pandemic’s planning and response phase [27]. The factors that
are associated with either the inability or unwillingness to comply with stay-at-home mandates seem
more closely related to socioeconomic marginalization (SEM). SEM is defined as a set of conditions
that contributes to exclusion from social and economic opportunities including labor market
conditions, inadequate income and poverty, social stigma and isolation and housing insecurity [28]. A
recent systematic review found that the very conditions contributing to SEM have been linked to drug

overdose risk in the majority of studies under consideration [28].



Previous research has revealed spatial and temporal variation in population level opioid-
related overdose fatalities during COVID-19 [29-31] but no study to date has incorporated existing
indices of social distancing behavior in communities and its association with drug overdose fatalities.
Rather, research has merely documented increases in drug overdoses in the months following the
implementation of stay-at-home mandates without considering geographic differences or differences in
community-level compliance. Given past research demonstrating variability in compliance with stay-
at-home mandates, even during the initial months of the pandemic, the goals of the present study were
to explore the spatiotemporal trends in drug overdose deaths at the census block group level and the
relationship between area deprivation, percentages of people staying at home and drug overdose
fatality. More specifically, we address the following questions: 1) what areas in Chicago experienced
the highest risk for an opioid-related drug overdose fatality during the initial months (April 2020 —
August 2020) of the COVID-19 pandemic following the implementation of the stay-at-home order on
March 20, 2020? 2) What was the temporal trend in overdose fatalities following the implementation
of the stay-at-home order? 3) What was the magnitude of drug overdose inequality across the city, and
did it change over time? and 4) How does area level deprivation and sheltering in place alter the spatial
risk of a drug overdose? Given previous research examining the enablers of adherence to social
distancing measures at both the individual- and community level (i.e., socio-economic status, lack of
community preparedness, and lower levels of trust in government), we expect that areas with /ess
compliance of social distancing mandates will have higher overdose rates after controlling for area
level deprivation. Additionally, we expect to find a positive association between social and economic
deprivation, or SEM, and drug overdose mortality rates after controlling for neighborhood compliance
with social distancing mandates. Our expectation in this regard was developed based on previous
research showing that SEM, which includes neighborhood deprivation and economic inequality, are
structural inequities associated with drug overdose risk through cumulative life course disadvantage

that has resulted in differential access to health promoting services [28].



Methods

Data on all fatal opioid-related overdoses among individuals who died in Cook County,
[llinois during the time frame spanning March 24 — Aug 11, 2020 (a 140-day period) was downloaded
from the Medical Examiner Case Archives for Cook County, Illinois [32]. The data contains
information about all deaths that occurred in Cook County that were under the Medical Examiner’s
jurisdiction. The Medical Examiner’s office investigates any death that is attributable to an adverse
reaction due to drugs or alcohol including deaths that occur in an Emergency Department and/or any
death that does not occur in the presence of a practicing licensed physician. For the purposes of this
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study, we examined deaths that were categorized as “accident” “natural” “suicide” and
“undetermined.” Opioid-related overdose deaths (i.e., deaths due to any opioid, heroin, and/or an
opioid analgesic) are considered a subset of drug overdose deaths in which any opioid drug was
reported as a contributing cause of death (ICD-10 codes T40.0, T40.1, T40.2, T40.3, T40.4, and
T40.6). Opioid analgesics include natural (e.g., morphine and codeine) and semi-synthetic opioid
analgesics (e.g., oxycodone, hydrocodone, hydromorphone, oxymorphone), methadone, and synthetic
opioid analgesics other than methadone (e.g., fentanyl and tramadol). All overdose fatalities included
the location of the decedent making it possible to aggregate the count of overdose deaths to the census
block group (CBG). Any individual that did not have a valid address was excluded from the present
study (41 addresses were deemed invalid in the present study). Among those cases that contained an
invalid address, the average age was 46.27 (sd = 15.25), 82.9% were male, 55% were non-Hispanic
Black and 30% were non-Hispanic White and 15% were Hispanic/Latinx).

As part of their COVID-19 response, SafeGraph, Inc. [33] released aggregated mobile device
GPS data at the CBG level to facilitate understanding of people’s compliance to the stay-at-home
orders. The data is aggregated from GPS pings of tens of millions of mobile devices. The R function
read_distancing() available from the SafeGraphR (v 0.4.4;
https://safegraphinc.github.io/SafeGraphR/index.html) package in R was used to read and aggregate

the social distancing files (v2) over the study period (i.e., 140 days of mobility) and filtered to Cook



County. SafeGraph defines the proportion of devices near homes as the number of devices detected in
their home census block group (destination CBG = origin census block group) divided by the number
of devices associated with the CBG (device count). To estimate the number of people who stay at
home each day, the number of mobile devices that were at completely at home was divided by the total
number of devices in each CBG (i.e., completely home device count divided by the device count [32].
The data collected by Safegraph does not capture devices that are out of service, not moving, lack a
tracking app, or have opted out of location services are not included in the data and not all devices are
linked to a home CBG [34]. However, although the data only includes a subset of the total population
the data has been subjected to an exhaustive 6-step process designed to guarantee its reliability,
accuracy and external validity (see for e.g., [35—39]). During the final stages of processing, the
hb_shrink function was used to perform hierarchical Bayesian shrinkage on the county-to-CBG level
to improve the reliability of the estimates. Safegraph’s stay-at-home index has been used in many
studies in order to analyze the impact of mobility patterns and physical distancing after the
implementation of shelter-in-place policies in the United States [35-37, 40].

The Area Deprivation Index [41] is a validated, multidimensional indicator of socioeconomic
status available from the University of Wisconsin Medical School

(https://www.neighborhoodatlas.medicine.wisc.edu/). The ADI is comprised of 15 variables taken

from the 2019 American Community Survey (ACS) 5-year estimates and include measures such as
median family income, income disparity, occupational composition, unemployment rate, family
poverty rate, percentage of the population below 150% of the poverty rate, single-parent household
rate, home ownership rate, median home value, median gross rent, median monthly mortgage, and
household crowding. The variables were initially selected based on empirical research to approximate
the material and social conditions of a community and inform health delivery and policy for
disadvantaged neighborhoods [41] (see Supp Table 1). The index was constructed from factor loadings
for the CBGs and factor score coefficients are used to weight the 15 indicators comprising the index

[41]. The factor scale was then transformed into a standardized index with mean = 100 and standard
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deviation = 20. Previous research has shown that area deprivation measures reliable, valid and perform
better than individual social class in describing the extent of inequalities [41]. The ADI was
downloaded at the block group level for Cook County, Illinois using the R function get adi from the

sociome package (https://github.com/NikKrieger/sociome). Higher values of the ADI are indicative of

more area deprivation. We included arguments to download the block group geometry and all
indicators for the ADIs for Cook County (state = “IL”) for the 5-year 2019 ACS, clipped the county-
level data to the city of Chicago. Supplementary Table 1 provides the list of measures used in the
analysis along with the median and IQR for the least (Q1 = 1* quintile) and most deprived (Q5 = 5%
quintile) areas as well as the factor loadings for each variable.
Statistical Analysis

To address the research questions presented above, data summarizing fatal drug overdoses
were spatially and temporally aggregated into £ =1, ... K = 2,526 non-overlapping areal units (i.e.,
CBGs). The time period of this study began at Month 1 (beginning March 24, 2020 and ending on
April 24, 2020) and included » =1, ... N =5 consecutive months starting 4 days after the
implementation of the stay-at-home order in the state of Illinois (which began on March 20, 2020). We
considered the month as the basic time unit due to the presence of excess zeros which may provide less
reliable estimates. We aggregated the total number of opioid-related overdose deaths in each census
block group over the monthly period and across 5 age groups (0 to 14, 15 to 24, 25 to 44, 45 to 64 and
65+). Population estimates were downloaded using the get acs function of the tidycensus package
using 2019 ACS 5-year estimates. The final dataset was comprised of a 12,630 (2,526 X 5) rows of
age standardized overdose counts aggregated to the census block group level and merged by CBG with
the ADI and Safegraph’s social distancing index.

The standardized mortality ratio (SMR) was used to measure the association between drug
overdose mortality, area deprivation and social distancing. The SMR was defined, for each CBG, as
the ratio between the observed number of overdose deaths, Y, and the number of overdose deaths that

would be expected Ej; given the age-adjusted population counts in each CBG. The expected counts
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were then included as an offset in our models. Moran’s I statistic was used to assess residual spatial
autocorrelation and a permutation test was conducted using 20,000 random permutations of the data
[42]. Next, a log-linear conditional autoregressive model was used to estimate the association between
ADI and social distancing while controlling for over-dispersion, temporal autocorrelation and spatial
autocorrelation'. Once spatial autocorrelation was established, we proceeded to our Bayesian
spatiotemporal modeling. In this scenario, we assume that the observed number of overdose deaths in
each CBG is a Poisson random variable and that:
Yie~Poisson(Yy 6y) fork=1,..K,t =1,..N
In(6y;) = By + P1ADI + B,SDI + ¢, and
Y = prpe-1 + €, where Py = (WP1g, ., Yir)»
€:~N(0,72Q(W, ps)™)

where ;. represents the random effect for CBG £ and time #. Consistent with standard practice, the
regression parameters were assigned independent and weakly informative priors 8;~N(0,100000).
Since the goal of the present study as to quantify the evolution of the spatial pattern in overdose risk
over time, a spatially autocorrelated first-order, AR(1), autoregressive process was used for the spatio-
temporal structure of the random effects [42]. In the model, both temporal and spatial autocorrelation
is controlled by the mean function pr,;_1, and the covariance structure of €;, respectively [42].
Random errors in the covariance structure are modeled as spatially autocorrelated when wy; = 1 in the
adjacency matrix. The precision matrix, Q(W, ps), corresponds to the conditional autoregressive
(CAR) prior [42, 43]. We used the default prior specification for the process variance, assuming an
inverse-gamma distribution for 72 — 72~Inverse — Gamma(1,0.01).

The modeling strategy followed a step-wise approach. First, as a baseline measure, a Poisson

model that did not account for spatial heterogeneity was fit to the data. The model was then extended

! For an excellent tutorial on the methods used in this paper see Lee, D. (2020). A tutorial on spatio-temporal
disease risk modelling in R using Markov chain Monte Carlo simulation and the CARBayesST package. Spatial
and Spatio-temporal Epidemiology, 34, 100353.



to include the ADI and the social distancing index separately before both variables were included in
the model simultaneously. The final linear model consisted of an intercept, the area deprivation index,
the social distancing index, a spatially structured CAR term, and a first order random walk-correlated
time variable. Model selection was based on the lowest values of the models’ Deviance Information
Criteria (DIC) and number of effective parameters. The model was implemented using the ST.CARar
function available in the CARBayesST package in R [42, 44]. Following suggested approaches [42],
the model was run three times to generate MCMC samples from 3 independent Markov chains. Each
chain was run for 700,000 samples of which 10,000 were removed as the burnin period and the
remaining were thinned by 1,000. Model convergence was assessed using a variety of methods. Trace
plots were examined for all three chains simultaneously. The Gelman-Rubin diagnostic was also used
to quantify the multivariate potential scale reduction factor (PSRF) [45]. There PSRF takes into
account the covariance structure of the parameter space and provides a single summary measure across
all parameters [46]. A multivariate PSRF < 1.05 is indication that the model converged. Finally,
Geweke diagnostic values between -2 and 2 were taken to indicate model convergence.

The average risk and posterior distribution of spatial averages were computed for each CBG
and month along with the 95% credible interval (Crl). We computed a change in the mean of Y for a

relative change in the ADI by multiplying the ADI coefficient by a factor ¢ using the formula E% =
100 (qexp Bavry _ 1) % where g = the ratio of the highest to lowest quintile [47]. Finally, the

posterior median risk (8);) and exceedance probabilities associated with a drug overdose risk > 4
given the data, (¢y; = P(6: > 4|Y), were computed. The exceedance probability quantifies a risk
that is quadruple the average risk across the city of Chicago over the 5-month period. We chose a
threshold of 4 based on two considerations: (1) our initial exploratory analyses of different thresholds
indicated that a big enough fraction (i.e., 69 CBGs) of the posterior distribution had thresholds above 4

and therefore indicated areas of elevated risk; and (2) to ascertain small areas that are in greatest need



of intervention. To capture inequality, we computed the variation in overdose disease risk across the
city as the difference in the interquartile range of overdose risk for each month.
Results

The data showed 853 opioid-related drug overdose deaths between March 24, 2020, and
August 24, 2020, an average of 5.58 deaths per day. For comparison, between March 24 — April 24,
2020, drug overdoses in Chicago increased by more than 97% compared to the same time period the
previous year. Table 1 shows descriptive features of key study variables. The average proportion of
persons staying at home in each CBG was .306 (SD = .084) with substantial range (minimum = .099,
maximum = .813). The ADI also showed significant variability across CBGs with the mean score =
104.99 (SD = 20.382). On average, the SMR was 1.189; however, more than half of CBGs had no
overdose fatalities over the period. The spatial distribution of SMRs, the ADI and the social distancing
index is shown in Figure 1. The maps demonstrate the clustering of both SMRs and AD], as well as
substantial areal overlap between the two measures. On the other hand, the social distancing index
reveals a large amount of variation in the percentages of people staying at home across the time frame
(see Supp Fig 2 for a temporal distribution of the social distancing index). Figure 2 shows the bivariate
distribution of overdose relative risk across quartiles of social distancing and area deprivation indices,
which are on the Y and X axes, respectively. The map shows that the relative risk is highest for the
most deprived CBGs regardless of the social distancing index level.

[Table 1 about here]
[Figure 1 about here]

An overdispersed aspatial Poisson model was estimated using the observed number of
overdose deaths in each CBG and the expected counts as an offset. The Moran’s I test performed on
the aspatial model demonstrated significant residual spatial autocorrelation for the first four months
(Week 1: Moran’s I =0.053, p-value <.001; Week 2: Moran’s I = 0.029, p-value <.012; Week 3:
Moran’s I = 0.074, p-value <.001; Week 4: Moran’s [ = 0.0602, p-value <.001; Week 5: Moran’s [ =

0.016, p-value = 0.088) thereby justifying the implementation of the Bayesian spatiotemporal model.



Regarding model convergence, we examined trace plots for all three chains simultaneously,
the PSREF statistic and Geweke diagnostics. The plots showed no trend in their mean or variance (see
Supp. Fig 1), the PSRF was lower than the recommended threshold of 1.05 (PSRF = 1) and all Geweke
diagnostic values were within range (-1 and 1). On this basis, a determination was made that the model
achieved adequate convergence. The parameter estimates from the model (posterior median point
estimate, 95% Crls) are shown in Table 2. As shown by the table, the ADI was significantly related to
drug overdose mortality risk Sap; = 0.0274, Crl = (0.019, 0.0363), as expected. Using the first and

fourth quintiles of ADI (g 5o = 86.53 and q g, = 123.53), we let ¢ = 1.427 and calculated an increase
(i.e., 1.33-fold increase) in the ADI, E% = 100 (qexp (Bavn) _ 1) %. The result suggests that a change

in ADI from the quintile 4 to quintile 1 was associated with a 44.54% increase in the relative risk of an
opioid-related overdose fatality. Contrary to our expectations, however, the stay-at-home index was
not significantly related to overdose relative risk. Two additional findings are worth noting. First, the
social distancing index was not significant in any of the models we estimated, and its inclusion did not
result in significantly more of the variance in overdose mortality explained above and beyond area
deprivation. Second, once the ADI and stay-at-home measures were included in the model, the
residuals were no longer spatially autocorrelated (Moran’s / =-.02101, p = .9665).
[Table 2 about here]

Results from the Bayesian space-time model are visually displayed in Figure 3, panels A-D.
Panel A shows a clear upward trend in drug overdose mortality risk in the 5-month period following
the stay-at-home mandate. However, the trend plotted for each CBG separately shows a much different
pattern, as shown by Figure 4. Figure 4 plots the temporal trend for 12 randomly selected CBGs.
Overall, the analysis demonstrated that some CBGs had a trend consistent with the overall increasing
trend (increasing gradually from baseline to Month 4, ending July 24, 2020) whereas some CBGs had
a decreasing trend or a flat trend across the period. Regarding the temporal trend between IQR of

overdose risks for each month, panel B shows that inequalities in drug overdoses increased in April,



May, and June 2020 before decreasing substantially between July and August. Panel C shows the
spatial risks derived from the model. About twenty-eight percent (28.7%) of census block groups had
relative risks classified in the highest quintile (80™ percentile). The posterior probability > .80 that the
relative risk is at least four (4) times the whole city is shown by the map in panel D. Just over 3% of
CBGs had a relative risk greater than four times the city with probability .80, all of which were
characterized as areas of high deprivation (see Fig 1). Figure 5 overlays the neighborhood boundaries
onto the ADI quintiles and highlights the areas of highest risk. As shown by the figure, the
neighborhoods with the greatest spatial and temporal increases in overdose risk included Humbolt
Park, Garfield Park, Austin, North Lawndale and Avalon Park. In these areas, the mean ADI score was
128.22 (sd = 12.75), about 31.1% of persons were staying at home on average (sd =.061). In contrast,
in areas associated with stable risks, the mean ADI was significantly lower at 102.59 (sd = 19.80) and
the average social distancing index indicated about 30.6% (sd = .085) of persons were staying-at-home
during the 5-month period we analyzed. The spatial (pg) and temporal (p;) dependence parameters
indicate the strength of spatial and temporal autocorrelations (see Table 2). The spatial and temporal
dependence parameters show high values (p; = 0.9868; p, = 0.9318), indicating neighboring CBGs
have a similar spatial and temporal trend in opioid-related overdoses compared to areas that are further
away.
[Figure 3 about here]
[Figure 4, 5 about here]

Discussion

The present study is the first to explore the impact of area deprivation and social distancing on
fatal drug-related overdose deaths in the city of Chicago at the neighborhood level (i.e., CBGs) during
the initial months following the COVID-19 outbreak. Unlike much of the existing research on drug
overdose mortality, which focuses on individual characteristics of users [48—52], our study explored
the broader socio-economic context and policy environment in which overdoses occur, along with the

chronosystemic element of change over time. In this regard, the present set of findings add to the



current literature by examining the impact of both socio-economic disparities and COVID-19 policy
responses (i.e., stay at home mandates) on drug overdose mortality controlling for area level
deprivation.

The mortality data showed 853 opioid-related drug overdose deaths between March 24, 2020,
and Aug 24, 2020, an average of 5.58 deaths per day. For the sake of comparison, during the four-
week period spanning March 24-April 24, 2020, four days following the stay-at-home mandate, drug
overdoses increased by more than 97% compared to the same time the previous year (Authors
calculations). Drug overdose inequality, which measures the variation in mortality risk across the city,
increased by about 10% from baseline before decreasing to pre-pandemic levels in August 2020. This
suggests that disparities in drug overdose mortality risk increased in the initial months of the pandemic
before evening out in later months [42]. Our analysis also uncovered substantial spatial heterogeneity,
with drug overdose deaths concentrated into the most susceptible parts of the city. Prior literature
demonstrates the widely dynamic impact of socioeconomic factors on regional and temporal
heterogeneity in drug overdose fatalities across both urban and rural landscapes [10, 48, 53]. Similarly,
our multidimensional measure of area deprivation was strongly associated with the relative risk of a
drug overdose death even after controlling for the percentage of people stay-at-home in each CBG.
The CBGs with the highest relative risk overlapped substantially with areas of high deprivation (5%
quintile) which comprised 464 census block groups across the city. Our results are consistent with
research showing that opioid-related drug overdose deaths tend to cluster in economically stressed
areas, including those with lower socioeconomic status, wealth, education, and median household
income [54-57]. Importantly, however, this pattern was not observed for all opioid-related drug
overdoses, rather we observed some areas of low deprivation where drug overdose counts were higher
than expected. This suggests that preventive interventions should consider how opioid overdose deaths
overlap with significant inequities in social opportunity and economic inequality, as we saw in this

study. For example, it may be that some overdose deaths are attributable to analgesics and/or other



types of opioids including fentanyl that may be more common in highly vulnerable areas. Since this is
beyond the scope of our study, it is left as a question for future research.

While it is difficult to know the reasons for the significant increase in drug overdose fatalities
during COVID-19 as well as their spatial distribution across the county, the increases do coincide with
policies aimed at minimizing the spread of disease. These findings, while consistent with previous
reports, must be contextualized by two additional findings. First, we found no association between our
CBG stay-at-home index and drug overdose risk. Nevertheless, consistent with previous research, we
did find the largest increases in drug overdoses took place between March — May 2020 which are also
the months with the largest percentages of people staying-at-home. Our results caution against the
assumption that stay-at-home mandates, in and of itself, fuel increases in drug fatalities, at least
directly, however. Rather, our findings are more consistent with the assertion that economic hardship
and inequality, lower socioeconomic status, and housing insecurity (i.e., multiple measures of
marginalization and area level deprivation) may have contributed to overdose risk, and consequently,
more fatalities in the city of Chicago. Second, whereas overdose mortality trends increased in the wake
of the pandemic, the increases were highly concentrated across time and space. For example, 28% of
CBGs were in the highest risk quintile for drug overdose mortality and 3% of CBGs had a probability
> .80 of experiencing an overdose relative risk that was at least four times as high as the city overall. It
is important to note that many CBGs experienced no change or a decreasing trend during the months
under consideration in this study. Taken together, our results suggest implementing sensitive and
effective surveillance systems that promote harm reduction strategies in areas of high deprivation
and/or where access may not be readily accessible or accepted. Minimizing drug overdose fatalities in
such areas requires services that can reach marginalized populations, especially populations that were
further ostracized during the pandemic. Future research should continue to explore the impact, if any,
of COVID-19 policy prescriptions using publicly accessible and novel foot traffic data in other
geographic areas and time periods. This is particularly important given that as of June 11, 2022, the

pandemic continues to pose significant risk around the world.



Despite the novelty of the present study, it is not without limitation. First, our findings are
limited to one city and are based on medical examiner reports, which may be incomplete.
Nevertheless, the spatial and temporal characterization of these data are consistent with other studies
showing similar increases during the initial months of COVID-19 while demonstrating spatial
heterogeneity in the temporal trends. The medical examiner data provides the additional benefit of
aggregation to the CBG level making it possible to merge it with other data such as Safegraph’s social
distancing index. Because the social distancing index does not include all devices, however, it is
possible that the people whose cell phones are being tracked may not match those who are most at
risk of overdose. On this basis, our failure to demonstrate an association between the stay-at-home
index and opioid-related fatalities may be the result of a mismatch between the expectations of the data
quality from both the index and the medical examiner reports. Nevertheless, Safegraph’s mobility data
has “tremendous potential to inform public health decision-making” and can be used to test the
effectiveness of policies focused on controlling activities [45, p. 14] such as in the present study.
Finally, although the ADI includes a set of comprehensive measures tapping economic hardship and
inequality, socioeconomic status and housing insecurity, our model may have omitted variables that
would tend to explain more of the variance in overdose fatality risk including population density [57]
and racial/ethnic heterogeneity [48]. Future research would benefit from including these indicators in
models such as ours designed to assess spatiotemporal risk and exceedance probabilities in fatal drug
overdoses.

Our study confirmed that overdoses are patterned by area level deprivation, particularly
economic hardship and inequality, housing insecurity and socio-economic susceptibility rather than
social distancing proxies. In this regard, our results have substantial implications for preventive
interventions by suggesting that that neighborhood structural disadvantage is a long-enduring
persistent predictor of drug overdose mortality and that temporary changes in population mobility as
direct influences are weak. Future research should focus, as we did in the present study, on exploring

the costs of policy interventions using similar data analytic and geospatial techniques to identify



potential vulnerability to unintended consequences of policy interventions at local levels and assess the

disparities of these impacts across racial and socioeconomic divides.



Table 1. Descriptive Characteristics of Key Study Variables

Population Social Distancing ADI SMR
Index
Mean 1317.783 0.306 104.989 1.189
Median 1141 0.302 105.621 0
St. Dev. 834.8108 0.084 20.382 8.423
Min 25 0.099 43.893 0
Max 17648 0.813 158.212  147.487

Table notes: population data was downloaded using the tidycensus package
in R for the 2019 ACS using summary variable BO1001_001 and the
geography flag corresponding to the census block group (CBG). The social
distancing index was downloaded from Safegraph, Inc and read into R using
the SafegraphR package. The Area Deprivation Index (ADI) was
downloaded using the sociome package in R (function get adi) for census
block groups. The SMR is calculated as the observed number of opioid-
related overdose deaths divided by the age adjusted expected counts and
aggregated to the CBG.

Standardized Mortality Ratios Area Deprivation Index

Census Block Groups, City of Chicago Census Block Groups, City of Chicago
Social Distancing Index
Gensus Block Groups, City of Chicago

h_

Quartile

Highest % Staying Home
3
2
Lowest % Staying Home

Figure 1. Spatial distribution of standardized mortality ratios (SMRs), Area Deprivation (ADI) and the Social
Distancing Index for the city of Chicago, Illinois. The map shows quartiles of risk for SMR and ADI variables
(4 = 100" percentile, 1 = 25" percentile) and quartiles associated with the highest and lowest percentages of
persons staying at home from March 24 — August 24, 2020.
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Table 2. Latent structure model - Autoregressive order 1 CAR model
Posterior quantities for selected parameters and DIC

Median 2.5% crl

Intercept -4.038
ADI 0.027
Stay-at-Home 0.683
72 1.257
Ps 0.987
o 0.932

-5.175
0.019
-0.663
0.828
0.962
0.795

97.5%
crl
-2.89
0.036
2.107
1.995
0.997
0.996

Geweke diagnostic

-4
0.7
0.2
0.0

0.4
0.0

Model Diagnostics DIC = 2763.142; p.d = 210.6138; LMPL = -

1408.14

Table notes: Results from the Bayesian spatiotemporal conditional
autoregressive (CAR) model of relative risk for a fatal opioid-related
overdose. ADI = Area Deprivation Index; 2= process variance
parameter, p; = spatial autocorrelation; p, = temporal autocorrelation;
crl = credible interval; DIC = Deviance Information Criterion; p.d. =
estimated effective number of parameters; and LMPL = Log Marginal

Predictive Likelihood.
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Figure 3. Panel A (top left): Posterior median and 95% CrI for the temporal trend in opioid-related
overdose fatality risk following the implementation of the stay-at-home order on March 20, 2020. Panel
B (top right): Estimated monthly trend in inequality in opioid-related overdose mortality risk measured
by spatial interquartile range. Panel C (bottom left): Estimated posterior median risk surface for month
spanning May, 24, 2020 - June 24, 2020 shown by quintiles (lowest risk = 20" percentile, highest risk =
80 percentile); Panel D (bottom right): Estimated posterior exceedance probabilities that the risk in
greater than quadruple the average risk for the whole city of Chicago. The probabilities are mapped in
quintiles (lowest risk = probability <= .20, highest risk = probability > .80)




Spatiotemporal Variability in Drug Overdose Risk
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Figure 4. Temporal risk across 12 randomly selected CBGs. Figures illustrate differential time trends
for selected CBGs. Month 1 = March 24, 2020 - April 24, 2020 and Month 5 = July 24, 2020 — August
24, 2020.
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Figure 5. Standardized Mortality Ratios and Area Deprivation Index quintiles by Census Block Group
in the city of Chicago. The CBGs that are outlined in green correspond to the highest SMR quintile
(Q5) or the area with the greatest risk of a fatal drug overdose. The lighter reddish-brown shading
corresponds to the most deprived CBGs. The neighborhood boundaries are overlayed onto the map.
The map shows that the areas associated with the highest opioid-related fatality risk are in areas of
highest deprivation.
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Supplementary Figure 1: Trace plots illustrating model convergence.
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Supplementary Fig. 2. (A) temporal trends of percent of persons staying at home in five randomly
selected CBGs in the city of Chicago from Mar — Aug 2020. (B) Percent of persons staying at home in

each CBG from Mar — Aug 2020.



Supplementary Table 1. Median, IQR and Factor Loadings for ADI indicators in Chicago

Least Deprived CBGs (Q1) Most Deprived CBGs (Q5)

Factor

Median IQR  Median IQR L"ad‘“g;]‘;;

indicator

Median Family Income $159,677 $69,571.25 32,761.25 31,968.5 -.870
Median Mortgage 2744.5 892.5 1442 467.5 -711
Median Rent 1628.5 524.5 869 242.5 -.671
Median House Value 455300 236800 151300 67100 -.697
% Families In Poverty 0 0.033 0.340 0.2334 753
% Owner Occupied Housing 0.575 0.381  0.26052 0.2483 -.579
Ratio of Income Under $10K to Over 50K 1.506 1.1837 4.2696 1.327 757
% People Living Below 150% FPL 0.07528 0.072569 0.5606 0.1768 .860
% Single Parent HHs w/Children 0.1129 0.2194  0.77599 0.3723 .678
% HH with no vehicle 0.15091 0.2157  0.38300 0.26342 483
% Individuals w/White Collar Jobs 0.6565 0.1651 0.16479 0.1472 -.755
% Unemployment 0.02319 0.03954 0.1854 0.15889 .588
% At least HS education 0.97690 0.05199  0.75232 0.1964 -.674
% Less than 9" grade education 0.003666 0.02219  0.07298 0.1475 471
% HHs with > 1 person/room 0 0.0210  0.04802 0.0914 388

Table notes: indicators used to construct the Area Level Deprivation Index (AD). Q1 = 1% quintile
(least deprived), Q5 = 5™ quintile (most deprived). Factor loadings were downloaded along with the
index using the get adi function of the sociome package in R.
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