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ABSTRACT
Augmented reality (AR) windshield display (WSD) o�ers promising
ways to engage in non-driving tasks in automated vehicles. Previous
studies explored di�erent ways WSD can be used to present driving
and other tasks-related information and how that can a�ect driv-
ing performance, user experience, and performance in secondary
tasks. Our goal for this study was to examine how drivers expect
to use gesture and voice commands for interacting with WSD for
performing complex, multi-step personal and work-related tasks
in an automated vehicle. In this remote unmoderated online elici-
tation study, 31 participants proposed 373 gestures and 373 voice
commands for performing 24 tasks. We analyzed the elicited in-
teractions, their preferred modality of interaction, and the reasons
behind this preference. Lastly, we discuss our results and their
implications for designing AR WSD in automated vehicles.

CCS CONCEPTS
• Human-centered computing ! Mixed / augmented reality;
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1 INTRODUCTION
Around the world, people spend a signi�cant amount of time travel-
ing for work [9, 22] and they often perform both work-related and
personal tasks during their commute even when driving [55, 67].
Since driving requires visual attention and manual action, the types
of non-driving tasks people can perform while driving are lim-
ited and they can negatively a�ect driving performance. However,
introduction of conditionally automated (SAE level 3-4) and even-
tually fully automated (SAE level 5) [13] vehicles will allow drivers
to safely engage in di�erent non-driving tasks [32, 55]. However,
the user interface (UI) of the vehicles currently on the road is not
designed to support that. Automotive UI has been changing over
the years as the number of functions for infotainment, entertain-
ment and driver assistance increased [28, 64]. We are likely to see
even more changes in automotive UI and interaction techniques to
support non-driving activities in automated vehicles [31].

Traditionally, the center console display or dashboard instru-
ment cluster is used to present information to the driver in a car.
In recent years, heads-up displays (HUDs) have also been used to
project useful driving related information like speed and navigation
instructions on a small part of the windshield. Augmented reality
(AR) windshield display (WSD) transforms the windshield of a car
into transparent display by superimposing information over the
driving scene [25, 66]. WSDs o�er promising ways to display both
driving related information (e.g. speed and navigation instructions)
and non-driving task information, especially in automated vehicles
where drivers will be able to engage safely in di�erent non-driving
related tasks for some periods of time. In addition to the obvious
bene�t of having extended display real estate, WSDs allow drivers
to engage in non-driving tasks without having to fully take their
eyes o� the road. But WSD introduces a challenge in terms of ways
to interact with it since the distance between the driver and the
WSDs makes the traditional haptic or touch interface less conve-
nient. Researchers have investigated the potential and challenges
of using AR windshield [20, 24, 59], and di�erent ways drivers
can interact with WSDs like gesture [2, 19], speech [75] and gaze
[58]. But we still do not know how people expect to interact with
WSDs to engage in distinct types of complex multi-step non-driving
tasks in automated vehicles. In this remote unmoderated online
elicitation study, we look into this problem from the drivers’ point
of view, in order to explore how they expect to use gesture and
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voice commands to perform certain non-driving tasks in automated
vehicles. Our study examines the following research questions:
RQ1: How do drivers expect to use gestures and voice commands

to interact with windshield displays of automated vehicles
to perform non-driving tasks?

RQ2: How do drivers prefer to interact with windshield displays
of automated vehicles to perform non-driving tasks?

The rest of the paper is structured as follows. Section 2 pro-
vides an overview of research on ARWSD and how user-elicitation
studies have been used to study gesture and voice commands for
interacting with vehicle user interface. Section 3 describes the study
in details, and we present the �ndings of the study in section 4.
In section 5, we discuss design implications of our �ndings and
limitations of our study. We end the paper with section 6 where we
conclude our thoughts on the study and discuss future work.

2 RELATEDWORK
2.1 Augmented Reality Windshield Display
Even though several automakers have added heads-up display
(HUD) feature to their vehicles [51], there are still no commercially
available vehicles that extend this feature to the whole windshield
with AR WSD. Research shows that WSD technology has poten-
tial to enhance drivers’ safety and in-car experience, specially in
automated and conditionally automated vehicles [20, 24, 59]. Pro-
viding vehicle and navigation information using WSD can increase
trust and acceptance in automated vehicles [17, 76] and help elder
drivers to drive safely [29]. WSD can also be used to e�ectively
communicate uncertainty information in automated driving [33].
Since looking at WSDs requires similar gaze angles as looking at
the road, this technology can be used to enhance driver’s spatial
and situational awareness [40, 70], even in low visibility weather
conditions [12, 41]. In conditionally automated vehicles, one of
the topic of interest is how to assist drivers in taking over control
of the vehicle [49, 57]. WSD technology can be used to positively
in�uence takeover process [42] and shorten takeover time in case
of vehicle malfunctions [17]. Additionally, WSDs can also assist
drivers in performing non-driving task (NDT). Research shows that
while performing NDTs using WSDs, drivers can better maintain
their attention on the road [37], which leads to enhanced situational
awareness [21] and improved NDT performance [54]. Drivers also
experience lower cognitive workload while performing NDT [38]
and �nd it easier to take back control of the vehicle [38, 63]. While
these studies demonstrate how AR applications and WSD technol-
ogy can be used as the UI of automated vehicles, it is important to
gain insight into how people expect to interact with WSD. Under-
standing drivers’ expectations and preferences has implications for,
and should inform the design of future automotive UI.

Di�erent gesture and speech based interfaces have been explored
for interacting with head-up display or AR windshield display tech-
nology. The focus of research so far has been investigating how
commonly used gestures and voice commands can be applied to
interact with this unconventional interface. Researchers explored
gestures on windshield [2] and �nger gestures on steering wheel
surface [36] for non-driving related tasks like media and climate
control using head-up display. Some researchers took a di�erent
approach by restricting gestures to �nger pointing so that drivers

won’t have to release their hands from steering wheel in order
to interact with the windshield display [8, 19]. Similarly, research
on speech interaction has been limited to exploring simple non-
driving task performed on windshield display. Wang et al. proposed
a steering wheel mounted button and mic to use voice commands to
control a virtual assistant displayed on the windshield [73]. Other
studies investigated texting and selecting from choice list using
speech interaction and head-up display to evaluate the e�ect on
driving safety and multitask performance [68, 75]. Researchers
also compared gesture and voice command with other interaction
modalities for head-up display. Betancur et al. and Angelini et al.
found these two interaction modalities comparable in terms of user
acceptance and perceived usability, but haptic method was better
accepted compared to both gesture and speech [3, 6]. In this study,
we focus on complex personal and work-related tasks those involve
multiple steps to complete.

2.2 User-Elicitation Studies: Gestures and Voice
Commands

User-elicitation studies are a particular type of participatory de-
sign approach in which end-users are shown referents (e�ects of
an action) and are asked to demonstrate the corresponding signs
(interactions that result in the speci�ed referent) [46, 69, 78]. Re-
search shows that end-users prefer interactions produced using
user-elicitation approach compared to interactions designed solely
by experts [48]. Even though user-elicitation studies are usually
con�ned to a lab, online user-elicitation studies have also been
successfully used to produce set of user-de�ned interactions [1].

Elicitation methods have been successfully applied to generate
di�erent types of user-de�ned gestures for various interfaces. Elic-
itation studies have been used to investigate unistroke gestures
[77], single-hand microgestures [11], multi-touch gestures on large
and small surfaces [5, 15, 18, 34, 78], gestures using tangible inter-
faces [69], motion gestures for mobile computing [62], and gestures
for augmented reality (AR) [35, 56] and virtual reality (VR) [80]
environment. This method has also been used to study gestures
for various in-vehicle user interfaces. Burnett et al. conducted an
elicitation study to understand how drivers use swipe gestures on
in-vehicle touch screen interface [10]. Several other studies exam-
ined how drivers use air-gestures to perform various commonly
used non-driving tasks like climate control, navigation control and
media control using vehicle infotainment system [16, 27, 43, 79].
Experimenting with unconventional gesture interactions like in-
teractions via fabric-based wearable device [50] and performing
gestures on steering wheel surface [4] has also used user-elicitation
method. In recent years, we have started to see user elicitation
being applied to study gesture interaction in automated vehicles.
In their e�ort to study gesture interaction in highly automated
vehicle, Weidner and Broll investigated how drivers interact with
stereoscopic 3D display [74] and Lin studied gestures for adjusting
vehicle dynamics [39].

User elicitation has also been applied to study speech interaction
for various interfaces. Volkel et al. used this method to elicit dia-
logues for interacting with voice assistants [72]. Other researchers
used user elicitation to study speech interaction as part of a multi-
modal human-computer interaction interface [44, 60, 61]. In their
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study, Ho�mann et al. elicited voice commands along with surface
gestures and mid-air gestures for interacting with smart home and
they found that people preferred speech interaction compared to
mid-air gestures [26]. Other studies explored uesr-de�ned voice
commands and gestures for using a web browser on TV [46] and
controlling an unmanned aerial vehicle (UAV) [53]. Researchers
applied elicitation method to study voice commands in vehicles for
maneuver-based interventions [14] and various non-driving tasks
like phone call, controlling climate, navigation, media etc [7].

These studies demonstrate that user elicitation can be applied to
explore gesture and speech interaction in di�erent contexts. Even
though elicitation studies have been conducted to investigate ges-
ture and voice command for interacting with di�erent in-vehicle
user interfaces, to our knowledge, this is the �rst study focusing on
AR windshield display as the user interface of automated vehicles.
In contrast to most automotive UI elicitation studies which were
conducted in a lab, our unmoderated online elicitation study aimed
to reach a relatively large and diverse group of participants. The
referents we chose were also more complex and of open nature
compared to other studies because our goal was not to generate
a set of user-de�ned interactions, but to examine how drivers ex-
pect to interact with this new and unconventional user interface.
Contribution of this study is the �ndings which demonstrate user
expectation and preference for gesture and voice based interaction
with WSD in automated vehicle.

3 METHOD
We conducted a within subjects remote unmoderated user elici-
tation study to examine how drivers expect to use gestures and
voice commands to interact with AR windshield display of auto-
mated vehicles. Participants were presented with various referents
accompanied by a pair of images depicting the changes in vehicle
UI for those referents and they were asked to demonstrate (using
video recordings) which voice or gesture interaction they would
use for each referent. We developed a web app for conducting re-
mote video-based elicitation studies. After looking at the images
and reading description of each referent, participants could easily
record their responses on the same web app without using any
external application. Figure 1 shows an example of a referent pre-
sented on the web app and the interface for participants to record
their video responses for gesture and voice commands.

3.1 Referents and experimental task
From previous studies, we know that drivers perform both work
related and personal activities while commuting [67]. So in our
study, we presented participants with scenarios related to both
work and personal tasks. Our study presented 24 referents (e�ect
of performing a task) divided into four scenarios. Each scenario
had �ve to eight referents (see table 1). Each participant was pre-
sented with referents from two randomly selected scenarios; one
personal task scenario from Audiobook and Karaoke, and one work
related scenario from Podcast and Presentation. So each participant
demonstrated interactions for either 11 or 13 referents depending
on which scenarios they were presented with. When presenting
a referent to the participant, the task that was being performed
for that referent was described in text and the referent (e�ect of

that task being performed) was shown using two images of AR
windshield display. For example, in Figure 1, we see the images
presented to the participants for the referent open karaoke applica-
tion from the karaoke scenario. For this referent, the task described
to the participant was "How would you open the karaoke appli-
cation? What input command would result in the following user
interface?". The images show the e�ect of completing this task. The
�rst image (top) of Figure 1 shows the AR windshield display of an
automated vehicle where the car is in automated mode. The second
image (bottom) shows the karaoke application on the AR wind-
shield display, which is the referent. For each referent presented to
the participants, they were asked four questions.

(1) Using a voice command, how would you complete this task?
(2) Using a gesture, how would you complete this task?
(3) What is your preferred interaction method for this task?
(4) Why do you prefer this interaction method for this task?

For the �rst two questions, participants recorded two videos demon-
strating a gesture and a voice command they would use to complete
the task. For the third question, the participants chose either ges-
ture or voice command as their preferred interaction method for
that task. For the last question, participants wrote the reasoning
behind their choice of preferred interaction method.

3.2 Interacting with AR windshield
It may be di�cult to conceptualize the idea of AR WSD used as
the user interface of automated vehicles since not many people are
familiar with these emerging technologies. So, we developed images
depicting how completing di�erent tasks might look like on the AR
windshield display. The design of AR windshield display we used in
the study (see Figure 1) was speculative but it was based on research
conducted in this domain and commercially available products on
the market that use similar technology. Most of the vehicles with
heads up displays [51] show driving related information on a small
part of the windshield directly in front of the driver. Similarly, the
AR windshield display design we developed presented speed limit,
vehicle speed, status of vehicle automation, and the amount of time
left before the driver will need to take over the control of the car on
the bottom part of the windshield in front of the driver. The non-
driving task related information was presented on the passenger
side of the windshield so that the driver can monitor the road ahead
while engaging in other tasks. All driving and non-driving related
information was projected on top of a driving scene, making the
windshield a large transparent display.

3.3 Procedure
At the beginning of this online elicitation study, the �rst web page
brie�y introduced the study to the participants. The introduction
page described the aim of the study and the participants were in-
formed that they will have to record video responses to complete
the study. After signing the consent form, the participants were
introduced to the AR windshield display and automated vehicle
technology. They watched a one minute video of how interacting
with AR windshield display in an automated vehicle may look like.
Then the participants received a detailed description of the tasks
they were expected to perform in the study. After that the partici-
pants watched a tutorial of the interface they will be using to record
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Figure 1: Web app interface for participants to see the referents (left) and record their responses (right). Driving information
and non-driving task projected on augmented reality windshield display to present the referent Open karaoke application.

their video responses. They also got a chance to practice recording
video responses in order to get familiar with the process. After that
the participants were presented with the �rst referent of a randomly
selected personal task-related scenario (audiobook and karaoke). At
this time, they also received a brief description of the scenario and
the related tasks. For example, in the audiobook scenario, the refer-
ents included opening the audiobook application, playing a speci�c
audiobook, bookmarking a section of the audiobook, rewinding
30 seconds, and exiting the application to go to the main menu.
All the referents of a scenario were presented in sequence. After
�nishing responding to referents of the �rst scenario, the process
repeated for a randomly selected work-related scenario (podcast
and presentation). The participants could only proceed to the next
referent after recording two video responses for gesture and speech
interaction, choosing their preferred interaction for that referent,
and describing why they preferred that interaction method. They
completed the study by answering some demographic questions.

3.4 Participants
We recruited 43 participants using the online subject recruiting
platform Proli�c [52]. Since our goal was to examine how drivers
expect to interact, we recruited participants who reported that they
had a valid driver license. In this paper we present results based on
the responses of 31 participants who proposed gestures and voice
commands for all of the assigned referents. Of these 31 participants
18 identi�ed as men, 13 as women. They were aged between 19 and
63 (" = 29, (⇡ = 11). They were located in Africa, Europe, and
North America. Since each participant was presented with referents

from two randomly selected scenarios (discussed in section 3.1),
among the 31 participants, 16 participants proposed interactions
for referents from audiobook and presentation scenarios and 15
participants proposed interactions for referents from karaoke and
podcast scenarios. All 43 participants were compensated with $7
for their time.

4 RESULTS
4.1 User-de�ned gestures and voice commands

(RQ1)
Thirty one participants proposed a total of 373 gestures and 373
voice commands for 24 referents (11 referents x 15 participants +
13 referents x 16 participants = 373). Out of those, 278 gestures and
284 voice commands were distinct. We considered distinctness on a
per-referent basis, meaning a gesture or voice command proposed
for two di�erent referents were considered two distinct interactions.
Multiple participants proposing the same gesture or voice command
for the same referent was not considered distinct. Table 1 presents
the popular gestures and voice commands for each referent that
were proposed by at least two participants. In cases where the only
selected interaction was proposed for multiple referents or none of
the participants agreed on any interaction, we selected one gesture
or voice command from all proposals. Gestures from Table 1 are
shown in Figure 2.

4.1.1 Agreement rate. To compute the degree of consensus among
participants, we calculated agreement rate �A using the formula
proposed by Vatavu and Wobbrock [71].
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Table 1: Most commonly suggested gestures and voice commands per referent and the number of participants who suggested
them.

No. Referent Gesture Voice command
Audiobook (16 participants)
1 Open audiobook application Tap(3), Swipe left then tap(2) Open audiobook(7)

2 Play audiobook <audiobook
name> Tap(6), Hold one �nger upright(2) Play <audiobook name>(4), Resume

<audiobook name>(2)
3 Bookmark audiobook section Tap(3), Two �ngers crossed(1) Add bookmark(1)

4 Rewind 30 seconds Swirl counter clockwise(3), Tap(3),
Wave left(2)

Rewind 30 seconds(4), Rewind(3), Go
back 30 seconds(2)

5 Exit audiobook application Make X with both hands(2), Close
palm(2), Wave right(2)

Exit application(2), Return to main
menu(2)

Karaoke (15 participants)

6 Open karaoke application Tap(4), Mimic holding mic(2), Mimic
holdingmic andmove left and right(2) Open karaoke(5), Karaoke(2)

7 Select category <category
name>

Tap(6), Hold index and little �nger up-
right(1)

Open <category name>(3), <category
name>(2)

8 Play song <song name> Tap(5), Hold seven �ngers upright(2) Play <song name>(8)
9 Play vocals in background Tap(5), Hold two �ngers upright(1) Play vocals(3), Enable vocals(2)
10 Exit karaoke application Wave left(4), Wave right(3) Exit karaoke application(1)
Podcast (15 participants)

11 Open podcast application Tap(3), Using two �ngers make a cir-
cle and tap in the center(1)

Open podcast(5), Open podcast appli-
cation(3), Open the podcast app(2)

12 Play podcast <podcast name> Hold three �ngers upright(3), Swipe
up then tap(3), Tap(2) Play <podcast name>(6)

13 Bookmark podcast section Tap(2), Make a plus sign with two �n-
gers(1) Add a bookmark here(1)

14 Skip to section <section
name>

Tap(4), Point left then make a circle
with palm(1) Skip to summary(2)

15 Text <colleague name>a link
of podcast Tap(5), Make a T with two �ngers(1) Send podcast to <colleague name>(1)

16 Exit podcast application Wave left(3), Make X with both
hands(2)

Exit application(2), Close podcast
open main menu(1)

Presentation (16 participants)

17 Open presentation applica-
tion Tap(6), Show palm then thumbs up(1)

Open presentation(8), Open presenta-
tion application(2), Open my presen-
tation(2)

18 Open presentation <presenta-
tion name> Tap(4), Swipe left then tap(2) Open <presentation name>(8), Open

<presentation name> presentation(2)
19 Start the timer Tap(4), Make the ok gesture(2) Start timer(3), Start the timer(2)

20 Go to next slide Wave left(5), Move hand pointing
right(1) Next slide(8), Next(2)

21 Pause the timer Tap(4), Show palm(3), Move palm for-
ward(2)

Stop timer(4), Pause the timer(3),
Pause(3), Pause timer(2)

22 Display all slides
Tap(4), Close all �ngers from open po-
sition(2), Open �ngers from closed po-
sition(2)

Display all the slides(2)

23 Get feedback on presentation Tap(5), Make two �sts(1) Feedback(2), Give me feedback on my
presentation(2)

24 Exit presentation application Wave right(3), Wave downward(2) Close the presentation application(1)
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Figure 2: Popular gestures proposed by the participants. Gestures are presented as they appear in Table 1. The number on top
of the gesture represents in which category along 3 dimensions (Table 3) they fall into. For example, the numbers 5,2,1 next to
tap gesture means it falls into 5C⌘ and 2=3 category in dimension form and nature and the gesture requires 1 hand to perform.

�A =
|%A |

|%A | � 1

’
%8✓%A

✓ |%8 |
|%A |

◆2
� 1

|%A | � 1

In this equation, �A is the agreement rate for referent A , %A is
the set of proposed interactions for referent A , and %8 is the sub-
set of identical proposed interactions for that referent. The lower
bound of the range for �A is 0 (if all participants propose unique
gestures/voice commands for the referent) and the upper bound is
1 (if all participants propose the same gesture/voice command). For
each referent, we calculated one agreement rate for the gestures
and another for the voice commands proposed by the participants.

Let’s consider agreement rate for the referent Rewind 30 seconds
as an example. Sixteen participants proposed voice commands and
gestures for this referent. Among those, there were 11 distinct ges-
tures and 10 distinct voice commands. Groups of three, three, and
two participants proposed three unique gestures and each of the
other eight unique gestures were proposed by one participant. For
voice commands, groups of four, three, and two participants pro-
posed three unique ones and each of the other seven unique voice
commands were proposed by one participant. Agreement rate of
gestures and voice commands for this referent was calculated using
the following equations.

�A4F8=3�30�B42>=3B (64BCDA4 ) =
16
15

 
8
✓
1
16

◆2
+

✓
3
16

◆2
+

✓
3
16

◆2
+

✓
2
16

◆2!
� 1
15

= 0.06

�A4F8=3�30�B42>=3B (E>824�2><<0=3 ) =
16
15

 
7
✓
1
16

◆2
+

✓
4
16

◆2
+

✓
3
16

◆2
+

✓
2
16

◆2!
� 1
15

= 0.08

Agreement rates for all referents are presented in Table 2. Agree-
ment rate of gestures for di�erent referents ranged between 0.01 and
0.14 (" = 0.07, (⇡ = 0.04) and agreement rate of voice commands
ranged between 0 and 0.27 (" = 0.08, (⇡ = 0.09). We did not �nd

any signi�cant di�erence in agreement rate between gesture and
voice command using a two sample t-test (C (30) = �0.62, ? = 0.54).

4.1.2 Gesture classification. In order to better understand the ges-
tures proposed by the participants, we manually classi�ed them
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Table 2: Gesture and voice command agreement rate and preferred interaction for each referent.

Scenario No. Referent Agreement rate Preferred interaction

Gesture Voice
command Gesture Voice

command

Audiobook
(16 participants)

1 Open audiobook application 0.03 0.18 19% 81%
2 Play audiobook <audiobook name> 0.13 0.06 31% 69%
3 Bookmark audiobook section 0.03 0.00 12% 88%
4 Rewind 30 seconds 0.06 0.08 44% 56%
5 Exit audiobook application 0.03 0.02 31% 69%

Karaoke
(15 participants)

6 Open karaoke application 0.08 0.10 7% 93%
7 Select category <category name> 0.14 0.04 7% 93%
8 Play song <song name> 0.10 0.27 0% 100%
9 Play vocals in background 0.10 0.04 27% 73%
10 Exit karaoke application 0.09 0.00 33% 67%

Podcast
(15 participants)

11 Open podcast application 0.03 0.13 0% 100%
12 Play podcast <podcast name> 0.07 0.14 13% 87%
13 Bookmark podcast section 0.01 0.00 27% 73%
14 Skip to section <section name> 0.06 0.01 20% 80%
15 Text <colleague name>a link of podcast 0.10 0.00 7% 93%
16 Exit podcast application 0.04 0.01 47% 53%

Presentation
(16 participants)

17 Open presentation application 0.13 0.25 25% 75%
18 Open presentation <presentation name> 0.06 0.24 31% 69%
19 Start the timer 0.05 0.03 19% 81%
20 Go to next slide 0.08 0.24 69% 31%
21 Pause the timer 0.08 0.11 50% 50%
22 Display all slides 0.07 0.01 50% 50%
23 Get feedback on presentation 0.08 0.02 12% 88%
24 Exit presentation application 0.03 0.00 37% 63%

along three dimensions (Table 3). Based on the taxonomy of ges-
tures performed on surface [78] and in AR environment [56], we
proposed characterization dimensions that are relevant for inter-
acting with AR WSD. Table 3 presents our proposed taxonomy of
gestures for interacting with ARWSD. The form dimension consists
of six categories that describe whether the hand pose changed or
remained the same and whether the hand moved or remained in the
same location while performing the gesture. It is applied separately
to right and left hand in a two-handed gesture. Tap and swipe are
special cases of static pose and path. We distinguished them because
of their similarity to using touch surface. The nature dimension
consists of four categories; symbolic, touch, metaphorical, and ab-
stract. Gestures visually depicting a symbol were categorized as
symbolic gestures. For example, the gesture hold two �ngers upright
like the letter ’V’ for the referent play vocals in background can
be considered a symbolic gesture. Gestures pretending to act on a
touch surface by pointing �nger towards the windshield were clas-
si�ed as touch gestures. All the tap and swipe gestures fall into this
category. Gestures expressed through a metaphor were categorized
as metaphorical gestures. For example, the gesture mimic holding
mic for the referent open karaoke application can be considered a
metaphorical gesture. Rest of the gestures were arbitrary in nature
and were considered as abstract gestures. Some complex gestures
can fall into multiple categories in the same dimension. For exam-
ple, the gesture tap and move both hands like opening a book for
the referent open audiobook application falls into both touch and

metaphorical categories in the nature dimension. Based on which
hand the participant used for the gesture, the handedness dimension
was divided into three categories; right, left, and both.

Proportion of gestures in each category along three dimensions
are presented in Figure 3. In the form dimension for right hand, large
proportion of gestures were tap (37%) and static pose and path (32%).
For left hand, static pose and path (43%) and static pose (32%) were
most common. In the nature dimension, gestures were dominantly
touch (50%) and abstract (39%). For handedness dimension, gestures
were primarily right (72%) handed and gestures using both (17%)
hands were more common than left (11%) handed gestures.

4.1.3 Voice command classification. In order to better understand
the voice commands proposed by the participants, we manually
classi�ed them along four dimensions (Table 4) based on the tax-
onomy proposed by Ho�mann et al. [26]. Table 4 presents the
taxonomy of voice commands for interacting with AR WSD. The
form dimension consists of four categories that describe the number
of words used for a voice command and whether the command
uses sentence structure. We considered any name in the voice com-
mand like name of an audiobook, podcast, presentation, or song
as one word. The nature dimension consists of two categories; ac-
tion and state. Action voice commands utter the action to execute
and state voice commands express the desired condition. For ex-
ample, the voice command karaoke for the referent open karaoke
application falls into state category while the voice command open
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Table 3: Taxonomy of gestures for interacting with AR windshield display.

Dimension Category Description

Form

Static pose Hand pose is held in one location.
Dynamic pose Hand pose changes in one location.
Static pose and path Hand pose is held and hand relocates.
Dynamic pose and path Hand pose changes and hand relocates.
Tap Static pointing pose moving toward display
Swipe Static pointing pose moving across display

Nature

Symbolic Gesture visually depicts a symbol.
Touch Gesture pretends to act on touch surface.
Metaphorical Gesture is metaphorical.
Abstract Gesture mapping is arbitrary.

Handedness
Right Gesture performed using right hand.
Left Gesture performed using left hand.
Both Gesture performed using both hands.

Figure 3: Percentage of gestures in each category along the three dimensions described in Table 3. The form dimension has
been calculated for each hand separately. Summation of all gestures in a dimension can be larger than 1 because some gestures
fall into multiple categories in the same dimension.

karaoke falls into action category. The context dimension describes
whether speci�c context is needed for executing the command. For
example, the voice command return to main menu for the referent
exit audiobook application falls into no-context category while the
voice command exit application falls into in-context category. Lastly,
voice commands were categorized along the complexity dimension
based on whether they consist of a single command or multiple

commands. For example, the voice command exit karaoke return
to main menu for the referent exit karaoke application falls into
compound category while the voice command turn o� falls into
simple category.

Proportion of voice commands along four dimensions are pre-
sented in Figure 4. In form dimension, most voice commands fall
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into sentence (52%) and two words (33%) categories. For nature, con-
text, and complexity dimensions, most of the voice commands stated
an action (89%), needed to be considered in-context (64%), and con-
sisted of a simple (86%) command.

4.2 Interaction preference (RQ2)
For 21 out of the 24 referents, participants preferred voice com-
mands over gesture interaction. Table 2 presents the percentage of
participants who preferred gesture or voice commands for perform-
ing each task. On average, participants preferred voice commands
over gestures in 74% (276/373) of the instances for interacting with
augmented reality windshield display. We analyzed the number of
instances participants used speci�c words to describe why they
preferred an interaction modality and found that the ease of use
was by far the most common theme. Among the 276 instances
where participants preferred voice commands, they often used
words like easy/easier/simple/simpler (124) to describe interaction
using voice commands and the word hard/di�cult (22) to describe
gesture interactions. For example, one participant wrote "Easier
to say, harder to show karaoke.". Participants also thought voice
commands were more precise/accurate (29), easier to understand
(12), and quicker/faster/fast (22) to perform. One example of such
opinion: "Easier, quicker, more precise than using a gesture for such a
task.". Not requiring to use hand/hands (16) for interaction was also
appreciated by the participants; "I think it would be safer, considering
I have to put my hands on the wheel, even if I assume the car would
alert me in time.". Some of these themes were also common among
the 97 instances where participants preferred gesture interaction
over voice commands. Some participants found gesture interaction
easy/easier/simple/simpler (41) for performing certain tasks; "Since
it’s a long name I �nd it easier to point and click on the podcast I
want to play.". Other words participants used to explain why they
preferred gesture interactions were fast/faster (23) and convenient
(5). One participant wrote "I think it’s faster and more convenient,
considering the fact I don’t have to put my hands on the wheel.".

5 DISCUSSION
In this elicitation study, participants proposed 373 gestures and
373 voice commands for performing 24 tasks using AR WSD. Our
results show no signi�cant di�erence between the agreement rates
of gestures and voice commands. The consensus among partici-
pants for both gestures and voice commands were low compared
to previous studies [7, 26, 56]. This could be because some of the
referents in this study were complex and speci�c in nature. So the
participants had to think of a complex gesture or come up with
a voice command that conveyed some speci�c information. Since
the participants never used an AR WSD in real life, the elicited
interactions were less likely to be shaped by legacy bias [47], which
in turn may have resulted in diverse gestures and voice commands.

We found that a large proportion of gestures for both right and
left hand falls into static pose and path category. Proportion of tap
gestures are comparatively higher for right hand and proportion of
static pose gestures are higher for left hand. This suggests in a two-
handed gesture, people often used their right hand for movement
while keeping left hand pose static. This is consistent with existing
research on two-handed interaction [65], which shows that in case

of asymmetric bi-manual actions, dominant hand often operates in
spatial reference to the action of non-dominant hand [23].

For interacting with WSD, participant mostly used simple voice
commands that stated an action to perform. A large proportion of
voice commands needed to be considered in-context. For example,
to execute the voice command rewind 30 seconds, the system needs
to knowwhich application the participant is referring to. We’ve also
observed participants use similar gestures and voice commands to
perform similar tasks in di�erent scenarios (across di�erent appli-
cations). This emphasizes the importance of contextual awareness
in designing such interaction interfaces.

Results of the study clearly show that participants preferred voice
commands over gesture interaction. This is in accordance with pre-
vious studies that found similar preference for smart-home [26]
and in-vehicle [7] interactions. Whether the participants preferred
gesture or voice commands, the main factor behind participants’
preference was ease of use. For some participants it meant perform-
ing a task fast and for others it meant ease of referring to a speci�c
name or action directly through a voice command or gesture. This
suggests that even though more participants may prefer voice in-
teractions for most of the tasks, preference still depends on the
individual and the task they are performing. It is worth noting that
there are scenarios, which we didn’t study here, in which gesture
might be preferred to voice commands. For example, when the
driver is participating in a meeting while in the car or engaging in
a conversation with passengers, they might not want to interrupt
the conversation by using voice commands. Also, in the case of
simple tasks, gestures might be much quicker to perform, and thus
more convenient, than spoken instructions (cf. [45]).

Even though the participants never used AR WSD in an auto-
mated vehicle in real life, we still see some legacy bias a�ecting the
elicited interactions. A large proportion of gestures proposed were
similar to touch surface gestures. Legacy bias can limit uncovering
novel interactions [47], but it can also help users to adopt new
interfaces [30]. Designing air-gestures based on surface gestures
or using touch surface for interacting with AR WSD may make it
easier for drivers to adopt this new and unconventional interface.

5.1 Limitations
One limitation of this study is that it was conducted online. Inter-
actions and preference might be di�erent within a vehicle because
of the driving context. We did not consider scenarios where speech
modality is engaged, like the driver is talking on the phone or con-
versing with passengers. Finally, in this study, we had participants
from di�erent countries in Europe, North America, and Africa, but
we did not consider how cultural di�erences might a�ect the way
drivers interact or their preference for modality.

6 CONCLUSION & FUTUREWORK
In this study, we investigated drivers’ interaction for 24 personal and
work-related tasks. Future research that intends to generate user-
de�ned interaction sets can bene�t from our �ndings, which provide
insights on how the drivers imagine they will be using gestures and
voice commands to interact with ARWSD of automated vehicles. In
future work, additional scenarios need to be examined where either
of the interaction modalities are engaged. Simulator studies should
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Table 4: Taxonomy of voice commands for interacting with AR windshield display.

Dimension Category Description

Form

Single word Voice command consists out of a single word
Two words Voice command consists out of two words
More words Voice command consists out of more words without sentence structure
Sentence Voice command uses sentence structure

Nature Action Voice command states the action to perform
State Voice command describes the desired condition

Context In-context Voice command requires speci�c context
No-context Voice command does not require speci�c context

Complexity Simple Voice command consists of a single voice command
Compound Voice command can be decomposed into simple voice commands

Figure 4: Percentage of voice commands in each category along the four dimensions described in Table 4.

also be used to assess transition to and from personal or work-
related tasks to driving and how di�erent interaction modalities
will in�uence this transition.
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